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Abstract

Motivated by the Lawrence-Krammer-Bigelow representations of the classical braid groups,
we study the homology of unordered configurations in an orientable genus-g surface with
one boundary component, over non-commutative local systems defined from representations
of the discrete Heisenberg group. For a general representation of the Heisenberg group we
obtain a twisted representation of the mapping class group. For the linearisation of the affine
translation action of the Heisenberg group we obtain a genuine, untwisted representation
of the mapping class group. In the case of the Schrodinger representation or its finite-
dimensional analogues, by composing with a Stone-von Neumann isomorphism we obtain a
representation to the projective unitary group, which lifts to a unitary representation of the
stably universal central extension of the mapping class group.
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Introduction

The braid group B,, was defined by Artin in terms of geometric braids in R?; equivalently, it is
the fundamental group of the configuration space C,, (R?) of m unordered points in the plane. An-
other equivalent description is as the mapping class group M(D,,,) = Diff(D,,, S!)/Diffo(D,,, S!)
of the closed 2-disc with m interior points removed. (The mapping class group of a surface is the
group of isotopy classes of self-diffeomorphisms fixing the boundary pointwise.)

There is also a natural action of Diff(ID,,, S') on configuration spaces C,(D,,); consider-
ing the induced action on the homology of these configuration spaces, Lawrence [28] defined a
representation of B,, for each n > 1. The n = 2 version is known as the Lawrence-Krammer-
Bigelow representation, and a celebrated result of Bigelow [12] and Krammer [27] states that this
representation of B, is faithful, i.e. injective.

On the other hand, for almost all other surfaces X, the question of whether the mapping
class group M(X) admits a faithful, finite-dimensional representation over a field (whether it is
linear) is open. The mapping class group of the torus is SLy(Z), which is evidently linear, and
the mapping class group of the closed orientable surface of genus 2 was shown to be linear by
Bigelow and Budney [13], as a corollary of the linearity of Bs. However, nothing is known in
genus g > 3.
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Our programme is to study the action of the positive-genus and connected-boundary mapping
class groups (X, 1) on the homology of the configuration spaces C,, (1), equipped with local
systems that are similar to the Lawrence-Krammer-Bigelow construction. We first argue that
abelian local systems would not be good enough. In general, for any surface ¥ and n > 2, the
abelianisation of 71 (Cy, (X)) is canonically isomorphic to Hy(X) x C, where C' is a cyclic group of
order oo if ¥ is planar, of order 2n — 2 if ¥ = S? and of order 2 in all other cases (see for example
[16, Proposition 6.32]). In the case ¥ = D,,, the abelianisation is Z™ x Z, and the Lawrence
representations are defined using the local system given by the quotient 71 (Cy, (D)) = Z™ X Z —
7 x 7., where the second map is addition of the first m factors. However, in the non-planar case
(in particular if ¥ = X, 1), we lose information by passing to the abelianisation, since the cyclic
factor C' — which counts the self-winding or “writhe” of a loop of configurations — has order 2
rather than order co.

To obtain a better analogue of the Lawrence representations in the setting ¥ = ¥, ; for
g > 0, we consider instead a larger, non-abelian quotient of 71(C, (X)), which is isomorphic to
the discrete Heisenberg group H = H(X), defined as the central extension of the first homology
H = H,(%,Z) associated to the intersection 2-cocycle. This is a 2-nilpotent group that arises
very naturally as a quotient of the surface braid group m(C,(X2)) by forcing a single element
to be central. In the case n > 3 it is known by [4] to be the 2-nilpotentisation of the surface
braid group (in fact it is the maximal nilpotent quotient of the surface braid group), but for
n = 2 it differs from the 2-nilpotentisation. A key property of this Heisenberg quotient is that
it still detects the self-winding (or “writhe”) of a loop of configurations without reducing modulo
two. Any representation V of the discrete Heisenberg group H(X) defines a local system on the
configuration space Cp,(%).

An and Ko studied in [1] extensions of the Lawrence-Krammer-Bigelow representations to
homological representations of surface braid groups; see also [7]. Their purpose was to extend
the homological representation of the classical braid group to some homology of configurations
in an n-punctured surface and produce representations of the surface braid groups. In our case
the surface has no punctures, and the goal is to represent the full mapping class group. Our
constructions based on the Heisenberg quotient of the surface braid group have a similar flavour
but are significantly simpler; moreover we obtain strong improvements by specialising to explicit
representations.

We speculate about faithfulness results for our representations and linearity results for the
mapping class group. This would involve two steps.

1. Prove that the action on the homology of the Heisenberg covering space of C,,(X) is faithful.
Following Bigelow’s strategy, this would follow from a key lemma showing that an algebraic
intersection form on homology detects the geometric intersection of curves on the surface.

2. Find a good finite-dimensional representation of the Heisenberg group that retains faith-
fulness.

It was shown in [14, 15] that the adjoint representation of quantum si(2) at roots of 1 has a
topological realisation as homology of configurations with local coefficients in the once-punctured
torus. The local system used there is a special case of our construction which, although purely
topological, has a strong quantum flavour. We believe that our contribution opens a programme
for topological interpretations of quantum constructions and possible classical constructions of
quantum invariants and TQFTs.

Notation 1. Henceforth we will use the abbreviation ¥ = 3, ; for an integer g > 1.



General representations.  Our first main result is a calculation of a Borel-Moore relative homology
group with coefficients twisted by any representation of the Heisenberg group, together with a
twisted action of the mapping class group. In the following, HZM denotes Borel-Moore homology
and C,,(X,0 (X)) is the properly embedded subspace of C,,(X) consisting of all configurations
intersecting a given closed arc 9~ % C 0%. The twisted action is formulated as a representation of
an action groupoid. The key point is that the mapping class group acts on the Heisenberg group
which implies an action on our local systems. We denote by fz € Aut(H) the automorphism
induced by f € MM(X). For a representation p: H — GL(V) and 7 € Aut(H), the T-twisted
representation p o 7 is denoted by V.

Theorem A (Theorems 10 and 21). Let n > 2, g > 1 and let V be a representation of the
discrete Heisenberg group H = H(X) over a ring R.

(a) The Borel-Moore homology module HPM (C,,(2),Cn (2,07 (X)); V) is isomorphic to the direct
29+n—-1
n

graded module HEM (C,,(2),C,.(X,07(X)); V).
(b) There is a natural twisted representation of the mapping class group M(X) on the collection
of R-modules

sum of copies of V. Furthermore, it is the only non-vanishing module in the

HPM(Ch(2),Cn(2,07(2));,V) . 7€ Aut(H) ,
where the action of f € M(X) is

Cr(f)s: HEM (Cn(2),Cn (2,07 (2)); ro V) — HEM (Co(2),Cn (2,07 (2)); V). (1)

Remark 2. The case of a trivial representation of H is already something interesting; indeed,
connecting with Moriyama’s work [32], we will show that the Johnson filtration is recovered.

Remark 3. The Heisenberg group H(X) can be realised as a group of (g +2) X (g + 2) matrices;
this gives a (g+2)-dimensional representation, which we refer to as its tautological representation.
We then obtain, for each n > 2, a family of twisted representations with polynomially growing
dimension equal to (g + 2) ( 29 +: -1 )
The linearised translation action. The discrete Heisenberg group H has a natural affine structure
over Z for which the left translation action H ~ H is by affine automorphisms. The linearisation
functor Aff; — Z-Mod applied to this affine action gives a representation L = H @ Z = Z29+2
of H over Z. A key feature of this representation is that, for an automorphim 7 of H, the
twisted representation L is canonically isomorphic to L. We deduce a genuine (i.e. untwisted)
representation of the mapping class group.

Theorem B (Theorem 25). For eachn > 2 and g > 1 there is a representation of the mapping

class group M(X) on the free Z-module of rank (2g + 2) ( 29 +: -1 >¢

HEM(C,(),C (2,07 (2)); L). (2)

The Schrodinger representation.  The famous Stone-von Neumann Theorem states that the Schrddinger
representation W = L?(RY) is, up to isomorphism, the unique unitary representation of the real
Heisenberg group Hgr(X) with given non-trivial action of its centre determined by a non-zero
real number % (the Planck constant). We also denote by W this representation restricted to
the discrete subgroup H = H(X) C Hgr(X). For 7 € Aut(H) the twisted representation W is



isomorphic to W as a unitary representation and the isomorphism is defined up to a unit complex
number. Using such isomorphisms we may identify the twisted local system with the original
one and obtain an untwisted representation of the mapping class group to the projective unitary
group of the homology with local coefficients W. We build a linear lift of this projective action
to the stably universal central extension ().

Theorem C (Theorem 37). For eachn > 2 and g > 1 there is a complex unitary representation
of M(X) on the complex Hilbert space

Vo = H7M (Ca(2),Ca(2,07(2)); W) 3)
that lifts the natural projective action M(X) — PU(V,,).

The group ﬁ(Z) on which we construct our linear representation is a central extension of
the mapping class group (%) of the form:

157 — M(E) — M) — 1, (4)

and is the stably universal central extension of M(X), which we explain next.

The stably universal central extension. A group G has a universal central extension (an initial
object in the category of central extensions of G) if and only if H1(G;Z) = 0 and it is of the
form 0 — Hy(G;Z) — G — G — 1 when it exists. For genus g > 4, we have Hi(M(351);Z) =0
and Hy(9M(X4,1); Z) = Z. Moreover, there are natural inclusion maps

9)?(21,1) — 93?(22’1) —_— s — DJT(EQJ) — m(ngrl’l) —_— (5)

which induce isomorphisms on H;(—;Z) and Hy(—;Z) for g > 4 (by homological stability for
mapping class groups of surfaces, due originally to Harer [23]; see [37, Theorem 1.1] for the
optimal stability range). This implies that, for g > 4, the pullback along (5) of the universal
central extension of M(Xg41.1) to M(X,,1) is the universal central extension of M (X, 1). Hence
we may define, for all g > 1, the stably universal central extension of M(X, 1) to be the pullback
along (5) of the universal central extension of M(Xy, 1) for any h > max(g,4).

A finite-dimensional Schrodinger representation.  When the Planck constant is 27 times a rational
number, the discrete Heisenberg group has finite-dimensional Schrodinger representations, which
may be realised either by theta functions, by induction or by an abelian TQFT. We will follow
[20, 21, 22], which connect nicely the different approaches when h = %’T for a positive even
integer N. We denote by Wy = L?((Z/N)9) the N9-dimensional representation that is the
unique irreducible representation of the finite quotient Hy = H/In of H by the normal subgroup
In = {(2Nk,Nz) | k € Z,x € H} where each central element (k,0) acts by e~ . The analogue
of the Stone-von Neumann Theorem in this context [21, Theorem 2.4] allows us to construct an
untwisted representation of the mapping class group to a projective unitary group which also
supports a linear lift to the stably universal central extension.

Theorem D (Theorem 38). For each g > 1, n > 2 and N > 2 with N even, there is a complex

unitary representation of E/DVY(E) on the (29':1_1)

N9-dimenstonal complex Hilbert space
Vng = HEPM(C,(E),C (2,07 (2)); W) (6)

that lifts the natural projective action M(E) — PU(Vn y).



Remark 4. For any complex vector space V', the adjoint action of GL(V) on End¢ (V') induces a
canonical embedding PGL(V) — GL(Endc(V)). Applying this to the natural projective action
M(X) = PU(Vn,n), we obtain an untwisted complex representation

M(X) — GL(Endc(Vnn)) (7)

. . N2
of dimension (29+: 1) N?29. We observe that:

Observation 5. Injectivity of (7) is equivalent to the assertion that
the pre-image of C* along (6): ﬁ(E) — U(Vn,n) is equal to Z, (8)

where C* means the scalar operators in U(Vy,,,) and Z refers to the kernel of (4). Thus a proof
of (8) for any (N,n) with N,n > 2 would imply that the mapping class group 9 (X) is linear.

Kernels. To describe an upper bound on the kernels of our representations, we first recall the
Johnson filtration of the mapping class group.

The mapping class group M(X) acts naturally on the fundamental group 1 (X) of the surface.
Each term of the lower central series of a group is fully invariant, so there is a well-defined induced
action of M(X) on the quotient 71(X)/I541, which is the largest (i + 1)-step nilpotent quotient
of m1(X). The Johnson filtration J(x) is then defined by setting J(i) to be the kernel of this
induced action. Thus J(0) is the whole mapping class group and J(1) is the Torelli group. The
intersection of all terms in the filtration is trivial, i.e., it is an ezhaustive filtration of the mapping
class group [26].

One may also consider the induced action of the mapping class group 9%(X) on the universal
metabelian quotient 71 (X) /7 (X)) of the fundamental group of the surface (the quotient by
its second derived subgroup); its kernel is the Magnus kernel of M(X), which we denote by
Mag(X) C M(X). In §6 (Proposition 41) we prove:

Proposition E (Proposition 41). For eachn > 2, g > 1, considering the regular representation
V = Z[H] of the discrete Heisenberg group H = H(X), the kernel of the representation constructed
in Theorem A is contained in J(n) N Mag(%).

Computability. We emphasise that our representations are explicit and computable. First, the
underlying R-module in Theorem A is a direct sum of finitely many copies of the R-module V'
that underlies the chosen representation of the discrete Heisenberg group H(X). This is Theorem
A(a); an explicit basis is described in Theorem 10.

Moreover, the actions of elements of the mapping class group on the canonical basis provided
by Theorem 10 may be explicitly computed. To demonstrate this, we calculate in §7 explicit ma-
trices for our representations in the case when n = 2 and V' = Z[H] is the regular representation
of #H = H(X). For example, when g = 1, the Dehn twist around the boundary of ;1 acts by
the 3 x 3 matrix over Z[H] = Z[u™']{a*!,b*1)/(ab = u?ba) depicted in Figure 4 (page 36).

