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Abstract. We prove that, for any infinite-type surface S, the integral homology of the pure mapping

class group PMap(S) and of the Torelli group T (S) is uncountable in every positive degree. By our

results in [PW] and other known computations, such a statement cannot be true for the full mapping
class group Map(S) for all infinite-type surfaces S. However, we are still able to prove that the integral

homology of Map(S) is uncountable in all positive degrees for many infinite-type surfaces S. The key

hypothesis is, roughly, that the space of ends E of the surface S contains a limit point of topologically
distinguished points. This includes all surfaces with countable end spaces that have a unique point of

maximal Cantor-Bendixson rank, which is a successor ordinal. We also observe an order-10 element in

the first homology of the pure mapping class group of any surface of genus 2 with non-empty boundary,
answering a recent question of George Domat.

Introduction

There has been a recent wave of interest in big mapping class groups (mapping class groups of infinite-
type surfaces); see [AV20] for a survey. In [PW], the authors recently computed the homology of a large
family of big mapping class groups, namely the families of 1-holed or punctured binary tree surfaces (see
the introduction of [PW] for this terminology). Specifically, the mapping class group of every 1-holed
binary tree surface is acyclic and the homology of the mapping class group of every punctured binary
tree surface is periodic with Z in every even degree and zero in every odd degree. One instance of this
result says that the mapping class group Map(D2 r C) is acyclic and that Hi(Map(R2 r C)) is Z for i
even and zero for i odd, where C is a Cantor set embedded in the interior of the disc. In particular, in
all of these examples, the homology groups Hi(Map(S)) are finitely generated for each i.

In this paper we prove a contrasting result: for many infinite-type surfaces S, the group Hi(Map(S)) is
uncountable for all i > 0. Moreover, we prove that for any infinite-type surface S, the integral homology
of the pure mapping class group PMap(S) and of the Torelli group T (S) is uncountable in every positive
degree.

Our proofs are built on ideas from [APV20, Dom, MT]. In [APV20], Aramayona, Patel and Vlamis
determined H1(PMap(S)) for any infinite-type surface S. Along the way they proved that, when S
has infinitely many non-planar ends, its pure mapping class group PMap(S) admits a split-surjection
onto the Baer-Specker group ZN. Later, Domat proved that big mapping class groups are never perfect
[Dom]. In fact, he showed that H1(PMap(S)) is uncountable for many infinite-type surfaces S and the
first homology of the Torelli group H1(T (S)) is uncountable for all infinite-type surfaces S. Malestein
and Tao [MT] were able to further push the results of Domat and prove that H1(Map(S)) is uncountable
for a certain class of surfaces S, including S = R2 r Z.

Uncountable homology. Given a surface S, recall that the pure mapping class group PMap(S) of a
surface is the subgroup of mapping classes that fix the ends of S pointwise. The Torelli group T (S)
is the kernel of the natural homomorphism Map(S) → Aut(H1(S)). Our first theorem works for any
infinite-type surface.

Theorem A (Theorems 5.1 and 5.5). Let S be an infinite-type surface. Then the integral homology
groups

Hi(PMap(S)) and Hi(T (S))

are uncountable for every i ≥ 1. In fact they each contain
⊕

c Z in every degree, where c denotes the
cardinality of the continuum.
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In order to state our result for the full mapping class groups, we first recall some background about
ends of surfaces. More details are given in §1 and §2. Every surface S has a space of ends E, which is a
compact, separable, totally disconnected topological space. The key hypothesis in our main theorem is
a condition on the structure of the space E.

Definition 0.1. For points x, y ∈ E, we write x ∼ y and say that x is similar to y if and only if there
are open neighbourhoods U, V of x, y respectively such that (U, x) and (V, y) are homeomorphic as based
spaces. A point x ∈ E is topologically distinguished if it is not equivalent to any other point of E under
this equivalence relation.

Definition 0.2. For a topological space E, write Υ+(E) = Eω+1, where Eω means a countably infinite
disjoint union of copies of E and X + 1 means the one-point compactification of X.

Theorem B. Let S be a connected surface of finite genus and with finitely many boundary components,
whose space of ends E is of the form E = E1 tΥ+(E2), where E2 has a topologically distinguished point
x and no point of E1 is similar to x. Then the integral homology group

Hi(Map(S))

is uncountable for every i ≥ 1. In fact, there is an injective homomorphism of graded abelian groups

Λ∗
(⊕

c

Z
)
−→ H∗(Map(S)),

where Λ∗ denotes the exterior algebra on an abelian group.

Remark 0.3. In the course of the proof of Theorem B, we also prove the same statement with S replaced
by the Loch Ness monster surface L; see Proposition 4.1.

Remark 0.4. All countable end spaces of surfaces are of the form E = ωα.n+ 1 for a countable ordinal
α and a positive integer n. This end space satisfies the hypotheses of Theorem B if and only if n = 1
and α is a successor ordinal. This suggests the following question:

Question 0.5. Let E = ωα.n+ 1 for a countable ordinal α and positive integer n and consider a surface
S of finite genus whose space of ends is homeomorphic to E. Is the homology of Map(S) uncountable in
all positive degrees when n > 1 or α is a limit ordinal?

Remark 0.6. Without the hypothesis on the structure of the space of ends E of S, the conclusion of
Theorem B is false. For example, as mentioned above, we prove in [PW] that

Hi(Map(R2 r C)) ∼=

{
Z i even

0 i odd.

Remark 0.7. The hypotheses of this paper and the hypotheses of [PW] are in some sense opposite, with
opposite conclusions. In [PW] we consider 1-holed binary tree surfaces, whose end spaces are Cantor
compactifications (Eω)C (see [PW, §1.2] for the definition), which are highly self-similar (in particular
(Eω)C ∼= C if E = ∅ or E = C, which is homogeneous), and we prove that Hi(Map(S)) = 0 for all i > 0.
On the other hand, in this paper we consider surfaces S whose end spaces E satisfy the “self-similarity-
breaking” hypothesis of Theorem B (roughly: E has a limit point of topologically distinguished points),
and conclude that Hi(Map(S)) is uncountable for all i > 0.

Non-trivial torsion. So far, the elements that we have constructed in the homology of big mapping
class groups all have infinite order. It would be interesting also to find some torsion elements. In fact,
the following question was asked by Domat in [Dom, Question 11.3].

