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with Exercises by Arun Debray, Søren Galatius, and Martin Palmer

Abstract. Four lectures on invertible field theories at the Park City Mathematics
Institute 2019.

Cobordism categories are introduced both as plain categories and topologi-
cally enriched. We then discuss localization of categories and its relationship to
classifying spaces, and state the main theorem of classification of invertible field
theories in these terms. We also discuss symmetric monoidal structures and their
relationship to actions of the little disk operads. In the final lecture we discuss an
application of cobordism categories to characteristic classes of surface bundles.

Emphasis will be on self-contained definitions and statements, referring to
original literature for proofs.
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Introduction

The notion of cobordism between smooth manifolds and its relationship with
homotopy theory goes back at least to the work of Pontryagin and Thom. In these
lectures we will outline some more recent developments, including connections
to diffeomorphism groups.
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Lecture 1: Cobordisms

Recall that a smooth manifold M is closed if it is compact and ∂M = ∅. We do
not require M to be connected. For any d ∈ Z, the empty set is a manifold of
dimension d.

1.1. Classical definitions

Definition 1.1.1. Let M0 and M1 be smooth closed manifolds of dimension d− 1.
An (abstract) cobordism fromM toN is a triple (W, cin, cout), whereW is a compact
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manifold, and

cin : [0,∞)×M0 →֒W

cout : (−∞, 0]×M1 →֒W

are smooth embeddings with disjoint images, such that

∂W = cin({0}×M0) ∪ cout({0}×M1).

Sometimes we shall omit the two charts cin and cout from the notation and simply
say “W is a cobordism from M0 to M1” and write W :M0  M1.

Two manifolds M0 and M1 are cobordant if there exists a cobordism from M0

to M1.

Lemma 1.1.2. Being cobordant is an equivalence relation.

Proof sketch. We leave reflexivity and symmetry to the reader and focus on transi-
tivity. If (W, cin, cout) is a cobordism from M0 to M1 and (W ′, c ′in, c ′out) is a cobor-
dism from M1 to M2, then we may define a cobordism (W ′′, c ′′in, c ′′out), where the
underlying space W ′′ is

W ′′ =
W ∐W ′

cout(0, x) ∼ c ′in(0, x), ∀x ∈M1

in the quotient topology, i.e. the coarsest topology making the canonical maps

i :W →W ′′

i ′ :W ′ →W ′′

continuous. Charts near a glued point cout(0, x) = c ′in(0, x) for x ∈ M1 are ob-
tained as

(t,u) 7→

{
cout(t,φ(u)) for t 6 0

c ′in(t,φ(u)) for t > 0

for a chart φ : U → M1 defined on an open U ⊂ R
d−1. Around other points in

W ′′ charts are obtained by composing a chart in W with i or a chart in W ′ with
i ′. It is easy to check that this defines a smooth structure on W ′′. We obtain a
cobordism M0  M2 by setting c ′′in = i ◦ cin and c ′′out = i

′ ◦ cout. �

Remark 1.1.3. The set of cobordism classes of k-dimensional manifolds is often
denoted Nk. The direct sum

N∗ =
⊕

k>0

Nk

has the structure of a commutative graded ring (addition induced by disjoint
union and multiplication by product of smooth manifolds) in which 2 = 0. In
his 1954 paper Quelques propriétés globales de variétés differentiables, René Thom
completely determined this ring: there is an isomorphism of commutative graded
rings

F2[xk | k 6= 2i − 1]
∼=
−→ N∗,
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from the polynomial ring over F2 with one generator in each dimension not of
the form k = 2i − 1.

The citation for René Thom’s Fields medal at the 1958 ICM is: “In 1954 [he]
invented and developed the theory of cobordism in algebraic topology. This clas-
sification of manifolds used homotopy theory in a fundamental way and became
a prime example of a general cohomology theory.”

The work presented in these lectures owes an intellectual debt to Thom’s pro-
found 1954 paper, although we shall not make direct use of his calculations.

In these lectures we shall be concerned with the reasons that two closed man-
ifolds M0 and M1 are cobordant, rather than merely whether they are cobordant
as in Thom’s 1954 paper.

1.2. Cobordism categories, first attempt

Definition 1.2.1. Let (W, cin, cout) and (W ′, c ′in, c ′out) be two cobordisms between
M0 and M1. We say that these are diffeomorphic as cobordisms if there exists
a diffeomorphism φ : W → W ′ of underlying smooth manifolds, such that
there exists an ε > 0 with φ(cin(t, x)) = c ′in(t, x) for all (t, x) ∈ [0, ε]×M0 and
φ(cout(t, x)) = c ′out(t, x) for all (t, x) ∈ [−ε, 0]×M1.

Definition 1.2.2. Let W be a cobordism from M0 to M1 and W ′ a cobordism
from M1 to M2. (Here we suppress the boundary collars from the notation, but
emphasize that they are an important part of the structure.) The composition of W
and W ′ is the cobordism W ′′ : M0  M2 constructed in the proof of transitivity
in Lemma 1.1.2. We shall also write

W ∪M1 W
′

for this cobordism. (This is sloppy notation, since it depends on the collars.)

Lemma 1.2.3. Let M0 and M1 be closed (d− 1)-manifolds and let W1,W ′1 :M0  M1

be two cobordisms between the same two manifolds, and similarly W2,W ′2 : M1  M2.

If W1 and W ′1 are diffeomorphic as cobordisms and also W2 and W ′2 are diffeomorphic

as cobordisms, then the compositions W1 ∪M1 W2 and W ′1 ∪M1 W
′
2 are diffeomorphic as

cobordisms.

Lemma 1.2.4. Let M0, M1, M2, and M3 be closed smooth (d − 1)-manifolds, and let

W1 : M0  M1, W2 : M1  M2 and W3 : M2  M3 be cobordisms. Then the two

cobordisms

(W1 ∪M1 W2)∪M2 W3 :M0  M3

W1 ∪M1 (W2 ∪M2 W3) :M0  M3

are diffeomorphic as cobordisms.

The first lemma is proved by gluing together two diffeomorphisms of cobor-
disms and verifying that the result is a diffeomorphism of cobordisms, the sec-
ond by verifying that the canonical map of underlying sets is a diffeomorphism
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of cobordisms. Let us remark that the two cobordisms (W1 ∪M1 W2)∪M2 W3 and
W1 ∪M1 (W2 ∪M2 W3) are likely not equal (their underlying sets aren’t equal).

Definition 1.2.5. For closed (d − 1)-manifolds M0 and M1, let Cobd(M0,M1)

denote the set of equivalence classes of cobordisms from M0 to M1, up to diffeo-
morphism of cobordisms. The induced operation

Cobd(M0,M1)×Cobd(M1,M2)→ Cobd(M0,M2)

([W], [W ′]) 7→ [W ∪M1 W
′]

is then well defined and associative, by the two lemmas above.

An easy argument shows that it is also unital: in fact the “cylinder” [0, 1]×M
gives rise to an identity element in Cobd(M,M).

Definition 1.2.6. Let Cobd be the category whose objects are closed smooth
(d− 1)-manifolds, whose morphism set M0 →M1 is Cobd(M0,M1), and whose
composition is as in Definition 1.2.5.

We will later enhance this definition to one which for many purposes turns
out to be more natural. The enhanced definition has more structure (it is not just
a plain category), and therefore at first sight will seem more complicated. In the
rest of this lecture we shall stick to the elementary definition above.

Remark 1.2.7. A small category is one whose collections of objects and morphisms
form sets. For example, the category of sets is not small because there is no “set
of all sets”.

As it stands, the category Cobd defined above is not small for d > 0. The
problem is that there are too many possibilities for the underlying set of the
manifolds. This issue may be handled in multiple ways, for example as follows.
For any set Ω, let CobΩd be the subcategory of Cobd in which the manifolds M
(objects) and W (whose diffeomorphism class gives a morphism) are required
to have underlying set a subset of Ω. Then CobΩd is a small category, and, if
the cardinality of Ω is at least that of R then the inclusion CobΩd →֒ Cobd is
an equivalence of categories. If Ω ′ is another such set, then the small categories
CobΩd and CobΩ

′

d are equivalent, in fact both inclusions of subcategories

CobΩd →֒ CobΩ∪Ω
′

d ←֓ CobΩ
′

d

are equivalences of categories.
We shall not dwell further on this issue. To be definite, let’s say we choose

once and for all a set Ω of sufficiently large cardinality and henceforth by abuse
of notation write Cobd for the small category CobΩd .

1.3. Categories, groupoids, and spaces For p > 0, the set [p] = {0, . . . ,p} is
totally ordered by the usual ordering of natural numbers, and may be considered
the objects of a category, whose morphism set i → j is empty if i > j and a
singleton if i 6 j. If C is any small category, the set of all functors f : [p]→ C may
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be identified with the set

NpC = {(f1, . . . , fp) | target(fi) = source(fi+1) for all i}

of composable p-tuples of morphisms: f1 is given by the value of f : [p] → C on
the unique morphism 0→ 1, f2 the value on the unique morphism 1→ 2, etc.

Definition 1.3.1. The classifying space of a small category C is the space

BC = |NC|,

the geometric realization of its nerve.

More explicitly, BC is the CW complex with one 0-cell for each object of C; one
1-cell for each non-identity morphism f : x → y in C, with one end attached to
the 0-cell x and the other end to y; one 2-cell for each pair (f, g) of composable
non-identity morphisms, etc.

In particular, the set N0C = Ob(C), regarded as a topological space in the
discrete topology, canonically sits inside BC via

N0C →֒ BC,

the inclusion of 0-simplices.
Let us briefly summarize some convenient properties of this construction; see

e.g. [38].

• Functoriality Cat→ Top: a functor F : C→ D is sent to a continuous map
BF : BC→ BC.
• A natural transformation T : F → G between functors C → D induces a

homotopy between the maps BF,BG : BC→ BD.
• As a consequence, a functor F : C → D admitting a left or a right adjoint

is sent to a homotopy equivalence. In particular, equivalences of cate-
gories are sent to homotopy equivalences. Likewise, BC is contractible if
C admits a terminal or an initial object.
• Products: the canonical map B(C×D)→ BC×BD is a homeomorphism1 .

An overarching theme in these lectures is the question of how much informa-
tion about C is retained by the space BC.

Example 1.3.2. For c0 ∈ Ob(C), let C/c0
be the over category: its objects are mor-

phisms f : c → c0 in C and its morphisms (f : c → c0) → (f ′ : c ′ → c0) are
morphisms g : c → c ′ in C such that f = f ′ ◦ g. There is a forgetful functor
C/c0

→ C which induces a map of spaces

u : BC/c0
→ BC.

It is not hard to show that BC/c0
is contractible (it has the terminal object id : c0 →

c0, and any category with a terminal object has contractible classifying space).

1Fine print: in this statement the product of BC and BD should be formed in compactly generated
spaces. Otherwise we can only say it is a continuous bijection, although still a weak equivalence.
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If in addition C is a groupoid, i.e. all morphisms are invertible, then the map u
can be shown to be a covering map, and it is not hard to use this to construct an
isomorphism of groups

AutC(c0)→ π1(BC, c0).

Since all path components of BC admit a contractible covering space, all higher
homotopy groups vanish. Thus we have completely understood the homotopy
type of BC when C is a groupoid: it is a disjoint union of K(π, 1)’s, one for each
isomorphism class in C.

Taking classifying space turns a category into a space. One way to go in the
other direction is the fundamental groupoid.

Definition 1.3.3. For a space X, let π1(X) denote2 the category whose objects are
the points of x, whose morphisms x→ y are homotopy classes of paths [0, 1]→ X

starting at x and ending at y, up to homotopy relative to the endpoint, and whose
composition is induced by concatenation of paths.

For any subsetA ⊂ Xwe write π1(X,A) for the full subcategory of π1(X) whose
objects are the points in X.

As the name indicates, the category π1(X) is in fact a groupoid. It simultane-
ously encodes the fundamental groups π1(X, x) for all x ∈ X and the change-of-
basepoint isomorphisms π1(X, x) → π1(X, x ′) induced by paths between x and
x ′.

Lemma 1.3.4. Let C be a small category and let

γ : C→ π1(BC)

send an object x ∈ C to the corresponding 0-simplex in BC, regarded as an object of

π1(BC), and a morphism f : x → y to the homotopy class represented by the 1-simplex

corresponding to f : x→ y (and the constant path if f is an identity morphism). Then γ

is a (well defined) functor.

Proof sketch. We must prove that γ preserves composition. While the 1-simplex
corresponding to a composition h = f ◦ g may not be equal to the concatenation
of the paths corresponding to f and g, the 2-simplex corresponding to the pair
(f, g) ∈ N2C gives rise to a homotopy relative to end-points. �

If C is a groupoid it is not hard to show, as in Example 1.3.2 above, that γ is
an equivalence of categories. In fact, if we keep track of the subset N0C ⊂ BC we
may reconstruct C up to isomorphism of groupoids, as follows.

Proposition 1.3.5. If C is a groupoid, then γ : C → π1(BC) is an equivalence of cate-

gories. In fact it is an isomorphism of categories onto π1(BC,N0C), the full subcategory

of π1(BC) on the objects N0C ⊂ BC. �

2Other commonly used notation for the fundamental groupoid is Π1(X) or π61(X).
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In fact γ is an equivalence of categories if and only if C is a groupoid, since
π1(BC) is always a groupoid. In general we have the following universal property,
expressing that γ is the “universal functor to a groupoid”.

Proposition 1.3.6. The functor

γ : C→ π1(BC,N0C)

is the universal groupoid under C: for any groupoid D and functor F : C→ D, there is a

unique functor G : π1(BC,N0C)→ D such that F = G ◦ γ.

Proof sketch. We first explain uniqueness. Since γ is a bijection of object sets it
is fixed what the functor G must do on objects. A morphism in π1(BC,N0C) is
represented by a path λ : [0, 1] → BC starting and ending in N0C ⊂ BC, and any
such path is homotopic relative to its endpoints to a path running entirely in the
1-skeleton of BC. Since the 1-simplices of BC are (non-identity) morphisms in C,
any morphism in π1(BC,N0C) may be written as a finite composition of the form

(γ(φ1))
ε1 . . . (γ(φn))εn ,

where εi ∈ {±1} and φi are morphisms in C. The requirement F = G ◦ γ forces G
to take this element to (F(φ1))

ε1 . . . (F(φn))εn .
To see existence, the easiest is to use proposition 1.3.5: defineG : π1(BC,N0C)→

D as the inverse of the isomorphism D → π1(BD,N0D), composed with π1(BF) :

π1(BC,N0C)→ π1(BD,N0D). �

As with any universal property, π1(BC,N0C) is determined up to unique iso-
morphism of categories by this proposition. It therefore also determines π1(BC)

up to canonical equivalence of categories (since the inclusion π1(BC,N0C) →֒

π1(BC) is an equivalence).

Remark 1.3.7. The natural transformation γ : C→ π1(BC,N0C) is a special case of
localization of categories. More generally, given a small category C and a subcate-
gory S ⊂ C, there exists a functor γ : C → C[S−1] which is a bijection on object
sets, sends any morphism in S to an isomorphism in C[S−1], and is initial with
this property (i.e. if f : C → D is a functor sending morphisms in S to isomor-
phisms, then it factors as f = g ◦ γ for a unique g : C[S−1] → D). The universal
functor which sends all morphisms to isomorphisms is then C → C[C−1], so the
result above may be summarized as an isomorphism of categories

C[C−1]→ π1(BC,N0C)

and hence an equivalence of categories

C[C−1]
≃
−→ π1(BC).

Remark 1.3.8. We have explained that, up to equivalence of categories, no infor-
mation is lost in the passage C 7→ BC, as long as C is a groupoid.

If C is not a groupoid, the passage from C to BC should be expected to lose
lots of information. For example, if C is the two-object category with object set
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{0, 1}, one morphism 0 → 1, and no other non-identity morphisms, then BC is
homeomorphic to the interval [0, 1]. If C ′ = {0} →֒ C is the inclusion of the 1-
object category, then BC ′ → BC is a homotopy equivalence (namely the inclusion
{0} ⊂ [0, 1]), even though C ′ → C is not an equivalence of categories.

More examples of this flavor are easily constructed. For example, to any sim-
plicial complex X there is an associated “poset of simplices” of X, regarded as a
category (i.e. Hom(σ, τ) is a singleton if σ is a face of τ and empty otherwise).
Then it is a standard result that BC is homeomorphic to |X|.

1.4. Invertible field theories (poor man’s version) In light of what we have dis-
cussed so far, understanding functors from a small category C into groupoids
is essentially the same thing as understanding the universal such C → C[C−1].
As we have seen, this is the same as understanding the fundamental groupoid
of BC. If we want an up-to-isomorphism-of-categories answer we should also
keep track of the subset N0C ⊂ BC, but for an up-to-equivalence-of-categories an-
swer we only need the space BC itself, and then we only need it up to homotopy
equivalence. In fact we need less than the homotopy type of BC, we only need
to understand the space BC up to maps that induce equivalence of fundamental
groupoids (i.e. the “1-type” of BC). For example, if we can find a space X and a
2-connected map X → BC (meaning all homotopy fibers are simply connected),
then the induced functor π1(X)→ π1(BC) is an equivalence. Let us spell out this
observation.