Outline. In §1 we define and study the quotient H of the surface braid group. In §2 we study
the Borel-Moore homology with local coefficients of configuration spaces on ¥, proving Theorem
A(a) and showing in particular that, with coefficients in V' = Z[H], it is a free module with an
explicit free generating set. Next, in §3, we show that the action of the mapping class group on
the surface braid group descends to the Heisenberg quotient .

In §4 we construct twisted representations (Theorem A(b)) of the full mapping class group,
as well as the untwisted representations associated to the linearised translation action L = H®Z



(Theorem B). In §5 we prove Theorems C and D for the Schrodinger representation of H and
its finite-dimensional analogues. In §6 we discuss connections with the Moriyama and Magnus
representations of mapping class groups and deduce that the kernels of our twisted representations
of M(X) from Theorem A, with coefficients in V' = Z[H], are contained in the intersection of the
Johnson filtration with the Magnus kernel.

In §7 we explain how to compute explicit matrices for our representations with respect to
the free basis coming from §2. We carry out this computation in the case of configurations of
n = 2 points and where V = Z[H] is the regular representation of #; this special case of our
construction is a direct analogue of the Lawrence-Krammer-Bigelow representations of the braid
groups.

The first version of this paper also contained further results about untwisted representations
of subgroups of the mapping class group on Heisenberg homology. In order to improve readability,
we have moved this part to a separate article.
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1 A non-commutative local system on configuration spaces of surfaces

Let ¥ = ¥,,1 be a compact, connected, orientable surface of genus g > 1 with one boundary
component. For n > 2, the n-point unordered configuration space of X is

Co(2) = {{e1,c2, .0} C ¢ # ¢ for i # j},

topologised as a quotient of a subspace of ¥". The surface braid group B,,(X) is then defined as
B, (X) = m1(Cn(X)). We will use the presentation of this group given by Bellingeri and Godelle
in [5], which in turn follows from Bellingeri’s presentation [3]. It has generators oy,...,0n_1,



ai,...,og, B1,..., B, and relations:

(BR1) [o,04] =1 for |i — j| > 2
(BR2) 000, = 0j0:0; for |i — j| =1,
(CR1) [ay,0i] = [Br,05] =1 for i > 1 and all r,
(CR2) [ay, Ularal] [Bryo1Br01] =1 for all r,
(CR3) [ay, 07  aso1] = [an, 07 Bso1] =

= [Br, 01 fasoy] = [Bryo7 LB =1 for all r < s,
(SCR) 01p,010t:01 = 015y for all r.

We note that composition of loops is written from right to left. Our relation (CR3) is a slight
modification of the relation (CR3) of [5], but it is equivalent to it via the relation (CR2).
The first homology group H;(X) = Hy(X;Z) is equipped with a symplectic intersection form

w: Hi(S) x Hi(X) — Z

and the Heisenberg group H = H(X) is defined to be the central extension of H;(X) determined
by the 2-cocycle w. Concretely, it is the set-theoretic product Z x H;(X) with the operation

(k,z2)(l,y) = (k+14+w(z,y),z+y). (9)

Denote by ¢: H — H;(X) the projection onto the second factor and by i: Z < H the inclusion
of the first factor; the central extension may then be written as:

Y

0 Z——H Hi(X) — 0

There is a general recipe for computing a presentation of an extension of two groups, given
presentations of these two groups and some information about the structure of the extension
(we will use the formulation of [16, Appendix B]; an alternative reference is [25, §2.4.3]). In
particular, for a central extension 1 - H - G — K — 1 with H = (X|R) and K = (Y|S), we
have G = (X UY|RU S UT), where S is any collection of relations that are true in G and that
project to the relations S in K and where T is a collection of relations saying that the generators
X are central in G.

Applying this to our setting, we obtain the following presentation of H, where we write
u=(1,0) and where a1,...,aq, b1,...,b, is a symplectic basis of H; ().
Proposition 6. The Heisenberg group H = H(X) admits a presentation with generators u,

a; = (0,a;), b; = (0,b;) for 1 < i< g and relations:

{ all pairs of generators commute, except: (10)

a;b; = u?b;a; for each i.

Proof. We apply the above procedure to the presentations Z = (X|R) and H;(¥) = (Y|S)
where X = {u}, Y = {a1,...,aq, bi,...,b ¢}, the relations R are empty and the relations S say
that all pairs of elements of Y commute The relations 7' say that v commutes with each of
{a1,...,ag, bi,...,b }, so to show that (10) is a correct presentation of H it will suffice to show
that the relatlons alb = u2b;i ;a; and alb = b ia; for ¢ # j are true in H, because we may then

take S to be this collection of relations, since it projects to S. To verify these, we compute that

digj = (O,Gi + bJ) = (0, bj + CLZ‘) = bi&J



since w(a;, b;) = 0 when i # j, and
dlgz = (1,ai + bl) = (].,bl + ai) = (2,0)(—1,[)1 + ai) = U2Ei(~li7
since w(a;, b;) =1 and w(b;,a;) = —1. m

It follows immediately from this presentation that:

Corollary 7. For each g > 1 and n > 2, there is a natural surjective homomorphism
d: Bp(X) — H(X)
sending each o; to u and sending «; — a;, B; — b;.

In the case n > 3, this quotient of the surface braid group has previously been considered in
[4, 6, 7], which also consider the more general setting where 3 is closed or has several boundary
components. The alternative approach in these articles allows one to identify the kernel of ¢ as
a characteristic subgroup. We include below a description of the kernel valid for all n > 2.

Proposition 8. (a) Forn > 2, the kernel of ¢ is the normal subgroup generated by the commu-
tators [o1, x| for x € B, (X).
(b) Forn > 3, the kernel of ¢ is the subgroup of 3-commutators T's(B,(X)).

For a proof of statement (b), we refer to [4, Theorem 2]. More precisely, statement (10)

on page 1416 of [4] is the analogous fact for the closed surface X,: that there is a surjective
homomorphism B,,(3,) — H,/(u?>™T9~1) whose kernel is exactly I'3(B,(%,)). The proof given
there works also in our case where the surface has one boundary component and we do not
quotient by (u2(™*t9=1), In this paper we will use statement (a) and focus on the case n = 2 in
our explicit computations.
Proof. Let K, C B,(X) be the normal subgroup generated by the commutators [o7,z] for
z € B,(X). The image ¢(o1) being central, we have K,, C ker(¢), hence we see that ¢ may be
factored through a surjective homomorphism ¢: B,,(X)/K,, — H. If we add centrality of o1 to
the defining relations for B, (X), we may:

e replace (BR2) by 0; = 07 for all 4,

e remove (BR1), (CR1) and (CR2),

e replace (CR3) by commutators of all pairs of generators except for (a., 5,),

e replace (SCR) with .., = 0283,q.

Finally the presentations of B, (X)/K,, and H coincide and ¢ is an isomorphism, which proves

(a). m

In contrast to the case of n > 3, the kernel ker(¢) when n = 2 lies strictly between the terms
Ty and T'3 of the lower central series of Bo(3).

Proposition 9. There are proper inclusions
[3(B2(X)) = ker(¢) = [a(B2(X)).

Proof. By the above proposition, ker(¢) is normally generated by commutators, so it must lie
inside I'y(B2(X)). On the other hand, the Heisenberg group H = H, is a central extension of
an abelian group, hence 2-nilpotent. The kernel of any homomorphism G — H with target a
2-nilpotent group contains I's(G), so ker(¢) contains I'3(B2(X)). To see that ker(¢) is not equal



to I'y, it suffices to note that the Heisenberg group is not abelian. To see that ker(¢) is not equal
to I's, we will construct a quotient

P By(X) — @
where @ is 2-nilpotent and [o1,a;1] & ker(¢). Given this for the moment, suppose for a contra-
diction that ker(¢) = I's. Then we have [01,a1] € ker(¢) = I's C ker(z)), due to the fact that Q
is 2-nilpotent, which is a contradiction.

It therefore remains to show that there exists a quotient (Q with the claimed properties. In
fact we will take Q = Dy, the dihedral group with 8 elements presented by Dy = (g,7 | g°> =
72 = (g7)* = 1). Let us set (a;) = ¥(b;) = g and 9(01) = 7. It is easy to verify from the
presentations that this is a well-defined surjective homomorphism. The dihedral group Dy is
2-nilpotent (its centre is generated by (¢g7)? and the quotient by this element is isomorphic to
the abelian group (Z/2)?), and we compute that 1 ([o1,a1]) = (79)? # 1, which completes the
proof. m

2 Heisenberg homology

Using the homomorphism ¢, any representation V' of the Heisenberg group H becomes a module
over R = Z[B,,(X)]. Following for example [24, Ch. 3.H] or [17, Ch. 5] we then have homology
groups with local coefficients H,(C,(X); V). When V is the regular representation Z[H], we
simply write H,(C,(X); H). Let C,,(X) be the regular covering of C,, () associated with the kernel
of ¢. Then H,(C,(X);H) is the homology of the singular chain complex S, (C, (%)) considered
as a right Z[H]-module by deck transformations. Given a left representation V' of H, then
H,(Cn(X); V) is the homology of the complex S, (C (X)) Rz V-

Relative homology with local coefficients is defined in the usual way. We also use the Borel-

Moore homology, defined by
HPM(Co(); V) = lim H, (Ca(2), Ca(2) \ T3 V),
T

where the inverse limit is taken over all compact subsets T' C C,, (). In general, writing /C(X)
for the poset of compact subsets of a space X, the Borel-Moore homology module Hf M (X,4;V)
is the limit of the functor H, (X, AU (X \ —);V): K(X)°? — Modpg for any local system V on
X and any properly embedded subspace A C X. Under mild conditions, which are satisfied in
our setting, the Borel-Moore homology is isomorphic to the homology of the chain complex of
locally finite singular chains.

Borel-Moore homology is functorial with respect to proper maps. If f: X — Y is a proper
map taking A C X into B C Y, then there is an induced functor f=1: K(Y) — K(X) by taking
pre-images, and a natural transformation H,, (X, AU(X\—); f*(V))of~! = H,(Y,BU(Y \-); V)
arising from the naturality of singular homology. Taking limits, we obtain

HZM(X, A; f7(V) = lim Hi (X, AU (X =) (V)
— lim (Hn(X,AU (X\ =) f (V))o ffl)
— lim H,(Y,BU (Y \ —); V) = HEM(Y, B; V).
In particular, homeomorphisms are proper maps, so self-homeomorphisms of a space act on its
Borel-Moore homology.

We will adapt a method used by Bigelow in the genus-0 case [11] (see also [1, 30, 2]) for
computing the relative Borel-Moore homology

HPM(Co(2),Ca(B,07(2)); V) = Wm(Ca(2), Co (2,07 (X)) U (Ca(B) \ T); V),
T



where C,, (X, 07 (X)) is the closed (thus properly embedded) subspace of configurations containing
at least one point in a fixed closed interval 0~ (X) C OX. In general for a pair (X,Y") the notation
Cn(X,Y) will be used for configurations of n points in X containing at least one point in Y.

The surface ¥ can be represented as a thickened interval [0, 1] x I with 2¢ handles, attached
as depicted below along {1} x W, where W contains, in the following order, the points:

/ / / 1
wi, W2, Wy, Wy, ... 7w2g—17w297w29—17w2g'

We view ¥ as a relative cobordism from 9~ (X) = {0} x I (in blue below) to % (X) (in green
below), where 81 (X) is the closure of the complement of 9~ (X) in d(X). For 1 < i < 2g, v
denotes the union of the core of the i-th handle with [0,1] x {w;, w}}, oriented from w; to w},
and T’ = I1;; (in red below).

oty

w1 wa w} wh 0%

Let K be the set of sequences k = (k1, k2, ..., kag) such that k; is a non-negative integer and
>, ki = n. We will associate to each k € KC an element of the Borel-Moore relative homology
HBEM(C,(2),Cn(2,07(2)); H), as follows.

For k € K we consider the submanifold Ej, C C,,(X) consisting of all configurations having k;
points on ;. This manifold inherits an orientation from the orientations of the arcs -; together
with the ordering (up to even permutations) of the points on I' by declaring that © < y for z € ~;,
y € v, if either i < j or i = j and x comes before y according to the orientation of ;. Moreover,
it is a properly embedded Euclidean half-space R’} in C,(X) with boundary in C, (3,07 (%)).
After choosing a path connecting it to the base point in C,(X), E) represents a homology class
in HBM(C,,(2),C (3,07 (2)); H) which we also denote by Ej.

Theorem 10 (Theorem A(a)). Let V be any representation of the discrete Heisenberg group H.
Then, for n > 2, there is an isomorphism of modules

HPM(C(2),C(2,07 (D) V) = V.
ke

Furthermore, this is the only non-vanishing module in HEM (C,,(X),C,(%,07(X)); V). In partic-
ular, when V = Z[H], the graded Z[H]-module HEM (C,,(%),C, (3,07 (X)); H) is concentrated in

degree n and free of dimension < 29 +: -1

) with basis {Ey ek -

Remark 11. Theorem 10 is true (with the same proof) more generally for Borel-Moore homology
with coefficients in any representation V of the surface braid group B, (X) = m1(C, (X)), not
necessarily factoring through the quotient B,,(¥) — H. However, we will only need Theorem 10
for representations of the Heisenberg group.

Recall that a deformation retraction h: [0,1] x ¥ — ¥ from ¥ to Y C ¥ is a continuous map
(t,z) = h(t,xz) = hy(z) such that hg = Idg, hi(X) C Y, and (h¢)), = Idy. We will prove the
following lemma in Appendix A.
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Lemma 12. There exists a metric d on ¥ inducing the standard topology and a deformation
retraction h from ¥ to T'U 07 (X), such that for all 0 < t < 1, the map hy is a 1-Lipschitz
embedding.