Question 0.8. Let S be an infinite-type surface. Are there torsion elements in H1(PMapc(S))?

Recall that PMapc(S) denotes the compactly-supported mapping class group of S and PMapc(S) is

its closure in Map(S) in the compact-open topology. We recall that PMapc(S) ⊆ PMap(S) coincides
with PMap(S) if and only if S has at most one non-planar end [PV18, Theorem 4]. Our third result
answers Domat’s question in the positive.

Theorem C. Let S be an infinite-type surface of genus 2 with non-empty boundary. Then the homology
groups H1(PMap(S)) = H1(PMapc(S)) and H1(Map(S)) both contain an order-10 element.
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Remark 0.9. By comparing the stable homology of (orientable, finite-type) mapping class groups with
rational coefficients [MW07] and with mod-p coefficients [Gal04], one sees that there are also many
torsion elements in the integral homology of mapping class groups in the stable range. Using this and
Lemma 7.2, one may find many higher-degree torsion elements in the homology of big mapping class
groups of surfaces with finite genus.

In a sense, our answer to Domat’s question is “cheating”, since we simply show that a certain torsion
element in the homology of the mapping class group of a finite-type subsurface of S injects into the
homology of the mapping class group of S. Together with our uncountability results (Theorems A and
B) above, this suggests two refinements of Domat’s question:

Question 0.10. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or H1(PMap(S))
contain torsion elements that are not supported on any finite-type subsurface of S?

Question 0.11. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or H1(PMap(S))
contain an uncountable torsion subgroup?

Notice that a positive answer to Question 0.11 would imply a positive answer to Question 0.10, since
torsion admitting finite-type support can only account for countably many torsion elements.

Outline. We begin with two sections of background: §1 on infinite-type surfaces and big mapping class
groups and §2 on notions of topologically distinguished points. In §3 we prove a basic lemma that often
allows us to lift uncountability of degree-one homology to higher degrees. The first step in the proof of
Theorem B is carried out in §4, where we prove uncountability for the homology of the Loch Ness monster
surface, building on results of Domat [Dom]. We then adapt these arguments in §5 to prove Theorem A.
In §6 we then apply a covering space argument, inspired by a technique of Malestein and Tao [MT], to
complete the proof of Theorem B. This is the step in which we essentially use the hypothesis on the
structure of the end space of the surface. We then prove Theorem C in §7 and discuss some related
open questions in §8. In Appendix A we collect some basic facts about abelian groups that are needed
in several of our proofs.

Acknowledgements. MP was partially supported by a grant of the Romanian Ministry of Education
and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2798, within PNCDI III.
XW is currently a member of LMNS and supported by a starter grant at Fudan University.

1. Surfaces, ends and mapping class groups

1.1. Infinite-type surfaces. All surfaces will be assumed to be second countable, connected, orientable
and to have compact boundary. If the fundamental group of S is finitely generated, we say that S has
finite type, otherwise it has infinite type. The classification of surfaces of possibly infinite type was proven
by von Kerékjártó [vK23] and Richards [Ric63]. Recall that an end of a surface S is an element of the
set

(1.1) Ends(S) = lim←−π0(S \K),

where the inverse limit is taken over all compact subsets K ⊂ S. The Freudenthal compactification of S
is the union

S = S t Ends(S)

equipped with the topology generated by U t {e ∈ Ends(S) | e < U} for all open subsets U ⊆ S. Here
e < U means that there is a compact subset K ⊂ S such that U contains the component of S \K hit by
e under the canonical map Ends(S)→ π0(S \K). The induced subspace topology on Ends(S) coincides
with the limit topology induced from the discrete topology on each term in the inverse system. With this
topology, Ends(S) is homeomorphic to a closed subset of the Cantor set. We call an end e ∈ Ends(S)
planar if it has a neighbourhood (in the topology of S) that embeds into the plane, otherwise we call it
non-planar. The (closed) subspace of non-planar ends is denoted by Endsnp(S) ⊆ Ends(S).

Theorem 1.1 ([Ric63, §4.5]). Let S1, S2 be two surfaces of genus g1, g2 ∈ N ∪ {∞} and with b1, b2 ∈ N
boundary components. Then S1

∼= S2 if and only if g1 = g2, b1 = b2 and there is a homeomorphism of
pairs of spaces

(Ends(S1),Endsnp(S1)) ∼= (Ends(S2),Endsnp(S2)).

Conversely, given g ∈ N ∪ {∞}, b ∈ N and a pair X ⊆ Y of closed subsets of the Cantor set, where we
require that g =∞ if and only if X 6= ∅, there exists a surface S of genus g with b boundary components
such that (Ends(S),Endsnp(S)) ∼= (Y,X).

3



Figure 2.1. The 3-valent vertices of this graph are globally topologically distinguished
but not topologically distinguished, since they are similar (but not globally similar) to
each other.

1.2. Mapping class groups. For a surface S, the mapping class group of S is the group of isotopy
classes of orientation-preserving diffeomorphisms of S fixing the boundary of S pointwise, i.e.

Map(S) := π0(Diff+(S, ∂S)).

The pure mapping class group PMap(S) of S is the subgroup of Map(S) consisting of all elements
whose induced action on Ends(S) is the identity. These groups fit into the following short exact sequence.

Proposition 1.2. Let S be any surface. Then there is a short exact sequence of groups

1→ PMap(S) −→ Map(S) −→ Homeo(Ends(S),Endsnp(S))→ 1,

where Homeo(Ends(S),Endsnp(S)) is the group of homeomorphisms of the pair (Ends(S),Endsnp(S)).

2. Topologically distinguished points

We now recall from the introduction the notion of topologically distinguished points (Definition 0.1)
and compare it to a weaker notion of globally topologically distinguished points.

Definition 2.1. Let E be a topological space. Two points x, y ∈ E are called similar if there are open
neighbourhoods U and V of x and y respectively and a homeomorphism U ∼= V taking x to y. This is
an equivalence relation on E. A point x ∈ E is called topologically distinguished if its equivalence class
under this relation is {x}, in other words it is similar only to itself.

Definition 2.2. Let E be a topological space. Two points x, y ∈ E are called globally similar if there is
a homeomorphism ϕ ∈ Homeo(E) with ϕ(x) = y. This is an equivalence relation on E. A point x ∈ E is
called globally topologically distinguished if its equivalence class under this relation is {x}, in other words
it is similar only to itself. Equivalently, x ∈ E is globally topologically distinguished if it is a fixed point
of the action of Homeo(E) on E.