Corollary 1.4.1. Let C be a small category and let f : X → BC be a 2-connected map.

Then the functors

C
γ
−→ π1(BC)

π1(f)
←−−− π1(X)

induce, after choosing an inverse to the equivalence π1(f) : π1(X)→ π1(BC), an equiva-

lence of categories

C[C−1]→ π1(X)

and for any small groupoid D it induces an equivalence

Fun(π1(X),D)→ Fun(C,D).

In turn, these groupoids are also canonically equivalent to the fundamental groupoids of

the mapping spaces Map(X,BD) ≃Map(BC,BD), at least if X is a CW complex.

We shall be interested in the case C = Cobd. In this case functors from Cobd
to groupoids may be regarded as an approximation to the notion of invertible field

theories with values in the groupoid D. The actual definition involves3 symmetric
monoidal functors into rigid symmetric monoidal groupoids, as we shall explain
later in the week. The approach we shall take, namely to find a 2-connected map
from an “understandable” space, also makes sense in the simpler case of plain
categories and groupoids, and it seems instructive to discuss this setting first.

3Depending on who you ask, it may likely also involve higher categories.
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Lecture 2: Topologically enriched (cobordism) categories

Recall that a (small) topologically enriched category consists of a category C and
a specified topology on each morphism set C(x,y) such that the composition
map C(x,y)×C(y, z)→ C(x, z) is continuous4 for all x, y, and z. The underlying
(unenriched) category has the same object set, morphism set x → y given by
C(x,y)δ, the underlying set of C(x,y), and composition as in C.

A topologically enriched (also known as continuous) functor F : C → D between
topologically enriched categories is a functor of underlying categories with the
property that the induced map of morphism spaces is continuous.

2.1. Topologically enriched cobordism categories In this section we shall define
a version of the cobordism category Cobd which is a topologically enriched cate-
gory. It is very similar in spirit to Cobd, except that the objects and morphisms
are now submanifolds of a fixed vector space, instead of being abstract manifolds.

If V is a finite-dimensional real vector space and M ⊂ V is a subset, then being
a d-dimensional submanifold (without boundary) is a property of the subset: it is
the condition that it locally be the inverse image of a regular value of a smooth
function to Rn for n = dim(V) − d.

For t > 0 we shall say that a compact subset W ⊂ [0, t]× V is a cobordism

between two compact submanifolds M0 ⊂ V and M1 ⊂ V , provided there exists
an ε > 0 such that

W ∩ ([0, ε]× V) = [0, ε]×M0

W ∩ ([t− ε, t]× V) = [t− ε, t]×M1,

and such that the subset

Ŵ =
(
(−∞, 0]×M0

)
∪W ∪

(
[t,∞)×M1

)

is a smooth submanifold of R×V .

Definition 2.1.1. For a finite-dimensional real vector space V , the objects of CVd are
the compact subsets M ⊂ V which are smooth (d− 1)-dimensional submanifolds.
Morphisms M0  M1 are pairs (t,W) where t > 0 and W ⊂ [0, t] × V is a
cobordism in the sense above. Composition is defined as

(t1,W1) ◦ (t2,W2) = (t1 + t2,W1 ∪ (t1 +W2)),

where t1 +W2 = {(t1, 0) +w | w ∈W2} is the parallel translate of W2.

Lemma 2.1.2. The composition defined above is well defined, and makes CVd into a (small,

non-unital category.

4For technical reasons it is probably better to require all morphism spaces C(x,y) to be compactly
generated topological spaces. If this is not already the case for C, it may be achieved by applying
k-ification to each morphism space. Similarly, the domain of the composition map should be the
product in compactly generated topological spaces. In these notes we will gloss over this and many
other details.
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Proof. This is in fact much easier than for the “abstract” cobordisms considered
earlier. The power set of V is a set, and Ob(CVd ) is a subset thereof, hence it is
again a set; morphisms form a set for a similar reason. Composition is given by
union of subsets which is strictly associative (unlike the gluing operation of abstract
manifolds, which is only “associative up to (preferred) diffeomorphism”). �

As defined above there are no units for composition, due to the requirement
t > 0. We could fix this by allowing t = 0 with some care, but instead we shall
just consider Cd(V) a non-unital category.

Next we define a topology on the morphism spaces of CVd . If M0 and M1 are
objects of Cd(V) and W is an abstract cobordism between them, then we have a
map

(2.1.3)
R>0 × Emb∂(W, [0, 1]× V)→ CVd (M0,M1)

(t,φ) 7→ (t, λt(φ(W))),

where λt stretches by a factor of t in the first factor, i.e. it is the map R × V →

R×V is given by (s, v) 7→ (st, v). The subscript “∂” denotes that the embeddings
are required to agree with the canonical M0 →֒ {0}× V and M1 →֒ {1}× V when
restricted to ∂W, and also that they must have a product behavior on a collar
neighborhood of the boundary.

The point is now that the domain of (2.1.3) has a natural topology: the Eu-
clidean topology on R>0 and the C∞ topology on the embedding space. The
latter is the topology in which convergence means uniform convergence of all
partial derivatives of any order (with respect to a chart on W it should be uni-
form convergence of partial derivatives on compact subsets of the chart). We
give the codomain of (2.1.3) the quotient topology (as W ranges over all abstract
cobordisms).

Definition 2.1.4. Let CVd be the topologically enriched category whose objects are
the closed (d−1)-dimensional submanifoldsM ⊂ V and whose morphism spaces
are the sets of embedded cobordisms (t,W) in the quotient topology from the C∞

topology, as defined above.

At first sight the definition of CVd may seem a bit ad hoc: for example, the
particular way that “collar conditions” near incoming and outgoing boundaries
is handled; one could imagine other definitions (e.g. objects could come with a
germ of a d-dimensional thickening) which would lead to a topological category
which is likely not isomorphic to the one defined above. However, we only want
to declare this particular model to be “the” canonical model up to a suitable
notion of equivalence, namely the so-called DK-equivalence. We shall return briefly
to this homotopy theory question later in the lectures.

Before proceeding, let us discuss the geometric meaning of the homotopy type
of the morphisms spaces CVd (M0,M1).
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2.2. Manifold bundles and bundles of cobordisms We will only give a cursory
discussion of this material, referring the reader to the original sources for further
details.

To simplify matters we postpone the discussion of boundaries. Hence, let W
be a closed manifold, let V be a finite dimensional real vector space, and consider
the orbit space

(2.2.1) Emb(W,V)/Diff(W),

where the diffeomorphism group of W acts on the embedding space by precom-
position. As a set, this quotient may be identified with a subset of the power
set of V , namely those subsets of V which have the property of being submani-
folds which additionally are diffeomorphic to W. The space is topologized as a
quotient of the embedding space, which is topologized in the C∞ topology.

How does one produce continuous maps into the space (2.2.1)? A good way
is to start with an embedded bundle. Suppose X is a smooth manifold without
boundary, but not necessarily compact, and that E ⊂ X× V is a subset with the
following properties

• E is a smooth submanifold of X× V , without boundary,
• the composition

E
inclusion
−−−−−→ X×V

projection
−−−−−−→ X

is proper (inverse image of compact is compact), smooth (C∞), and a
submersion (derivative at any point is surjective),
• the inverse image Ex ⊂ V of x ∈ X is diffeomorphic5 to W, for all x ∈ X.

Let us say that a subset E ⊂ X× V with these properties is an smooth W-bundle

over X embedded in X× V . For a subset E ⊂ X× V with these properties, the map

X→ Emb(W,V)/Diff(W)

x 7→ Ex

can be shown to be continuous. Moreover, any continuous map is homotopic to
one arising this way, and in fact this correspondence gives rise to a bijection

(2.2.2) [X, Emb(W,V)/Diff(W)] ∼=
{E ⊂ X× V as above}

≃

where the equivalence relation ≃ on the right denotes concordance: a concordance
from E to E ′ is an embedded smooth W bundle over R× X whose restriction to
{0}×X is {0}× E and to {1}×X is {1}× E ′.

In this sense, Emb(W,V)/Diff(W) is a classifying space for embedded smooth
W-bundles, in much the same way as Grassmannians are classifying spaces for
vector bundles embedded in trivial bundles.

5Ex is given the smooth structure arising as the inverse image of a regular point, which agrees with
the smooth structure it inherits as a submanifold of V .
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One way to prove (2.2.2) proceeds by giving Emb(W,V)/Diff(W) the structure
of an infinite dimensional manifold and proving that any continuous map from X

may be homotoped to a smooth one. The usual reference seems to be [2].
The space Cd(M0,M1) may be understood similarly, as a classifying space for

“embedded bundles of cobordisms”.

Definition 2.2.3. Let M0 and M1 be objects of Cd, and let X be a smooth manifold
without boundary (possibly non-compact). A subset E ⊂ X × ([0, 1]× V) is a
bundle of cobordisms from M0 ⊂ V to M1 ⊂ V provided

(i) E is a smooth submanifold,
(ii) the projection map π : E→ X is a proper submersion,

(iii) the boundary of E equals X× ({0}×M0 ∪ {1}×M1), and for some ε > 0,

E ∩ (X× ([0, ε]×V)) = X× ([0, ε]×M0)

E∩ (X× ([1 − ε, 1]×V)) = X× ([1 − ε, 1]×M1).

As for closed manifolds, such a bundle of embedded cobordisms gives rise to
a continuous map

X→ CVd (M0,M1),

any continuous map is homotopic to one arising this way, and this construction
induces a natural bijection

[X,CVd (M0,M1)] ∼=
E ⊂ X× ([0, 1]× V) bundle of cobordisms from M0 to M1

≃

where the equivalence relation ≃ on the right denotes concordance: a concordance
from E to E ′ is a bundle of cobordisms over R×X whose restriction to {0}×X is
{0}× E and to {1}×X is {1}× E ′.

2.3. Infinite dimensional ambient space To get a “more universal” object we
may take colimit over V .

Definition 2.3.1. Let

Cd = colim
V⊂R∞

CVd

be the topologically enriched category defined as the colimit over finite-dimensional
linear subspaces V ⊂ R

∞ = ⊕
N

R.

For any other infinite-dimensional real vector space U we could similarly de-
fine a cobordism category CU

d by taking colimit over finite-dimensional V ⊂ U but
this would not be especially interesting: the comparison functors

CU
d → CU⊕R

∞

d ← CR∞

d = Cd.

are both “DK-equivalences” in the sense explained below.
For reasons of time we shall mostly stick to finite-dimensional V in these lec-

tures, but let us record one interesting connection to diffeomorphism groups of
manifolds.
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Proposition 2.3.2. There is a weak equivalence

(2.3.3) Cd(M0,M1) ≃
∐

W

BDiff∂(W),

where W ranges over abstract cobordisms from M0 to M1, one in each diffeomorphism

class, and Diff∂(W) denotes the group of diffeomorphisms of W which act as the identity

near ∂W, topologized in the C∞ topology.

We will again not prove this in any detail, but remark that it boils down to the
embedding space Emb∂(W, R∞) being weakly contractible and the quotient map
to Emb∂(W, R∞)/Diff∂(W) being a fiber bundle.

2.4. Categories versus enriched categories In order to discuss the relationship
between Cobd and Cd, we first discuss the relationship between enriched and
unenriched categories in the abstract.

Definition 2.4.1. Let D be a small (ordinary) category. Then we may regard D as
a topologically enriched category by giving each set D(x,y) the discrete topology.
This topologically enriched category shall be denoted ιD.

Let TCat denote the category of small topologically enriched small categories,
and topologically enriched functors between them. Thus we have defined a func-
tor ι : Cat→ TCat.

Definition 2.4.2. For a small topologically enriched category C, let hC denote the
(unenriched) category with the same object set as C, but with morphisms sets
given by

hC(x,y) = π0(C(x,y)),

the set of path components of the morphism space in C. Composition is induced
by composition in C (using that π0 preserves products).

Definition 2.4.3. Let C andD be topologically enriched categories. Then a functor
F : C → D is a DK-equivalence6 if the induced functor (hF) : (hC) → (hD) is an
equivalence in the usual sense and if the maps

C(x,y)→ D(Fx, Fy)

are weak equivalences for all objects x,y ∈ C.

Example 2.4.4. For a topologically enriched category C we can define another
topologically enriched category C ′ with the same object set, but with C ′(x,y) =
|Sing(C(x,y))|, where Sing denotes the total singular complex. Composition is
induced by composition in C, using that both Sing and geometric realization of
simplicial sets preserves finite products. The evaluation maps |Sing(C(x,y))| →
X(x,y) are compatible with composition and hence define a DK-equivalence C ′ →

6This terminology is more commonly used in the setting of simplicially enriched categories, but makes
sense for topologically enriched as well. If desired, a topologically enriched category can of course be
turned into a simplicially enriched one by taking Sing of all morphism spaces.
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C. In particular any topologically enriched category is equivalent to one whose
morphism spaces are CW complexes. See Exercise 5.2.5 for more details.

Remark 2.4.5. The topologically enriched categories appearing in these lectures
should be understood as homotopy theoretic objects. In the same way as a weak
equivalence X → Y of spaces lets us consider them as “models” for the same ho-
motopy type, we shall consider two topologically enriched categories as “models”
for the same platonic object whenever we have given a DK-equivalence between
them, or at least a zig-zag of such.

The point-set definition of CVd and Cd that we wrote down above should be
understood in this sense, as reference models for the (embedded) cobordism cat-
egory.

Topologically enriched categories form one model for (∞, 1)-categories. Pre-
sumably everything in these notes could have been presented in any of the other
popular settings (simplicially enriched categories, quasi-categories, complete Se-
gal spaces, etc.)

The relationship between Cd and Cobd may be expressed succintly as an equiv-
alence of categories hCd ≃ Cobd, as follows from the description (2.3.3). More
precisely the following holds.

Proposition 2.4.6. Let CVd → ιCobd be the functor which sends an object M0 ⊂ V to

the underlying abstract smooth manifoldM0 and an embedded cobordism W ⊂ [0, t]×V
to its diffeomorphism class as a cobordism. Then the induced functor

hCVd → Cobd

is an equivalence of categories, provided dim(V)≫ d.

Proof sketch. It is essentially surjective if dim(V) > 2d − 1, since any (d − 1)-
manifold M admits an embedding into R2d−1. It is full when dim(V) > 2d, since
any cobordism from M0 to M1 may then be embedded into [0, t]×R2d relative to
any specified embeddings of M0 and M1, and it is faithful when dim(V) > 2d+ 1
since any two embeddings of a cobordism are then isotopic, so represent the same
element in π0C

V
d (M0,M1). �

Since Cobd is obtained from the topologically enriched category CVd by the
functorial construction C 7→ hC, we take the point of view that the latter “contains
more information”. Once one becomes sufficiently advanced, one might decide
that the enriched category Cd, or perhaps some even more sophisticated object, is
a more natural object to consider than Cobd. Nevertheless, we shall in the rest of
this section discuss how information about CVd , such as the main theorem below,
have implications for Cobd.

Under a mild assumption, the construction C 7→ hC has the following univer-
sal property.
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Lemma 2.4.7. Let C be a topologically enriched category such that all morphism spaces

C(x,y) are locally path connected7. Then, for any small (unenriched) category D there is

a bijection

Fun(hC,D) ∼= Funenr(C, ιD),

natural in D ∈ Cat, given by composing with the canonical functor C → ι(hC). That

is, C→ ι(hC) is the initial enriched functor to an ordinary category (more precisely, to a

topologically enriched category in which all morphism spaces have the discrete topology).

In particular, functors out of Cobd may be translated to enriched functors out
of Cd.

The lemma is easily deduced from the corresponding statement about topolog-
ical spaces: if X is locally path connected, then X→ π0(X) is the initial continuous
map to a space which has the discrete topology. (Without local path connected-
ness, such a space might not exist! See Exercise 5.2.6.)

It also makes sense to take the classifying space of a topologically enriched
category C: in this case the set Np(C) of composable p-tuples of morphisms
inherits a topology from the morphism spaces of C, and hence NC is a simplicial

topological space. The geometric realization

BC = |NC| =

(
∐

p>0

∆p ×NpC

)
/ ∼

may be defined as for simplicial sets, except that ∆p ×NpC is given the product
topology and the whole space BC is given the quotient topology. Actually, we
shall work with the thick geometric realization, i.e. take only the quotient involv-
ing the face maps ofNC, not the degeneracy maps. With this definition, the space
BC still makes sense when C is a non-unital topologically enriched category: the
nerve NC is then a semi-simplicial space (it has no degeneracy maps defined).

Lemma 2.4.8. Let C be a topologically enriched category, possibly non-unital, with lo-

cally path connected morphism spaces, and apply “B” to the canonical functor C →

ι(hC); then the resulting map

BC→ B(hC)

is 2-connected. Hence we get equivalences of groupoids

hC[(hC)−1]
≃
−→ π1(B(hC))

≃
←− π1(BC).