Proof of Theorem 10. We use a metric d and a deformation retraction h from Lemma 12.
For e > 0 and Y C ¥ we denote by C; (Y') the subspace of configurations z = {z1, 22, ....,2p,} C Y
such that d(z;, z;) < e for some i # j. If Y is closed, then C5,(Y) is a cofinal family of co-compact
subsets of C,,(Y"), which implies that for a pair (Y, Z) of closed subspaces of ¥, we have

HEV(Co(Y),CalY, 2):V) 2 im Ho(CalY),Ca(Y, Z) UC(Y): V) (11)

For 0 <t <1, let 3¥; = hy(X). For t < 1 we have an inclusion
(Cn(E4),Cn(E, 07 (2)) UCH(Zr) C (Cn(X),Cn(X,07 (X)) UCL(X))

which is a homotopy equivalence with homotopy inverse C,,(h:), which is a map of pairs because
h is 1-Lipschitz. So we have an inclusion isomorphism

H, (Ch(X1),Cn (24,07 (X)) UC(2:); V) = Hi(Co(X),Crn (2,07 (X)) UC(E); V) (12)

The compactness of ¥ ensures that h; is the uniform limit of h; as ¢ — 1, which implies
that for e > 0 we may choose ¢ = t. < 1 such that for all p € ¥ we have d(h(p), h1(p)) < §.
For such ¢, let A; C C,(X¢) be the subset of configurations © = {x1,...,2,} C X; such that
(hyoh; M) (z;) = (hy o hy ') (x;) for some i # j. We have that A; is closed and (by our definition
of t = t.) contained in the open set C¢(3;). We therefore get an excision isomorphism

Ho(Cn(B0)\Ar, (Cu(3,07 (X)) UCL(E)\Ai V) = Hi(Cu(Er), Cn(Xr, 07 (2))UC(30); V) (13)
The map C,(h1) o Cy(h; ') gives a well-defined map of pairs
(Cn (%) \ Ap; (C(2, 07 (8)) UCL(54)) \ At) — (Cn(%1),Ca(30,07 (X)) UCL(X0))

which is a homotopy inverse to the inclusion. Here 31 = hy(X) is equal to U0~ (X). Combining
excision and homotopy equivalences, we obtain an inclusion isomorphism:

Ho(Cn(%1),Cn(31,07 (X)) UCL(31); V) = H.(Co(X),Cn(%,07 (X)) UCL(X); V). (14)

Write W~ = {0} x W C 97 (%), let U, C 07 (%) be defined by x € U < d(z, W~) < § and set
T'e =T UU.. In the left-hand side group above, we may apply excision with the closed subset
Cn(21,07(2) \ Uc), which gives

H.(Cpr(Te),Cr(Te, U ) UC; (Te); V) = Hyi(Crn(21),Cn(X1,07 (X)) UC; (X1); V). (15)

We finish with one more excision removing configurations which contain 2 points in the same
component of U, followed by a deformation retraction to configurations in I' and finally obtain:

Ho(Cn(1), Cu(T, W) UCL(T); V) = Hu(Cn(Te), Cu(Te, Ue) UC,(Te); V). (16)

Taking the limit 0 < € in the composition of the isomorphisms from equations eqs. (14) to (16),
we obtain:

HPM(Co(T),Ca(D,W7)):V) 2 HIM(Ch(5),Ca(3,07(8)): V). (17)

Now we observe that the pair (C,(T'),C, (T, W™)) is the disjoint union of the relative cells

(B, 0(Ey)) for k € K. Tt follows that the Borel-Moore homology (17) is trivial when % # n

and that each Borel-Moore homology class Ej generates a direct summand isomorphic to the

coefficients V' in degree * = n. In particular, when V = Z[H], these classes form a basis over
Z[H)] for the degree-n Borel-Moore homology. m
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3 Action of mapping classes

The mapping class group of 3, denoted by MM(X), is the group of orientation-preserving diffeo-
morphisms of ¥ fixing the boundary pointwise, modulo isotopies relative to the boundary. The
isotopy class of a diffeomorphism f is denoted by [f]. An oriented self-diffeomorphism fixing the
boundary pointwise f: 3 — ¥ gives us a homeomorphism C,(f): C,(X) — C,(X), defined by
{z1,29,...,2n} — {f(x1), f(z2),..., f(zn)}. If we ensure that the basepoint configuration of
Cn(X) is contained in 9%, then it is fixed by C,,(f) and this in turn induces a homomorphism
JB.(z) = T1(Cu(f)): Bn(¥) — B, (X), which depends only on the isotopy class [f] of f.

3.1 Action on the Heisenberg group
We first study the induced action on the Heisenberg group quotient.

Proposition 13. There exists a unique homomorphism fy: H — H such that the following
square commutes:

B,(X) — =, B (%)

| ! o8

HLH

Thus, there is an action of M(X) on the Heisenberg group H given by
U: f fo: M(E) — Aut(H). (19)

Proof. Since ¢ is surjective, the homomorphism fz will be uniquely determined by the formula
Ju(o(7)) = o(fw, () (7)) if it exists. To show that it exists, we need to show that the composition
¢ o fg, (s factors through ¢, which is equivalent to saying that fg, (x) sends ker(¢) into itself.

The braid o7 is supported in a sub-disc D C ¥ containing the base configuration. Let T' C X
be a tubular neighbourhood of 0¥ containing D. Since f fixes 9% pointwise, we may isotope f
so that it is the identity on 7', in particular on D, which implies that fp (x) fixes 01. We then
deduce from part (a) of Proposition 8 that fg, (x) sends ker(¢) to itself, which completes the
proof. m

3.2 Structure of automorphisms of the Heisenberg group.

Recall that the centre of the Heisenberg group H is infinite cyclic, generated by the element wu.
Any automorphism of % must therefore send u to u®".

Definition 14. We denote the index-2 subgroup of those automorphisms of H that fix u by
Autt(H), and call these orientation-preserving.

From the proof of Proposition 13, we observe that, for any f € 9(X), the automorphism [
is orientation-preserving in the sense of Definition 14. We may therefore refine the action ¥ as

follows:
U fr far: M) — Aut™ (H). (20)
The quotient of H by its centre may be canonically identified with H = H;(X), so every
automorphism of H induces an automorphism of H. Moreover, if it is orientation-preserving, the
induced automorphism of H preserves the symplectic form w on H. To see this, first note that,
by the universal coefficient theorem, we have H?(H;Z) = Hom(Ho(H),Z) = Hom(A?(H),Z),
so the action of Aut(H) on anti-symmetric bilinear forms on H is identified with its action on

12



H?(H;Z). Now, any automorphism of H that is induced from an automorphism ¢ of H acts on
the class in H2(H;Z) classifying the extension H — H by ©|z(21), the restriction of ¢ to the centre
of H, which is identified with Z. In particular, if ¢ is orientation-preserving, then its induced
automorphism of H fives the class in H?(H;Z) classifying the extension % —» H. This class
corresponds to the symplectic form w. Thus we have a homomorphism £: Aut™(H) — Sp(H)
denoted by ¢ — .

Lemma 15. There exists a split short exact sequence
1 —— HY(%:Z) —2— Autt(H) —£— Sp(H) —— 1

where j(c) = [(k,z) — (k + c(x),x)].

Proof. First we see that j: H'(X;Z) — Aut™(H) is a group homomorphism whose image is in
ker(L£). We next identify the kernel of £: an automorphism ¢ € ker(£) takes the form ¢(k,z) =
(k4 c(x),z) where c: H1(X%;Z) — Z is a homomorphism. We thus have ¢ € Hom(H;(%;Z),Z) =
H(3;7Z) and ¢ = j(c). This proves exactness in the middle of the sequence above. Injectivity
of j and surjectivity of £ may also be checked easily. Finally, a splitting of L is given by the
assignment g — ¢4 = [(k,z) = (k,g(z))]. =

As corollary, we obtain that Aut™(#) is the affine symplectic group. The splitting gives a
decomposition as Sp(H) x H!(X;Z), where the semi-direct product structure on the right-hand
side is induced by the natural action of Sp(H). Corresponding to the splitting given in the proof,
there is a function (which is not a group homomorphism) Aut™(#) — H'(X;Z) = Hom(H,7Z)
given by the assignment ¢ — ¢° = pr(¢(0, —)). We formulate the result below.

Corollary 16. The homomorphism L£: Aut™(H) — Sp(H) and function (—)°: Aut™ (H) — H*
induce an isomorphism

Aut™(H) = Sp(H) x H'(35Z), ¢ = (3,¢°), (21)
where the semi-direct product structure on the right-hand side is induced by the natural action of
Sp(H) on HY(%;7Z).

Remark 17. Fixing a symplectic basis of H, the right-hand side of (21) is a subgroup of
G L2y (Z) x Z*9, which may be embedded into GLay1(Z). In this way, any orientation-preserving
action of a group G on H may be viewed as a linear representation of G over Z of rank 2¢g + 1.

The general form of an oriented automorphism ¢ is therefore

Sa(kvx) - (k + @0($)7¢(x>) )

where ¢° € H* and p € Sp(H) is the induced symplectic automorphism. From the proof of
Proposition 13 we observe that, for any f € 0(X), the automorphism f4 is orientation-preserving
in the sense of Definition 14. Hence for a mapping class f € 9(X), the map fy is represented
as follows:

fu: (kam) = (k + 6f(x)vf*($))7 (22)
where 67 = (f3)° € H'(Z;Z).

13



3.3 Recovering Morita's crossed homomorphism.

In [31], Morita introduced a crossed homomorphism 2: 9M(X) — H'(X), f + 0 representing
a generator for H(MM(X); HY(X)) = Z. We will recover this crossed homomorphism from the
action f — fy on the Heisenberg group.

Recall that, for a given action of a group G on an abelian group K, a crossed homomorphism
0: G — K is a function with the property that 8(g2g1) = 6(g1) + g10(g2) for all ¢1,¢92 € G.

Remark 18. Crossed homomorphisms G — K are in one-to-one correspondence with lifts

where the diagonal arrow is the given action of G on K.

Proposition 19. The map §: M(X) — HY(X), f — J¢, is a crossed homomorphism equal to
Morita’s crossed homomorphism 0.

Proof. We first show that ¢ is a crossed homomorphism. Let f,g be mapping classes; then we
have, for (k,z) € H,

(g0 Pk, x) = gu(k +07(x), fu(2)) = (k+07(x) + 54 (f+(2)), (g © f)«(2)) ,

and so we obtain dgo¢(x) = d5(x) + f*(dg)(x), as required.

We will use as (free) generators for 71(X) the loops given by the first strand in the generators
a;, B; of the braid group B, (X), and keep the same notation. For v € (%), let us denote by v;
the element in the free group generated by «;, §; that is the image of 4 under the homomorphism
that maps the other generators to 1. Then we have a decomposition

. V1 QM1 VUm QHm
Vi =g Bt BT

where v; and p; are 0, —1 or 1. The integer d;() is then defined! by

m m m m
TCIEED S5 ST ST S
j=1 k=j j=1 k=j+1
m m
=D D Liviite,
j=1k=1
where ¢, = +1 when j < k and ¢j; = —1 when j > k. The definition for the Morita crossed

homomorphism is as follows:

g

05 () = D dilfs(7) — di() - (23)

i=1

For v € 71(X), consider the pure braid obtained by adding n—1 trivial strands to 7, which we also
denote by «. The above decomposition of v used for the definition of d; is also a decomposition
in the generators of the braid group, and from the definition of the product in H we have that

o(y) = (Zch(v%[v]) EH .

IThere is a small misprint in [31].

14



This formula may be checked by recursion on the length of v as a word in the free generators of
71(X). It can also be deduced from [31, Lemma 6.1]. The equality 3y = 0, follows. m

4 Constructing the representations

In this section we construct (§4.1) the twisted representation of Theorem A, as well as (§4.2) the
untwisted representation of Theorem B associated to the linearised translation action of H.

4.1 A twisted representation of the mapping class group.

Recall from Proposition 13 that we have a representation
U: M(X) — Aut(H) .

The quotient homomorphism ¢: B,,(X) — H (Corollary 7) corresponds to a regular covering

Cn(Z) = Cu(T). Let f € M(), fx be its action on the Heisenberg group and C,(f) be the
action on the configuration space C,(X). From Proposition 13 we know that C.(f); = fg, (%)
preserves ker(¢), which implies that there exists a unique lift of C,,(f) fixing the basepoint:

Ca(f): Ca(B) — Ca(D) . (24)

The action of C,, (f) on the fibre over the basepoint identified with #H coincides with fy;, and for
the deck action of h € H on = € C,,(2) we have the twisting formula

Co(f) (@ -h) = Cu(f) - fu(h) .

The induced action on the singular chain complex S, (C, (X)) is twisted Z[H]-linear, which may
be formulated as a Z[H]-linear isomorphism

S (Cal1)): Su(Ca() 1 — Se(Ca(®)) -

Here the subscript on the domain means that the right action of H is twisted by f;tl. The result
for Z[H]-local homology is a Z[H]-linear isomorphism

Ca(f)s HIM(Cu(2),Cn(8,07(8)); H)po1 —> HIM(Ca(%),Ca(2,07 (X)) H) . (25)

More generally, if V' is a left representation of the Heisenberg group over a ring R, then we obtain
an R-linear isomorphism

Co(f): HPM(Cn(2),Cn(Z,07(2)); £,V) — HPM (Co(),Cn(2,07(2)); V) (26)

where the left-hand homology group is obtained from the chain complex

(8:€t)y0) 5V = sGE) e ()

Here, “obtained from” means that we consider the quotients of this chain complex given by the
relative singular complexes for all subspaces of C,, (X) of the form w*i(Cn(E, 0~ (B)U(Cn(2)N\T))

for compact subsets T' C C,,(X), where 7 denotes the covering map C,,(X) — C,,(X); we then take
the homology of each of these quotients and take the inverse limit of this diagram.
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Another way of describing this construction, and of keeping track of the twisting on each
side, is to write the lifted action (24) of f as an H-equivariant map

Cn (D)% — C,(2)?, (27)

where the superscript indicates the quotient 71(C, (X)) = B,,(X) - H determining the covering
space as a space equipped with a right H-action. Applying relative twisted Borel-Moore homology
to (27), considered as a map of regular covering spaces, we obtain (25) with Z[H]-local coefficients
and (26) with V-local coefficients.