Remark 2.3. We record two immediate observations:
• If x and y are globally similar then they are similar.
• If x is topologically distinguished then it is globally topologically distinguished.

The converses of these two statements are false in general. For example, the two vertices of valence 3 in
the graph pictured in Figure 2.1 are similar but not globally similar; also, both of them are globally topo-
logically distinguished but not topologically distinguished. However, for zero-dimensional (Hausdorff)
spaces the converse does hold:

Lemma 2.4. Suppose that E is Hausdorff and zero-dimensional, i.e. it has a basis for its topology
consisting of clopen subsets. Then two points x, y ∈ E are similar if and only if they are globally similar.
Thus x ∈ E is topologically distinguished if and only if it is globally topologically distinguished.

Proof. The second statement follows from the first one, so we only have to prove the first statement, that
x, y ∈ E are similar if and only if they are globally similar. One implication is obvious; we will prove the
opposite implication. So let us assume that x, y ∈ E are similar and choose open neighbourhoods U and
V of x and y respectively and a homeomorphism ϕ : U → V taking x to y. Assume that x 6= y (otherwise
the result is obvious). Since E is zero-dimensional, we may assume, by shrinking them if necessary, that
U and V are clopen. Since E is Hausdorff, we may assume, by shrinking them if necessary, that U and
V are disjoint. We may therefore extend ϕ to a homeomorphism ϕ̄ ∈ Homeo(E) by:

• ϕ̄(e) = ϕ(e) for e ∈ U ;
• ϕ̄(e) = ϕ−1(e) for e ∈ V ;
• ϕ̄(e) = e for e ∈ E r (U t V ).

4



This bijection is continuous since {U, V,E r (U t V )} is an open cover of E and ϕ̄ is continuous when
restricted to each of these subsets. Its inverse is continuous for the same reason, so it is a homeomorphism
of E taking x to y. Thus x and y are globally similar. �

Remark 2.5. Ends spaces of surfaces are always Hausdorff and zero-dimensional, so Lemma 2.4 implies
that topologically distinguished and globally topologically distinguished are the same for end spaces.

Lemma 2.6. If a space E has a topologically distinguished point, then Eω+1 has a globally topologically
distinguished point. In fact, the point at infinity is globally topologically distinguished.

Proof. Let ∞ denote the point at infinity of the one-point compactification Eω + 1 of Eω =
⊔
ω E. Let

ϕ ∈ Homeo(Eω+ 1). We just need to show that ϕ(∞) =∞, since it will then follow that∞ is a globally
topologically distinguished point of Eω+ 1. Suppose for a contradiction that ϕ(∞) 6=∞. Write Ei = E
for each i ∈ N, and identify Eω =

⊔
i∈NEi. By assumption, ϕ(∞) ∈ Ej for some j ∈ N. Let x ∈ E be a

topologically distinguished point. Every open neighbourhood U of ∞ ∈ Eω+ 1 contains infinitely many
points that are similar to x, since, by definition of the one-point compactification, U must contain Ei for
infinitely many i. Since ϕ is a homeomorphism, it must also be true that every open neighbourhood of
ϕ(∞) ∈ Eω + 1 contains infinitely many points that are similar to x. But Ej is an open neighbourhood
of ϕ(∞) ∈ Eω + 1 and it contains only one point that is similar to x, a contradiction. �

Corollary 2.7. Suppose that E is Hausdorff and zero-dimensional. If E has a topologically distinguished
point, then the point at infinity of Eω + 1 is topologically distinguished.

Proof. By Lemma 2.6, the point at infinity of Eω+1 is globally topologically distinguished. Hausdorffness
and zero-dimensionality of E imply Hausdorffness and zero-dimensionality of Eω+1, so Lemma 2.4 then
implies that the point at infinity of Eω + 1 is topologically distinguished. �

Remark 2.8. There is another, a priori different, equivalence relation on topological spaces, defined by
[MRb]. They define, for points x, y ∈ E:

x ≤ y ⇐⇒ ∀ open neighbourhoods U 3 y, ∃z ∈ U : z ∼ x,
where z ∼ x means that z and x are similar in the sense of Definition 2.1. This is a pre-order on E, so
it induces an equivalence relation

x ≈ y ⇐⇒ x ≤ y and y ≤ x
on E and a poset structure on the quotient E/≈. Clearly x ∼ y implies x ≈ y. Also, if we now assume
that E is the end space of a surface Σ, it is not hard to see (using Lemma 2.4) that x ∼ y if and only if
there is a homeomorphism of Σ taking x to y. Theorem 1.2 of [MRb] says that if x ≈ y then there is a
homeomorphism of Σ taking x to y. It follows that ∼ and ≈ are the same equivalence relation on E if it
is the end space of a surface. In [MRa], the authors often consider the condition that “Σ has a unique
maximal end”, i.e. there is a unique maximal equivalence class [x] ∈ E/≈ and the equivalence class [x]
has size 1. The condition that we require in this paper is however much weaker, namely that “Σ has a
topologically distinguished end”, i.e. there is an equivalence class [x] ∈ E/≈ of size 1 (but it need not be
maximal in the poset structure of E/≈).

3. Lifting uncountability to higher degree homology

We prove in this section a key lemma, which we use several times to lift uncountability of homology
in degree one to higher degrees.

Notation 3.1. Let us fix some notation that will be used throughout the rest of the paper.
• For an abelian group A, denote by Λ∗(A) the exterior algebra on A.
• We denote by c the cardinality of the continuum.

Lemma 3.2. Let G be a group, α : G � G/[G,G] = H1(G) the quotient map and ι :
⊕

c Z → G a
homomorphism. Suppose that there is an embedding f :

⊕
c Q ↪→ H1(G) such that the diagram

(3.1)

⊕
c

Z G

⊕
c

Q H1(G),

ι

α

f

5



Figure 4.1. The once-punctured Loch Ness monster surface.

commutes, where
⊕

c Z ↪→
⊕

c Q is the canonical inclusion. Then there is an injective homomorphism
of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(G).