Proof. We claim that the induced map of simplicial nerves has

NpC→ Np(ιhC)

a (2 − p)-connected map for all p > 0. For p = 0 it is in fact a homeomorphism
since the functor C → (ιhC) is a bijection (the identity) on object sets. For p = 1

7On a technical level it is often more convenient to work with categories enriched in simplicial sets,
instead of in topological spaces. For example, the local path connectedness assumption here would
go away: the analogue of taking the discrete topology is taking the constant simplicial set which is
right adjoint to “π0”.
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it follows because the maps

C(x,y)→ (ιhC)(x,y) = π0(C(x,y))

of morphisms spaces are 1-connected for all x and y. This is just the statement
that for any locally path connected space the continuous map X → π0(X) is 1-
connected. For p = 2 we assert that N2C → N2(ιhC) induces a surjection on
π0, but in fact it is even surjective on the point-set level. For p > 2 the claim is
vacuous.

It is then a general fact that the geometric realization of a map of semi-simplicial
spaces is n-connected if the map of p-simplices is (n− p)-connected. �

The point of the lemma (and of considering topologically enriched categories
in this context) is that it may be easier to describe the whole homotopy type of
BC than to try to calculate hC[(hC)−1] “directly”. With more experience, it may
also turn out that one is actually interested in the extra information contained in
C which is forgotten in hC: that extra information is the homotopy type of each
path component of the morphism spaces C(x,y).

Corollary 2.4.9. The functors Cd → hCd ≃ Cobd induce equivalences of groupoids

Cobd[Cob−1
d ]

≃
−→ π1(BCobd)

≃
←− π1(BCd)

and hence a functor γ : Cobd → π1(BCd), universal among functors to groupoids, up to

equivalence of categories.

2.5. The main theorem It turns out there is a nice formula for the homotopy
type of BCVd , the classifying space of the cobordism category. As we have seen
above, such a formula implies a classification of invertible field theories (poor
man’s version; we return to symmetric monoidal structures later).

Definition 2.5.1. Let V be a finite dimensional real inner product space and
Grd(V) denote the Grassmannian of d-planes in R⊕V . Let Ud,V be the universal
d-dimensional vector bundle over Grd(V), and let

U⊥d,V = {(X, v) ∈ Grd(V) | v ∈ X⊥}

be its orthogonal complement in V . Finally, let Td,V be the Thom space of U⊥d,V ,
i.e. the one-point compactification of its total space. Let SV denote the one-point
compactification of V , and let

ΩVTd,R⊕V = Map
∗
(SV , Td,R⊕V )

denote the space of basepoint preserving maps, in the compact-open topology.
(I.e., if V = Rn this is the n-fold based loop space.)

We can now state the main theorem of these lectures.

Theorem 2.5.2. There is a weak equivalence

(2.5.3) BCVd ≃ Ω
VTd,R⊕V .
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Remark 2.5.4. We will not have time to discuss the proof of this theorem in these
lectures, but let us make some historical remarks. There is presumably not a
direct map in either direction, and in any case the known proofs construct a zig-

zag of weak equivalences. In suitable models it is compatible with taking colimit
over finite-dimensional V ⊂ R∞ and gives a weak equivalence

BCd ≃ colim
V⊂R∞

ΩVTd,R⊕V .

The object on the right hand side is an infinite loop space, and the corresponding
spectrum is often called a Madsen–Tillmann spectrum and denoted MTO(d). In
this form the weak equivalence was first proved in [16, Main Theorem].

The proof for finite-dimensional V was first outlined in [12, Section 6], and in
more detail in [9]. An outline is also contained in my lecture notes from the 2011
PCMI [13].

Corollary 2.5.5. There is8 an equivalence of groupoids

hCVd [(hC
V
d )

−1] ≃ π1
(
ΩVTd,R⊕V

)
.

Hence for dim(V)≫ d there is an equivalence of groupoids

Cobd[Cob−1
d ] ≃ π1

(
ΩVTd,R⊕V

)
.

The point is that it is now purely a homotopy theoretic question to determine
the fundamental groupoid of ΩVTd,R⊕V , which is closely related to determining
πn(Td,R⊕V ) and πn+1(Td,R⊕V ) for n = dim(V). Let us illustrate this with a
low-dimensional example.

Example 2.5.6. Let us take d = 1 and V = R so that objects and morphisms may
be visualized in the plane. Then Gr1(R

2) = RP1 is homeomorphic to a circle,
while the bundle U⊥1,R may be identified with the Möbius strip. Therefore T1,R

may be identified with RP2, so that ΩT1,R has two components, each of which
is homotopy equivalent to ΩS2 which has fundamental group π2(S

2) = Z. The
fundamental groupoid therefore has two isomorphism classes of objects, and all
objects have infinite cyclic automorphism groups.

Remark 2.5.7. In fact the references given above prove slightly more, about a
more general notion of cobordism category, where the objects and morphisms
are equipped with a tangential structure, given by specifying a space Θ with a
continuous action of the Lie group GLd(R). One then defines a topologically
enriched category CVΘ in which morphisms are cobordisms W ⊂ [0, t]× V as
before, equipped with a GLd(R)-equivariant continuous map ℓ : Fr(W) → Θ,
where Fr(W) denotes the frame bundle of TW. Objects are M ⊂ V equipped
with GLd(R)-equivariant maps from the frame bundle of R ⊕ TM. A popular
choice is Θ = {±1} on which GLd(R) acts by multiplication by the sign of the
determinant; then an equivariant map from the frame bundle is the same as an

8The proof of course gives a specified equivalence, or at least a zig-zag of such, not just existence of
an equivalence.
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orientation. A version of the main theorem holds in this generality, the only dif-
ference is that Td,R⊕V should be replaced with a space TΘ,R⊕V in which the
Grassmannian Grd(R ⊕ V) has been replaced by a space whose points are pairs
of a d-dimensional linear subspace X ⊂ R⊕ V together with an equivariant map
ℓ : Fr(X)→ Θ.

Another interesting variant concerns manifolds equipped with an action of a
finite group G. In this case the embedded version of the cobordism category is
defined for a finite dimensional inner-product space V , equipped with an isomet-
ric action of G; objects are then submanifolds of V invariant under the action and
morphisms are submanifolds of [0, t]×V , invariant when [0, t] is given the trivial
action. Under the assumption that dim(VG) > d, there is again a homotopy theo-
retic formula for the homotopy type of the classifying space of this “equivariant
bordism category”. Passing to the colimit over subrepresentations V of the direct
sum of countably many copies of the regular representation R[G], one gets a the-
orem for a cobordism category of “abstract” G-equivariant manifolds. See [11]
for more details on all this, including precise statements.

To finish this section, let us state the classification result in yet another form.

Corollary 2.5.8. Let D be a small groupoid, then there are equivalences of groupoids

Fun(hCVd ,D) ≃ π1Map(B(hCVd ),BD)

≃ π1Map(BCVd ,BD)

≃ π1Map(ΩVTd,R⊕V ,BD).

Imprecisely the poor man’s field theories, namely functors from Cobd to a
groupoid D, are up to natural equivalence of functors the same as continuous
maps from ΩVTd,R⊕V to BD, up to homotopy.

Lecture 3: More structure

3.1. Symmetric monoidal structures The “abstract” cobordism category Cobd
admits the structure of a symmetric monoidal category with respect to disjoint union.
This monoidal structure is given by the data of

• an object ∅ ∈ Cobd,
• a functor ∐ : Cobd ×Cobd → Cobd,
• isomorphisms M0 ∐ (M1 ∐M2) ∼= (M0 ∐M1) ∐M2 forming a natural

transformation of functors Cobd ×Cobd ×Cobd → Cobd,
• isomorphisms M0 ∐M1

∼= M1 ∐M0 forming a natural transformation of
functors Cobd ×Cobd → Cobd,
• isomorphisms ∅∐M0 ∼=M0 forming a natural transformation of functors

Cobd → Cobd,

and this data satisfies the axioms of a symmetric monoidal structure. See e.g.
MacLane’s book for the full list of axioms (or wikipedia, or many other places on
the internet).
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Another example of a symmetric monoidal category is that of complex vector
spaces, or more generally modules over some commutative ring R, with symmet-
ric monoidal structure given by ⊗R, the trivial 1-dimensional module 1 = R, all
the usual isomorphisms N0⊗R (N1⊗RN2) ∼= (N0⊗RN1)⊗RN2, R⊗RN ∼= N, etc.
Let us write ModR for the category of R-modules, equipped with this symmetric
monoidal structure. One version of the classical definition of a topological field
theory then goes as follows.

Definition 3.1.1. An (R-linear) topological field theory9 is a symmetric monoidal
functor Z : Cobd → ModR.

More generally, for any symmetric monoidal category D, a D-valued topologi-
cal field theory is a symmetric monoidal functor Z : Cobd → D.

Let us again skip the detailed definition, but recall that a (strong) symmetric
monoidal functor is a functor together with specified isomorphisms 1→ Z(∅) and
Z(M0)⊗R Z(M1)→ Z(M0 ∐M1), natural in M0 and M1, satisfying three axioms
(having to do with the associators, unitors, and symmetries in the symmetric
monoidal categories).

There are also versions of the definition in which objects and cobordisms are
equipped with tangential structures, as in Remark 2.5.7.

Definition 3.1.2. LetD be a symmetric monoidal category. An object x is invertible

if there exists another object x such that x⊗ x is isomorphic to 1.
A field theory Z : Cobd → D is invertible if it sends all object of Cobd to

invertible objects of D and all morphisms to isomorphisms.

In fact the condition on objects is automatic: the cylinder [0, 1]×M as a cobor-
dism from M∐M to ∅ will be sent to an (iso)-morphism Z(M)⊗Z(M)→ Z(∅) ∼=

1, so Z(M) is invertible with inverse Z(M). (In tangentially structured versions,
the inverse of Z(M) can be taken as Z(−M), the value of Z on M given the oppo-
site tangential structure.)

There is a subcategory D∼ ⊂ D whose objects are the invertible objects and
whose morphisms are the isomorphisms. Then a D-valued invertible field theory
is the same thing as a symmetric monoidal functor Cobd → D∼. Hence we may
forget about the ambientD and just consider D∼-valued topological field theories.
Thus an invertible topological field theory is essentially one whose target category
is a rigid symmetric monoidal groupoid, defined as follows10.

Definition 3.1.3. A symmetric monoidal groupoid D is rigid if all objects are
invertible.

9To distinguish from more elaborate notions, this is nowadays sometimes called a (d− 1,d)-theory,
because Cobd involves manifolds of dimension d− 1 and d.
10For a general monoidal category the adjective “rigid” is the requirement that all objects admit duals
but that is the same as admitting inverses up to isomorphism in the case where all morphisms are
isomorphisms. Another name for “rigid symmetric monoidal groupoid” is “Picard groupoid”.



Søren Galatius 21

3.2. Symmetric monoidal structure on the universal groupoid under C We
have already studied how to classify functors from Cobd into the underlying
groupoid of D, ignoring the symmetric monoidal structure. Indeed, they are “the
same thing” as functors from Cobd[Cob−1

d ] ≃ π1(BCobd), which we identified
with the fundamental groupoid of another space ΩVTd,v for dim(V) ≫ d. This
answer may be enhanced to a classification of invertible topological field theories
provided we have good answers to the following two (vaguely worded) questions.

• Let X be a space and C = π1(X) the fundamental groupoid. What extra
structure on X is necessary to functorially induce a symmetric monoidal
structure on C?
• Let C be a small category and X = BC. What extra structure on X does a

symmetric monoidal structure on C functorially induce?

There is a quite straightforward answer to these questions, based on the fact
that C 7→ BC preserves products and takes natural transformations to homotopies,
and conversely X 7→ π1(X) takes maps to functors and homotopies to natural iso-
morphisms11. Indeed, the following list of structure on Xwill induce a symmetric
monoidal structure on π1(X).

• a base point 1 ∈ X,
• a “product” map µ : X×X→ X,
• a (homotopy class of a) homotopy [0, 1]×X×X×X→ X, between (x0, x1, x2) 7→

µ(x0,µ(x1, x2)) and (x0, x1, x2) 7→ µ(µ(x0, x1), x2),
• a (homotopy class of a) homotopy [0, 1]× X× X → X between (x0, x1) 7→

µ(x0, x1) and (x0, x1) 7→ µ(x1, x0),
• a (homotopy class of a) homotopy of maps X→ X from the identity to the

map x 7→ µ(1, x),

subject to certain conditions, obtained by translating the axioms of a symmetric
monoidal category (according to “category” 7→ “space”, “functor” 7→ “continuous
map”, “natural transformation” 7→ “homotopy class of a homotopy”, “object” 7→
“point”, “vertical composition of natural transformations” 7→ “concatenation of
homotopies”). Conversely if C is given a symmetric monoidal structure then
X = BC acquires this kind of structure. Finally, these processes are inverse in the
sense that γ : C → π1(BC) is a symmetric monoidal functor, and a symmetric
monoidal equivalence if all morphisms in C are isomorphisms.

What seems to occur in nature is usually not the exact list above of data on
a space X, but rather an “En-structure”. Let us briefly recall what that is, and
explain why it is sufficient for inducing a symmetric monoidal structure on π1(X),
for n > 3.

11A possible pitfall here is thatC 7→ BC does not send vertical composition of natural transformations
to concatenation of homotopies, it only does so up to homotopy relative to endpoints. Therefore it
is better to only consider homotopy classes of homotopies: identify maps [0, 1]×X → Y that are
homotopic relative to {0, 1}×X. Conversely, such a homotopy class of homotopies is sufficient to
induce a natural transformation of functors π1(X)→ π1(Y).
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3.3. Little disks Let Dn(k) be the space of embeddings j : {1, . . . , k}× int(Dn)→
int(Dn) of the form

(i, x) 7→ vi + tix,

for some ti ∈ (0, 1) and vi ∈ int(Dn), i.e. embeddings that on each open disk
is given by a translation and a scaling by a positive number. Use vi and ti to
topologize this as a subspace

Dn(k) ⊂
(
(0, 1)× int(Dn)

)k.

These spaces come with the following structure

• an identity element 1 ∈ Dn(1)
• an action of Sk on Dn(k), by permuting input disks
• composition maps for k, k ′ > 0 and i ∈ {1, . . . , k}

◦i : Dn(k)×Dn(k
′)→ Dn(k+ k

′ − 1),

where j ◦i j ′ is defined by inserting the codomain int(Dn) of j ′ into the
ith copy of int(Dn) in the domain of j.

We will write Dn for the data of the spaces Dn(k) for k > 0 with their symmetric
group actions, the identity 1 ∈ Dn(1), and the compositions ◦i. It satisfies the
associativity axioms

(j ◦i j
′) ◦i+i ′−1 j

′′ = j ◦i (j
′ ◦i ′ j

′′)

(j ◦i ′ j
′) ◦i+k ′−1 j

′′ = (j ◦i j
′) ◦i ′ j

′′

for j ∈ Dn(k), j ′ ∈ Dn(k
′), and j ′′ ∈ Dn(k

′′), as well unit axioms

1 ◦1 j = j

j ◦i 1 = j,

and an axiom expressing how composition interacts with the action of symmetric
groups. Together, these axioms precisely express that Dd is an operad12 in spaces.
This operad is the little n-disk operad.

Another example of an operad is the endomorphism operad EndX of a space X.
Its kth space is

EndX(k) = Map(Xk,X),

the symmetric group acts by permuting factors in Xk, the identity 1 ∈ EndX(1) is
the identity map, and the composition f ◦i f ′ is defined by inserting the codomain
X of f ′ into the ith factor in the domain of f, i.e.

(f ◦i f
′)(x1, . . . , xk+k ′−1) = (x1, . . . , xi−1, f(xi, . . . , xi+k ′−1), xi, . . . , xk+k ′−1).

Definition 3.3.1. An algebra for Dn is a space X together with an operad map
Dn → EndX, i.e. continuous maps

µk : Dn(k)→ EndX(k) = Map(Xk,X),

12See e.g. [8, chapter 2] or [27] for the axioms given here, and a discussion of how they are equivalent
to May’s axioms.
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for each k ∈ Z>0, preserving all the structure (symmetric group action, identity,
compositions ◦i).

A morphism of Dn-algebras is a continuous map f : X → Y with the property
that the diagrams

Dn(k)×X
k

µk
//

id×fk
��

X

f

��

Dn(k)× Y
k

µk
// Y

commute for all k ∈ Z>0.

Proposition 3.3.2. For n > 3 there is a functorial way to associate a symmetric monoidal

structure on π1(X) to a space X with En structure.

Lemma 3.3.3. The space Dn(k) is homotopy equivalent to the ordered configuration
space

Confk(Rn) = {(x1, . . . , xk) ∈ (Rn)k | xi 6= xj for i 6= j}.

In particular it is simply connected for all k when n > 3.

Proof sketch. Compose the inclusion Dn(k) ⊂ ((0, 1)× int(Dn))k with the pro-
jection to (int(Dn))k. Its image is the set of k-tuples of distinct elements of
int(Dn) ⊂ Rn, and the fiber over a k-tuple of distinct elements is a non-empty
convex open subset of (0, 1)k. After choosing a diffeomorphism int(Dn) → Rn,
we get a submersion Dn(k)→ Confk(Rn) with contractible fibers, which implies
being a homotopy equivalence.