We may easily generalise this discussion by twisting both sides by an element 7 € Aut(#).
The action Cp,(f): Cp(X) — Cp(X) lifts to a map of regular covering spaces

Co (D)oot 5 € (2)70? (28)
and, applying relative twisted Borel-Moore homology, we obtain a Z[H]-linear isomorphism
HZM(Co(2),Cu(%,07 (D)5 H) g6, -1 — HIM(Ca(2), Ca(E,07(2));H) 1 (29)
with Z[H]-local coefficients and an R-linear isomorphism
HEM (Co(S),C(5,07 () 7o) —> HEM (€0 (), Cal(3,07 (2))i V) (30)

with V-local coefficients.

These isomorphisms together form a twisted representation of the mapping class group M (X%).
To formulate precisely the meaning of this statement, we use the notion of an action groupoid,
which we define next.

Definition 20. For a group G with a left action a: G — Sym(X) on a set X, the action groupoid
Ac(G ~ X) is the groupoid whose set of objects is a(G), whose set of morphisms o — 7 is the
subset a~!(77o) C G and where composition is given by multiplication in G.

In these terms, a twisted representation of G over R means a functor Ac(G ~ X) — Modgr
for some action G ~ X. In our setting, X = H and the groupoid Ac(9M(X) ~ H) has objects
Aut™(H) = ¥(9M(X)) and its morphisms o — 7 are the mapping classes f such that 7o fy;, = 0.

The above discussion proves the following, which is a functorial formulation of the twisted
representation announced in Theorem A.

Theorem 21 (Theorem A(b)). Associated to any representation V. of H over R, there is a
functor
Ac(M(X) ~H) — Modpg (31)

where each object T: H — H is sent to the R-module
HIM (Ca(2),Ca(2,07(8)); V)
and the morphism f: 7o fy — 7 is sent to the R-linear isomorphism (30).

Remark 22. The Heisenberg group H may be realised as a group of matrices, which gives a
faithful finite-dimensional representation, defined as follows:

g 1 P k+p-q
2
<k75'3 => piai+ Qibi> — | 0 Iy ¢ ;
i=1 0 0 1
where p = (p;) is a row vector and g = (¢;) is a column vector. This matrix form is often given
as the definition of the Heisenberg group; we therefore refer to this representation of H as its

tautological representation. As a corollary of the above theorem with V' equal to the tautological
representation, we obtain a twisted finite-dimensional representation of the mapping class group.
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4.2 The linearised translation action

The underlying set of the Heisenberg group H is Z x Hy(¥;Z) = Z291, which we may endow
with its usual affine structure (the structure of a torsor over the Z-module Z2971). The first key
observation is that left multiplication in H preserves this affine structure, in other words, for any
ho = (ko,zo) € H, the left translation action l,,: H — H is an affine automorphism. Indeed
Liko,zo) (B, ) = (K, ") with

E=k+k .
{ / + Ko + 9.2 (32)
r =x+ xg.
Left multiplication therefore gives us an affine action
H — Aff(Z%971). (33)

Recall that an affine space over a ring R consists of an R-module M and an (M, +)-torsor A,
where (M, +) denotes the underlying additive group of M and a G-torsor means a set equipped
with a free and transitive action of G. Given an affine space A over a ring R, any affine auto-
morphism of A induces an R-linear automorphism of M @ R, as follows, depending on a choice
of element a € A. Recall that an affine automorphism of A is a pair (p, f) with ¢: M — M an
R-linear automorphism and f: A — A a bijection with f(a +m) = f(a) + ¢(m) for all a € A
and m € M (note that f determines ). This is sent to the R-linear automorphism of M @& R

given by
© v
0 1)’

where v € Homp(R, M) = M is the unique element such that f(a) = a +v. This gives an
embedding, depending on a € A:

AfE(A) s Autp(M & R).
Applying this to the affine space A = Z29+! over Z with a = 0, we obtain an embedding
AfF(Z29TY) — GLay12(Z) (34)

given by the above formula with v = (kg, zp). The linear automorphism ¢ underlying the affine
automorphism f = I, ) given by (32) is ¢(k,z) = (k + xg.7, ). The linearised action

pr = (34) 0 (33): H — GLag.2(Z) (35)

on L =H @ Z = 72972 is therefore given by the formula

1 Tro.— k‘o
(ko,l‘o) — | 0 I xo |, (36)
0 0 1

in other words pr,(ko, zo) acts by (k,x,t) — (k',2’,t"), where

K =k+tkyo+xo.x
=z+txg
t =t.

The nice feature of this representation is that the twisted representation .L is canonically iso-
morphic to L, for any 7 € Aut™(H,).
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Lemma 23. For 7 € Autt(H), the linear map 7 @ Idz: L — L gives an isomorphism of
Z[H]-modules.

Proof. We first observe that any orientation-preserving automorphism of H preserves the struc-
ture of H = Z2?97! as a free Z-module (see Corollary 16 and Remark 17). We therefore have a
tautological homomorphism
Aut+('H) — GL29+1(Z)

given by sending 7 to 7 via the identification of the underlying set of H with Z29*!. Composing
this with the inclusion GLgg41(Z) C GLog1+2(Z) given by — & Idyz, we obtain a Z-linear auto-
morphism 7 @ Idz: L — L. Notice that this inclusion is the linearisation homomorphism (34)
restricted to GLag11(Z) C Aff(Z29+1).

We next check that 7 intertwines the affine action l;, and the twisted affine action i, (), for
any hg € H. For any other h € H, we have

Lr(ho) (R) = 7(ho)h
= 7(hom 1 (R)) = 7 (Ino (71 (R))) ,

so we have the identity
br(hoy = T 0 lny © (.

in Aff(Z29%1). After linearisation, we obtain the formula
pr(7(ho)) = (1 @ 1dz) 0 pr(ho) o (71 @ Idy), (37)

which is precisely the statement that 7 @ Idy intertwines the linear action pr(hg) and its twist
pr(7(ho)) by 7. =

Remark 24. Alternatively, we may check formula (37) in coordinates. By Corollary 16 and
Remark 17 we may identify Aut™(#) with the subgroup

1 HY

Sp(H) x HY = <0 Sp(H)

>CGMZ@H%

where H denotes Hom(H,Z). Each element 7 of Aut™(#) is then of the form ((1) UM_ for

M € Sp(H) and v € H. Each hg = (ko,20) € H actson L =H S Z = (Z & H) & Z by the block
matrix (36). We have 7(ko, x0) = (ko + v.xo, M), which acts by the block matrix

1 Mxy.— ko+v.xg

0 1 MZ'()
0 0 1
The intertwining formula (37) then corresponds to the calculation:
1 Mxyg.— k+v.xg 1 v.— 0
pr(t(ho))o(r@ldz)= |0 1 Mz 0 M O
0 0 1 0 0 1
1 (v+mo).— ko+vag
= 0 M MJ,‘O
0 0 1
1 v.— O 1 To.— ko
=0 M O 0 M =z
0 0 1 0 O 1
= (1 @ 1dz) o pr.(ho),
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where for the second equality we use the fact that (Mzg.—)oM = x9.—: H — Z since M € Sp(H)
preserves the symplectic form —.—.

The following theorem is then immediate from Lemma 23.

Theorem 25 (Theorem B). There is a representation
M(S) — Autz (HIM(Co(E),Cn(Z,07(2)); L))
associating to f € IM(X) the composition of the isomorphism
HEM(Co(2),C(2,07(2)); L) — HEZM(Co(8),Cn(8,07(2)); ,.L)

3 fa
induced by the coefficient isomorphism fy ® Idy with the functorial homology isomorphism

Co(f)s: HPM(Co(2),C(E,07(2)); f,,L) — HEM(CA(X),Cr(8,07(X)); L) .

5 The Schrodinger local system

A well-known representation of the Heisenberg group, which is infinite-dimensional and unitary,
is the Schrodinger representation, which is parametrised by the Planck constant, a non-zero real
number A. The right action on the Hilbert space L?(RY) is given by the following formula:

g
I, (k7 x = Zpiai + qibi> 1/}] (s) = it e sy(s — q). (38)
i=1

The Schrédinger representation occupies a special place in the representation theory of the
Heisenberg group, and in this section we explain how to leverage its properties to construct
an untwisted representation on the full mapping class group (X)), after passing to a central
extension. The interesting feature of this representation is that it is unitary.

In §5.1 we first discuss the Schrédinger representation in more detail, as well as the Stone-von
Neumann theorem and its consequences. In §5.2 we discuss the universal central extension of the
mapping class group. We then prove Theorem C in §5.3, constructing untwisted representations
of the universal central extension of the mapping class group. Finally, in §5.4 we explain how to
adapt our construction to the finite-dimensional analogues of the Schrédinger representation to
prove Theorem D.

5.1 The Schrodinger representation and the Stone-von Neumann theorem.

The continuous Heisenberg group is defined similarly to the discrete Heisenberg group. As a set
it is R x Hy(3;R) with multiplication given by (s, z).(t,y) = (s+t+w(z,y),x+y), where w is the
intersection form on H;(X;R) = Hg. We denote it by Hg and note that the discrete Heisenberg
group H is naturally a subgroup of Hg. Similarly to the discrete case (Corollary 16), the group
Autt(Hg) of automorphisms of Hp acting trivially on the centre decomposes as a semi-direct
product Aut™ (Hg) = Sp(H(X;R)) x H'(X;R). There is a natural inclusion

Autt (H) — Aut™ (Hg),

denoted by ¢ — g, such that g is an extension of . This inclusion is compatible with the
decompositions into semi-direct products.
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As an alternative to the explicit formula (38), the Schrédinger representation may also be
defined more abstractly as follows. First note that Hr may be written as a semi-direct product

Hr = R{(0,b1),...,(0,b)} x R{(1,0), (0,a1),...,(0,a4)},

where a1,...,a4,b1,...,by form a symplectic basis for H;(X;R). Fix a real number /i > 0. There
is a one-dimensional complex unitary representation

R{(1,0),(0,a1),...,(0,a5)} — S* = U(1)

defined by (¢, z) — eMt/2_ This may then be induced to a complex unitary representation of the
whole group Hg on the complex Hilbert space L?(R{(0,b1),...,(0,b,)}) = L*(RY). This is the
Schrédinger representation of Hg. From now on, let us denote this representation by

W = L*(RY) and pw: Hgp — U(W). (39)

We will usually not make the dependence on A explicit in the notation; in particular we write
pw instead of pw . The key properties of py that we shall need are the following.

Theorem 26 (The Stone—von Neumann theorem; [29, page 19]).
(a) The representation (39) is irreducible.
(b) If H' is a complex Hilbert space and

p: Hr — U(H/)

is a unitary representation such that p(t,0) = eMt/2 idg for allt € R, then there is another
Hilbert space H" and an isomorphism x: H — W & H" such that, for any (t,z) € Hg,
the following diagram commutes:

H —F—— W®H"
p(t,z)l J{pw (t,2)®@id g1

H ————> WH".

Corollary 27. If p: Hr — U(W) is an irreducible unitary representation such that p(t,0) =
elit/2 idy, for all t € R, then there is a commutative diagram

Hp — 22— UW

\ l“—“

for some element u € U(W), which is unique up to rescaling by an element of St.

Proof. Apply Theorem 26 and note that dim(H"”) = 1 since p is irreducible. The unitary
isomorphism & together with any choice of unitary isomorphism W @ R & W give an element u
as claimed. To see uniqueness up to a scalar in S', note that any two such elements u differ by
an automorphism of the irreducible representation py,, which must therefore be a scalar (in C*)
multiple of the identity, by Schur’s lemma. Moreover, since py is unitary, this scalar must lie in
StccC* m
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Definition 28. Denote by PU(W) = U(W)/S! the projective unitary group of the Hilbert space
W. Since scalar multiples of the identity are central, this fits into a central extension

1 — St —— UW) —— PUW) — 1. (40)

We denote by wpy: PU(W) x PU(W) — S! a choice of 2-cocycle corresponding to this cen-
tral extension; in other words we write U(W) = S' x PU(W) with multiplication given by

(s,g)(t, h) = (S't~wPU(ga h)vgh)

Definition 29. For an automorphism ¢ € Aut(Hg), Corollary 27 applied to the representation
p = pw o p tells us that there is a unique element u = T'(p) € PU(W) such that pw o ¢ =
T(o).pw-T(p)~ 1. The assignment ¢ +— T'(¢) defines a group homomorphism

T: Aut(Hg) — PU(W). (41)

Restricting the homomorphism (41) to the subgroup Spa, (R) = Sp(Hg) C Aut™ (Hg) C Aut(Hg),
we obtain a projective representation

R= T‘szg(]R) : szg(R) — PU(W) (42)

This is the Shale-Weil projective representation of the symplectic group. (It is sometimes also
called the Segal-Shale- Weil projective representation, see for example [29, page 53].) Pulling back
the central extension (40) along the homomorphism (42), we then obtain a central extension

1 —— St —— Spy,(R) —— Spoy(R) —— 1 (43)
and a lifted representation o
R: Spy,(R) — U(W). (44)

The group Spy 9 (R) is sometimes known as the Mackey obstruction group of the projective repre-
sentation (42). Since (43) is pulled back from (40) along R, we may write Spy, (R) 22 S' X Spyy(R)
with multiplication given by (s, g)(¢, k) = (s.t.wsp(g, h), gh), where

wsp = wpp o (R x R): Spag(R) x Spay(R) — PU(W) x PUW) — S,

5.2 Universal central extensions.
We recall the definition of the universal central extension of a group G.

Definition 30. If G is a perfect group, i.e. if we have Hy(G;Z) = 0, then there is an isomor-
phism H?(G; Ho(G;Z)) = Hom(Ho(G;Z), H2(G;Z)) by the universal coefficient theorem, and
the Hy(G;Z)-central extension of G corresponding to the identity map is the universal central
extension of G. For G = M(X) (recall that ¥ = 3, 1), we have that G is perfect when g > 3 and
we have Hy(G;Z) = Z when g > 4. In particular, for g > 4, let us denote by

1— 7 — M(E) — M(T) — 1
the universal central extension of M (X).