Proof. By Lemma A.1, the embedding f admits a retraction. Hence the canonical inclusion

(3.2)
⊕
c

Z ↪−→
⊕
c

Q

factors through G. It follows that the induced homomorphism of graded abelian groups

(3.3) H∗

(⊕
c

Z
)
−→ H∗

(⊕
c

Q
)

factors through H∗(G). Now, the integral homology of a torsion-free abelian group A is naturally
isomorphic to the exterior algebra Λ∗(A) (see [Bro82, Theorem V.6.4(ii)]), so we have homomorphisms
of graded abelian groups

(3.4) Λ∗
(⊕

c

Z
)
−→ H∗(G) −→ Λ∗

(⊕
c

Q
)

whose composition is injective by Lemma A.3. In particular the first map must be injective. �

4. Uncountability for the Loch Ness monster surface

The first step in the proof of Theorem B is the following proposition, which is the same statement for
the Loch Ness monster surface. In §6 we will use this to deduce Theorem B.

Proposition 4.1. Denote by L the Loch Ness monster surface. Then there is an injective homomorphism
of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(Map(L)).

Denote by L′ the once-punctured Loch Ness monster surface, viewed as the bi-infinite cylinder R×S1

with infinitely many handles attached to it via performing a connected sum with a torus along a small
disc centred at the points (2n, ∗) ∈ R × S1 for each n ∈ N. For each integer i ≥ 1, denote by γi the
simple closed curve {2i− 1} × S1 ⊂ L′. See Figure 4.1. Following [Dom, §8.3], choose an infinite subset
Λa ⊆ N for each a ∈ R such that Λa ∩ Λb is finite for a 6= b (for example identify N with Q and choose
Λa to be a sequence of rational numbers converging to a). Since the curves γi are pairwise disjoint, we
may consider the infinite product of Dehn twists

fa =
∏
i∈Λa

(Tγi)
i! ∈ PMapc(L

′).

(The precise form of the exponents in this product is not important; it is just important that for each
fixed integer k, all but finitely many of the exponents are divisible by k.) These elements pairwise
commute, so they determine a group homomorphism

(4.1)
⊕
a∈R

Z −→ PMapc(L
′).

Domat then proves the following:
6



Proposition 4.2 ([Dom, §8.3]). The composition of (4.1) with the abelianisation of the right-hand side
sends the generator of each copy of Z to a divisible element of H1(PMapc(L

′)). In other words, there is
a (necessarily unique) homomorphism (∗) completing the diagram

(4.2)

⊕
a∈R

Z PMapc(L
′)

⊕
a∈R

Q H1(PMapc(L
′)).

(4.1)

(∗)

Moreover, the homomorphism (∗) is injective.

We now use this, together with Lemma 3.2, to prove Proposition 4.1.

Proof of Proposition 4.1. Since L′ has at most one non-planar end, we have PMapc(L
′) = PMap(L′), by

[PV18, Theorem 4]. We also have PMap(L′) = Map(L′) since L′ has only two punctures, which cannot
be interchanged since exactly one of them is non-planar. Thus we may rewrite PMapc(L

′) as Map(L′)
in (4.2).

In order to replace L′ with L, we use the Birman exact sequence, which takes the form

(4.3) 1→ π1(L) −→ Map(L′) −→ Map(L)→ 1.

Since abelianisation is a right-exact functor, it follows that the kernel of H1(Map(L′)) → H1(Map(L))
is a quotient of H1(L); in particular it is countable. Consider the diagram

(4.4)

⊕
a∈R

Z Map(L′) Map(L)

⊕
a∈R

Q H1(Map(L′)) H1(Map(L)).

(4.1)

(∗) (∗∗)

We know from Proposition 4.2 that (∗) is injective and we know that (∗∗) has countable kernel by the
discussion above. Thus Lemma A.2 implies that, after removing countably many terms from the direct
sum on the left-hand side, the composition across the bottom of (4.4) is also injective, so we obtain the
diagram

(4.5)

⊕
c

Z Map(L)

⊕
c

Q H1(Map(L)),
(∗)′

with (∗)′ injective. The proposition now follows from Lemma 3.2 applied to G = Map(L). �

Remark 4.3. There are two points where this proof is not entirely constructive. The first is the choice
of subsets Λa ⊆ N for each a ∈ R with Λa ∩Λb finite if a 6= b. However, this may easily be made explicit
by choosing an explicit bijection between N and Q and then letting Λa ⊆ Q be the sequence of rational
numbers converging to a ∈ R given by truncating the binary expansion of a. The second point where it
is non-constructive is in passing from diagram (4.4) to diagram (4.5) by throwing away countably many
real numbers indexing the direct sum on the left-hand side. However, looking carefully at the proof of
Lemma A.2, one may make this step constructive too.

5. Uncountability for pure mapping class groups and Torelli groups

Before completing the proof of Theorem B in §6, we first prove Theorem A in this section (Theorems
5.1 and 5.5), by adapting the methods of §4.

Theorem 5.1. Let S be an infinite-type surface. Then the integral homology group

Hi(PMap(S))

is uncountable for every i ≥ 1. In fact it contains an isomorphic copy of
⊕

c Z in every positive degree.
7



Figure 5.1. A surface with n non-planar ends e1, . . . , en for 2 ≤ n <∞. The top and
bottom edges are identified to obtain a sphere, then the points e1, . . . , en (together with
a set of planar ends, which is not pictured) are removed, then we take a connected sum
with a torus along each of the (infinitely many) small grey discs. The planar ends (not
pictured) may have some or all of the non-planar ends e1, . . . , en as limit points, but
in any case lie outside of the subsurfaces Y1, . . . , Yn−1, which support the handle shifts
h1, . . . , hn−1. The curves γ1, γ2, γ3, . . . are chosen as illustrated. Thus (1) the handle
shift h1 sends γi to γi+1 (up to isotopy) and (2) all γi are disjoint from Y2, . . . , Yn−1, so
h2, . . . , hn−1 act trivially on γi.

We prove the theorem in three different cases depending on the number of non-planar ends of S.

