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Abstract. For any infinite-type surface S, a natural question is whether the homology of its mapping

class group contains any non-trivial classes that are supported on (i) a compact subsurface or (ii) a finite-

type subsurface. Our purpose here is to study this question, in particular giving an almost-complete
answer when the genus of S is positive (including infinite) and a partial answer when the genus of S

is zero. Our methods involve the notion of shiftable subsurfaces as well as homological stability for

mapping class groups of finite-type surfaces.

Introduction

In their seminal work [MW07], Madsen and Weiss calculated the stable homology of the mapping
class groups of compact, connected, orientable surfaces, in particular confirming the Mumford conjecture
[Mum83]. Let L denote the Loch Ness monster surface, the unique infinite-genus surface with one end and
no boundary, and write Mapc(L) for the subgroup of the mapping class group Map(L) = π0(Homeo(L))
of elements admitting compactly-supported representatives. Rationally, the Madsen–Weiss theorem has
the following consequence.

Theorem ([MW07]). H∗(Mapc(L);Q) ∼= Q[κ1, κ2, . . .], where κi is the Miller–Morita–Mumford class of
degree 2i.

Recently, much progress has been made towards calculating the homology of mapping class groups
of infinite-type surfaces [APV20, Dom22, PW24, PW, MT]. In particular, for the Loch Ness monster
surface L, the authors showed in [PW24, Proposition 5.3] that H∗(Map(L);Z) is uncountable in every
positive degree. The proof is constructive, but the (uncountably many) homology classes constructed do
not have compact support. It is therefore natural to wonder whether H∗(Map(L);Z) contains any (non-
zero) classes with compact support, in other words, whether the map H∗(Mapc(L);Z) → H∗(Map(L);Z)
induced by the inclusion Mapc(L) ⊂ Map(L) has non-trivial image. In particular, does the dual class κ∗i
of any Miller–Morita–Mumford class κi survive in H∗(Map(L);Q)?

Theorem A. For any field K, the map H∗(Mapc(L);K) → H∗(Map(L);K) is zero in positive degrees.
In particular, for K = Q, all dual Miller–Morita–Mumford classes κ∗i are sent to zero in H∗(Map(L);Q).

We do not know whether this result remains true if the field K is replaced by Z (see Remark 0.12).

The general questions. In general, for any (connected, second-countable) infinite-type surface S with
∂S = ∅, we study the following two questions about its mapping class group Map(S) = π0(Homeo(S)):

Question. Does Map(S) contain non-zero classes in the image of H∗(Map(Σ)) → H∗(Map(S)) for
(I) some compact subsurface Σ ⊂ S?

(III) some properly-embedded finite-type subsurface Σ ⊂ S?

The assumption in (III) that Σ ⊂ S is properly embedded is necessary for there to be a well-defined
induced map Map(Σ) → Map(S) given by extending by the identity; see Lemma 2.2.

As the numbering suggests, there is in fact another intermediate question between (I) and (III). To
see this, we first discuss some subgroups of Map(S) as well as some colimit groups mapping into it.

Definition 0.1. Let Mapc(S) ⊆ Map(S) = π0(Homeo(S)) denote the subgroup of mapping classes that

may be represented by a homeomorphism φ whose support supp(φ) = {p ∈ S | φ(p) ̸= p} ⊆ S is compact.
Similarly, define Mapf (S) ⊆ Map(S) to be the subgroup of mapping classes that may be represented
by a homeomorphism φ whose support is contained in a properly-embedded finite-type subsurface of S,
namely a subsurface of S that is closed as a subset and whose fundamental group is finitely generated.
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Definition 0.2. Let us denote by C(S) ⊆ F(S) the posets of compact subsurfaces of S and of properly-
embedded finite-type subsurfaces of S, ordered by inclusion. For a finite-type surface Σ, let us write
PMap(Σ) for the subgroup of elements of Map(Σ) that fix the punctures of Σ pointwise. (This is an
index-p! subgroup if Σ has p punctures.) Define

MapC(S) := colim
Σ∈C(S)

(Map(Σ))

MapF(S) := colim
Σ∈F(S)

(Map(Σ))

PMapF(S) := colim
Σ∈F(S)

(PMap(Σ)).