Consider the inclusion of surfaces X471 < Xj,1 given by boundary connected sum with 3j,_g 1.
This induces an inclusion of mapping class groups

M(Eg1) — M(Xp1) (45)
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by extending diffeomorphisms by the identity on ;4 1. Recall from the introduction that the
inclusion map (45) induces isomorphisms on first and second (co)homology for all h > g > 4 (see

[23] or [37]), so the pullback of M(X}, 1) along this inclusion is M (X, 1). The following definition
is therefore consistent for any g > 1.

Definition 31. We define the stably universal central extension ﬁ(Eg,l) of M(X,.1) to be the
pullback of M (X, 1) for any h > max(g,4).

The following lemma explains how Morita’s crossed homomorphism 0 behaves with respect
to increasing the genus via this inclusion.

Lemma 32. The diagram

93”((2%1) > E)JT(E;LJ)

o | (1)

H'(3g1) ————— H'(Zp,1)
commutes, where the bottom arrow is the map induced by the inclusion X451 — Xp1 on Hi(—),

conjugated by Poincaré duality.

Proof of Lemma 32. Just as in the definition of the Morita crossed homomorphism earlier,
we identify H'(X, 1) with Hom(71(X,,1),Z). Under this identification, the bottom arrow in (46)
is pre-composition with pr: m (2p,1) = m1(2g,1) * m1(En—g,1) = m1(Xg,1).

Let f € 9M(D,.1) and write f € M(Xy, 1) for its image under (45). Let y € 71 (Zp.1) and write
v = 71 %7y under the decomposition m1(Xp,1) = m1(2g,1) *m1(Xp—g,1). By construction, we have

di(v) =di(m)  and  &i(f(7)) = di(fy(n))

for 1 <i < g. Moreover, since f acts by the identity on Xj_g4 1, we also have

di(f:(7)) = di(7)
for g+ 1 < i < h. From the defining formula (23) we deduce that

h g9

4(0) =D dilfe() — di(y) = Y dilfy(n)) = di(m) = 04 ([m]) = (05 0 pr)([A]),

i=1 i=1
and so (46) commutes. m

5.3 Constructing the unitary representations.

We now prove Theorem C.
From the previous two subsections, we have the following diagram:

m(x) 220N At (H) ——— At (Hg) — L PU(W)

gT ET (47)

Sp(H) x H —— Sp(Hg) x Hg
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where unmarked arrows denote inclusions. For g > 4, by the universality of 55%(2), there is a
morphism of central extensions

MmE) — U(Ww)

ﬂl l (48)

M) —— PU(W)

where the bottom horizontal arrow is the composition along the top of (47). Moreover, this
extends to all g > 1 as follows. Consider the commutative diagram2

M(S,1) — 2 Spyy(R) x R — L PU(L*(RY)) «—— U(L(RY))

l | | | 0

M) — s Spon(R) x R2 — Ty PU(L2(R")) «—— U(L*(R"))

The right-hand side of this diagram arises as follows. We consider L2(IR9) as the (closed) subspace
of L?(R") of those L2-functions that factor through R” = R9 x R"~9 — RY. Any closed subspace
of a Hilbert space has an orthogonal complement, so we may extend unitary automorphisms
by the identity on this complement to obtain a homomorphism U(L?(R9)) — U(L?(R")), which
descends to the projective unitary groups. The right-hand square of (49) is a pullback square (this
is true for any closed subspace of a Hilbert space). Commutativity of the left-hand square follows
from Lemma 32 and commutativity of the middle square follows from the defining property of T’
(Definition 29). Let us write 9%(X, 1) for the pullback of U(W) — PU(W) along T o (s,), and
similarly for M(y,1). Then M(X, 1) is the pullback of M(L), 1) along the inclusion of mapping
class groups. From Definitions 30 and 31, we also have that ﬁ(zg,l) is the pullback of ﬁ(Eh’l)
along the inclusion. -

If we now take h > 4, then 9(X), 1) is by definition the universal central extension, so there is

a unique morphism of central extensions 9 (%, 1) — M(y,1). Pulling back along the inclusion,

we obtain a canonical morphism of central extensions M(X,.1) — M(X, 1), even though E/DVT(EQJ)
is not universal for g < 3. This gives us the desired morphism of central extensions (48).

Notation 33. We denote by .
S:M(E) — U(W)

the top horizontal map of (48).
Notation 34. By abuse of notation, we write
pw:H — UW)
for the restriction of the Schrédinger representation (39) to the subgroup H C Hg.
A consequence of Definition 29 is the following.

Lemma 35. For g € ﬁ(Z) and h € H, we have the following equation in U(W):

S(9)-pw (h).S(9) ™" = pw (®((9))(h)). (50)

2We freely pass between the different notations Spag(R) = Sp(Hgr) and R29 = Hp, and similarly for the
integral versions, depending on whether or not we wish to emphasise the genus g.
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We now use this to construct untwisted unitary representations of the universal central exten-
sion M(X) of M(X) on the homology of configuration spaces with coefficients in the Schrédinger
representation.

Let C,(X) — Cn(X) denote the connected covering of C, (%) corresponding to the kernel of
the surjective homomorphism 71 (C,, (X)) — H. This is a principal H-bundle. Taking free abelian
groups fibrewise, we obtain _

Z[C,(2)] — Cn (D), (51)
which is a bundle of right Z[H]-modules. Via the Schrédinger representation py, the Hilbert
space W becomes a left Z[H]-module, and we may take a fibrewise tensor product to obtain

Z[Co(%)] ®zpg W — C(D), (52)

which is a bundle of Hilbert spaces. There is a natural action of the mapping class group 9(X)
(up to homotopy) on the base space C,(X), and the induced action on 7 (C,, (X)) preserves the
kernel of the surjection 71 (C,, (X)) - H (Proposition 13), so that there is a well-defined twisted
action of M(X) on the bundle (51), in the following sense. There are homomorphisms

a: M(E) — Autz(Z[Ca(E)] — Cu(D))
O: M(X) — Aut(H)

such that, for any g € 9M(X), h € H and m € Z[C, ()], we have
a(g)(m.h) = a(g)(m).@(g)(h). (53)

In other words, ® measures the failure of a to be an action by fibrewise Z[H]-module automor-
phisms. In the above, the target of « is the group of Z-module automorphisms of the bundle
(51), in other words the group of self-homeomorphisms of the total space Z[C,,(X)] that preserve
the fibres of the projection and that are Z-linear (but not necessarily Z[#]-linear) on each fibre.

Theorem 36. The stably universal central extension ﬁ(E) of M(X) acts on (52) by Hilbert
space bundle automorphisms

v M(R) —>U( [Ca(2)] @z W — Cn(E ))

via the formula

1(9)(m @) = a(x(g))(m) ® S(g)(v) (54)
for all g € M(T), m € Z[Cp(S)] and v € W.
Proof. The key property that needs to be verified is the following. Since we are taking the
(fibrewise) tensor product over Z[H], we have that m.h ® v = pw (h)(v) for any h € H, m €
Z[C,(X2)] and v € W. (Note that we denote the right H-action on the fibres of Z[C, (X)] simply
by juxtaposition, whereas the left H-action on W is the Schrédinger representation, denoted by

w.) We therefore have to verify that, for each fixed g € ﬁ(E), the formula (54) gives the same
answer when applied to m.h ® v or to m ® pw (h)(v). To see this, we calculate:

v(g)(m.h ® v) = a(n(g))(m.h) ® S(g)(v) by definition
= a(m(g))(m).®(x(g))(h) @ S(g)(v) by eq. (53)
— a(r(g))(m) @ pw (B(x(9))(h)) (S(6) (0)) since ® is over Z[H]
= a(r(9))(m) ® S(g) o pw(h) 0 S(g) "' (S(9)(v)) by eq. (50) [Lemma 35]
= a(m(g))(m) @ S(g)(pw (h)(v)) simplifying
=7(9)(m @ pw (h)(v)). by definition
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This tells us that the formula (54) gives a well-defined bundle automorphism of (52) for each
fixed g € ﬁ(Z) It is then routine to verify that this bundle automorphism is R-linear and
unitary on fibres — i.e. it is an automorphism of bundles of Hilbert spaces — and that - is a group
homomorphism. =

Theorem 37 (Theorem C). The action of the mapping class group on the Borel-Moore homology
of the configuration space C,(X) with coefficients in the Schrédinger representation induces a
well-defined complex unitary representation of the stably universal central extension ﬁ(Z) of the
mapping class group IM(X):

M(E) — U(HIM (CalE),Ca(£,07(£)); W) (55)
lifting a natural projective unitary representation of M(X) on the same space.

Proof. This is an immediate consequence of Theorem '36. In more detail, according to that the-
orem, we have a well-defined functor from the group (%) to the category of spaces equipped
with bundles of Hilbert spaces. Moreover, elements of the mapping class group fix the bound-
ary of ¥ pointwise, so the action of the mapping class group on C,(¥) preserves the subspace
Cn(X,07(X)). Thus we in fact have a functor from 9(X) to the category of pairs of spaces
equipped with bundles of Hilbert spaces. On the other hand, relative twisted Borel-Moore ho-
mology HBM(—) is a functor from the category of pairs of spaces equipped with bundles of
Hilbert spaces (and bundle maps whose underlying map of spaces is proper) to the category of
Hilbert spaces. Composing these two functors, we obtain the desired unitary representation of
M(T).

This automatically descends to a projective unitary representation on 9(X) since it sends
the kernel of the central extension ﬁ(E) — M(X) into the centre of the unitary group, which is
the kernel of the projection onto the projective unitary group. m

5.4 Finite-dimensional Schrodinger representations.

For an integer N > 2, the finite-dimensional Schrédinger representation is an action of the
discrete Heisenberg group H on the Hilbert space Wy = L?((Z/N)?), which may be defined as
follows:

g
[wN (m = piai + qibi) w] (s) = LI FPoy(s — g). (56)

i=1

Note that this matches the generic formula with i = %’T It may also be constructed by composing

the natural quotient
H=17°xZ"" —» (Z/N)? x (Z/2N x (Z/N)?)

with the representation of the right-hand group induced from the one-dimensional representation
Z/2N x (Z/N)9 — Z/2N < S', where the second map is t — exp (Zit).

We may adapt the above construction using Wy in place of W, when N is even, using the
analogue of the Stone-von Neumann theorem for Wy proven in [21, Theorem 2.4] (see also [22,
Theorem 3.2] and [20, Theorem 2.6]). As before, we obtain from this a (now finite-dimensional)
Shale-Weil projective representation of the symplectic group. Using this to untwist the action
on the (stably) universal central extension of the mapping class group, we obtain:

Theorem 38 (Theorem D). The action of the mapping class group on the Borel-Moore homology
of the configuration space C,(X) with coefficients in Wy induces a well-defined complex unitary

25



representation of the stably universal central extension ﬁ(E) of the mapping class group M(X)
on the (29+:_1)N9—dimensional complez Hilbert space

lifting a natural projective unitary representation M(X) — PU VN n)-

As described in [19], the Shale-Weil representation may be realised geometrically by theta
functions, and it may also be interpreted and extended as a U(1)-TQFT. An alternative expo-
sition may be found in [18]; see for example the statement for the resolution of the projective
ambiguity in Chapter 3, Theorem 4.1.

6 Relation to the Moriyama and Magnus representations

In this section we study the kernels of the twisted representations that we have constructed in
Theorem A in the case when the coefficients are V' = Z[H], and prove Proposition E. The proof
will use:

e a theorem of Moriyama [32], which identifies each J(7) with the kernel of a certain homo-
logical representation of 9t(X%);

e a theorem of Suzuki [36], which identifies the Magnus kernel with the kernel of a certain
twisted homological representation of (%) (a homological interpretation of the Magnus
representation, which was originally defined via Fox calculus);

together with a study of the connections between our representations and those of Moriyama
and Suzuki.

6.1 The Moriyama representation.

Moriyama [32] studied the action of the mapping class group 9(X) on the homology group
HBM(F,(%');Z) with trivial coefficients, where ¥’ denotes ¥ minus a point on its boundary
and F,(—) denotes the ordered configuration space. On the other hand, our construction (31)
(Theorem 21) may be re-interpreted as a twisted representation

M() — Autiyy (HEY (Ca(S ) ZIH)). (58)
We pause to explain this re-interpretation. We must first of all explain the twisted automorphism
group on the right-hand side of (58). Let us write Mod, for the category whose objects are
pairs (R, M) consisting of a ring R and a right R-module M, and whose morphisms are pairs
(: R — R',p: M — M’') such that o(mr) = ¢(m)0(r). The automorphism group of (R, M)
in Mod, is written Aut%'(M); note that this is generally larger than the automorphism group
Autg(M) of M in Modp.