5.1. If S has at most one non-planar end. In this case, we have PMapc(S) = PMap(S) by [PV18,
Theorem 4]. Let us first assume that S has at least two ends. Then, in [Dom, §8.2], Domat produces
an embedding of

⊕
c Z into PMap(S) that further embeds into H1(PMap(S)), using countably infinite

products of Dehn twists. In [Dom, §8.1], he proves that each Z summand of this direct sum is divisible
in H1(PMap(S)). Hence it extends to an embedding

f :
⊕
c

Q ↪−→ H1(PMap(S))

that makes the diagram (3.1) commute. The theorem now follows from Lemma 3.2. When S has at
most one end, it necessarily must be the Loch Ness monster surface minus some open discs (since we
have assumed that S has infinite type). The proof in [Dom, Appendix] (see also §4 above) then provides
an embedding of

⊕
c Z satisfying the conditions of Lemma 3.2.

5.2. If S has finitely many non-planar ends. We now assume that S has n non-planar ends with
2 ≤ n <∞. By [APV20, Corollary 6], we have

(5.1) PMap(S) ∼= PMapc(S) o Zn−1,

where Zn−1 is freely generated by n− 1 handle shifts h1, . . . , hn−1. As indicated in the proof of [APV20,
Theorem 5], one may choose the handle shifts hj to have pairwise disjoint support. Let Yj be the support
of hj . Recall that each Yj is a subsurface homeomorphic to the result of gluing handles onto R × [0, 1]
periodically with respect to the transformation (x, y) 7→ (x+1, y). For convenience, we shall require that
the i-th handle is attached to [i, i+ 1]× [0, 1] and that hj maps the i-th handle to the (i+ 1)-st handle.
See Figure 5.1 for an illustration.

We now construct an embedding of
⊕

c Z into PMap(S) as in [Dom, §8.3] satisfying the conditions of

Lemma 3.2. In fact, we will first construct an embedding of
⊕

c Q into H1(PMapc(S)). Then, with a
little more care, we further embed it into H1(PMap(S)).

We first choose a collection γ1, γ2, γ3, . . . of simple closed curves, as illustrated in Figure 5.1, which
satisfy the conditions in [Dom, Theorem 6.1]. Now let

f =

∞∏
i=1

(Tγi)
i! ∈ PMapc(S),

where Tγi is the Dehn twist along the curve γi. As proved in [Dom, §8.1.1], the element f is non-trivial

and divisible in H1(PMapc(S)) since our surface S has infinite genus. We now wish to choose a collection
of subsets of the curves γ1, γ2, γ3, . . . having good intersection properties even after considering the action
of handle shifts.

Lemma 5.2. For each a ∈ R, one can choose an infinite subset Λa of Z such that the intersection of
Λka := {i+ k | i ∈ Λa} with Λb is finite for any a, b ∈ R and k ∈ Z unless a = b and k = 0.
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Proof. We first choose an infinite subset X of Z such that X ∩X + k is finite for any integer k 6= 0. For
example, we may choose X = {1, 2!, 3!, . . . , n!, . . .}. Then we choose a bijection φ between X and Q. For
a ∈ R, let Λ′a be a sequence of rational numbers approximating a. Thus Λ′a ∩ Λ′b is finite for any a 6= b.
Let Λa = φ−1(Λ′a). This satisfies the conditions of the lemma. �

For a ∈ R and k ∈ Z, let Λa be chosen as in Lemma 5.2 and write Λka = {i+k | i ∈ Λa}. We enumerate
elements of Λka as {ai,k}i∈N and let

fa,k =

∞∏
i=1

(Tγai,k
)i! ∈ PMapc(S).

Just as before, fa,k is non-trivial and divisible in H1(PMapc(S)) for each a ∈ R and k ∈ Z. Moreover, for
any a, b ∈ R and k, l ∈ Z, Λka ∩Λlb is finite unless a = b and k = l. Thus any non-trivial finite product of
elements fa,k again satisfies the hypotheses of [Dom, Theorem 6.1], and so any non-trivial finite product

of elements fa,k is non-trivial and divisible in H1(PMapc(S)). This provides an an embedding of
⊕

c Z
into PMapc(S) that extends to an embedding of

⊕
c Q into H1(PMapc(S)).

The semi-direct product decomposition (5.1) implies that

H1(PMap(S)) ∼= H1(PMapc(S))Zn−1 ⊕ Zn−1,

where H1(PMapc(S))Zn−1 denotes the coinvariants of H1(PMapc(S)) under the action of the n−1 handle
shifts h1, . . . , hn−1. To summarise, we have so far constructed the diagram

(5.2)

⊕
c Z PMapc(S) PMap(S)

⊕
c Q H1(PMapc(S)) H1(PMapc(S)) o Zn−1

H1(PMapc(S))Zn−1 ⊕ Zn−1

(∗)

and by Lemma 3.2 it would be enough to show that the dotted arrow is injective. This is not true as
constructed, but it will turn out to be true after restricting the direct sums on the left-hand side to an
uncountable subcollection. We need to understand the images of the elements fa,k under the projection
(∗) above, in other words when we quotient by the action of the handle shifts h1, . . . , hn−1.

Since the support of fa,k is disjoint from that of hj for all j ≥ 2, it follows that hj commutes with

fa,k for any a ∈ R, k ∈ Z and j ≥ 2. On the other hand, for j = 1 we have h−1
1 fa,kh1 = fa,k+1. In

particular, the set of all finite products of elements in {fa,k}a∈R,k∈Z is invariant under the action of the

n − 1 handle shifts. Thus the action of Zn−1 on H1(PMapc(S)) preserves the embedded copy of
⊕

c Q
and on this subgroup its action is trivial for h2, . . . , hn−1 and is given by fa,k 7→ fa,k+1 for h1. It follows
that the projection (∗), restricted to our embedded copy of

⊕
c Q indexed by (a, k) ∈ R × Z, is given

simply by identifying the Q summands indexed by (a, k) and (a, l) for all k, l ∈ Z, for each fixed a ∈ R.
If we now restrict the indexing set of the direct sum to (a, 0) for a ∈ R, the projection (∗) is injective

on its image, so the diagonal dotted arrow in (5.2) is injective. Thus we finally have an embedding of⊕
c Z in PMap(S) satisfying the conditions of Lemma 3.2, which completes the proof in this case.

Remark 5.3. When S has infinitely many non-planar ends, and at least one of them is isolated in the
space of non-planar ends, our proof above still works. However, it does not appear to work directly for
surface such as the Cantor blooming tree surface.

5.3. If S has infinitely many non-planar ends. By [APV20, Corollary 6], we have in this case that

PMap(S) ∼= PMapc(S) o ZN.