Notice that the analogous PMapC(S) is simply MapC(S) again, since compact surfaces have no punctures.

There are natural homomorphisms

(0.1) MapC(S) −→ PMapF(S) −→ MapF(S) −→ Map(S)

induced by the inclusion of posets C(S) ⊆ F(S), the inclusions PMap(Σ) ⊆ Map(Σ) and the homomor-
phisms Map(Σ) → Map(S) given by extending homeomorphisms of Σ by the identity on S ∖ Σ.

Since homology commutes with colimits, Questions (I) and (III) above may be reformulated as follows,
where we have added one intermediate question.

Question. Is there a non-zero element of H∗(Map(S)) in the image of the map on homology induced by
(I) MapC(S) → Map(S)?
(II) PMapF(S) → Map(S)?
(III) MapF(S) → Map(S)?

Questions (II) and (III) may be reformulated in terms of inclusions of subgroups of Map(S) as follows
(see Definition 0.6 below for the notation pS).

Lemma 0.3 (Lemma 2.3). The homomorphisms (0.1) have the following properties:
• PMapF(S) → MapF(S) → Map(S) are injective with images Mapc(S) ⊆ Mapf (S) ⊂ Map(S).
• MapC(S) → PMapF(S) is a central extension whose kernel is free abelian of rank pS.

In particular, Questions (II) and (III) are equivalent to:
(II) Does the inclusion Mapc(S) ⊂ Map(S) induce a non-zero map on homology?
(III) Does the inclusion Mapf (S) ⊂ Map(S) induce a non-zero map on homology?

Moreover, if pS = 0 then Questions (I) and (II) are equivalent.

Since the natural maps into Map(S) factor as in (0.1), we immediately observe:

Remark 0.4. A positive answer to Question (I) implies a positive answer to Question (II), which implies
a positive answer to Question (III). However, a positive answer to Question (II) does not necessarily imply
a positive answer to Question (I), as the surjective map MapC(S) → PMapF(S) does not necessarily
induce surjective maps on homology in degrees greater than 1.

Remark 0.5. Theorem A says that (with field coefficients) the answer to Question (II) is negative for
the surface S = L. It follows by Remark 0.4 that the answer to Question (I) is also negative for S = L.
In fact, since L has no punctures (pS = 0), Questions (I) and (II) are equivalent by Lemma 0.3.

Our answers to Questions (I)–(III) depend on the genus gS and the number of punctures pS of S.

Definition 0.6 (Punctures). Consider the space Ends(S) of ends of S, together with its closed subspace
Endsnp(S) of non-planar ends. A puncture of S is an isolated point of the space Ends(S)∖ Endsnp(S);
in other words, it is an end of S that is not accumulated by genus and is not a limit points of other ends
of S. Denote the set of punctures by P(S). Since the space Ends(S)∖ Endsnp(S) is separable, this set
is at most countable and we write pS ∈ {0, 1, 2, 3, . . . ,∞} for its cardinality.

Notation 0.7. For integers g, n, b ⩾ 0, we write Σn
g,b for the unique connected, finite-type, orientable

surface of genus g with b boundary components and n punctures. If n = 0 we elide it from the notation,
and similarly for b.

Definition 0.8 (Genus). Let S be any surface. Its genus gS is the maximum integer g ⩾ 0 for which
there is an embedding Σg,1 ↪→ S, if there is such a maximum. Otherwise, we set gS = ∞.

Theorem (Theorems B–F). Let S be any connected, second countable, infinite-type surface with ∂S = ∅.
Answers to Questions (I)–(III) for S are given in Table I on page 3.
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pS = ∞ 4 ⩽ pS <∞ pS ∈ {2, 3} pS = 1 pS = 0

gS = ∞
∃ mixed end: ✗✗✗

∄ mixed end: ✗??
✗✓✓ ✗✗✗

0 < gS <∞ ✓✓✓

gS = 0

Ends(S) is TD⩾4: ✓✓✓

Ends(S) ∼= [0, ωα]: ✗✗✗

otherwise: ???

✓✓✓ ??✓ ✗✗✗

Table I. Summary of the results of Theorems B–F answering Questions (I)–(III). See
Notation 0.9 for terminology.