If we set V = Z[H], then (31) is a functor of the form Ac(M(X) ~ H) — Modyy. But any
functor of the form Ac(G ~ K) — Modyk) corresponds to a homomorphism G — AuttZV[VK] (M),
where the Z[K]-module M is the image of the object id € Ac(G ~ K). Thus (31) corresponds
to a homomorphism

M) — Autly (HEY (Ca(2),Ca(2,07 (2)):2[H))).

Finally, removing a point (equivalently, removing the closed interval 9~ (X)) from the boundary
of ¥ corresponds, on Borel-Moore homology of configuration spaces C,(X), to taking homology
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relative to the subspace C,, (X, 07 (X)) of configurations having at least one point in the interval.
Thus HBM(C,,(%),C, (3,07 (X)); Z[H]) and HEM(C,,(X); Z[H]) are isomorphic as Z[H]-modules,
and we obtain (58).

Remark 39. Forgetting the Z[H]-module structure gives an embedding of the right-hand side
of (58) into the (untwisted) automorphism group Autz(HPM (C, (X'); Z[H])) over Z.

When n = 2, Moriyama’s representation is a quotient of ours: there is a quotient of groups
H — Z/2 = &5 given by sending o — o and a;,b; — 1, which induces a quotient of twisted
M (X)-representations

Hy™M(Co(S'); Z[H]) — Hy ™ (Co(3'); Z[Ss]) = Hy M (F2(X); Z), (59)

where the isomorphism on the right-hand side follows from Shapiro’s lemma. (Shapiro’s lemma
holds for arbitrary coverings with ordinary homology, and for finite coverings with Borel-Moore
homology.) It follows that the kernel of our representation is a subgroup of the kernel of
HPM(Fy(X'); Z), which was proven by Moriyama to be the Johnson kernel J(2). In §7 we will
compute the action of a genus-1 separating twist 7, € J(2) on HPM (Co(X'); Z[H]), and in par-
ticular show that it is (very) non-trivial; see Theorem 49. Thus the kernel of HZM (Co(X'); Z[H)])
is strictly smaller than J(2).
For any n > 2, we have a quotient of twisted 9(X)-representations

H7M(Co(2); ZIH]) — HZM (Co(X); Z).

By Shapiro’s lemma and the calculations in §2 of HBM(C,(X); V) for any local system V on
Cn(X'), there are isomorphisms of M(X)-representations:

HPM(Fu(3):2) = HM (Co(X); 2[60]) = Hi M (Ca(2');:2) @ Z[S,).

Since M(X) acts trivially on &,,, the right-hand side is a direct sum of n! copies of HZM (C,,(X/); Z).
We therefore deduce that the kernel of the M(X)-representation HEZM(C,,(X'); Z) is the same as
the kernel of the M(X)-representation HPM (F,,(¥'); Z). (This is also shown in [33].) The latter
kernel was proven by Moriyama to be the nth term J(n) of the Johnson filtration.

Summarising this discussion, we have:

Proposition 40. The kernel of the twisted 9M(X)-representation (58) is contained in the nth
term J(n) of the Johnson filtration. When n = 2 it is moreover a proper subgroup of the Johnson
kernel 3(2).

6.2 The Magnus representation.

The kernel of our representation (58) is also contained in the kernel of the Magnus representation.
This may be seen as follows. The 9 (X)-equivariant surjection H — H induces a quotient of
twisted 9t(3)-representations

HPM(Co(2); Z[H]) — HEM(C,(X); ZIH)). (60)

By a similar argument as above, the kernel of the twisted 9t(3)-representation HZM (C,,(X'); Z[H])
is the same as the kernel of the twisted 9t(3)-representation HEZM (F,,(¥); Z[H]). Moreover, it
is shown in [33] that there is an inclusion of twisted 9(X)-representations

[HPM (Fy () Z[H])] *" s HPM (F, () Z[H)). (61)
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By a result of Suzuki [36], HEM (Fy(X'); Z[H]) is the Magnus representation of M(X) (this is a
homological interpretation of the Magnus representation, which was originally defined via Fox
calculus). The maps of representations (60) and (61) imply that

ker[H7M (Co(2'); Z[H])] € ker[H7M (Co(X');: Z[H])]
= ker[HPM (Fo(¥'); Z[H])] C ker(Magnus®").

In general, if V is a representation of a group G over an integral domain R, the kernel of the
tensor power V®" consists of those g € G that act on V by an element of {\ € R | \" = 1}.
For the Magnus representation, the ground ring is Z[H], whose only roots of 1 are {1} when n is
odd and {£1} when n is even. Thus when n is odd we have ker(Magnus®") = ker(Magnus) and
when 7 is even we either have the same equality or ker(Magnus®") contains ker(Magnus) as an
index-2 subgroup.

Combining this discussion with the statement of Proposition 40 and writing Mag(X) for the
kernel of the Magnus representation, we may complete the proof of Proposition E.

Proposition 41 (Proposition E). The kernel of (58) is contained in J(n) N Mag(X).

Proof. Let f be an element of the kernel of (58). By Proposition 40, we know that f € J(n).
By the discussion above, we know that the action of f under the Magnus representation is either
id or —id. It remains to rule out the possibility that it is —id, so let us suppose this and derive
a contradiction. Consider the morphism of representations

HEM(FL(X); Z[H]) — HPM(FI(E);2)

induced by the augmentation map Z[H| — Z of the coeflicients. Assuming that f acts by —id
under the Magnus representation (the left-hand side), it follows that it also acts by —id on
the representation on the right-hand side. But the right-hand side may be identified with the
symplectic action of the mapping class group on H = H;(3;Z), so in particular it follows that
f does not lie in the Torelli group, i.e. f ¢ J(1). But we know from above that f € J(n) C J(1),
a contradiction. m

Remark 42. It is known [35, §6] that the kernel of the Magnus representation does not contain
J(n) for any n > 1, so Proposition 41 implies that the kernel of (58) is strictly contained in J(n).

6.3 Other related representations.

Recently, the representations of () on the ordinary (rather than Borel-Moore) homology of
the configuration space F,(2) has been studied® by Bianchi, Miller and Wilson [9]: they prove
that, for each n and i, the kernel of the M (X)-representation H;(F, (X);Z) contains J(i), and is
in general strictly larger than J(i). They conjecture that the kernel of the 2t(X)-representation
on the total homology H.(F,(X);Z) is equal to the subgroup generated by J(n) and the Dehn
twist around the boundary. Even more recently, Bianchi and Stavrou [10] have shown that, for
g = 2, the kernel of the M(X)-representation H, (F,(X);Z) does not contain J(n — 1).

The 9(X)-representation H;(C,(X);F), for certain field coefficients F, has been completely
computed. For F = Fy it has been computed in [8, Theorem 3.2] and is symplectic, i.e. it restricts
to the trivial action on the Torelli group T(X) = J(1). For F = Q it has been computed in [34,
Theorem 1.4] and is not symplectic, i.e. its kernel does not contain J(1), but it restricts to the
trivial action on the Johnson kernel J(2).

3This is equivalent to studying the homology of F, (¥’) since the inclusion Fp(X') — Fn(X) is a homotopy
equivalence. On the other hand, for Borel-Moore homology, this would not be equivalent, since the inclusion is
not a proper homotopy equivalence.
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7 Computations for n = 2

In this section we will do some computations in the case n = 2, when V is the regular repre-
sentation Z[H] of the Heisenberg group H. The main goal is to obtain in this case an explicit
formula for the action of a Dehn twist along a genus 1 separating curve. When the surface
has genus 1 this is displayed in Figure 4; in general, the formula is given by Theorem 49. One
may compare these calculations to the calculations of An and Ko [1, page 274], although they
consider representations of surface braid groups whereas we consider representations of mapping
class groups.

We will start with the case where the surface itself has genus 1, where we first compute the
action of the Dehn twists T,, T3, along the standard essential curves a, b. Since T, and T} act
non-trivially on the local system Z[#], they do not act by automorphisms, but give isomorphisms
in the category of spaces with local systems, which, after taking homology with local coefficients,
give isomorphisms in the category of Z[H]-modules. We refer to [17, Chapter 5] for functoriality
results concerning homology with local coefficients. The upshot is a twisted representation of the
full mapping class group 9MM(X) (Theorem 21). Recall from the paragraph just after Definition
20 that a twisted representation (over a ring R) of a group G is a functor Ac(G ~ X) — Modpg,
where Ac(G ~ X) is the action groupoid associated to an action of G' on some set X. In the
present setting, we have G = M(X), X = H and R = Z[H], so the twisted representation is of
the form

Ac(M(E) ~ H) — Modzy- (62)

We briefly recall from §4 some of the relevant details of the construction of this twisted
representation. Let f € (X)) and let fy be its action on the Heisenberg group. Then the
Heisenberg homology HZM(C,,(%),Cn(X,07(X)); H) is defined from the regular covering space
5n(2) associated with the quotient ¢: B, (X) — H. As explained in §4, at the level of homology
there is a twisted functoriality and, in particular, associated with f, we get a right Z[H]-linear
isomorphism

Co(f)s: HIM(Ca(2),Cn (8,07 ()i H) po1r — HIM(Ca(%),Ca(5,07 (2)); H) -

£
Our choice for twisting on the source with f, ! rather than on the target with fy will slightly
simplify the writing of the matrix. Note also that when working with coefficients in a left Z[H]-
representation V' the twisting on the right by fil will correspond to twisting the action on V'
by fx. More generally, for any 7 € Aut(#), we have a shifted isomorphism

(Ca(F)e)r s HIM(Ca(2),Ca(%,07(2);H) 16, —> HIM (Ca(E),Ca(,07(8)); H)r -

oT

In terms of the functor (62) on the action groupoid, the above map (C,(f)«)- is the image of
the morphism f: 771 o fi — 771 of Ac(M(X) ~ H). If f, g are two mapping classes, the
composition formula (functoriality of (62)) states the following:

Cn(go f)s =Cnlg)so (Cn(f)*)g;{l .

We will need to compute compositions in specific bases. Note that a basis B for a right Z[H]-
module M is also a basis for the twisted module M., 7 € Aut(H).

Lemma 43. Let M, M’ be free right Z[H]-modules with fized bases B, B’ and let 7 € Aut(H).
If a Z[H]-linear map F: M — M’ has matriz Mat(F) in the bases B, B’, then the matriz of the
shifted Z[H)-linear map F,: M, — M’ is 7=1(Mat(F)).
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Figure 1: The closed curves a, b and the arcs «, 3, o', 3.

The action of 77! on the matrix is given by its action on each individual coefficient.
Proof. We note that the maps F' and F, are equal as maps of Z-modules. Let B = (¢;);e,
B’ = (fi)ier, Mat(F') = (m; j)ier,jes. Then for coefficients h; € H, j € J, we have

F, (Z e r hj> = F<Z eﬂ(hj)>
= ZZfﬂmﬂ(hj)
= zz:fl o 7N (mig)hy,

which gives the stated result. m

7.1 Genus one

Here we consider the genus 1 case with n = 2 configuration points. Let a, b be simple closed curves
representing the symplectic basis of H;(X) previously denoted (a1, b1). We will use the same nota-
tion a, b for the curves, their homology classes and their lifts in H which were previously a, b. The
corresponding Dehn twists are denoted by T, T. The homology HPM (Co(X),Co(X,07(X)); H)
is a free module of rank 3 over Z[H]. A basis was described in Theorem 10. Here we replace
Y1, 72 by a, B depicted in Figure 1, and the basis is denoted by w(a) = E2 ¢y, w(B) = E(,2),
v(a, B) = Eq1,1). In more detail, w(c) is represented by the cycle in the 2-point configuration
space given by the subspace where both points lie on the arc «. Similarly, w(3) is given by the
subspace where both points lie on 8 and v(«, §) is given by the subspace where exactly one point
lies on each of these arcs.

In fact, we have to be even more careful to specify these elements precisely, since the preceding
description only determines them up to the action of the deck transformation group H, because
we have just described cycles in the configuration space C3(X), whereas cycles for the Heisenberg-
twisted homology are cycles in the covering space 52(2). To specify such a lifting of the cycles in
C2(X) that we have described, we first choose once and for all a base configuration ¢y contained
in 9% and a lift of ¢y to C2(X). A lift of a cycle to Co(X) is therefore determined by a choice of
a path (called a “tether”) in C2(X) from a point in the cycle to ¢o. For w(a), w(B) and v(«, 8),
we choose these tethers as illustrated in the top row of Figure 2.
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Figure 2: Tethers.

By Poincaré duality, and the fact that C3(X) is a connected, oriented 4-manifold with bound-
ary Co(2,0%) = {c € C2(X) | cNIX # @}, we have a non-degenerate pairing

(= =) HYM(C2(%), 073 Z[H)) © Ha(Ca(S), 073 Z[H]) — Z[H], (63)

where 9% is an abbreviation of C2(X, 07 (X)), and we note that the boundary 9C(X) = C2(%, %)
decomposes as 7 U 0™, corresponding to the decomposition of the boundary of the surface
0¥ = 90T (X) U9~ (¥). (Formally, it is a manifold triad.) There are natural elements of
H3(Co(X),0%; Z[H]) that are dual to w(a), w(B) and v(a, 8) with respect to this pairing, which
we denote by w(a/), w(B') and v(c/, ') respectively. The element v(a/, 3') is defined exactly as
above: it is given by the subspace of 2-point configurations where one point lies on each of the
arcs o’ and (' of Figure 1. The element w(«') is defined as follows: first replace the arc o’ with
two parallel copies o) and o4 (as in the bottom-left of Figure 2), and then w(a') is given by the
subspace of 2-point configurations where one point lies on each of o} and o). The element w(5")
is defined exactly analogously. Again, in order to specify these elements precisely, we have to
choose tethers, which are illustrated in the bottom row of Figure 2.