Forgetting the last point gives a map Confk+1(R
n) → Confk(Rn) which is a

fiber bundle whose fiber over (x1, . . . , xk) is

R
n \ {x1, . . . , xk} ≃

k∨
Sn−1.

This fiber is simply connected for n > 3, so in this case the long exact sequence of
homotopy groups gives simple connectivity of Confk(Rn) by induction on k. �

Proof of Proposition 3.3.2. Applying π1 to the structure maps gives

(3.3.4) π1(Dn(k))→ Fun(π1(X)× · · · × π1(X),π1(X)),

associating functors (π1(X))
k → π1(X) to objects of π1(Dn(k)) and natural iso-

morphisms to isomorphisms in π1(Dn(k)).
Choose13 an object of π1(Dn(2)), i.e. a point in the space Dn(2), and let ⊗ :

π1(X)× π1(X)→ π1(X) be the image of m under (3.3.4).
The two points m ◦1 m and m ◦2 m of Dn(3) are likely not equal, but there’s

a unique isomorphism between them in π1(Dn(3)) by Lemma 3.3.3. Since the

13In case the reader feels unease about this choice, let us remind them that defining e.g. the disjoint
union functor∐ : Sets×Sets→ Sets also involves a choice, viz. of how to replace two sets by “disjoint
copies”. Here and there, any two choices give naturally isomorphic functors.
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structure maps preserve ◦1 and ◦2, the image under (3.3.4) of this isomorphism
m ◦1 m → m ◦2 m in π1(Dn(3)) is a natural transformation between the two
functors

π1(X)× π1(X)× π1(X)→ π1(X)

(x,y, z) 7→

{
x⊗ (y⊗ z)

(x⊗ y)⊗ z,

and we take this to be the associator.
The action of the transposition (12) ∈ S2 on m gives a new point (12).m ∈

Dn(2) but since Dn(2) is simply connected (in fact it is homotopy equivalent to
Sn−1) there is a unique isomorphism m → (12).m in π1(Dn(2)). Take the image
under (3.3.4) of this isomorphism as the symmetry. Finally, as monoidal unit we
take the image of the unique point in Dn(0) under (3.3.4).

It remains to verify that the axioms are satisfied, but that is in fact easy. For
example, the pentagon axiom asserts that two natural transformations of functors
(π1(X))

4 → π1(X) are equal. The two natural transformations come from the two
ways of using the associator to give a natural isomorphism x⊗ (y⊗ (z⊗w)) →

((x⊗y)⊗ z)⊗w. Tracing definitions, we see that they are the image under (3.3.4)
of two particular isomorphisms m ◦2 (m ◦2 m) → (m ◦1 m) ◦1 m in π1(Dn(4)).
But since Dn(4) is simply connected, any two isomorphisms between two objects
in its fundamental groupoid must be equal. The other axioms of a symmetric
monoidal category are proved by the same method. �

Remark 3.3.5. A similar argument gives a monoidal structure on the fundamental
groupoid of an E1 space, and a braided monoidal structure on the fundamental
groupoid of an E2 space.

Example 3.3.6. Finally, let us give the standard example of an En algebra, which
was in fact the historical motivation for the development of operads.

Any embedding j : {1, . . . , k}× int(Dn)→ int(Dn) may be one-point compacti-
fied to a based map in the other direction

Sn → Sn ∨ · · ·∨ Sn,

where we regard Sn as the one-point compactification of int(Dn). Hence, if Y is
any based space we obtain a map

j∗ : Ω
nY × . . .ΩnY → ΩnY,

depending continuously on j ∈ Dn(k). It is not hard to verify that this construc-
tion makes X = ΩnY into a Dn-algebra. Moreover, it is group-like (the monoidal
category π1(X) is rigid).

More surprisingly, it turns out that up to homotopy the space Y may be recon-
structed from X and its Ed structure, at least if Y is (n− 1)-connected. There is
a functorial procedure, May’s two-sided bar construction, which to an En-space X
associates a pointed space B(Sn,Dn,X). For X = ΩnY there is a canonical weak
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equivalence between B(Sn,Dn,X) and the (n − 1)-connected cover of Y. Con-
versely, if X is any group-like En space and we define Y = B(Sn,Dn,X), then
there is a zig-zag of weak equivalences which are En-maps, between X and ΩnY.

3.4. Structure on embedded cobordism categories We can “almost” give the
space BCVd an En structure with n = dim(V), as follows. Any embedding j :
{1, . . . , k}×V → V gives a continuous functor

(3.4.1) j∗ : (C
V
d )
k → CVd ,

by taking images of objects M1 ⊂ V and morphisms W ⊂ [0, t]× V under j, and
hence a continuous map

B(j∗) : (BC
V
d )
k → BCVd .

Choose a diffeomorphism φ : V ≈ int(Dn) and use it to define maps

Dn(k) →֒ Emb({1, . . . , k}× int(Dn), int(Dn))
φ
−→ Emb({1, . . . , k}× V ,V)

→Map((BCVd )
k, (BCVd ),

where the last map is j 7→ B(j∗). It is easy to verify that these maps preserve the
operad structure: symmetric group actions, identity, and compositions ◦i. Unfor-
tunately they are not continuous, because the functor (3.4.1) does not “depend
continuously” on j. The problem is that CVd has a set (as opposed to a space)
of objects, and hence N0C

V
d has the discrete topology in which the action is not

continuous.
The obvious fix, which is the approach we shall take, is to topologize Ob(CVd ).

In fact this set has a very natural topology, which does make the actions explained
above be continuous. The result is no longer a topologically enriched category,
though.

3.5. Topological categories A topological category, or a category internal to topolog-

ical spaces is a category C together with a topology on Ob(C) and on the total set
Mor(C) of all morphisms, such that the four structure maps

identity : Ob(C)→ Mor(C)

source, target : Mor(C)→ Ob(C)

composition : Mor(C)×ObC Mor(C)→ Mor(C)

are all continuous. The nerve NC is then a simplicial topological space, with
N0C = Ob(C), N1C = Mor(C), etc. There is also a notion of non-unital topo-
logical categories, which have no identities; the nerve is then a semi-simplicial
topological space (no degeneracy maps).

There is an easy way to extract a topologically enriched category C out of a
topological category C, namely take the underlying set of Ob(C), and let C(x,y) =
{f ∈ Mor(C) | source(f) = x, target(f) = y} with the subspace topology. Composi-
tion and identity are as in C. There is an induced map of simplicial topological
spaces NC→ NC. If we assume that (d0,d1) : N1C→ (N0C)

2 is a Serre fibration,
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then it follows that the diagrams

(3.5.1)

NpC //

��

NpC

��

(N0C)
p+1 // (N0C)

p+1

are homotopy pullbacks for all p. In this case not much is lost by this opera-
tion, from a homotopy theoretic point of view14. For example it follows from
the Bousfield–Friedlander theorem that the induced map of classifying spaces
BC → BC is a weak equivalence. It is also a bijection, so π1(BC) → π1(BC) is an
isomorphism of groupoids. If hC is unital (but C possibly not), then the canonical
functors

(3.5.2) hC
γ
−→ π1BC

∼=
−→ π1(BC)

induces an isomorphism (hC)[(hC)−1] ∼= π1(BC).
We may define a version of the embedded cobordism category which is a topo-

logical category, as follows. The set of objects of CVd is in bijection with
∐

M

Emb(M,V)/Diff(M),

where the disjoint union ranges over closed (d− 1)-manifolds, one in each diffeo-
morphism class. Hence we may topologize it in the quotient topology from the
C∞ topology on the embedding space. Keeping the same underlying category
as CVd , there is a compatible way to topologize the total set of morphisms, where
each connected component is topologized as a subspace of R>0×Emb∂(W, [0, 1]×
V)/Diff∂(W). See [16] for more details on such a definition. Let us temporarily
write CVd for the version as a topological category.

3.6. Conclusion Since CVd and CVd have the same underlying (non-topologized)
category, the discussion in §3.4 applies equally well to the topological category
CVd , but now the functor

j∗ : (C
V
d )
k → CVd

depends continuously on j ∈ Emb({1, . . . , k}× V ,V) and we get continuous maps

Dn(k) →֒ Emb({1, . . . , k}× int(Dn), int(Dn))
φ
−→ Emb({1, . . . , k}× V ,V)

→Map((BCVd )
k, (BCVd )),

which satisfy the axioms of a map of operads. Hence they make the space BCVd
into an En-algebra (depending on the diffeomorphism V ≈ int(Dn)). For n =

dim(V) > 3 the fundamental groupoid π1(BC
V
d ) therefore inherits a symmetric

monoidal structure, from a choice of m ∈ Dn(2). This choice also promotes hCVd

14In the unital case a concise statement is the map Sing(NC)→ Sing(NC) is a weak equivalence in
the complete Segal space model structure [36] on simplicial spaces. Hence they may be viewed as two
models for the same homotopy type of (∞, 1)-categories.
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to a symmetric monoidal category and the universal functor (as in (3.5.2))

hCVd
γ
−→ π1(BC

V
d )

to a symmetric monoidal functor, factoring over a symmetric monoidal equiva-
lence hCVd [(hC

V
d )

−1] ≃ π1(BC
V
d ).

By Example 3.3.6, the space ΩVTd,R⊕V ≈ Ω
nTd,R⊕V also canonically has the

structure of an En algebra. Hence it makes sense to ask whether the weak equiv-
alence from the main theorem, between ΩVTd,R⊕V and BCVd ≃ BCVd preserves
this structure. The proof of this equivalence goes through a rather long zig-zag of
weak equivalences. The original proofs of the main theorem did not discuss com-
patibility with En-structures, but more recently C. Schommer-Pries [37, Chapter
4] has shown how to find a zig-zag of maps, in our notation between BCVd and
ΩVTd,R⊕V , which are both maps of En spaces and weak equivalences of under-
lying spaces. (Nguyen [29] had shown this earlier in the limiting case n → ∞,
using Segal’s Γ -spaces as a model for E∞ spaces.) More concisely, he constructed
a weak equivalence of En spaces BCVd ≃ Ω

VTd,R⊕V .
Combining everything, we get symmetric monoidal functors (for dim(V)≫ d)

Cobd
≃
←− hCVd → hCVd [(hC

V
d )

−1]
≃
−→ π1(BC

V
d )

≃
←→ π1(Ω

nTd,R⊕V ),

where the symmetric monoidal structure on π1(Ω
nTd,R⊕V ) arises from the En-

structure on ΩnTd,R⊕V , as explained in §3.3.6.

Remark 3.6.1. Let X be a (based) space and let n > 3. Let X → τ6nX denote the
Postnikov truncation15, and τ>nX = τ>n+1X → X its homotopy fiber over the
base point. Then the two maps τ6n+1τ>nX → τ6n+1X ← X induce symmetric
monoidal equivalences

π1Ω
n(τ6n+1τ>nX)

≃
−→ π1Ω

n(τ6n+1X)
≃
←− π1Ω

nX,

so the symmetric monoidal groupoid π1(Ω
nX) depends only on the homotopy

type of the based space τ6n+1τ>nX. This space is a “two-stage Postnikov tower”,
meaning that it has only two non-zero homotopy groups, namely A = πn(X, ∗)
and B = πn+1(X, ∗). Moreover, it is canonically homotopy equivalent to the
homotopy fiber of a map of Eilenberg–MacLane spaces

K(A,n) k−→ K(B,n+ 2),

whose homotopy class in [K(A,n),K(B,n+ 2)] ∼= Hn+2(K(A,n);B) is one of the
k-invariants of X. It is a measure of how far τ6n+1τ>nX is from being homotopy
equivalent to the product K(A,n)×K(B,n+ 1).

To summarize, the universal symmetric monoidal groupoid equipped with a
symmetric monoidal functor from Cobd is entirely encoded by the two groups

15See Exercise 5.2.5, especially (d).
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A = πn(Td,Rn+1 , ∗) and B = πn+1(Td,Rn+1 , ∗) as well as the k-invariant16 con-
necting them. A similar discussion applies to all the other flavors of cobordism
categories (e.g. with extra tangential structure).

With only a little more work, the classification of symmetric monoidal func-
tors Cobd → D with values in a rigid symmetric monoidal groupoid D can be
turned entirely into homotopy theory of spaces. The classical “infinite loop space
machines” allow us to write the classifying space BD as an iterated loop space

BD ≃ Ωn(Bn+1D),

for any n, and for n > 3 such a delooping in turn determines the symmetric
monoidal structure on D ≃ π1(BD), as explained in §3.3. Using the main theorem
with V = Rn for n≫ d there is then an equivalence of groupoids

Fun⊗(Cobd,D) ≃ π1Map
∗
(τ>nTd,Rn+1 ,Bn+1D),

where the domain denotes the category of symmetric monoidal functors and
monoidal natural transformations between them and the codomain is the fun-
damental groupoid of the space of pointed maps.

Lecture 4: Cobordism classes and characteristic classes

As explained in Lecture 2, each path component of a morphism space in Cd

may be interpreted as a classifying space for bundles of manifolds. In this section
we shall explain how the main result stated in Lecture 2 may be used to study
the cohomology of these spaces, i.e. characteristic classes of bundles of manifolds.
This will make use of more of the homotopy type of BCd, beyond its fundamental
groupoid.

4.1. Stable homology of moduli spaces of surfaces Let us discuss the case d =

2. In this case, classification of surfaces asserts that a compact connected non-
orientable smooth 2-manifold W with ∂W ≈ ∐k1 S

1 must be diffeomorphic to

Wh,k = (hRP2)#(kD2),

the connected sum of h ∈ Z>1 copies of the real projective plane and k ∈ Z>0

copies of the 2-disk. For h ′ > h, k > 1, and k ′ > 0, there exist embeddings

Wh,k
j
→֒Wh ′,k ′

and any such embedding gives rise to a continuous group homomorphism

j∗ : Diff∂(Wh,k)→ Diff∂(Wh ′,k ′),

defined by “extension by the identity”: for ϕ ∈ Diff∂(Wh,k) the diffeomorphism
j∗ϕ is given by j◦ϕ◦ j−1 on the image of j, and by the identity on the complement
of the image of j. The resulting map j∗ϕ is again a diffeomorphism, because ϕ

16See also Exercise 5.3.8.
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acts as the identity near ∂Wh,k. Taking induced map of classifying spaces gives
a map of spaces BDiff(Wh,k)→ BDiff(Wh ′,k ′) and hence a map on homology

(4.1.1) Hi(BDiff(Wh,k))→ Hi(BDiff(Wh ′,k ′)).

The following homological stability theorem was proved by Nathalie Wahl17.

Theorem 4.1.2 ([40]). For any choice of embedding j : Wh,k →֒ Wh ′,k ′ the homomor-

phism (4.1.1) is an isomorphism for h≫ i.

In fact Wahl proved that h > 4i+ 5 is sufficient, which was later improved by
Randal-Williams to h > 3i+ 3 being sufficient.

For any connected, compact, and non-orientable surface W, the homology of
BDiff∂(W) is therefore “independent of W” at least up to homological degree
h−3

3 , where h is the largest natural number for which there exists an embed-
ding j : Wh,1 →֒ W. (This number may be characterized homologically as the
dimension of the cokernel of the natural map H1(∂W; F2) → H1(W; F2).) By
the homological stability theorem the group Hi(BDiff∂(W);A) may be identified
with the colimit of the direct system

· · · → Hi(BDiff∂(Wh,1);A)→ Hi(BDiff∂(Wh+1,1);A)→ . . . ,

which is manifestly independent18 of W.
The range appearing in Wahl’s theorem (improved by Randal-Williams) is

known as the stable range. In this range the homology with coefficients in an
abelian group A may be identified with the stable homology groups

(4.1.3) colim
h→∞

H∗(BDiff∂(Wh,1);A).

In this lecture we shall discuss how cobordism categories may be used to de-
termine the stable homology. We shall not directly employ the “field theory”
language, although the interested reader may interpret some of the constructions
in this lecture in terms of invertible field theories.

Remark 4.1.4. A similar homological stability result for oriented compact connected
2-manifolds was established earlier by Harer in [18] (see the survey [41] for a
geodesic proof). Surfaces with other tangential structures were considered later
by Randal-Williams in [35]. Similar homological stability results are known for
manifolds of dimension higher than 2, as long as the dimension is even, see
[14, 15].

Several homological stability results for moduli spaces of odd dimensional
manifolds have been established by Perlmutter [32–34].

17Wahl’s paper works with the discrete groups π0(Diff∂(Wh,k)), but that point of view is equivalent
by the earlier result [17, Théorème 1].
18The diligent reader and writer ought to raise the question of whether the isomorphism is indepen-
dent of choice of j : Wh,1 →֒ W. This is indeed the case: assuming the image of j is contained in
W \∂W, as may be arranged after isotoping j, it may be deduced from the classification of surfaces
that the homomorphisms of diffeomorphism groups arising from two choices of j are conjugate, and
hence the maps of classifying spaces are homotopic. By a similar argument the maps in the direct
system are independent of choice of Wh,1 →֒Wh+1,1.
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4.2. Cohomology of morphism spaces The connection between cobordism cat-
egories and the question of determining H∗(BDiff∂(W);A) for a (non-orientable,
connected, compact) surface W is that the space BDiff∂(W) appears, up to ho-
motopy, as a path component of a morphism space in C2. Indeed, if we pick an
embedding ∂W →֒ V ⊂ R∞ and denote its image by M, then M is an object of
C2, and one of the path components of the space C2(M, ∅) is weakly equivalent
to BDiff∂(W), as explained in Section 2.2. It also appears as a path component
of C2(M0,M1) if M0 ∐M1 ≈ ∂W. We wish to deduce information about the
cohomology of BDiff∂(W) from this appearance as a path component of mor-
phism spaces in C2, and the knowledge provided by the main theorem cited
above, which gives the weak equivalence

ΩBC2 ≃ Ω
∞MTO(2) = colim

V
ΩVT2,V .