Notation 0.9. In Table I, a triple ABC with A,B,C ∈ {✓,✗, ?} encodes the answers to Questions (I),
(II), (III) in that order. The answer to Question (I) is positive if A = ✓, negative if A = ✗ and unknown
(to us) if A = ?, and similarly for Questions (II) and (III) with A replaced by B and C respectively. One
caveat is that (almost) all negative answers assume field coefficients for homology, whereas all positive
answers assume integral coefficients for homology; see Theorems B–F for the precise statements. The
other notation in Table I is explained in Definitions 0.6, 0.8, 0.10, 0.16 and Notation 0.14.

In the remainder of the introduction, we explain the results summarised in Table I in more detail.

Results in infinite genus. We begin with the infinite-genus (gS = ∞) setting, for which we need
one preliminary definition. If both gS and pS are infinite, then S must have at least one end that is
accumulated by genus (every neighbourhood of the end has infinite genus) and at least one end that is
accumulated by punctures (every neighbourhood of the end has infinitely many punctures).

Definition 0.10 (Mixed end). We say that S has a mixed end if it has an end that is accumulated by
both genus and punctures.

Having a mixed end implies, of course, that gS = pS = ∞. The converse is not true, however: if we
remove from the Loch Ness monster surface a subset homeomorphic to N+, the one-point compactification
of N, then the resulting surface has gS = pS = ∞ but no mixed ends.

Generalising Theorem A for the Loch Ness monster surface, we have the following result.

Theorem B. Suppose that gS = ∞.
(1) The answer to Question (I) is negative for homology with any field coefficients.

For Questions (II) and (III):
(2) If pS = 0 then Mapf (S) ⊂ Map(S) induces the zero map on homology with field coefficients.
(3) If 0 < pS <∞ then then Mapc(S) ⊂ Map(S) induces a non-zero map on integral homology.
(4) If pS = ∞ and S has a mixed end, then Mapf (S) ⊂ Map(S) induces the zero map on homology

with field coefficients.

In the context of Questions (II) and (III), our methods do not apply if gS = pS = ∞ but S does not
have a mixed end, so in this case remains open for Questions (II) and (III).

Remark 0.11. In case (3) of Theorem B, we prove something stronger than simply the statement that
the induced map H∗(Mapc(S);Z) → H∗(Map(S);Z) is non-zero: its image contains a Z summand in
every even degree; see Proposition 8.1.

Remark 0.12. In the cases where we prove, in Theorem B, that a group homomorphism induces the zero
map on homology with all field coefficients, it does not automatically follow that the same statement
is also true with integral coefficients. Indeed it is possible in general for homomorphisms G → H to
induce trivial maps on homology with all field coefficients but not with integral coefficients. An example
is given by any non-trivial homomorphism Z → Q/Z: it is non-trivial on H1(−;Z) by construction, but
trivial on homology with field coefficients because Q/Z⊗Z K = 0 for any field K. See also Remark 3.13
for why we require field coefficients in the proof.

Results in finite positive genus. In the case when S has finite but positive genus, the answers to
Questions (I)–(III) are easy to state.
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Theorem C. Suppose that 0 < gS <∞. Then the integral homology H∗(Map(S);Z) contains non-zero
classes that are supported on Map(Σ) for compact Σ ⊂ S. In other words, with integral coefficients, the
answer to Question (I) is positive; hence the answers to Questions (II) and (III) are also positive.

Results in genus zero. When S has genus zero, its homeomorphism type is completely determined
by its space of ends Ends(S), which may be any space that is homeomorphic to a closed subset of the
Cantor set C (see §1 for more details). In this case punctures of S are simply isolated points of Ends(S).
If the set P(S) of punctures is finite, then Ends(S) is homeomorphic to the topological disjoint union
C ⊔ P(S), where P(S) has the discrete topology (see §1.2). There are therefore two cases:

1. Ends(S) is homeomorphic to C ⊔ {1, . . . , p} for some non-negative integer p = pS <∞;
2. Ends(S) has (countably) infinitely many isolated points, i.e. pS = ∞.

Case 1. In the first case (finitely many punctures) we have the following.