A practical description of the pairing (63) is as follows. Let @ = w(y) or v(7,d) for disjoint
arcs v, d with endpoints on 97 (%), and choose a tether for x, namely a path ¢, from ¢ to a
point in z. Similarly, let y = w(e) or v(e, ¢) for disjoint arcs €, ¢ with endpoints on 9% (X), and
choose a tether ¢, for y. Suppose that the arcs v L ¢ intersect the arcs e U { transversely. Then
the pairing (63) is given by the formula

(Josta] s ty]) = > sgn(pr)sgn(pa).sgn(fy).0(4), (64)

p={p1,p2}E€xNyY

where ¢, € B(X) is the loop in C3(X) given by concatenating:
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Figure 3: Sign convention for intersections between cycles representing elements of the homology
groups HPM(C,(%),07;Z[H]) and H,,(C,(X),0"; Z[H]).

the tether t, from ¢ to a point in =z,

a path in x to the intersection point p,

a path in y from p to the endpoint of the tether ¢,

the reverse of the tether ¢, back to co,

sgn(¢,) € {+1,—1} is the sign of the induced permutation in &, and sgn(p;) € {+1, —1} is given
by the sign convention in Figure 3.

(In fact, there should be an extra global —1 sign on the right-hand side of (64), which we have
suppressed for simplicity. Thus (64) is really a formula for —(63). This global sign ambiguity
does not affect our calculations, since all we need is a non-degenerate pairing of the form (63),
and any non-degenerate pairing multiplied by a unit is again a non-degenerate pairing. This
extra global sign also appears in Bigelow’s formula [12, page 475, ten lines above Lemma 2.1].
See Appendix B for further explanations of these signs.)

With this description of (63), it is easy to verify that the matrix

(B (lw()], [v(a’, 8)])
(B)  (w(®)), [v(a’,8)]) | € Matss(Z[H])
([v(e, B)), [w(@)])  ([v(a, B)], [ (B)])  ([o(e, B)); [o(e’, B)])

is the identity; this is the precise sense in which these two 3-tuples of elements are “dual” to
each other.*

Theorem 44. With respect to the ordered basis (w(a), w(B),v(a, 5)):
(a) The matrixz for the isomorphism

Ta = Co(Tu)s: HPM(Co(), 073 ZIH]) 1y, —> HZM (C2(5), 07 Z[H])

18
1 w?a726? (u'—1)a"'b
M,=1{ 0 1 0
0 —a'b 1
(b) The matriz for the isomorphism
To = Co(Tp)s: HYM(Co(2), 075 ZH]) (1), — Hy M (C2(8), 073 Z[H])
18

w22 0 0
M, = —u 1 1 11—yt
—u~ % 0 b

4Since we know that w(a), w(B) and v(a, B) form a basis for the Z[H]-module HEM (C2(X),07;Z[H]),
it follows that the elements w(a’), w(B’) and v(a’,B’) are Z[H]-linearly independent in the Z[H]-module
Ho(C2(X),0F;Z[H]), although they do not necessarily span it.
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Proof. Let us simplify the notation for the basis and the corresponding dual homology classes
by
(61’ €2, 63) = (UJ(O&), U)(ﬁ), ’U(Oé, B)) (ella 6/27 6%) = (@(OZ,), w(ﬁl)v ’U(O/7 6/))

Using the non-degenerate pairing (63) and elementary linear algebra, we have that
3
Ca(f)(er) =) e (Ca(f)s(es), €))
j=1

for any f € 9MM(X). Computing the matrices M, and M, therefore consists in computing
(Ta(ei),€j) and (Ty(e;), €}) for i,5 € {1,2,3}. We will explain how to compute two of these
18 elements of Z[H], the remaining 16 being left as exercises for the reader. In each case the
idea is the same: apply the Dehn twist to the explicit cycle (described above) representing the
homology class e;, and then use the formula (64) to compute the pairing.

We begin by computing (T,(ez2),€}) = (To(w(B)),w(a)), the top-middle entry of M,.

(Ta(w(B)), w(a)) = (w(Ta(B)), w(a'))

= ¢(a o ta bo)
)

= u2a 20>,

We next calculate (Ty(e3),e}) = (Ta(v(a, 5)),w(a’)), the top-right entry of M,. This is
slightly more complicated, since in this case there are two intersection points in the configuration
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space C2(X), so we obtain a Heisenberg polynomial (i.e. element of Z[#]) with two terms.

(Ta(v(a, B)), (")) = (v(e, Tu(B)), W(a))

+ (+1).(=1).(+1).0 O @)

dp(o" a""b) — p(a”'b)
=utah—ab
=(ut=1)a" '

The other 16 entries of the matrices M, and M, may be computed analogously. m

Notation 45. To shorten the notation in the following, we will use the abbreviation
A= HPM(Co(2),C2(2,07 (X)) H) = Hy M (C2(2), 073 Z[H)).

Remark 46 (Verifying the braid relation.). Recall that (X4 1) is generated by T, and T}, sub-
ject to the single relation T, 1T, = TT,Ty. It must therefore be the case that the isomorphism

A Tty Tzt T, 4
o — T _ _
(TaTyTa)7," (TaTy)3! (Ta)3!
is equal to the isomorphism
(Tb)(Tan,);j (T“)m)Hl T

Arrryy — 7 Aoy 7 Am) » A
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in other words, using Lemma 43, we must have the following equality of matrices:
Mo (Ta) 3 (M) (TaTy )5 (Ma) = My.(Tp)3¢(Ma) . (ToTa) 3 (Ms), (65)

where M, and M, are as in Theorem 44 and the automorphisms (T} )z, (Tp)3 € Aut(H) are
extended linearly to automorphisms of Z[H] and thus to automorphisms of matrices over Z[H].
Indeed, one may calculate that both sides of (65) are equal to

0 u?a=2b? 0
—ut 14+ w?—uHNa—uba? I—-uH)(1+u3at)|. (66)
0 —a"th—u"ta"% uta=tb

Remark 47 (The Dehn twist around the boundary.). In a similar way, we may compute the
matrix My for the action 75 of the Dehn twist Tp around the boundary of ¥; ;. We note that
T lies in the Chillingworth subgroup of M(X; 1), so its action on H is trivial and the action Ty
is an automorphism

To: A — A.

However, to compute its matrix My, it is convenient to decompose Ty into isomorphisms as
follows. Write ¢ = T,T,T, = TpT, T, so that Ty = ¢*. Then T5 decomposes as

(7'g)g7—{3 (Tg) =2 (7_9)97—11 T

A=A 4 —— 2 53 A 3 —— % 5 A, A1 —5 A
9y I In In

where 7, denotes the action of g, given by the matrix (66) above. The matrix My may therefore
be obtained by multiplying together four copies of (66), shifted by the actions of id, gu, g3,
and gg’_[ respectively. This may be implemented in Sage to show that My is equal to the matrix
displayed in Figure 4. More details of these Sage calculations are given in Appendix C.

One may verify explicitly by hand that, if we set a = b = u? = 1 in the matrix My =
(Figure 4), it simplifies to the identity matrix. This is expected, since applying this specialisation
to our representation recovers the second Moriyama representation (as discussed in §6; see in
particular the quotient (59) of 9t(X)-representations), whose kernel is the Johnson kernel J(2)
by [32], which contains Tj.

7.2 Higher genus

For arbitrary genus g > 1, we view the surface ¥ = ¥, ; as the quotient of the punctured rectangle
depicted in Figure 5, where the 2g holes are identified in pairs by reflection. The arcs «;, 8; for
1€ {1,...,g} form a symplectic basis for the first homology of ¥ relative to the lower edge of the
rectangle. Following Theorem 10, a basis for the free Z[H]-module HF (Co(X), Co(X,07(X)); H)
is given by the homology classes represented by the 2-cycles

o w(e) for e € {a, f1, a2, B2,..., 04,04},

o v(d,¢) for §,e € {an, b1, 2,82, ..., 04,04} With § < e
where we use the ordering aq < 1 < ag < -+ < ay < 4. Here w(e) denotes the subspace
of configurations where both points lie on € and v(J,€) denotes the subspace of configurations
where one point lies on each of § and €. As in the genus 1 setting, we have to be more careful to
specify these elements precisely; this is done by choosing, for each of the 2-cycles listed above, a
path (called a “tether”) in C3(X) from a point in the cycle to ¢g, the base configuration, which
is contained in the bottom edge of the rectangle. Note that the space of configurations of two
points in the bottom edge of the rectangle is contractible, so it is equivalent to choose a path
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u78b2+u74a72—ua72b2+(u71—u72)a72b+
(v 3 —uHa 2+ (u"t—u"5)a b

—u71—u73+2u74—u75—u77+u72a2+
(u717u727u74+u75)a+u76a72+
(w3 —u"%—u C4u"")a "t

—uisab+(—u73+u74—u77)b—u74+
(u71—u74+u75)a71b+u72a72b+
(—u 3 4u"%)a "t pu=5a"2

(u2+1—2u71+u72+u74)a72b2—ua72b4+
(—u2+u+u71—u72)a72b3—u73a72+
(71+u71+u737u74)a72b

1+u72—u73+u76+u75a72b2—u71b2+
(u_sfu_él)a_lb2+(71+u_1+u_37u_4)b+
(u72—2u73+u74+u76—u77)a71b—u75a72+
(o 240 3 4+u 5 —u e T4 (v —u"%)a "2

(717u72+2u737u76)a71b+u71a71b3+
u72a72b3+(1—u71—u73+u74)a7162+

(u_l7u_2+u_5)a_2b2+(7u_1+u_47u_5)a_2b+

(u2—u"Sa"t—u"*a2

(7l+2u_17u_27u_4+u_5)a_2b+
(u—1)a 203+ (v —u—u" 14202 —u"3)a " 2p2+
(—u73+u74)a71b+(u74—u75)a71b3+
(7u72+u73+u757u76)a71b2+
(—u"3+u"*)a"?2

(7u_6+u_7)a_2b+
(u717u727u74+2u757u76)b+
(—u73+2u74—u75—u77+u78)a71b+
17u_1+u_273u_3+2u_4+u_67u_7+
(—u72+2u73—u74+u75—2u76+u77)a71
+(u_27u_3)ab+(71+u_1+u_37u_4)a+
(—u"%+u=%)a"?2

w B (w2 w3y =614
(7u71+u727u75+u76)a71b2+
(—u"24u"3)a 202+
(71+u_1+2u_373u_4+u_7)a_1b+
(7u71+u727'u,75+u76)a72b+(7u74+u75)b2+
(u72—u73—u75+u76)b+(—u74+u75)a72

Figure 4: The action of the Dehn twist around the boundary of ¥ ;.

Bi

Bi
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aq
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I

Q4 B1

03]

Figure 5: The arcs «;, i, o, B; and the closed genus-one-separating curve +.

in C3(X) from a point in the cycle to any configuration contained in the bottom edge of the

rectangle.

For cycles of the form w(e), we may choose tethers exactly as in the genus 1 setting: see the
top-left and top-middle of Figure 2. For cycles of the form v(a;, 5;), we may also choose tethers
exactly as in the genus 1 setting: see the top-right of Figure 2. For other cycles of the form
v(d, €), we choose tethers as illustrated in Figure 6.

Exactly as in the genus 1 setting, there is a non-degenerate pairing (63) defined via Poincaré
duality for the 4-manifold-with-boundary C3(¥). Associated to the collection of arcs o, 3] illus-
trated in Figure 5 there are elements of Hs(C2(X), 07 H):

e w(e) for € € {a, B1,ab, B, ...
o 0(6,¢) for bc € {af, B, ol B, -
where we use the ordering of < 8 < o < ---

, g, Bt
,aig, B} with § < e

< ay < f,. Here, w(e) is the subspace of

configurations where one point lies on each of ¢t and €=, where €T, ¢~ are two parallel, disjoint
copies of €. As above, we specify these elements precisely by choosing tethers (paths in Co(X)
from a point on the cycle to a configurations contained in the bottom edge of the rectangle). For
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Figure 6: More tethers.

elements of the form w(e) or v(a, B;), we choose these exactly as in the genus 1 setting; see the
bottom row of Figure 2. For other elements of the form v(4, €), we choose them as illustrated in
Figure 7.

Remark 48. These choices of tethers may seem a little arbitrary, and indeed they are; however,
any different choice would have the effect simply of changing the chosen basis for the Heisenberg
homology HPZM (Cy(X),0~;H) by rescaling each basis vector by a unit of Z[#]. This would have
the effect of conjugating the matrices that we calculate by an invertible diagonal matrix.

The geometric formula (64) for the non-degenerate pairing (— , —) holds exactly as in the
genus 1 setting, and one may easily verify using this formula that the bases

B={w(e),v(d,e) |6 <e€{ai,...,Bq}}
B' = {w(e),v(d,e) | <ec{ay,...,0;}}

for HBM (Cy(X),07;H) and Ho(Co(X),0F;H) respectively are dual with respect to this pairing.
Choose a total ordering of B as follows:

o w(a), w(p), v(a,B),

o v(a,e) for e = g, Ba,. .., ay, B,

b v(ﬁh 6) for e = Qg, 527 cee vagvﬁga

e followed by all other basis elements in any order,
and similarly for B’. Denote by ~ the genus-1 separating curve in ¥ pictured in Figure 5.