This homotopy equivalence should be regarded as a calculation of the left hand
side and therefore, at least implicitly, gives information about C2. The right hand
side is a priori more well understood—for example, standard arguments imply
that each path component of this space has rational cohomology ring

(4.2.1) Q[x1, x2, . . . ],

a polynomial ring on generators xi of cohomological degree |xi| = 4i.
Let us first discuss what we are trying to do, in the abstract setting of a topo-

logically enriched category C. There is a continuous map

(4.2.2) C(x,y)→ Ωx,yBC,

where the codomain denotes the space of paths [0, 1]→ BC starting at x ∈ N0C ⊂

BC and ending at y, in the compact-open topology. Standard arguments, gen-
eralizing the discussion in §1.3, show that this map is a weak equivalence for
all x and y, if and only if hC is a groupoid. Without further assumptions the
map (4.2.2) may be very far from an equivalence; for example if C is a partially
ordered set the domain is either a singleton or empty, while the space BC may
have any homotopy type whatsoever.

The map (4.2.2) is not quite a natural transformation in the strict sense: a
morphism f : y → y ′ induces a map C(x,y) → C(x,y ′) by postcomposing with
f, and a map Ωx,yBC → Ωx,y ′BC by concatenating with the path given by the
1-simplex f ∈ N1(C), but the square

C(x,y) //

f◦−

��

Ωx,yBC

��

C(x,y ′) // Ωx,y ′BC

does not commute on the nose. It does commute up to homotopy though, which
is sufficient to make

H∗(C(x,y);A)→ H∗(Ωx,yBC;A)
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a natural transformation of functors of (x,y) ∈ (hC)op × (hC), for any abelian
groupA. Since concatenation with a path is a homotopy equivalence, the codomain
will send any morphism y→ y ′ to an isomorphism H∗(Ωx,yBC;A)→ H∗(Ωx,y ′BC;A),
and similarly for x ′ → x.

If we have a filtered category J, an object j0 ∈ J, and a functor y : J → C, we
therefore get an isomorphism

H∗(Ωx,y(j0)BC;A)
∼=
−→ colim

j∈J
H∗(Ωx,y(j)BC;A)

and an induced map

(4.2.3) colim
j∈J

H∗(C(x,y(j));A)→ colim
j∈J

H∗(Ωx,y(j)BC;A) ∼= H∗(Ωx,y(j0)BC;A)

The following result is a version19 of the “group completion” theorem for cate-
gories.

Proposition 4.2.4. Let C and y : J → C be as above, let A be an abelian group, and

assume the functor

(4.2.5)
hCop → Ab

x 7→ colim
j∈J

H∗(C(x,y(j));A)

sends all morphisms to isomorphisms. Then the map (4.2.3) is an isomorphism, in fact a

natural isomorphism of functors of x ∈ hCop.

This abstract result (with A = Z) is quite close to what we need: the stable
homology groups (4.1.3) are (filtered) colimits of homology groups of path com-
ponents of morphism spaces in the cobordism category C2, and we understand
the space ΩBC2 ≃ Ω

∞MTO(2) well, including the (rational co)homology of its
path components (4.2.1). Unfortunately the proposition does not apply on the
nose to C = C2, because the many path components of C2(x,y) corresponding to
disconnected cobordisms prevents the assumption of the proposition from being
satisfied.

Remark 4.2.6. Even though we shall not need it in the rest of this lecture, let
us make a brief remark about how Proposition 4.2.4 fits into the “field theory”
paradigm, under the extra assumption that C is symmetric monoidal, y(j0) = 1 is
the monoidal unit of C, and A is a commutative ring. Then the functor

hCop → graded A-modules

x 7→ colim
j∈J

H∗(C(x,y(j);A) ∼= H∗(Ωx,1BC;A)

19An arguably more conceptual point of view on the map (4.2.2) involves the derived version of the uni-
versal functor γ : C→ C[C−1] mentioned earlier for plain categories. Explicit models in simplicially
enriched categories were given by Dwyer and Kan, [6, 7], who also established that morphism spaces
in the derived localization are path spaces in the classifying space. Another model is the localization
of quasi-categories [24, §5.2.7]. Either of these settings promotes (4.2.2) to a natural transformation
of (representable) functors of y. From this derived point of view, it may also be more natural to
replace the “colimits of homology” by “homotopy colimits of chains” in Proposition 4.2.4; in such a
formulation the assumption that J be filtered may be weakened to BJ being contractible.
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may be promoted to a lax symmetric monoidal functor, where the codomain
is symmetric monoidal with respect to ⊗A and the usual symmetry x ⊗ y 7→

(−1)|x||y|y ⊗ x. The monoidality of the functor arises from applying the lax
monoidal functor H∗(−;A) to

Ωx,1(BC)×Ωx ′,1(BC)
∼=
−→ Ω(x,x ′),(1,1)(BC× BC)→ Ωx⊗x ′,1⊗1BC

≃
−→ Ωx⊗x ′,1BC,

where the middle arrow is Ω(x,x ′),(1,1)(B⊗) and the last arrow is concatenating
with the path corresponding to the isomorphism 1⊗ 1→ 1.

Since the resulting natural transformation

H∗(Ωx,1BC;A)⊗A H∗(Ωx ′,1BC;A)→ H∗(Ωx⊗x ′,1BC;A)

and also the unit A → H∗(Ω1BC;A) are likely not isomorphisms, we have only
constructed a lax monoidal functor. But if BC is path connected it lifts to a (strong)
monoidal functor into the category of modules over H∗(Ω1BC;A), endowed with
tensor product over that graded-commutative ring. The module structure is in-
duced by the map of spacesΩx,1BC×Ω1BC→ Ωx,1BC defined by concatenation
of paths, and the monoidality is defined as before but factoring over the tensor
product over H∗(Ω1BC;A). It is not hard to check that this is well defined and
gives a strong monoidal functor if BC is path connected20.

4.3. Cobordisms with connectivity restrictions It is a popular endeavour to
study and/or define field theories whose domain is larger than Cobd. The gen-
eral flavor is to allow objects to have boundary as well: instead of only allowing
closed (d− 1)-manifolds M we could allow M to be a cobordism between (d− 2)-
manifolds. Cobordisms M0  M1 would then be d-manifolds with corners. If we
stop there, the corresponding notion of field theory is a “(d− 2,d− 1,d)-theory”.
Going for maximal generality, there is a notion of fully extended field theory. See
[37] for a classification result for invertible field theories in this setting or [25] for
a non-invertible classification result.

In this section we shall do the opposite: study functors defined on something
smaller than Cd. Such subcategories turn out to be very useful for understanding
homology of components of the morphism spaces Cd(M0,M1) which, as we have
seen, have the homotopy type of BDiff∂(W). For d = 2 the goal is, roughly
speaking, to find a subcategory C ⊂ C2 which is large enough to contain all the
BDiff∂(Wh,k) and small enough that Proposition 4.2.4 applies to it.

Definition 4.3.1. Let d > 0 and k > −1. For objects M0,M1 ∈ Cobd, let

Cobkd(M0,M1) ⊂ Cobd(M0,M1)

20A more elaborate construction also works for disconnected BC, at least when the commutative
monoid structure on π0(BC) induced by ⊗ is a group. Then the functor should take values in a
symmetric monoidal category of π0(BC)-graded H∗(Ω1BC;A)-modules. The symmetry isomor-
phism involves a “generalized sign” which is an anti-symmetric function c : π0(BC)×π0(BC)→

π1(BC, 1) ⊂H∗(Ω1BC;A)×, and the associator involves a normalized 3-cocycle h : (π0(BC))3 →

π1(BC, 1).
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be the subset consisting of (diffeomorphism classes of abstract) cobordisms W,
such that the pair (W,M1) is k-connected. For k = −1 this is no condition, for
k = 0 it means that π0(M1) → π0(W) is surjective, and for k > 0 it additionally
means that the relative homotopy groups πi(W,M1, x) vanish for all i 6 n and
all basepoints x ∈M1.

As you will show in Exercise 5.3.5, the connectivity property is preserved un-
der composition of cobordisms, so that we have defined a subcategory Cobkd ⊂
Cobd.

Since we have functors

hCVd → hCd
≃
−→ Cobd,

we get corresponding subcategories of Cd and CVd by taking the inverse image.
Similarly in the presence of a tangential structure Θ. Following [10] we shall
write Ckd ⊂ Cd for the inverse image of Cobkd ⊂ Cobd.

Lemma 4.3.2. Cobkd ⊂ Cobd is a symmetric monoidal subcategory. Relatedly, for

n = dim(V), the En structure on CVd restricts to an action on the topological subcategory

defined as the inverse image of Cobkd.

Proof. LetW ∈ Cobd(M0,M1) andW ′ ∈ Cobd(M ′0,M ′1). If (W,M1) and (W ′,M ′1)
are both k-connected, then the inclusion

M1 ∐M
′
1 →֒W ∐W ′

is also k-connected. �

The case k = 0 is especially easy to visualize: the condition on a cobordism
W ∈ Cd(M0,M1) is then that each path component of W must have non-empty
outgoing boundary. (Symmetric monoidal) functors from Ckd, or from other sub-
categories of cobordism categories, are sometimes called restricted field theories.

Example 4.3.3. For d = 1 the subcategory Cob0
1 ⊂ Cob1 has a very simple struc-

ture. Its objects are finite sets, while morphisms from a finite set M0 to another
finite set M1 may be viewed as injections M0 →֒ M1 together with matchings
(equivalence relations where each equivalence class has cardinality 2) on the com-
plement of the image. Symmetric monoidal functors Cob0

1 →ModR are therefore
uniquely given, up to natural isomorphism, by an object X ∈ModR together with
an element ω ∈ X⊗R X that is fixed under swapping the factors. For most choices
of X and ω it is not possible to extend to a symmetric monoidal functor on all of
Cob1. In fact, it can be shown21 that such an extension exists if and only if X is
finitely generated and projective, and the adjoint ω : X→ X∨ is an isomorphism.

Similar examples may be given of symmetric monoidal functors Cob0
2 →ModR

which do not extend to Cob2.

21This is the 1-dimensional cobordism hypothesis, [1, 25].
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The inclusion Ckd →֒ Cd induces a map of spaces

(4.3.4) BCkd →֒ BCd

which, surprisingly, sometimes turns out to be a weak equivalence. It is easy to
see that (4.3.4) can’t always be a weak equivalence though. For example if k > d,
then we only allow cobordismsW ∈ Cobd(M0,M1) for which the inclusionM1 →

W is a homotopy equivalence. This prevents the map (4.3.4) from inducing a
bijection on π0, much less being a weak equivalence. It is perhaps more surprising
that it is ever a weak equivalence for k > 0. The following result was proved in
[10, §3] (see also [16, §6] for the case d = 2).

Theorem 4.3.5. Let k 6 d
2 − 1. Then the map (4.3.4) is a weak equivalence.

More generally let Θ be a space with GLd(R) action, let CΘ be the corresponding

cobordism category of manifolds with Θ-structure, as in Remark 2.5.7, and let CkΘ be the

inverse image of Cobkd. Then the inclusion induces a weak equivalence

(4.3.6) BCkΘ →֒ BCΘ

for k 6 d
2 − 1.

4.4. Cohomology of morphism spaces Let us now return to the topic of charac-
teristic classes of smooth manifold bundles. For concreteness we will again first
explain the case of non-orientable surfaces.

This is in fact just a matter of collecting together all the ingredients outlined
above. Indeed, let us we apply Proposition 4.2.4 to the topologically enriched
category C = C2 with J = (N,6) and y : J → C2 given on objects by letting each
y(n) be the image of some embedding S1 →֒ V and on the generating morphisms
n < n + 1 as an embedded cobordism diffeomorphic to ([n,n + 1] × S1)#RP2.
Then Wahl’s theorem implies that the assumption of Proposition 4.2.4 is satis-
fied, and the proposition implies an isomorphism between the cohomology of
BDiff∂(Wh,k) in the stable range, and the cohomology of a path component of
Ω∞MTO(2). We deduce a map of graded Q-algebras

Q[x1, x2, . . . ]→ H∗(BDiff∂(Wh,k);Q),

which is an isomorphism in the stable range (cohomological degrees 6 (h− 3)/3,
by Randal-Williams’ improved range).

Remark 4.4.1. The corresponding statement for oriented surfaces is the celebrated
Madsen–Weiss theorem [26], establishing the Mumford conjecture. It may be
proved using cobordism categories of oriented surfaces by an argument similar
to the one outlined above, replacing Wahl’s theorem with Harer’s theorem. This
method of using cobordism categories to prove Madsen and Weiss’ theorem was
first used in [16]. The insight that restricted cobordism categories are useful
for studying stable homology goes back to Ulrike Tillmann’s paper [39], in the
surface case.
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Remark 4.4.2. The homological stability results established in [14,15] for manifolds
of even dimension d = 2n may be used in a similar way to Harer’s and Wahl’s
results, and the restricted cobordism categories Cn−1

2n may be used in a similar
way, to determine the stable homology. See op. cit. for precise statements and
detailed proofs.

The situation for odd dimensional manifolds is currently more mysterious.
While Perlmutter’s homological stability results [32–34] give explicit stable ranges,
we do not currently know the corresponding stable homology. The statement in
Theorem 4.3.5 is not quite strong enough in the odd dimensional case d = 2n+ 1:
Proposition 4.2.4 does not seem to apply to Cn−1

2n+1.

Exercises (by A. Debray, S. Galatius, M. Palmer)

The four lectures at the summer school were accompanied by three exercise
sessions, TA’d by Arun Debray22 and Martin Palmer23. The exercises below are
edited versions of the problem sets: a few have been omitted and some have been
rewritten for clarity. We thank the participants in the exercise sessions for their
feedback on the original versions.

We have mostly preserved the ordering used at the summer school (but added
a few suggestions for doing certain exercises out of order). Exercises labeled with
an asterisk are likely more challenging.

5.1. Exercise set 1

Exercise 5.1.1. Recall that Nd denotes the abelian group of smooth, closed d-
manifolds up to cobordism, with respect to the operation of disjoint union.

(a) Show that the Klein bottle is nullbordant.
(b) Prove that the disjoint union of two manifolds of positive dimension is

cobordant to their connected sum. (The connected sum depends on a
choice of chart in each manifold, but the claim is true for any choice.)

(c) Deduce that every cobordism class except 0 ∈ N0 contains a connected
manifold.

(d) Prove, without invoking the theorem of Thom (but you may use the classi-
fication of surfaces), that the abelian groups N0, N1 and N2 are isomorphic
to Z/2Z, 0 and Z/2Z, respectively.
(Hint: to show that N2 6= 0, check that Euler characteristic modulo 2
defines a well defined surjection N2 → Z/2Z.)

Write Ωd for the analogous oriented cobordism group: the abelian group of
smooth, closed, oriented d-manifolds up to oriented cobordism, with respect to
the operation of disjoint union.

22University of Texas, Austin. a.debray@math.utexas.edu
23University of Bonn, Germany. Current affiliation: Mathematical Institute of the Romanian Academy.
mpanghel@imar.ro

mailto:a.debray@math.utexas.edu
mpanghel@imar.ro
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(e) Prove that the abelian groups Ω0, Ω1 and Ω2 are isomorphic to Z, 0 and
0 respectively.

Exercise 5.1.2. In this exercise we construct two elementary “invertible field the-
ories” (in the naive sense, ignoring symmetric monoidal structures). Recall that
a (naive) invertible field theory is a functor from the abstract cobordism category
Cobd to a groupoid; we will construct two examples where the target is a group.

(a) Construct a functor

Fd : Cobd −→ Nd

(where the group Nd is considered as a category with one object) such that
the restriction to EndCobd(∅) sends a diffeomorphism class of d-manifolds
to its cobordism class.
(Hint: note that Cobd is a disjoint union (coproduct) of subcategories
indexed by the elements of Nd−1, so it will suffice to define F on the full
subcategory of Cobd on nullbordant (d− 1)-manifolds.)

(b) Construct a functor

Ed : Cobd −→ Z

(where the group Z is considered as a groupoid with one object) such that
the restriction to EndCobd(∅) sends a diffeomorphism class of d-manifolds
to its Euler characteristic.

(c) (∗) In the case d = 2, using the classification of surfaces, show that the
functor

Cob2[Cob−1
2 ] −→ Z,

induced by E2, is an equivalence.24

Exercise 5.1.3. In this exercise as in the text, the fundamental groupoid of an
(unbased) space X is denoted π1(X).