Theorem D. Suppose that gS = 0 and 0 ⩽ pS <∞. Then we have:
(1) If pS ∈ {0, 1} then Mapf (S) ⊂ Map(S) induces the zero map on homology with any coefficients.
(2) If pS ⩾ 2 then Mapf (S) ⊂ Map(S) induces a non-zero map on homology with integral coefficients.
(3) If pS ⩾ 4 then H∗(Map(S);Z) contains non-zero classes supported on a compact Σ ⊂ S.

In short, using the terminology of Notation 0.9 and the implications of Remark 0.4, the answers to
Questions (I)–(III) in the three cases of Theorem D are ✗✗✗, ??✓and ✓✓✓respectively. The two settings
not covered by Theorem D are Questions (I) and (II) when gS = 0 and pS ∈ {2, 3}.

Case 2. In the second case (infinitely many punctures), our results are much more partial, and the
answers to Questions (I)–(III) appear to depend very subtly on the structure of Ends(S), which may
be very complicated (in particular, there are uncountably many different homeomorphism types that
Ends(S) may have in the case pS = ∞). To state our results, we need some preliminary definitions and
recollections.

Definition 0.13. A subset A of a space X is topologically distinguished if one can detect whether a
point x ∈ X lies in A by looking at an arbitrarily small neighbourhood of x in X. Formally, this means
that if a ∈ A and x ∈ X ∖ A and U, V are neighbourhoods of a, x in X respectively, then the based
spaces (U, a) and (V, x) are not homeomorphic.

Notation 0.14. Write ω for the first infinite ordinal (the ordinal of N) and denote by [0, β] the closed
ordinal interval below β, i.e. the ordinal β + 1 given the order topology. See §1.3 for more details.

The space Ends(S) is compact and Hausdorff, so if it is in addition countable (and non-empty), then
it must be homeomorphic to the disjoint union of n copies of [0, ωα] for a (unique) positive integer n and
countable ordinal α. This is a theorem of Mazurkiewicz and Sierpiński [MS20], recalled as Theorem 1.8
in §1.3 below.

Notation 0.15. For a positive integer n and countable ordinal α, write O(n, α) for the topological
disjoint union of n copies of the space [0, ωα].

The discussion above implies that, if Ends(S) is countable and non-empty, then it is homeomorphic
to O(n, α) for a unique pair (n, α).

Definition 0.16. For an integer n ⩾ 0, we say that a space X is TD⩾n if it has a finite, topologically
distinguished subset A ⊆ X of cardinality at least n.

Example 0.17. For example, the maximal element ωα ∈ [0, ωα] is topologically distinguished (it is the
unique point of Cantor-Bendixson rank α+ 1), so it follows that O(n, α) is TD⩾m for any m ⩽ n.

Our first result in the setting (gS , pS) = (0,∞) is the following, in which the end-space Ends(S) may
be either countable or uncountable.

Theorem E. Suppose that gS = 0 and that Ends(S) is TD⩾4. Then H∗(Map(S);Z) contains non-zero
classes supported on a compact Σ ⊂ S.

If Ends(S) is uncountable (and gS = 0) we do not have any further answers to Questions (I)–(III).
However, if Ends(S) is countable – and is therefore homeomorphic to O(n, α) for some n and α by the
discussion above – we may go further. Let us therefore assume that gS = 0 and Ends(S) ∼= O(n, α) for
a positive integer n and countable ordinal α. We first observe that, if n ⩾ 4, Questions (I)–(III) are
all answered positively by Theorem E, since O(n, α) is TD⩾4 by Example 0.17. It therefore remains to
consider n ∈ {1, 2, 3}. Our second result in the setting (gS , pS) = (0,∞) provides the (opposite) answer
in the case n = 1.

4



Theorem F. Suppose that gS = 0 and that Ends(S) ∼= O(1, α) = [0, ωα]. Then Mapf (S) ⊂ Map(S)
induces the zero map on homology with any field coefficients.

The special case when α = 1 corresponds to the flute surface, which is the plane minus a countable
discrete subset (for example it may be modelled concretely as R2 ∖ Z2). Theorem F therefore includes
the following special case, which we highlight as a corollary.

Corollary G. For any field K, the homology H∗(Map(R2 ∖ Z2);K) does not contain any non-zero
classes that admit compact support, or even support of finite type.