In particular, ZN is a retract of PMap(S). Thus the natural induced map Hi(ZN) → Hi(PMap(S)) is
split injective in every degree. Theorem 5.1 in this situation is therefore an immediate corollary of the
following lemma.

Lemma 5.4. The homology Hi(ZN) contains a copy of ZN in every positive degree. Hence it contains a
copy of

⊕
c Z in every positive degree.

Proof. This follows from the Künneth theorem applied to the decomposition ZN ∼= ZN × Zi. �
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Figure 6.1. The branched double covering (6.1). After removing the subset marked in
red (which includes the branch points), this restricts to the (genuine) double covering
(6.2).

5.4. Uncountability for Torelli groups. Given a surface S, recall that the Torelli group T (S) is the
kernel of the natural homomorphism Map(S)→ Aut(H1(S)).

Theorem 5.5. Let S be an infinite-type surface. Then the integral homology group

Hi(T (S))

is uncountable for every i ≥ 1. In fact it contains a copy of
⊕

c Z in every positive degree.

Proof. This follows immediately from the proof of [Dom, Theorem 9.1] and Lemma 3.2. We sketch the
proof for the reader’s convenience. In fact, when the surface has at least two ends, Domat first embeds⊕

c Z into PMap(S) using infinite products of pseudo-Anosov elements supported on disjoint finite-type
surfaces. The existence of such elements is proved in [Dom, Lemma 8.3]. By [Dom, Theorem 7.1] such
elements are non-trivial in H1(PMap(S)) and the fact that they are divisible in H1(T (S)) now follows
from the exact same proof as in [Dom, Theorem 7.1]. The case where S has only one end is taken care
of in [Dom, Appendix]; see also §4. In particular, we always have an embedding of

⊕
c Z into T (S)

satisfying the conditions of Lemma 3.2. The theorem thus follows from Lemma 3.2. �

6. Descending along double branched covers

In this section we generalise techniques of Malestein and Tao [MT] — who proved uncountability of
homology in degree 1 for the mapping class group of R2 rC — to higher degrees and to the more general
class of surfaces from Theorem B, completing the proof of that theorem.

To begin with, we will put stronger assumptions on the surface S: we assume that it has genus 0, empty
boundary and that its space of ends is of the form Υ+(E), where E has a topologically distinguished
point. This means that S may be written as R(S2 rE), where R(Σ) denotes the ray surface associated
to a surface Σ:

Definition 6.1. Let Σ be any connected surface without boundary and write Σ1 (respectively Σ2) for
the surface obtained by removing one (respectively two disjoint) open discs from Σ. The ray surface
R(Σ) is the surface obtained by gluing together infinitely many copies of Σ2 and “capping off” in one
direction with a single copy of Σ1. See the top half of Figure 6.1 for an example where Σ = T 2 is the
torus; thus R(T 2) is the Loch Ness monster surface.

Remark 6.2. This is the same as the surface denoted by L(Σ) in [PW] with its boundary capped off
by a disc.
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Denote by L the Loch Ness monster surface and consider its branched double covering L → R2

depicted in Figure 6.1. This may also be written as

(6.1) L ∼= S2]R(T 2) −→ S2]R(S2) ∼= R2.

This decomposition corresponds to cutting along the curves depicted in the figure, together with an
additional curve γ0 or α0, which is not depicted. Notice that there are exactly two branch points (of
order 2) in each copy of S2 in R(S2) and one additional branch point in the copy of S2 in the extra
connected summand. Let us now choose once and for all a topologically distinguished point x ∈ E (this
exists by hypothesis) and embed pairwise disjoint copies of E into S2]R(S2) so that:

• each copy of E lies entirely in one of the copies of S2,
• the point x ∈ E is sent to a branch point of (6.1),
• each branch point of (6.1) is in the image of one of the embeddings of E.

We denote by X the complement of these embedded copies of E and we denote by Y ⊂ S2]R(T 2) the
pre-image of X ⊂ S2]R(S2) under (6.1). Notice that:

Y ∼= (S2 r V )]R(T 2 r (V t V ))

X ∼= (S2 r E)]R(S2 r (E t E)) ∼= R(S2 r E) ∼= S,

where V denotes the wedge sum of two copies of E at the basepoint x. Since we have in particular
removed all branch points of the branched double covering, we obtain by restriction a (genuine) double
covering

(6.2) Y −→ X

depicted in Figure 6.1.
We fix compatible basepoints on X and Y and denote by H the index-2 subgroup of π1(X) corre-

sponding to this double covering. We also write Map∗(X) and Map∗(Y ) for the based mapping class
groups of X and Y , given by isotopy classes of self-homeomorphisms that fix the basepoint.

Lemma 6.3. The action of Homeo∗(X) on π1(X) preserves the subgroup H.

Proof. We first describe the subgroup H ⊂ π1(X) intrinsically. A based loop γ in X lies in H if and only
if its lift to Y is a closed loop. This occurs if and only if the sum of its winding numbers around all branch
points of the branched double covering (6.1) is even. We therefore have to show that if the sum of these
winding numbers is even for γ, then the same is true for ϕ◦γ, where ϕ is any based self-homeomorphism
of X.

A subtle point here is the meaning of winding number (which we only need to define mod 2): a simple
loop in the surface X has winding number ±1 around an end e 6=∞ if it separates X into two pieces, one
containing e and the other containing the end ∞. Here ∞ denotes the end corresponding to going off to
infinity to the right in Figure 6.1. More precisely, the end space of X is the one-point compactification
Eω+1 of a countably infinite disjoint union of copies of E and∞ denotes the point at infinity of the one-
point compactification. By Corollary 2.7 and our assumption that E has a topologically distinguished
point, the point ∞ ∈ Eω + 1 is also topologically distinguished. Thus any self-homeomorphism ϕ of X
fixes ∞, meaning that the notion of “winding number” is preserved by ϕ.

Let us now show that if the sum of the winding numbers of γ around all branch points of X is even,
then the same is true for ϕ◦γ. The end space Eω+1 of X has a topologically distinguished subset {x}ω
given by the copy of the topologically distinguished point x in each copy of E. But this is precisely the
set of branch point of the branched double covering (6.1). Thus the self-homeomorphism ϕ must send
each end of X corresponding to a branch point to another end of X corresponding to a branch point. Its
effect on winding numbers around branch points is therefore simply to permute them; so in particular
their sum is preserved. Hence if the sum of winding numbers around branch points is even for γ, then
the sum of winding numbers around branch points will also be even for ϕ ◦ γ. �

Remark 6.4. The proof of Lemma 6.3 is where our assumption that the space E has a topologically
distinguished point is used decisively. The lemma would be false without this assumption. See also
Remark 6.5.