(67)

Theorem 49. With respect to the ordered bases (67), the matric for the automorphism T, =
Co(Ty)« of HPM(Co(X),07;H) is given in block form as

A 0O 0 O
10 pI I O

My = 0 gqI sI 0f° (68)
0 0 o0 I

where A is the 3 X 3 matrixz depicted in Figure 4, the middle two columns and rows each have
width/height 2g — 2 and the Heisenberg polynomials p,q,r, s € Z[H] are:
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Figure 7: Even more tethers.

e p= —ailb—i—u*zb—i—u* a t,
e qg=1—a+u" —u_2a_1,
e r=at(=b+b>+u?—-u?b),

e s=1-b+u?+u2ab—u2a?,
where we are abbreviating the elements aq, b1 € H as a,b respectively.

Proof. As in the proof of Theorem 44, this reduces to computing (75 (e;), e}) as e; and e} run
through the ordered bases (67).

First note that the basis elements come in three types: those entirely supported in the genus-
1 subsurface containing ~ (the first three), those supported partially in this subsurface and
partially in the complementary genus-(g — 1) subsurface (the next 4g — 4) and those supported
entirely outside of the genus-1 subsurface (the rest). The Dehn twist T, does not mix these two
complementary subsurfaces, so M, is a block matrix with respect to this partition.

The top-left 3 x 3 matrix involves only the basis elements w(«1), w(B1), v(ag, 81) and their
duals, and so the calculation of this submatrix is identical to the calculation in genus 1, which
is given by the matrix in Figure 4.

The bottom-right submatrix involves only basis elements supported outside of the genus-1
subsurface containing v, so the effect of 7, is the identity on these elements.

It remains to calculate the middle (4g — 4) x (4g — 4) submatrix, which records the effect of
T, on v(a,€) and v(B1,¢€) for € € {as,...,By}. Since e Ny = &, we must have

7;(7)(0[13 6)) = Pe~v(041, 6) + QE~U(ﬂ15 6)
Ty(v(B1,€)) = rev(ar, €) + sc.v(Bi,€)
for some pe, ge, Te, S¢ € Z[H]. Precisely, we have
Pe = <’U(Tv(al),€),v(o/1,e/)> e = <U(T'y(a1 €),v 617 >
Te = <U(T’Y(ﬁl)7€)’v(a/17€/)> Se = <U(T’Y(/61 ,1] 1817 >

where € denotes the dual of ¢, and we have again used the fact that e Ny = & to rewrite
Ty (v(ar,€) = v(Ty (o), Ty(€)) = v(Ty (1), €) and similarly for 75 (v(a, €)). From these formulas
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and (64) it is clear that pe,¢., e, sc do not in fact depend on e. Indeed, when computing these
values of the non-degenerate pairing, we may ignore one of the two configuration points (the
one that starts on the left in the base configuration and which travels via the arcs € and €'),
since it contributes neither to the signs nor to the loops ¢, in the formula (64). We will compute
se = s, leaving the computation of the other three polynomials as exercises for the reader. In
the following computations, as mentioned above, we ignore one of the two configuration points,
since it does not contribute anything non-trivial to the formula (64).

s = <U(Ty(ﬁ1)»€)vv(ﬁia 6/)>

= (5 intersection points: x1,...,x5)
= ¢ O O -9 ©) ©)
+é O O T o 0

=¢( )= (o b aba " bab~ a " bo) + ¢(otab a " bo)
o0 b h) (o o)

=1-bt+u24+u2ab—u2a"". ]

39



TN

| *Il:ll *Il:ll |I:|| *Il:ll *IEII' *Il:ll *Il:ll |I:|

Figure 8: A model for ¥

Figure 9: Choices of tangent vectors from the computation of the sign of the intersection of x
and y at p = {p1,p2} € C2(2).

Appendix A: a deformation retraction through Lipschitz embeddings

Here we will prove Lemma 12. We have a model for (X,T') by gluing 2¢g bands b; = [—1,1] x [, 1],
1 < j < 2g and 4g + 1 squares ¢, = [0,1] x [0,1], 0 < j < 4g according to the identifications
depicted in Figure 8. We obtain a deformation retraction h which is defined on each band by
the formula hi(u,v) = ((1 — t)u,v) and on each square by hi(u,v) = (u, (1 — t)v). It remains
to show that for an appropriate metric d the map hy, 0 < t < 1, is a 1-Lipschitz embedding.
On each band and square we use the standard Euclidean metric. Then for points z,y € X, the
distance d(z,y) is defined as the shortest length of a path from « to y. It is convenient to assume
that [ is big enough so that no shortest path can go across a handle. Then d is a metric which
is flat outside 4¢g boundary points where the curvature is concentrated. Then we have that hy,
0 <t < 1, is a 1-Lipshitz embedding in each band or square from which we deduce that hy,
0 <t <1, is globally a 1-Lipschitz embedding.

Appendix B: signs in the intersection pairing formula

Here we explain the signs appearing in the formula (64) for the intersection pairing on the
homology of 2-point configuration spaces, including the extra global —1 sign that was suppressed
n (64) (see the comment in the paragraph below the formula).

We take the viewpoint that an orientation o of a d-dimensional smooth manifold M is given
by a consistent choice of vector o(p) € AdTpM for all p € M. We either choose a metric on the
bundle AT'M and require o(p) to be a unit vector with respect to this metric, or we consider
o(p) up to rescaling by positive real numbers.
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Let us fix an orientation ox, for the surface ¥. This determines an orientation oc, (s of the
configuration space Co(X) by setting
oc,(z)({P1,p2}) = ox(p1) A os(p2).

Recall that we have 2-dimensional submanifolds x and y of C2(X) that intersect transversely, and
let p = {p1,p2} be a point of z Ny. Let v,w be the tangent vectors at p; and let v/, w’ be the
tangent vectors at po illustrated in Figure 9. We have

v Aw = sgn(py).ox(p1)
o' Aw' = sgn(pz).ox(p2),

where sgn(p;) is the sign of the intersection of the arcs in ¥ underlying x and y at p;. Similarly,
we have

0:(p) A 0y(p) = sgn(p).oc,(x)(p),

where sgn(p) is the sign that we are trying to compute: the sign of the intersection of z and y
in the configuration space. The orientations of x and y depend on the tethers ¢, ¢, that have
been chosen. Precisely, we have

ot ={00% ) ot ={uh" 0}

where the possibilities ((x), (%)) or ((f), (1)) occur if sgn(¢,) = +1 and the possibilities ((*), (1))
or ((1), (%)) occur if sgn(¢,) = —1. We therefore have

0x(p) A oy(p) = sgn(fy).(v A V') A (w A w').
Putting this together with the formulas above, we obtain

/

(vAw) A (V' Aw') = sgn(pr).sgn(p2).0s(p1) A ox(p2)

and hence we have
sgn(p) = —sgn(p1).sgn(pa).sgn(fp).

Appendix C: Sage computations

Here we give the worksheet of the Sage computations used in the calculation of the matrix My
displayed in Figure 4 (cf. Remark 47 on page 35).
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In [1]: load("HeisLatex_.sage") #available on demand

In [2]: # R is the center of Heisenberg group ring
R.<u>= LaurentPolynomialRing(ZZ,1)

In [3]: # H is Heisenberg group ring
H = Heis(base=R, category=Rings())

In [32]: a=H(dict({(1,0):1})) #generator (0,a)
b=H(dict({(0,1):1}))
am=H(dict({(-1,0):1})) #inverse generators
bm=H(dict({(0,-1):1}))

In [33]: a*b-u"2*b*a #check relation

Out[33]: 0

In [34]: # a->a , b -> a~-1b (T_a action on H)
def Ha(h:HeisEl):
do=h.d
h1=H()
for k in do:
i=k[0]
j=k[1]
hl+= H({(i-j,j):dO[k]I*u™(j*(j-1))})
return hl
MHa(M): # same on matrices
Ml=matrix(H,3)
for i in range(3):
for j in range(3):
M1[i,jl=Ha(M[i,]i])
return M1

de

-

In [35]: def Hb(h:HeisEl): #T b action on H
do=h.d
h1=H()
for k in do:

i=k[0]

j=k[1]

hl+= H({(i,1i+j):dO[k]*ur(-i*(i-1))})
return hl
MHb (M) : # same on matrices
Ml=matrix(H,3)
for i in range(3):

for j in range(3):

M1[i,j]=Hb(M[i,]i])

return M1

de

-

In [36]: def Hab(h): #other actions
return Ha(Hb(h))
Hba(h):
return Hb(Ha(h))
Haba(h):
return Ha(Hba(h))
Hbab(h):
return Hb(Hab(h))
def Hs(h):
return(Haba(Haba(h)))

de

-

de

-

de

-

In [37]: de

-

MHab (M) : #same on matrices
return MHa(MHb(M))

MHba (M) :

return MHb(MHa(M))

MHaba (M) :

return MHa(MHba(M))

MHbab (M) :

return MHb(MHab(M))

MHs (M) :

return(MHaba (MHaba (M) ))

de

-

de

-

de

-

de

-

In [38]: Ma=matrix([[H(1),u~2*am"(2)*b"~2, (H(u~(-1))-H(1))*am*b], [H(O),H(1),H(0)],[H(O),H(-1)*am*b,H(1)]])

In [39]: %display latex
Ma #Ta action

Out[39]: 1 w?a %8 (—1+uYatb!
0 1 0
0 —alpt 1

In [40]: Mb=matrix([[H(u~(-2))*b"2,H(0),H(0)], [H(-u~(-1)),H(1),H(1-u~(-1))]1,[H(-u™(-1))*b,H(0O),b]])

In [41]: Mb #Tb action

Out[41]: w22 0 0
—ut 1 1—ut
—u 0 bt

In [42]: MHa(Mb) # Ta shifted action of Tb
Out[42]: a2 0 0

( —ut 1 1-ut
—u !

a'bt 0 a~lb!

In [43]: MHb(Ma) #Tb shifted action of Ta

out[43]: 1 uta? (ﬂfz + ufs)a71
0 1 0
0 —

u~2q7! 1

In [44]: MHab(Ma) #TaTb shifted action of Ta

Out[44]: 1 wfa? (—u?+uda!
0 1 0
0 —

u~2q7! 1



In [45]:
Out[45]:

In [46]:

Out[46]:

In [47]:

Oout[47]:

In [48]:
Out[48]:

In [49]:

In [50]:
Out[50]:

In [51]:
Out[51]:

In [52]:
Out[52]:

In [53]:

In [54]:
Out[54]:

In [55]:
Out[55]:

In [56]:
Oout[56]:

In [57]:
Out[57]:

In [58]:
Out[58]:

MHba (Mb) #TbTa shifted action of Tb

u a2 0 0
—ut 11—yt
—u 3l 0 wula? -

X=Ma*MHa (Mb) *MHab (Ma) #action of TaTbTa
X

0 u?a~2b? 0
—u Tl —uFa? 14 (~u e et (@t -u a1l —ut
0 —a bt — ula%p! ula 1ot

Y=Mb*MHb (Ma) *MHba (Mb) #action of ThTaTb
Y

0 u?a~2p? 0
—ut —uta 41+ (—u Pt u et 1-utl+(u i —ut)e?t
0 —ula2b! — a7 1p! u a1t

X-Y #check braid relation TaTbTa=TbTaTb

000
000
000

Z=X*MHaba(X) #action of (TaTbTa)"2

Z[:,0] # first colomn
—ua~2p?
u a4+ —ult+ (u Pt —ut)at
uta bt +u a2

Z[:,1]
—u3a"? +ua 20 + (-1 +ut)a 20!
—ub 2+ —uPa P+ 14 (—uttuP)at + (—u 2+ u B+ (—u P +uf)a et

uPa bt —a b + —u a2 + (w2 —u et + —uta?

Z[:,2]
(u™t —u2)a2b + (u? — u)a 2p?
W -+ @ —uNa b+ (—u+u a2+ 1—u 4+ (—u?2+2u® —uta!
(—u?+uHat+uda?+ (-1+uYa b + (—ut +u?)a 2t .

ZZ=7Z*MHs (Z) #action of Tc=(TaTbTa)"4

ZZ[:,0]
uw B +uta?+ —ua 0 + (= u2)a b + (v —u a1+ (ut — u%)a b
—u -yt 2ut —u T w2+ (it —uw e el tu et (Pt -t —uw f u et
—u bt + (—u Pt M A+~ (-t u e Hu2a b A (—u Pt uf)a Tt +u a2

7Z[:,1]
(W+1l-2ut+u2+u a2 + —ua 2" + (—ul+u+ut—ua P + —uPa P+ (-1t u T+ ud —u a2
1+u?—u3+u 0 +u %20 + —u0? + (u? —u a6 + (1 +ut +u —u )b
+@?-2u+uttut—u N+ —utat+ (—u P tu Pt —u et + (u P —uC)a 2t
(-1-u?+2u3 —uOa b +ula P +u2a P+ (1—ut—ud+u a1+ (ut—u?+ud)a??
+(—ut et —u e + (v —uP)a T + —uta?

7Z[:,2]
(-14+2u?t—u?—ut+u®a2b + (u—1)a 28 + (¥ —u—ut +2u? —u)a20? + (—u® +u)a 10
+ut—u)a B+ (vl +u S+ u Tt —u ) + (—u St u)a?
(*1(6 +u a2 + (wt —u - u Tt 20— w ) + (*u73 +2ut Pt~ T+ e w30
+2uttu T (et 2u e 20 e (2w e+ (e u Tt —uY)al
+(—u St u 6)(1 2
wlitw?-ut—u Pttt u e+ (—u et Hu a4 (4w ?)a

+(-1+u 4202 -3t +u Na B + (v e -+ u e+ (—u e )R + (w - w P —u T )R

+ (*u’4 + u’E')a’2

ZZ*Ma-Ma*MHa(ZZ) # check that Tc is central
000
000
000

ZZ*Mb-Mb*MHb (ZZ)

000
000
000
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