By contrast, we note that the (integral) homology of Map(R2 ∖ Z2) is very large: it is uncountable
in every positive degree, by [PW24, Theorem B]. More generally, [PW24, Theorem B] implies the same
statement about the integral homology of Map(S) whenever gS = 0 and Ends(S) ∼= O(1, α) for a
countable successor ordinal α. (Whether α is a successor or a limit ordinal is an important qualitative
difference in the topology of S, and indeed the proof of Theorem F is different in these two cases.)

The remaining cases (in the setting (gS , pS) = (0,∞) and for countable Ends(S)) are n ∈ {2, 3}. For
these two cases, we believe that the case n = 2 will behave as in Theorem F whereas the case n = 3 will
behave as in Theorem E.

Outline. After recollections about infinite-type surfaces and their end-spaces in §1, the organisation of
the proofs of Theorems B–F is explained in §2. We prove our vanishing results in §3–§6, with the core
argument in most cases being Proposition 3.6 in §3, and we prove our non-vanishing results in §7–§8.
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and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2798, within PNCDI III.
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when he was visiting ICMAT and he thanks Javier Aramayona and his group for the warm hospitality.
He also thanks Francesco Fournier-Facio for discussions related to acyclic spaces and suggesting that
Proposition 3.6 might be proved using [BDH80, Proposition 4.1] which leads to Remark 3.7. We thank
Néstor Coĺın Hernández, George Raptis and Rita Jiménez Rolland for each independently asking us the
question of whether the dual Miller–Morita–Mumford classes vanish in the homology of the mapping
class group of the Loch Ness monster surface. By Theorem A, the answer to their question is yes.

1. Infinite-type surfaces and their end-spaces

1.1. Surfaces. Throughout this paper, all surfaces are assumed to be second countable, connected,
orientable and to have compact boundary. A surface S has finite type if its fundamental group is finitely
generated; otherwise it has infinite type. The classification of surfaces is due to von Kerékjártó [vK23]
and Richards [Ric63], and crucially involves the end-space Ends(S) of a surface S, which is by definition
the boundary of the Freudenthal compactification S of S (see for example [PW24, §2.1] for more details)
and is always homeomorphic to a closed subset of the Cantor set C. An end of S is planar if it has a
neighbourhood in S that embeds into the plane; otherwise it is non-planar. The (closed) subspace of
non-planar ends is denoted by Endsnp(S) ⊆ Ends(S).

Theorem 1.1 ([Ric63, Theorems 1 and 2]). Let S1, S2 be two surfaces of genera g1, g2 ∈ N ∪ {∞} with
b1, b2 ∈ N boundary components respectively. They are homeomorphic if and only if g1 = g2, b1 = b2 and
there is a homeomorphism of pairs of spaces

(Ends(S1),Endsnp(S1)) ∼= (Ends(S2),Endsnp(S2)).

Conversely, given any tuple (g, b, Y,X), where g ∈ N ∪ {∞}, b ∈ N and X ⊆ Y ⊆ C is a nested pair of
closed subsets of the Cantor set C, subject to the condition that g = ∞ if and only if X ̸= ∅, there exists
a surface S of genus g with b boundary components such that (Ends(S),Endsnp(S)) ∼= (Y,X).

1.2. End-spaces. By Theorem 1.1, the possible end-spaces of surfaces are precisely the closed subsets
of the Cantor set C; this motivates the following terminology.

Definition 1.2. A space X is an end-space if it is homeomorphic to a closed subset of the Cantor set C.

An important result about the structure of end-spaces is the Cantor-Bendixson theorem, which we
recall next.
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Definition 1.3. Let X be any space. The Cantor-Bendixson filtration of X is the transfinite descending
filtration Xα of X defined by X0 = X, Xα+1 is obtained from Xα by discarding all isolated points (in
other words Xα+1 is the derived set of Xα) and Xλ =

⋂
α<λXα for limit ordinals λ. For cardinality

reasons, there is always some α such that Xα+1 = Xα, in other words Xα has no isolated points. The
Cantor-Bendixson rank |X|CB of a space X is the smallest α such that Xα+1 = Xα; this subspace is
called the perfect kernel κ(X) of X. For a point x ∈ X ∖ κ(X), its Cantor-Bendixson rank CBX(x) is
the smallest α for which x /∈ Xα. Thus we have |X|CB = sup{CBX(x) | x ∈ X ∖ κ(X)}.