We may now complete the proof of Theorem B under the stronger assumptions that we are currently
making (we explain how to remove these assumptions at the end of this section).
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Proof of Theorem B under additional assumptions. It follows from Lemma 6.3 that each based homeo-
morphism of X lifts uniquely to a based homeomorphism of Y , giving us a continuous map Homeo∗(X)→
Homeo∗(Y ), which on π0 induces

(6.3) Map∗(X) −→ Map∗(Y ).

Filling in all planar ends of a surface is a functorial operation on the category of surfaces, so by filling
in all planar ends of Y we obtain a continuous map Homeo∗(Y )→ Homeo∗(L), which on π0 induces

(6.4) Map∗(Y ) −→ Map∗(L).

Composing (6.3) and (6.4) with the forgetful map Map∗(L)→ Map(L), we obtain

(6.5) Map∗(X) −→ Map(L).

Let α1, α2, . . . be the collection of simple closed curves on X depicted in Figure 6.1. Since γi is a double
covering of αi, we see that

(Tαi
)2 7−→ Tγi

under (6.5). Recalling the constructions at the beginning of §4, for each a ∈ R we let

ga =
∏
i∈Λa

(Tαi
)2i! ∈ Map∗(X).

Recall that the summands of
⊕

c Z are indexed by a (co-countable) subset of R. If we write ea for a
generator of the summand corresponding to a, then the map

ea 7→ ga :
⊕
c

Z −→ Map∗(X)

makes the following triangle commute:

(6.6)

⊕
c

Z

Map∗(X) Map(L),
(6.5)

where the right-hand diagonal map was shown in §4 to be part of a factorisation
⊕

c Z→ Map(L)→
⊕

c Q
of the standard inclusion. We have therefore shown that the standard inclusion of

⊕
c Z into

⊕
c Q also

factors through Map∗(X). Now consider the diagram

(6.7)

⊕
c Z Map∗(X)

⊕
c Q

Map(X),

ϕ

where the middle vertical map forgets the basepoint. This is part of the Birman exact sequence for X,
and its kernel is π1(X), which is in particular countable. Let us denote this kernel by K and consider its
image ϕ(K) ⊂

⊕
c Q. Since ϕ(K) is countable and each of its elements has only finitely many non-zero

coordinates in
⊕

c Q (because it is a direct sum), it is contained in the subgroup of
⊕

c Q given by the
direct sum of only countably many of the copies of Q. If we take the quotient by this subgroup, the
resulting group is again isomorphic to

⊕
c Q and the homomorphism ϕ now descends to Map(X). On

the left-hand side of (6.7), we may compose with the inclusion of the corresponding sub-direct-summand
of
⊕

c Z (which is again isomorphic to
⊕

c Z); this ensures that the composition across the top row of
the following diagram is still the standard inclusion of

⊕
c Z into

⊕
c Q:

(6.8)

⊕
c Z

⊕
c Z Map∗(X)

⊕
c Q

⊕
c Q

Map(X)

ϕ
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Figure 6.2. A modification of the branched double covering depicted in Figure 6.1.

Thus we have shown that the standard inclusion of
⊕

c Z into
⊕

c Q factors through Map(X). This
standard inclusion induces an injection on homology in all degrees, by Lemma A.3 and the fact that
H∗(A) = Λ∗(A) for torsion-free abelian groups A, so it follows that we have an injection

Λ∗(
⊕
c

Z) = H∗(
⊕
c

Z) ↪−→ H∗(Map(X)) = H∗(Map(S)).

This completes the proof of Theorem B under the additional assumptions on the surface S. �

We next show how to modify the argument above to allow the more general surfaces S considered in
the theorem.

Proof of Theorem B in general. The proof follows exactly the same strategy as the proof in the special
case above, so we just explain the steps that differ slightly.

In general, the surface S is of the form pictured at the bottom of Figure 6.2, where we have taken
a connected sum of the surface considered previously with another surface having finite genus, finitely
many boundary components and an end space none of whose points are similar to the topologically
distinguished point x ∈ E. We may correspondingly modify the total space of the double covering by
taking two connected sums with this surface (no new branch points are introduced).

Lemma 6.3 generalises directly to this setting, giving us a homomorphism that lifts (based) mapping
classes up the double covering. Filling in all planar ends and the finitely many boundary components
upstairs, we as before obtain the Loch Ness monster surface L. The only small difference is that we have
finitely many extra handles on the left of the diagram, but this just corresponds to assuming that we
have chosen all of our subsets Λa ⊆ N to be disjoint from the initial sequence {1, . . . , g} for some g and
then re-indexing the curves γi 7→ γi−g. With these modifications, the rest of the proof is identical to the
proof in the special case given above. �

Remark 6.5. It is essential to assume in Theorem B that E2 has a topologically distinguished point.
Indeed, if we do not assume this, then the theorem is false. For example, without this assumption, the
theorem would assert that the homology of Map(S2 r C) is uncountable in all positive degrees, since
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Υ+(C) ∼= C. However, the first and second homology groups of Map(S2 r C) are known to be 0 and Z/2
respectively [CC21].

7. Torsion elements

We prove in this section a splitting result which helps us to find torsion elements in the mapping class
groups of genus 2 surfaces. Let Sg,b denote the connected, compact, orientable surface of genus g with
b ≥ 1 boundary components. Let us first recall the following calculation, see for example [Pow78] and
[Kor02, Theorem 5.1].

Theorem 7.1. H1(Map(S2,b)) ∼= Z/10.

We will promote this result to more complicated surfaces via the following lemma. Recall that, given
any other surface S′ with non-empty boundary, we can construct a new surface Sg,b\S

′ by identifying an
interval in the boundary of Sg,b with an interval in the boundary of S′. Let us consider the map

(7.1) Hi(Map(Sg,b)) −→ Hi(Map(Sg,b\S
′))

induced by extending any homeomorphism of Sg,b to one of Sg,b\S
′ by the identity on S′, as well as its

restriction

(7.2) Hi(PMap(Sg,b)) −→ Hi(PMap(Sg,b\S
′))

to pure mapping class groups.