(a) Let C be the poset of all non-empty, proper subsets of {0, 1, 2, 3}, consid-
ered as a category. Prove that BC is homeomorphic to S2 and hence that
π1(BC) is equivalent to a trivial category.

(b) Let C be the category with exactly two objects a, b and exactly two non-
identity morphisms f, g, which both have source a and target b. Prove
that BC is homeomorphic to S1 and describe explicitly an equivalence of
groupoids π1(BC)→ Z.

(c) Combining the above ideas, find a finite category C such that the abelian
group π2(BC, x) is infinitely-generated for any object x.

Exercise 5.1.4. (∗) Another variant of the cobordism group is the group of homotopy

d-spheres Θd. To define this, let us first denote by Md the abelian monoid of
isomorphism classes of smooth, closed, connected and oriented d-manifolds, up

24This is not so easy to do by hand, in fact it is a research paper [20, Theorem 3.7]. This is a more
reasonable exercise if you do Exercise 5.3.2 first.
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to oriented diffeomorphism, under the operation of connected sum (which is well
defined up to oriented diffeomorphism). Let Sd be the subset of diffeomorphism
classes of d-manifolds that are homotopy equivalent to the sphere Sd, which we
call homotopy spheres.

(a) Prove that, if M and N are homotopy spheres, so is their connected sum.

Hence Sd is a submonoid. Two manifolds M,N ∈ Md are called h-cobordant if
there is a cobordism W between them such that the inclusions cin and cout are
both homotopy equivalences.

(b) Prove that h-cobordism ∼h induces an equivalence relation on Sd.
(c) Prove that this equivalence relation is compatible with the connected sum

operation.

Hence we have a well-defined quotient monoid Θd := Sd/∼h with respect to the
operation of connected sum.

(d) Prove that Θd is a group.25

5.2. Exercise set 2

Exercise 5.2.1. This exercise studies the difference between being diffeomorphic
and being diffeomorphic as cobordisms.

(a) Give examples of the following data: two closed (d−1)-manifoldsM0 and
M1 and two cobordisms (W, cin, cout) and (W ′, c ′in, c ′out), both betweenM0

and M1, which are not diffeomorphic as cobordisms, yet W is diffeomor-
phic to W ′. (Hint: start with d = 1.)

(b) LetM =M0∐M1 be the disjoint union. Construct a bijection Cobd(M0,M1) ∼=

Cobd(M, ∅), by sending a triple (W, cin, cout) to a cobordism of the form
(W, ?, ∅). To study the difference between being diffeomorphic and be-
ing diffeomorphic as cobordisms, it therefore suffices to consider the case
M1 = ∅.

(c) Let Diff(M) denote the group of diffeomorphisms M→M. Construct an
action of Diff(M) on the set Cobd(M, ∅) by “reparametrizing the bound-
ary”. Show that two cobordisms M  ∅ are diffeomorphic (as abstract
manifolds) if and only if they represent elements of Cobd(M, ∅) which are
in the same Diff(M)-orbit.

Exercise 5.2.2. Let D be the groupoid defined abstractly as Ob(D) = Z/2Z, mor-
phism sets

D(a,b) =

{
Z a = b

∅ a 6= b,

25This is Theorem 1.1 of the influential paper [21], which also studies the group Θd in depth. It is
always a finite abelian group, and the smallest d for which it is non-trivial is Θ7 ∼= Z/28Z. In fact,
except possibly for d = 4, the quotient Sd → Θd is an isomorphism, in which case Sd is also a
(finite) group.
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and composition given by addition in Z. As explained in Example 2.5.6 in the
notes, this groupoid is equivalent to the fundamental groupoid of ΩT1,R2 ∼=

ΩRP2, so it should also be the target of a universal functor from hCR

1 to a dis-
crete groupoid. The goal of this exercise is to verify this directly, by geometric
constructions.

(a) Construct a functor

f : hCR
1 −→ D,

defined by sending an object (finite subset of R) to its cardinality modulo
2, and a morphism W ⊂ [0, t]×R from M0 ⊂ R to M1 ⊂ R to the integer

χ(X) − χ(X∩ ({0}×R)),

where X ⊂ [0, t] × R is the union of components of the complement
([0, t]×R)rW obtained by coloring them green or red in an alternating
way, starting with green for the unbounded component in the [0, t]× {−∞}

direction, and setting X to be the union of the red components.
More rigorously: a component C of ([0, t]×R) rW is included in the
union X if and only if a ray starting from the interior of C, intersecting
W transversely and asymptotically equal to s 7→ (t/2,−s), has an odd
number of intersections with W. For example, in the following picture,
the shaded region is X and its boundary is W:

Check that this indeed defines a functor as claimed.
(b) Verify by pictures that f factors over an equivalence hCR

1 [(hC
R
1 )

−1] ≃ D.
(Hint: it is recommended to first look at Exercise 5.3.2 below. For a solu-
tion to this exercise see the end of these notes.)

Exercise 5.2.3 (Cobordism categories with tangential structures.).
As mentioned in the lectures, there are versions of the cobordism category for

manifolds equipped with tangential structures, where a tangential structure is a
space Θ equipped with a continuous action of GLd(R). A Θ-structure on a real
vector bundle E→ X is a GLd(R)-equivariant map Fr(E)→ Θ, where Fr(E) is the
total space of the frame bundle of the vector bundle. As explained in the lectures,
the topological cobordism category CVΘ is defined similarly to CVd , except that
each object M is equipped with a Θ-structure on R⊕ TM and each morphism W

is equipped with a Θ-structure on TW.

(a) Unwind the definition of Θ-structure in the cases:
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(i) Θ = {∗},
(ii) Θ = {±1}, where an element A of GLd(R) acts by multiplication by

det(A)/|det(A)|,
(iii) Θ = GLd(R), where GLd(R) acts on itself by left-multiplication,
(iv) Θ = GLn(R)/O(n),
(v) Θ = GL2n(R)/GLn(C), when d = 2n is even,

(vi) Θ = Z, where Z is any topological space, and GLd(R) acts trivially
on Z.

(b) Fill in the details of the definition of CVΘ above. As before, CΘ is then
defined as the colimit of CVΘ over all finite-dimensional linear subspaces
V ⊂ R∞.

(c) Define the abstract cobordism category CobΘ and show that it is equiva-
lent to hCΘ.

(d) Describe explicitly the categories Cob{±1} and CobZ for d = 1 (GL1(R)

acts trivially on Z).

Exercise 5.2.4. Let C̃Vd be the (ordinary) category obtained by giving the mor-
phism spaces of CVd the discrete topology. What can you say about the connectiv-
ity of the map

BC̃Vd −→ BCVd ?

Exercise 5.2.5. Let F : Top → Top be a functor from spaces26 to spaces. Applying
F to the projections π0 : X0 × X1 → X0 and π1 : X0 × X1 → X1 gives a canonical
map F(X0 × X1) → F(X0)× F(X1). We say that the functor preserves finite products

if this canonical map is a homeomorphism for all spaces X0 and X1, and F of a
one-point space is again a one-point space.

If F admits a left adjoint then it preserves all small limits and in particular finite
products, but there are interesting examples not of that form.

(a) If C is a topologically enriched category and F : Top→ Top preserves finite
products, explain how to define a new topologically enriched category FC,
with the same object set as C, but with (FC)(x,y) = F(C(x,y)).

(b) If F → F ′ is a natural transformation between functors preserving finite
products, explain how to define an induced topologically enriched functor
FC→ F ′C.

(c) Let τ6∞(X) = |Sing(X)| denote the geometric realization of the total sin-
gular complex. Recall why τ6∞ : Top → Top preserves finite products,
and why the evaluation map |Sing(X)| → X defines a natural transforma-
tion from τ6∞ to the identity functor, which is always a weak equivalence.
This justifies some details of Example 2.4.4, giving a DK equivalence

τ6∞C
≃
−→ C

26In this exercise it is somewhat important that “spaces” means “compactly generated topological
spaces”.
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to any topologically enriched category C from one whose morphism spaces
are all CW complexes.

(d) Let CosknSing(X) be the simplicial set whose p-simplices are continu-
ous maps skn(∆p) → X from the n-skeleton of ∆n, and let τ6nX =

|Coskn+1Sing(X)|. Recall why the canonical map τ6∞X → τ6nX is a
model for Postnikov truncation: an (n+1)-connected map whose codomain
has vanishing homotopy groups above degree n, with any basepoint.

Explain that we get topologically enriched functors

C
≃
←− τ6∞C→ τ6nC.

This gives a way of “Postnikov truncating each morphism space of C”,
retaining a topologically enriched category.

(e) For a space X, regard π0(X) as a topological space using the discrete topol-
ogy (not the quotient topology from X). Prove that the resulting functor
π0 : Top→ Top preserves finite products. Construct a natural weak equiv-
alence τ60(X)→ π0(X) and deduce a DK-equivalence

τ60C
≃
−→ hC

for any topologically enriched category C. In this way the construction
C 7→ hC may be regarded as a special case of the Postnikov truncations
C 7→ τ6nC.

Exercise 5.2.6.

(a) Prove that the “constant simplicial set” functor Sets → sSets is right ad-
joint to the functor π0 : sSets→ Sets.

(b) Let us temporarily write Toplpc for the category of locally path connected
topological spaces and continuous maps between such. Prove that π0 :

Toplpc → Sets is left adjoint to the functor Sets → Toplpc assigning a set
its discrete topology.

(c) Prove that the “discrete topology” functor Sets → Top does not admit a
left adjoint.
(Hint: any functor which admits a left adjoint must preserve all small
limits and in particular infinite products.)

5.3. Exercise set 3

Exercise 5.3.1. Let D be a rigid symmetric monoidal groupoid, let 1 denote the
monoidal unit, and let x ∈ D be any object. Prove that

EndD(1)→ EndD(1⊗ x)

f 7→ f⊗ idx

is an isomorphism of groups. Using the unitor and its inverse, the codomain may
be identified with EndD(x).

Does this say anything useful when D = Cobd[Cob−1
d ]? (Hint: first show that

D is rigid.)
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Exercise 5.3.2. Let C be a small category and let γ : C→ C[C−1] be the universal
functor to a groupoid. In particular we have, for each object x ∈ C,

(5.3.3) γ : EndC(x)→ EndC[C−1](x),

a monoid homomorphism into a group. The purpose of this exercise is to work
out some useful rules for determining the group EndC[C−1](x), under the addi-
tional assumption on C that for any other object y, both C(x,y) and C(y, x) are
non-empty. Unless stated otherwise, we shall in the rest of this exercise make this
assumption on C and x.

(a) Prove that the image of (5.3.3) generates.
(b) Let y ∈ C be any object, let w1,w2 ∈ C(y, x) and w3,w4 ∈ C(x,y) be any

morphisms, and define a,b, c,d ∈ EndC(x) by

a = w1 ◦w3, b = w2 ◦w3 c = w1 ◦w4, d = w2 ◦w4.

Then γ(a), . . . , γ(d) are elements of the group EndC[C−1](x). Prove that27

(5.3.4) γ(a) ◦ (γ(b))−1 = γ(c) ◦ (γ(d))−1.

Let us now specialize to C ⊂ hCVd the full subcategory on those objects admitting
a morphism from ∅, and set x = ∅. To avoid special cases let us also take dim(V) >

0 (see Remark 6.2.29 for a discussion of that special case).

(c) Prove that this C and x satisfy the assumption above.
(d) Convince yourself that the domain of (5.3.3) is a commutative monoid,

and deduce that the codomain is an abelian group.
(e) Convince yourself that, moreover, the domain of (5.3.3) is a free commuta-

tive monoid28.
(f) Use the tools developed above to show that, in Cob2[(Cob2)

−1], the endo-
morphisms of ∅ given by the torus, by the Klein bottle and by the empty
surface are equal.

(g) Return to Exercise 5.1.2(c) and Exercise 5.2.2(b).

Exercise 5.3.5. In this exercise we shall study the subcategories Cobkd ⊂ Cobd
and Ckd from Section 4.3.

(a) Verify that Cobkd ⊂ Cobd is indeed a subcategory. Deduce that Ckd is a
subcategory of Cd.

In the lectures it was stated that the inclusion Ckd →֒ Cd induces a weak homotopy
equivalence of classifying spaces

(5.3.6) BCkd −→ BCd

as long as k 6 d−2
2 . The purpose of this exercise is to investigate, by more

elementary means, when the map (5.3.6) induces a bijection on π0.

27See [3, Section 6] for further discussion.
28An easier exercise is to prove this under the assumption dim(V) > 2d+ 1 where the domain
of (5.3.3) is free on the set of classes of path connected manifolds. For a solution in the general case
see the end of these notes.
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(b) Prove “by hand” that, when d > 2 and k = 0, the map (5.3.6) induces a
bijection on π0.

(c) Rephrase bijectivity of (5.3.6) on π0 as the statement that, given any cobor-
dism W : M0  M1 in Cd, there is a zig-zag of cobordisms between M0

and M1 that each satisfy the k-connectivity condition on the outgoing
boundary.

(d) Prove bijectivity of (5.3.6) on π0 more generally whenever k < d/2.
(Hint: if you haven’t already, learn about elementary cobordisms e.g. from
Milnor’s book on the h-cobordism theorem.)

Exercise 5.3.7. Let D be the groupoid with one object ∗ and EndD(∗) = Z. Define

E : Cobd → D

by sending any object to ∗ and a morphism W :M0  M1 to χ(W) − χ(M0) ∈ Z.

(a) Briefly explain why this is a functor.
(You may have already done this in Exercise 5.1.2(b).)

(b) Prove that E is isomorphic to the trivial functor (sending any object to ∗
and any morphism to 0) when d is odd.

(c) Prove that E is not isomorphic to the trivial functor when d is even.
(d) Can you promote E to a symmetric monoidal functor? (Hint: use addition

in Z as ⊗. In this case the associator, symmetry, and unitor can all be
taken to be the identity.)

This is sometimes called the “Euler TQFT”.

(e) Let V = R
m, let e : Td,Rm+1 → K(Z,m + 1) be a based map, and let

ΩmTd,Rm+1 → ΩmK(Z,m+ 1) be the m-fold loop of e. Prove that the
fundamental groupoid of ΩmK(Z,m+ 1) is equivalent to D, and explain
how any such map e gives rise to a symmetric monoidal invertible field
theory Cobd → D if m > 3.

(f) (∗) For d even, let e ∈ H̃m+1(Td,Rm+1) be the cohomology class corre-
sponding to the Euler class of the universal bundle under Thom isomor-
phism

Hd(Grd(R⊕V); Z̃)
∼=
−→ Hm+1(Td,Rm+1 ;Z),

where Z̃ denotes the local system corresponding to the orientation char-
acter of the canonical bundle (this same local coefficient system shows
up in both the Thom isomorphism and in the Euler class). Use the same
notation e : Td,Rm+1 → K(Z,m+ 1) for a pointed map classifying this co-
homology class, and prove that the TQFT defined in (e) agrees with the
Euler TQFT. (Hint: in this part of the exercise it may be necessary to know
a geometric description of the map Cd(∅, ∅) → Ωn+1Td,Rn+1 . This is the
Pontryagin–Thom construction, see e.g. [16, p. 197].)

Exercise 5.3.8. If X is a rigid symmetric monoidal groupoid, it is determined up
to equivalence by three pieces of data: π0X (the abelian group of isomorphism
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classes of objects), π1X = Aut(1X), and something called the k-invariant, which
we proceed to define (see Remark 3.6.1 for the related notion of k-invariants of
spaces). Given any x ∈ X, there is a canonical isomorphism –⊗ idx : Aut(1X) →
Aut(x). The k-invariant of X is the map π0X⊗Z/2 → π1X which to x ∈ π0X

assigns the image of the symmetry σ : x⊗ x → x⊗ x in Aut(x⊗ x) ∼= Aut(1X) =
π1X.

Compute π0, π1, and k for the following rigid symmetric monoidal groupoids.

(a) The category Vect∼k of invertible vector spaces over a field k.
(b) Assuming char(k) 6= 2, the category sVect∼k of invertible super vector spaces,

i.e. the category of invertible Z/2-graded vector spaces with the symmetry
a⊗ b 7→ (−1)degadegbb⊗ a.

(c) Cob1[Cob−1
1 ].

(d) The same as in (c), but with the oriented 1-dimensional cobordism cate-
gory.

Exercise 5.3.9. Let us denote by hC̊Vd the oriented version of the category hCVd ,
where both (d− 1)-manifolds and cobordisms are equipped with compatible ori-
entations.29 There is a functor

Fd,V : hC̊Vd −→ hCVd

that forgets all orientations.

(a) When d = dim(V) or d = 0, construct a section of Fd,V . (“Section” means
a functor G in the other direction, such that Fd,V ◦G is naturally isomor-
phic to the identity.)

(b) When 0 < d < dim(V), prove that the functor Fd,V does not admit a
section.

(Suggestion: first consider the cases (d,V) = (1, R) and (d,V) = (1, R2), and look
at the picture in Exercise 5.2.2.)