Lemma 7.2. Let S′ be a planar surface with one boundary component. Then the maps (7.1) and (7.2)
split; in particular they are injective.

Proof. This follows from the fact that the map

(7.3) Map(Sg,b) −→ Map(Sg,b\S
′)

splits up to homotopy, as does its restriction to pure mapping class groups. To see this, first note that,
from the classification of surfaces, S′ must be of the form D2 r E for some end space E. A splitting up
to homotopy for (7.3) is then provided by the map

Map(Sg,b\S
′) −→ Map(Sg,b\D2) ∼= Map(Sg,b)

induced by sending a homeomorphism of S′ = D2 r E to its unique extension to a homeomorphism of
D2 (which is the Freudenthal compactification of D2 r E). �

Remark 7.3. The proof of Lemma 7.2 does not use any special property of the compact surface Sg,b.
The same statement holds for any connected surface with non-empty boundary in place of Sg,b.

Proof of Theorem C. Since S has genus 2 and non-empty boundary, we may write S = S2,b\S
′, where

b ≥ 1 is the number of boundary components of S (recall that we always assume that the boundaries
of our surfaces are compact, so they must be a finite disjoint union of circles) and S′ is planar and has
exactly one boundary component. The result is then an immediate consequence of Theorem 7.1 and
Lemma 7.2. �

8. Some open problems

In this section we propose some open questions, in addition to Questions 0.5, 0.10 and 0.11 in the
introduction. So far, our calculations suggest the answer to the following question could be positive.

Question 8.1. Let S be an infinite-type surface. Suppose that, for some i ≥ 1, the group Hi(Map(S))
is countable. Is Hi(Map(S)) finitely generated for all i?

Question 8.2. Let Sg,1 be the connected, compact, orientable surface of genus g and with one boundary
component. Does the forgetful map Map(Sg,1 rC)→ Map(Sg,1) induce isomorphisms on homology in all
degrees?

Remark 8.3. When g = 0, a positive answer follows from [PW, Theorem A]. The answer in degree one
(and for any g) has been proven to be positive in [CC22, Theorem 2.3]. On the other hand, the answer
would be negative if we considered the sphere instead of Sg,1, since H2(Map(S2 r C)) ∼= Z/2 by [CC21,
Theorem A.2]. It would also be negative if we took the plane instead of Sg,1, since Hi(Map(R2 rC)) ∼= Z
for all even i by [PW, Corollary B].

Question 8.4. Let S be an infinite-type surface with a single boundary component and suppose that its
mapping class group Map(S) is acyclic. Is S necessarily a 1-holed binary tree surface?

14



A. Abelian groups

We collect here a few facts about abelian groups that are needed in our proofs. For a comprehensive
treatment of the theory of abelian groups, we refer to [Fuc70].

Recall that an abelian group A is called divisible if for each element a ∈ A and positive integer n, there
is another element b ∈ A such that a = nb. An abelian group A is called injective if for every injective
homomorphism of abelian groups ι : B → C and homomorphism f : B → A, there is a homomorphism
g : C → A such that g ◦ ι = f . By [Fuc70, Theorems 21.1 and 24.5], an abelian group is divisible if and
only if it is injective. In particular:

Lemma A.1. Every injective homomorphism from a divisible abelian group admits a retraction.

Proof. Let A be a divisible abelian group and let ι : A → C be an injective homomorphism. Since A is
injective, taking B = A and f = id above, we obtain a retraction of ι. �

Lemma A.2. Suppose that we have homomorphisms of abelian groups⊕
c

Q A B
f g

where f is injective and g has countable kernel. Then, after restricting the direct sum on the left to a
subcollection of the same cardinality, the composition g ◦ f is also injective.

Proof. Consider the subgroup K := ker(g ◦ f) = f−1(ker(g)) ⊂
⊕

c Q. Since ker(g) is countable and
f is injective, K is a countable subgroup of

⊕
c Q. Each element of K has only finitely many non-zero

coordinates in the direct sum and K has countably many elements; thus K is contained in the sub-direct-
sum given by countably many Q summands. After removing these summands from the direct sum, the
composition g ◦ f is injective. �

Lemma A.3. For any set I, the canonical inclusion
⊕

I Z ↪→
⊕

I Q induces an injective map of graded
abelian groups

(A.1) Λ∗
(⊕

I

Z
)
↪−→ Λ∗

(⊕
I

Q
)
.

To prove this, we first recall the following basic calculation:

Lemma A.4. Λ∗(Z) ∼= Z[0]⊕ Z[1] and Λ∗(Q) ∼= Q[0]⊕Q[1].

Proof. The only non-obvious statement is that Λi(Q) = 0 for i ≥ 2. To see this, first recall that

(A.2) Q⊗Z Q⊗Z · · · ⊗Z Q ∼= Q

via an isomorphism that sends a1 ⊗ a2 ⊗ · · · ⊗ ai 7→ a1a2 · · · ai. The Z-module Λi(Q) is the quotient of
this tensor power by the sub-Z-module generated by all elements a1 ⊗ a2 ⊗ · · · ⊗ ai with aj = ak for
some j 6= k. Thus to prove that Λi(Q) = 0 we have to show that every rational number is a Z-linear
combination of rational numbers of the form b2a3 · · · ai. For i ≥ 3 this is obvious. For i = 2 it follows
from Lagrange’s four-square theorem. �

Proof of Lemma A.3. By [Bro82, §V.6.2, V.6.3], for any abelian group A we have

(A.3) Λ∗
(⊕

I

A
)
∼= Λ∗

(
colim
J⊆I

⊕
J

A
)
∼= colim

J⊆I
Λ∗
(⊕

J

A
)
∼= colim

J⊆I

⊗
J

Λ∗(A),

where the colimit is taken over finite subsets J of I. For any finite set J , the canonical map⊗
J

Λ∗(Z) −→
⊗
J

Λ∗(Q)

is injective by Lemma A.4 and the natural isomorphisms (A.2). Thus (A.1) is also injective since the
colimit on the right-hand side of (A.3), for A = Z or A = Q, is taken over a direct system in which all
maps are inclusions of direct summands. �
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[vK23] B. von Kerékjártó. Vorlesungen über Topologie I, volume 8. Springer, Berlin, 1923.
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