Solutions to selected exercises (by A. Debray, S. Galatius, M. Palmer)

6.1. Solution to Exercise 5.2.2(b) In part (a) of the exercise, we defined a functor
f : CR

1 → D by sending a 0-manifold M ⊂ R to #M mod 2 and a bordism W to
χ(X) − χ(X ∩R× {0}) ∈ Z. This is well-defined because if M and N are bordant,
their cardinalities mod 2 agree, so HomD(f(M), f(N)) = Z; then, the additivity
formula for Euler characteristic implies that f is a functor.

Since D is a discrete category, f factors as a functor f : hCR

1 → D; since D
is a groupoid, f factors further into a functor f : hCR

1 [(hC
R

1 )−1] → D, where
f(W−1) := f(W)−1 for a bordism W. For part (b), we show f : hCR

1 [(hC
R
1 )−1]→ D

is an equivalence of groupoids, meaning that it is fully faithful and essentially

29This was called hCV
{±1} in Exercise 5.2.3.
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surjective. Essential surjectivity, i.e. that f induces a surjection on the sets of iso-
morphism classes of objects, is clear: the empty set in hCR

1 [(hC
R
1 )

−1] maps to
0 ∈ Ob(D), and a single point in hCR

1 [(hC
R

1 )
−1] maps to 1 ∈ Ob(D).

First we reduce to considering the empty manifold, using an argument similar
to Exercise 5.3.1.

Lemma 6.1.1. Let f : X → Y be a map of small groupoids. If π0f : π0X → π0Y (i.e. the

induced map on sets of isomorphism classes) is a bijection, then f is fully faithful if and

only it induces isomorphisms AutX(x)→ AutY(f(x)) for all x ∈ X.

Proof. If ψ : x → x ′ is any map in X, composing with ψ is an isomorphism
AutX(x)

∼=
→ HomX(x, x ′). In the diagram

(6.1.2)

AutX(x)
ψ

∼=

//

f

��

HomX(x, x ′)

f

��

AutY(f(x))
f(ψ)

∼=

// HomY(f(x), f(x ′)),

the horizontal arrows, given by composing with ψ and F(ψ) respectively, are
bijections. Hence if the left vertical arrow is an isomorphism, so is the right
vertical arrow. This suffices: there cannot be any x and x ′ such that HomX(x, x ′) =
∅ and HomY(f(x), f(x ′)) 6= ∅ because π0f is an isomorphism. �

Lemma 6.1.3. Suppose the map AuthCR
1 [(hCR

1 )−1](∅) → AutD(0) induced by f is an

isomorphism. Then f is fully faithful.

Proof. By Lemma 6.1.1, we have only to consider automorphism groups of objects
in hCR

1 [(hC
R

1 )−1]; there are only two isomorphism classes of objects, given by
the empty manifold and a single point, and the assumption on π0f is satisfied.
We will define an endofunctor F ′ of hCR

1 [(hC
R

1 )
−1] and show that it induces an

isomorphism Aut(∅)→ Aut(pt).
First, we define an endofunctor F of CR

1 . The idea of F is to disjoint union all
objects with a point, and all bordisms with an interval regarded as a bordism
between the new points. Fix a diffeomorphism φ : R → (−∞, 0) isotopic to the
identity on R, and let Φ : [0, t]×R→ [0, t]× (−∞, 0) denote (s, x) 7→ (s,φ(x)).

• Given an object M ⊂ R, F(M) := φ(M) ∪ {1}.
• Given a bordism W ⊂ [0, t]×R, let F(W) := Φ(W) ∪ [0, t]× {1}.

This is continuous on spaces of objects and morphisms, hence passes to an end-
ofunctor of hCR

1 , and this descends to an endofunctor F ′ of hCR

1 [(hC
R

1 )−1] by
F ′(x−1) := F(x)−1.

Choose an isotopy H : [0, 1]×R → R from φ ◦φ to the identity. We define a
natural transformation T : F2 ⇒ id, where F is regarded in hCR

1 , by “capping off”
the two new points. For every object x of CR

1 , we produce a bordism Tx : F
2x→ x,

defined to be the union of {H(s,p) : s ∈ [0, 1],p ∈ x} and a semicircle in [0, 1]×R
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containing the two new points of F2x as its boundary, as in the following picture.

(6.1.4)

F2x x

To check that this is in fact a natural transformation after passing to hCR

1 , we need
that for every bordism W : x→ y, the diagram

(6.1.5)

F2x
Tx

//

F2W
��

x

W

��
F2y

Ty
// y

commutes. The picture proof is that the following two bordisms are equal in hCR

1 .

(6.1.6)

F2x x y

=

F2x F2y y

.

(Though we drew a specific bordism x→ y, the argument works in general.)
T also descends to a natural transformation T ′ : (F ′)2 ⇒ id, and every natural

transformation between functors into a groupoid is a natural isomorphism. Thus
applying F ′ defines an isomorphism

(6.1.7) F ′∗ : AuthCR
1 [(hCR

1 )−1](∅)→ AuthCR
1 [(hCR

1 )−1](pt).

This is compatible with the identifications AutD(0) = Z = AutD(1), in that if
W ∈ AuthCR

1 [(hCR
1 )−1](∅), then f(W) = f(F ′∗(W)), because applying F increases

the Euler characteristics of X and X ∩ ({0}×R) by the same amount. Therefore if

(6.1.8) f∗ : AuthCR
1 [(hCR

1 )−1](∅)→ AutD(0)

is an isomorphism, so is

�(6.1.9) f∗ : AuthCR
1 [(hCR

1 )−1](pt)→ AutD(1).

To show AuthCR
1 [(hCR

1 )−1](∅) → AutD(0) = Z is surjective, it suffices to pro-
duce a preimage of the generator 1 ∈ AutD(0), and a single circle, interpreted
as a bordism W : ∅ → ∅, works: X is a disc and does not intersect the incoming
boundary, so f(W) = 1.

Then, we will show that for every morphism W : ∅ → ∅ in hCR

1 , the image
of W in hCR

1 [(hC
R
1 )

−1] is equal to a composition of n circles, where n ∈ Z (here
n < 0 is interpreted as a composition of −n formal inverses of circles). By Exer-
cise 5.3.2, parts (a) and (c), AuthCR

1 [(hCR
1 )−1](∅) is generated by such W, so it will

follow that AuthCR
1 [(hCR

1 )−1](∅) is cyclic. Since every surjective homomorphism
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from a cyclic group to Z is an isomorphism, this suffices for Lemma 6.1.3 to apply
and conclude the proof.

For any bordism W : ∅ → ∅, the complement of W in [0, t]×R has exactly
one unbounded path component A: there is at least one because [0, t] × R is
unbounded, and at most one because W does not intersect ∂([0, t]×R) and is
compact, hence is contained in some disc in (0, t)×R. Let A denote the closure
of A in (0, t)×R. Then A is a 2-manifold with boundary and ∂A is bounded in
[0, t]×R, so ∂A is a compact 1-manifold with empty boundary, and therefore a
disjoint union of k circles. Call W simple if k = 1.

Lemma 6.1.10. Every bordism W : ∅→ ∅ in hCR

1 is a composition of simple bordisms.

Proof. Let C1, . . . ,Ck be the components of ∂A. Each Ci is diffeomorphic to a
circle, so by the smooth Schoenflies theorem, the complement of Ci in (0, t)×R

has a unique bounded component Di, and Di is diffeomorphic to a closed disc.
Then Y := D1 ∪ · · · ∪Dk is the complement of A in [0, t]×R, so W is contained
in Y. We can now apply a diffeomorphism of [0, t]×R fixing the boundary and
such that Di lands in ((i− 1)t/k, it/k)×R, factoring W as the composition of the
simple bordisms W ∩Di. �

Therefore we are done if we can show that for every simple bordismW : ∅→ ∅

in hCR
1 , its image in hCR

1 [(hC
R
1 )

−1] is equal to a composition of n circles for some
n ∈ Z. Assume W has m path components; m = 0 would not be simple, and if
m = 1 we are already done. We induct on m. A general simple bordism W with
m > 1 is of the form

(6.1.11) (?)

where the (?) indicates more components of W that may be present. We use
Exercise 5.3.2 to simplify this picture. Recall that Exercise 5.3.2 tells us for any
object y of hCR

1 admitting a map from x := ∅ and any morphisms w1,w2 : y→ x

and w3,w4 : x→ y in hCR
1 , that in AuthCR

1 [(hCR
1 )−1](y),

(6.1.12) w1 ◦w3 ◦ (w2 ◦w3)
−1 = w1 ◦w4 ◦ (w2 ◦w4)

−1.

Apply this to y := pt∐4 and the four morphisms

(6.1.13) w1 = (?) , w2 = , w3 = , w4 = .
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Then (6.1.12) tells us

(6.1.14) (?) ◦

−1

w1◦w3◦(w2◦w3)
−1

= (?) ◦

−1

w1◦w4◦(w2◦w4)
−1

.

Precomposing with a single circle,

(6.1.15) (?) = (?)

w1◦w4

◦

−1

.

The bordismw1 ◦w4 has fewer path components thanW. It is not necessarily true
thatw1 ◦w4 is simple, but by Lemma 6.1.10 it is a composition of simple bordisms,
and each has fewer path components than W, so we induct and conclude that
every simple bordism can be written as a union of circles and their inverses.

6.2. Solution to Exercise 5.3.1(e) The goal of this exercise is to show that the
monoid hCVd (∅, ∅) is free commutative when dim(V) > 0. The fact that it is com-
mutative (which was Exercise 5.3.1(d)) follows from Corollary 6.2.11 below, and
the fact that it is free commutative is Corollary 6.2.26. Remark 6.2.28 describes the
corresponding statements when manifolds are equipped with tangential struc-
tures and Remark 6.2.30 comments on whether the space CVd (∅, ∅) is free as an
Em-algebra.

Description of the monoid. Let us write U = R× V and define m = dim(U) =

dim(V) + 1. Note that, unwinding the definitions, we may see that hCVd (∅, ∅) is
isomorphic to the monoid

MVd =

{

(W,ϕ)

∣∣∣∣∣
W is a smooth, closed d-manifold

ϕ is a smooth embedding W →֒ U

}

/∼,

where (W,ϕ) ∼ (W ′,ϕ ′) if and only if

[ϕ ′ ◦ θ] = [ϕ] ∈ π0 (Emb(W,U)/Diff(W))

for a diffeomorphism θ : W ∼=W ′, and the operation in MVd is given by

(6.2.1) [(W1,ϕ1)] · [(W2,ϕ2)] = [(W1 ⊔W2, i ◦ (ϕ1 ⊔ϕ2))],

where i = j× idV for any orientation-preserving embedding j : R ⊔R →֒ R. In
other words, MVd is the monoid of isotopy classes of (unparametrized) closed,
d-dimensional submanifolds of U, under the operation of “placing two submani-
folds side-by-side” in U.
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Embedding and diffeomorphism results. For the solution, we will need the
following facts. For smooth manifolds M,N, recall that Emb(M,N) denotes the
space of smooth embeddings of M into N and Diff(N) the topological group of
self-diffeomorphisms of N, both equipped with the smooth Whitney topology.
We also write Diffc(N) for the subgroup of Diff(N) of those diffeomorphisms
ϕ such that {x ∈ N | ϕ(x) 6= x} ⊂ K for some compact K ⊂ N (topologized
as a colimit over larger and larger compact K ⊂ N) and Diffc(N)1 for the path-
component of the identity in Diffc(N).

Proposition 6.2.2 (Isotopy extension theorem). Let M,N be smooth manifolds without

boundary, where M is compact and dim(M) < dim(N), and let i : M →֒ N be a smooth

embedding. Then the map

(6.2.3) Diffc(N)1 −→ Emb(M,N)/Diff(M),

defined by Φ 7→ [Φ ◦ i], is a Serre fibration, and thus in particular admits path-lifting.

Proof. We may factor (6.2.3) into two maps

r1 : Diffc(N)1 −→ Emb(M,N) and r2 : Emb(M,N) −→ Emb(M,N)/Diff(M).

The first map r1 is a fibre bundle, and hence a Serre fibration, by combining
Theorems A and B of [31] (see also Corollaire 2 of §II.2.2.2 of [5] and [23]). The
second map r2 is a principal Diff(M)-bundle, and hence in particular a Serre
fibration, by Theorem 13.11 of [28] (see also [2] and Theorem 44.1 of [22]). �

Proposition 6.2.4 (Multi-disc theorem). Let N be a smooth, connected, oriented mani-

fold of dimension m > 2, let i1, . . . , ir : Dm →֒ N be a finite collection of orientation-

preserving smooth embeddings of the closed m-disc into N with pairwise disjoint images,

and let j1, . . . , jr be a second such collection. Then there exists Φ ∈ Diffc(N)1 such that

Φ ◦ is = js for all s ∈ {1, . . . , r}.

Proof. When r = 1 this is exactly the Disc theorem of Palais [30, Theorem B and
Corollary 1]. We show how this implies the result for general r. First, note that
we may assume, without loss of generality, that the images of i1, . . . , ir are also
disjoint from the images of the j1, . . . , jr.

For each s ∈ {1, . . . , r} we may choose a smooth path γs in N that is disjoint
from it(D

m) and jt(Dm) for all t 6= s and such that γs(0) = is(0) and γs(1) =
js(0). We may also assume that the paths γ1, . . . ,γr have pairwise disjoint images.30

We may then choose pairwise disjoint, connected, open subsets A1, . . . ,Ar of N
such that

is(D
m)∪ γs([0, 1])∪ js(Dm) ⊂ As

30For m > 3 it suffices to ensure that the γ1, . . . ,γr are pairwise transverse. For m = 2, some extra
care is needed: after ensuring that these smooth paths are pairwise transverse and therefore intersect
in finitely many points, we apply finitely many isotopies to remove these intersection points one at a
time by “pushing them off the end of the arc”.
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for s ∈ {1, . . . , r}. By the Disc theorem of Palais, we may find Φs ∈ Diffc(As)1

such that Φs ◦ is = js for all s ∈ {1, . . . , r}. We may then define Φ to be Φs on
each As and the identity elsewhere. �

Another description of the monoid. The next two lemmas give a more conve-
nient description of MVd .

Lemma 6.2.5. An alternative description of the equivalence relation in the definition of

MVd is (W,ϕ) ∼ (W ′,ϕ ′) if and only if there is a diffeomorphism Φ ∈ Diffc(U)1 such

that Φ(ϕ(W)) = ϕ ′(W ′).

Proof. Suppose first that there is a diffeomorphism Φ ∈ Diffc(U)1 such that
Φ(ϕ(W)) = ϕ ′(W ′). We obtain a diffeomorphism θ : W ∼= W ′ by setting θ =

(ϕ ′)−1 ◦Φ ◦ ϕ. Choose a path id  Φ in Diffc(U)1 and consider its composi-
tion with (6.2.3), where we set N = U, M = W and i = ϕ. This is a path in
Emb(W,U)/Diff(W) from [ϕ] to [Φ ◦ϕ] = [ϕ ′ ◦ θ]. Hence (W,ϕ) ∼ (W ′,ϕ ′).

Conversely, suppose that (W,ϕ) ∼ (W ′,ϕ ′), so we have a diffeomorphism
θ : W ∼= W ′ and a path [ϕ]  [ϕ ′ ◦ θ] in Emb(W,U)/Diff(W). By Proposition
6.2.2, we may lift this to a path id  Φ such that [Φ ◦ϕ] = [ϕ ′ ◦ θ], and hence
Φ(ϕ(W)) = ϕ ′(θ(W)) = ϕ ′(W ′). �

Lemma 6.2.6. Choose any smooth, orientation-preserving embedding e : U ⊔U →֒ U.

Then the operation in MVd may be defined using this embedding:

(6.2.7) [(W1,ϕ1)] · [(W2,ϕ2)] = [(W1 ⊔W2, e ◦ (ϕ1 ⊔ϕ2))].

Moreover, if [(W1,ϕ1)], . . . , [(Wr,ϕr)] is any finite collection of elements of MVd and e

is a smooth, orientation-preserving embedding of r disjoint copies of U into U, then we

have

(6.2.8) [(W1,ϕ1)] · · · [(Wr,ϕr)] = [(W1 ⊔ · · · ⊔Wr, e ◦ (ϕ1 ⊔ · · · ⊔ϕr))].

Proof. The operation in MVd was defined exactly as in equation (6.2.7) (see equa-
tion (6.2.1)), assuming that the embedding e is of a particular form (namely of
the form (R ⊔R →֒ R)× idV ). It follows that equation (6.2.8) also holds, again
assuming that the embedding e is of a particular form.31 It will therefore suffice
to prove that right-hand side of (6.2.8) is independent of the choice of e, in other
words, that

(W1 ⊔ · · · ⊔Wr, e ◦ (ϕ1 ⊔ · · · ⊔ϕr)) ∼ (W1 ⊔ · · · ⊔Wr, e
′ ◦ (ϕ1 ⊔ · · · ⊔ϕr))

for any two smooth, orientation-preserving embeddings e, e ′ of r disjoint copies
of U into U. By Lemma 6.2.5 this means that we need to find Φ ∈ Diffc(U)1 such
that:

(6.2.9) Φ(e(ϕ1(W1) ⊔ · · · ⊔ϕr(Wr))) = e
′(ϕ1(W1) ⊔ · · · ⊔ϕr(Wr)).

31For example, one choice of conventions would lead to e being of the following form: let us identify
U with (0, 1)×V and, on the ith copy of U in the disjoint union, we define e to be the embedding
U →֒U that acts by t 7→ (t+ 2i− 2)/2i on the first coordinate and by the identity on V .
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Since ϕs(Ws) is a compact subspace of U = Rm, we may assume that it is con-
tained in the closed unit disc Dm.32 Let us write is for the restriction of e to the
closed unit disc in the sth copy of U for s ∈ {1, . . . , r}. Similarly, write js for the
restriction of e ′ to the closed unit disc in the sth copy of U. We may therefore
rewrite (6.2.9) as:

(6.2.10) Φ(i1(ϕ1(W1))) ∪ · · · ∪Φ(ir(ϕr(Wr))) = j1(ϕ1(W1)) ∪ · · · ∪ jr(ϕr(Wr)).

Now Proposition 6.2.4 tells us that there existsΦ ∈ Diffc(U)1 such thatΦ ◦ is = js
for all s ∈ {1, . . . , r}, which implies (6.2.10). �

Corollary 6.2.11. The monoid hCVd (∅, ∅) = MVd is isomorphic to the monoid whose

underlying set is the set of smooth, closed, d-dimensional submanifolds of U, up to the

natural left-action of Diffc(U)1, and whose operation is given by

([W1], [W2]) 7→ [e1(W1) ∪ e2(W2)],

where (e1, e2) is any choice of a pair of orientation-preserving self-embeddings U →֒ U

with disjoint images. In particular, this operation is commutative. Moreover, if e1, . . . , er
is any collection of orientation-preserving self-embeddings U →֒ U with pairwise disjoint

images, we have

(6.2.12) [W1] · · · [Wr] = [e1(W1) ∪ · · · ∪ er(Wr)]

in this monoid.

Proof. By Lemma 6.2.5, there is a bijection from MVd to the set of smooth, closed, d-
dimensional submanifolds of U, up to the natural left-action of Diffc(U)1, given
by sending [(W,ϕ)] to [ϕ(W)]. Using the description of the operation of MVd
from Lemma 6.2.6, we see that it corresponds under this bijection to the operation
([W1], [W2]) 7→ [e1(W1)∪ e2(W2)] described above, which is therefore in particular
well-defined. Equation (6.2.12) also follows directly from Lemma 6.2.6. �

Remark 6.2.13. Note that this in particular solves Exercise 5.3.1(d), since Corol-
lary 6.2.11 implies that CVd (∅, ∅) is commutative. For the rest of this solution, we
identify MVd with the monoid described in Corollary 6.2.11.

A generating set. We now define a subset of MVd that will turn out to freely
generate it.

Definition 6.2.14. Let us call a smooth, closed, d-dimensional submanifold W

of U inseparable if W 6= ∅ and, if for any finite collection of smooth embeddings
i1, . . . , ir : U →֒ U with

W ⊂

r⋃

s=1

is(U) and i1(U), . . . , ir(U) are pairwise disjoint,

we have that W ⊂ is(U) for one s ∈ {1, . . . , r}.

32If it is not, we go back and choose a different representative for [(Ws,ϕs)] by “shrinking” ϕs by
an isotopy.
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Remark 6.2.15. Some immediate consequences of Definition 6.2.14 are as follows:

• If W is path-connected, then it is inseparable.
• Examples of inseparable but non-path-connected W are (for d = 1,m = 2)

two nested circles in R2 and (for d = 1,m = 3) two non-trivially linked
circles in R3.
• If m = dim(U) > 2d+ 1 then inseparable d-submanifolds of U = Rm are

path-connected. To see this, let us denote the path-components of W by
W1, . . . ,Wr and choose any collection i1, . . . , ir of orientation-preserving
smooth embeddings U →֒ U with pairwise disjoint images. Let i : W →֒ U

be the embedding that acts by is on Ws. Since the space of embeddings
Emb(W,U) is path-connected for dim(U) > 2dim(W) + 1, we may choose
a path from the inclusion to i and use Proposition 6.2.2 to lift this and
find Φ ∈ Diffc(U)1 such that Φ|W = i. Hence [i(W)] = [W], so by Lemma
6.2.16 below, W is inseparable if and only if i(W) is inseparable. But i(W)

is clearly inseparable if and only if r = 1.

Lemma 6.2.16. Inseparability is a well-defined property of the element [W] ∈ MVd . In

other words, if W ∼W ′ and W is inseparable, then so is W ′.

Proof. Suppose that i1, . . . , ir : U →֒ U are smooth embeddings with pairwise dis-
joint images and with W ′ ⊂ i1(U) ∪ · · · ∪ ir(U). Since W ∼ W ′, we have (by
Corollary 6.2.11) Φ ∈ Diffc(U)1 such that Φ(W) =W ′. If we define ı̂s = Φ−1 ◦ is

for each s, then ı̂1, . . . , ı̂r : U →֒ U are smooth embeddings with pairwise dis-
joint images and with W ⊂ ı̂1(U) ∪ · · · ∪ ı̂r(U). Since W is inseparable we have
W ⊂ ı̂s(U) for some s ∈ {1, . . . , r}, and hence W ′ ⊂ is(U). �

Definition 6.2.17. Denote the set of inseparable elements of MVd by IVd .33

The following is a consequence of Lemma 6.2.16 and the case r = 1 of Corol-
lary 6.2.11.

Corollary 6.2.18. Let e : U →֒ U be an orientation-preserving self-embedding and let W

be a smooth, closed, d-dimensional submanifold of U. Then [e(W)] = [W] in MVd . In

particular, by Lemma 6.2.16, W is inseparable if and only if e(W) is inseparable. �

Write N[IVd ] for the free commutative monoid on the set IVd . The inclusion
IVd →֒MVd therefore induces a monoid homomorphism

(6.2.19) α : N[IVd ] −→MVd .

Our aim is to show that α is an isomorphism. (Surjectivity of α is the statement
that IVd generates MVd as a commutative monoid; injectivity is the statement that it
freely generates MVd .)

33See Lemma 6.2.27 for an equivalent characterization of IVd , where the r of Definition 6.2.14 is re-
placed by 2.
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Surjectivity and injectivity.

Proposition 6.2.20. The monoid homomorphism (6.2.19) is surjective.

Proof. Let [W] ∈ MVd . We show that [W] is in the image of α by induction on
the number n(W) of path-components of W. If W = ∅ then [W] = α( ). If W is
path-connected, then it must be inseparable, so [W] = α([W]). So we may assume
that n(W) > 2. If [W] is inseparable, we are done, so let us assume that there are
smooth embeddings i1, . . . , ir : U →֒ U with pairwise disjoint images (r > 2) such
that

W ⊂

r⋃

s=1

is(U) and W ∩ is(U) 6= ∅ for all s ∈ {1, . . . , r}.

Without loss of generality, we may also assume that i1, . . . , ir are orientation-
preserving. Since {W ∩ is(U) | s ∈ {1, . . . , r}} is a partition of W into clopen
subsets, each W ∩ is(U) is a union of path-components of W, and in particular
compact. Hence

W ′s = i
−1
s (W)

are smooth, closed, d-dimensional submanifolds of U, so they represent elements
[W ′s] of MVd . SinceW ′s are all non-empty and r > 2 we deduce that n(W ′s) < n(W)

for all s. Thus, by the inductive hypothesis, each [W ′s] is in the image of α. By
Corollary 6.2.11,

(6.2.21) [W ′1] · · · [W
′
r] = [i1(W

′
1) ∪ · · · ∪ ir(W

′
r)] = [W],

so [W] is also in the image of α. �

Lemma 6.2.22. Let W1, . . . ,Wr be a finite collection of inseparable manifolds embedded

in U and let e1, . . . , er : U →֒ U be a collection of smooth, orientation-preserving embed-

dings U →֒ U with pairwise disjoint images, and let i1, . . . , is : U →֒ U be another such

collection. Assume that

W = e1(W1)∪ · · · ∪ er(Wr) ⊂ i1(U) ∪ · · · ∪ is(U)

and that i−1
t (W) is compact and inseparable for each t ∈ {1, . . . , s}. Then r = s and

it(U) ∩W = eσ(t)(Wσ(t)) for each t ∈ {1, . . . , r} and some permutation σ of {1, . . . , r}.

Proof. We will first prove that, for each t ∈ {1, . . . , s},

(6.2.23) it(U) ∩W =
⋃

a∈At

ea(Wa), for some At ⊂ {1, . . . , r}.

Given this, one may easily see that {A1, . . . ,As} is a partition of {1, . . . , r} into
non-empty subsets. We will then prove that, for each t ∈ {1, . . . , s},

(6.2.24) |At| = 1,

which will complete the proof.
Suppose for a contradiction that (6.2.23) is false. This implies that, for some

u ∈ {1, . . . , r}, the submanifold eu(Wu) is contained in the union i1(U) ∪ · · · ∪
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is(U), but it is not contained in any one of the i1(U), . . . , is(U). Hence eu(Wu)
is separable, and so, by Corollary 6.2.18, Wu is separable, which contradicts the
hypotheses.

Suppose for a contradiction that (6.2.24) is false. This implies that, for some t ∈
{1, . . . , s}, the submanifold it(U)∩W is contained in the union e1(U)∪ · · · ∪ er(U),
but it is not contained in any one of the e1(U), . . . , er(U). Hence it(U) ∩W =

it(i
−1
t (W)) is separable, and so, by Corollary 6.2.18, i−1

t (W) is separable, which
contradicts the hypotheses. �

Proposition 6.2.25. The monoid homomorphism (6.2.19) is injective.

Proof. Let W1, . . . ,Wr and X1, . . . ,Xs be inseparable manifolds embedded in U.
Suppose that [W1] · · · [Wr] = [X1] · · · [Xs] in MVd . We then need to show that r = s
and [Xt] = [Wσ(t)] for all t ∈ {1, . . . , r} and some permutation σ of {1, . . . , r}.

Let e1, . . . , emax(r,s) : U →֒ U be any collection of orientation-preserving embed-
dings with pairwise disjoint images. Then, by Corollary 6.2.11, we have some
Φ ∈ Diffc(U)1 such that

Φ(e1(X1) ∪ · · · ∪ es(Xs)) = e1(W1) ∪ · · · ∪ er(Wr) =:W.

For each t ∈ {1, . . . , s}, we have (Φ ◦ et)
−1(W) = Xt, which is a compact and

inseparable submanifold of U, so Lemma 6.2.22 implies that r = s and

Φ(et(U)) ∩W = eσ(t)(Wσ(t))

for each t ∈ {1, . . . , r} and some permutation σ of {1, . . . , r}. But Φ(et(U)) ∩W =

Φ(et(Xt)), so by Corollaries 6.2.11 and 6.2.18 we have

[Xt] = [et(Xt)] = [eσ(t)(Wσ(t))] = [Wσ(t)]. �

Propositions 6.2.20 and 6.2.25 immediately imply:

Corollary 6.2.26. The commutative monoid MVd is freely generated by the subset IVd .

We note that the subset IVd ⊂ MVd of equivalence classes (with respect to the
action of Diffc(U)1) of inseparable submanifolds of U may be characterised in a
slightly simpler way than in Definition 6.2.14, namely: a submanifold W may be
separated by r > 2 pairwise disjoint embeddings U →֒ U if and only if it may be
separated by two disjoint embeddings U →֒ U.

Lemma 6.2.27. An element [W] ∈ MVd is inseparable if and only if W 6= ∅ and, given

any pair of smooth embeddings i, j : U →֒ U with

W ⊂ i(U) ∪ j(U) and i(U) ∩ j(U) = ∅,

then W ⊂ i(U) or W ⊂ j(U).

Proof. The “only if” direction is immediate from Definition 6.2.14, setting r = 2.
For the “if” direction, let us assume that W is separable and non-empty: we need
to find a pair of smooth embeddings i, j : U →֒ U with disjoint images, such that
W ⊂ i(U) ∪ j(U) and i(U) ∩W 6= ∅ 6= j(U) ∩W. Since W is separable, we have
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a finite collection i1, . . . , ir : U →֒ U of smooth embeddings (r > 2) with pairwise
disjoint images, such that

W ⊂

r⋃

s=1

is(U) and is(U) ∩W 6= ∅ for all s ∈ {1, . . . , r}.

Without loss of generality we may assume that each is is orientation-preserving.
Moreover, each is(U) ∩W = is(i

−1
s (W)) is a closed subset of W, and hence com-

pact, so i−1
s (W) is also compact. Thus we may also assume, without loss of

generality, that i−1
s (W) is contained in the closed unit disc Dm ⊂ Rm = U. Write

js = is|Dm : Dm →֒ U and choose another collection k1, . . . , kr : Dm →֒ U of
orientation-preserving embeddings with pairwise disjoint images, such that

k1(D
m) ⊂ D̊

m(0, . . . , 0) and k2(D
m), . . . , kr(Dm) ⊂ D̊

m(2, 0, . . . , 0),

where, for x ∈ Rm, D̊m(x) is the open unit disc in Rm centred at x. Let ı̂, ̂ : U →֒
U be embeddings with ı̂(U) = D̊m(0, . . . , 0) and ̂(U) = D̊m(2, 0, . . . , 0). By Propo-
sition 6.2.4, we have Φ ∈ Diffc(U)1 such that Φ ◦ js = ks for all s ∈ {1, . . . , r}. It
follows thatΦ(W) is contained in ı̂(U)∪ ̂(U), butΦ(W) 6⊂ ı̂(U) andΦ(W) 6⊂ ̂(U).
Now defining i = Φ−1 ◦ ı̂ and j = Φ−1 ◦ ̂, we obtain the required smooth embed-
dings i, j : U →֒ U. �

Tangential structures and En algebras.

Remark 6.2.28 (Tangential structures). If we fix a tangential structure Θ and con-
sider the topological cobordism category CVΘ, we may ask whether the monoid
MVΘ = hCVΘ(∅, ∅) is also free commutative when dim(V) > 0. It turns out that it
is, with a very similar proof to above: the result is that MVΘ is free commutative

on the subset IVΘ of those Θ-manifolds whose underlying manifold (ignoring the
Θ-structure) is inseparable.

Remark 6.2.29 (Dimension zero). When dim(V) = 0 (and d = 0), the monoid MVΘ is
not commutative in general. Note that, in dimension zero, a tangential structure
is just a topological space Θ, and a Θ-structure on a zero-dimensional manifold
(i.e., discrete space) W is just a function W → Θ. One may then easily see that,
when d = 0 and dim(V) = 0 (so U ∼= R), the monoid MVΘ is isomorphic to the free

non-commutative monoid on π0(Θ).34 Since the only inseparable zero-manifolds
are single points (equipped with any Θ-structure), we may identify the set IVΘ of
equivalence classes of inseparable Θ-manifolds with π0(Θ), and say that MVΘ is
the free non-commutative monoid on IVΘ.

Remark 6.2.30 (Em-algebras). The topological monoid CVΘ(∅, ∅) is homotopy equiv-
alent to an Em-algebra, where m = dim(V) + 1. Defining JVΘ ⊂ CVΘ(∅, ∅) to be the
subspace of inseparable submanifolds, the inclusion induces a map of Em-algebras

(6.2.31) FEm(J
V
Θ) −→ CVΘ(∅, ∅),

34If Θ is path-connected, this is also free commutative, but only “by accident”.



Arun Debray, Søren Galatius, and Martin Palmer 55

where FEm(X) denotes the free Em-algebra on a space X. The result of this exercise
(plus the previous two remarks) is that π0(6.2.31) = (6.2.19) is an isomorphism
(of commutative monoids if m > 2 and of non-commutative monoids if m = 1).
One may naturally ask whether (6.2.31) induces isomorphisms also on higher
homotopy groups. The answer is no in general.

As one counterexample, take d = 1, m = 3 and Θ = {∗}. Then the left-hand
side of (6.2.31) is homotopy equivalent to the configuration space of finitely many
unordered points in R3 each labeled by a point in the space of inseparable links in
R3. One path-component X of this space consists of configuration of two points
in R3 each labeled by a point in the space of unknots in R3. Using [19] to see
that the space of unknots in R3 is homotopy equivalent to RP2, we see that
H1(X) ∼= (Z/2Z)2. The corresponding35 path-component Y of the right-hand side
of (6.2.31) is the space of two-component unlinks in R3. Using [4, Theorem 1 and
Proposition 3.7], we see that H1(Y) ∼= (Z/2Z)3. Hence (6.2.31) is not surjective on
H1, and therefore also not on π1.

Another counterexample is given by d = 1, m = 3 and Θ = {±1} the tangential
structure of orientations. Then one path-component X of the left-hand side of
(6.2.31) is homotopy equivalent to the space of configurations of two points in R3

each labeled by a point in the space of oriented unknots in R3. Since the space
of oriented unknots in R3 is homotopy equivalent to S2, we have H1(X) ∼= Z/2Z.
The corresponding path-component Y of the right-hand side of (6.2.31) is the
space of two-component oriented unlinks in R3. Using [4, Theorem 1 and Propo-
sition 3.3], we see that H1(Y) ∼= Z⊕Z/2Z. So, again, (6.2.31) is not surjective on
H1, and therefore also not on π1.
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