Theorem 1.4 (Cantor-Bendixson). If X is a Polish space, i.e. it is separable and completely metrisable,
then its Cantor-Bendixson rank |X|CB is countable.

This applies in particular to all end-spaces, since they are Polish spaces. An immediate corollary is
the following important structurul result about uncountable end-spaces.

Corollary 1.5. Every uncountable end-space X ⊆ C has a subspace homeomorphic to C whose comple-
ment in X is countable.

Proof. At each step of the Cantor-Bendixson filtration of X only countably many points are removed,
so Theorem 1.4 implies that X ∖ κ(X) is countable. Thus κ(X) is non-empty, since X is uncountable.
So κ(X) is a non-empty perfect subspace of C, which implies that it is homeomorphic to C. □

In particular, if X is uncountable and has only finitely many isolated points, it is homeomorphic to
C ⊔ {1, . . . , p} for some non-negative integer p.

1.3. Countable end-spaces and ordinal intervals. Despite the structural result of Corollary 1.5,
the structure of uncountable end-spaces may still be very complicated. In contrast, countable end-spaces
are completely classified. It follows directly from the definitions that countable end-spaces are the same
as countable compact Hausdorff spaces, and the latter are classified in terms of certain ordinal spaces.
We refer to [Sie58] or [Jec03] for the basic notions of ordinals and ordinal arithmetic.

Definition 1.6. For an ordinal α, the closed ordinal interval [0, α] is the ordinal α+1 = {0, 1, 2, . . . , α}
equipped with the order topology. For an ordinal α and positive integer n, we write O(n, α) for the
ordinal interval [0, ωα.n], equivalently the disjoint union of n copies of the ordinal interval [0, ωα].

Remark 1.7. The spaces O(n, α) are pairwise non-homeomorphic: they may be distinguished by the
property that O(n, α) has exactly n points of Cantor-Bendixson rank α + 1 and no points of higher
Cantor-Bendixson rank (so its Cantor-Bendixson rank as a space is also equal to α+ 1).

Closed ordinal intervals are compact and Hausdorff. Conversely, we have:

Theorem 1.8 ([MS20]). Every countable compact Hausdorff space is homeomorphic to O(n, α) for some
(necessarily unique) positive integer n and countable ordinal α.

Example 1.9. Any ordinal α has a unique Cantor normal form α = ωβ1 .n1 + · · ·+ ωβk .nk for positive
integers n1, . . . , nk and ordinals β1 > · · · > βk. In this case we have [0, α] ∼= O(n1, β1).

This classification, together with the Cantor-Bendixson filtration, may be used to calculate the results
of various operations on closed ordinal intervals. We record here several of these that will be used later.

Lemma 1.10. We have the following identifications, where all ordinals are assumed to be countable.
• Let α1, . . . , αn be a finite sequence of ordinals with unique maximum α1. Then the disjoint union
[0, ωα1 ] ⊔ · · · ⊔ [0, ωαn ] is homeomorphic to [0, ωα1 ].

• The one-point compactification of the disjoint union of countably infinitely many copies of [0, ωα]
is homeomorphic to [0, ωα+1].

• Let λ be a limit ordinal and let (αβ)β<δ be a δ-indexed sequence of smaller ordinals, for another
ordinal δ, whose supremum is λ. Then the one-point compactification of the disjoint union over
all β < δ of [0, ωαβ ] is homeomorphic to [0, ωλ].

Remark 1.11. Recall that the cofinality of an ordinal α is the smallest ordinal δ that admits a strictly
increasing map δ → α whose image is cofinal. If λ is a countable limit ordinal, its cofinality is ω = N, so
in this case there always exists an ordinary (N-indexed) sequence as in the third point of Lemma 1.10. We
note however that the third point of Lemma 1.10 does not require the sequence to be strictly increasing.
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Proof of Lemma 1.10. In each case, the space under consideration is evidently compact, Hausdorff and
countable; we shall study its Cantor-Bendixson filtration and then apply Theorem 1.8. In the first case,
since α1 is the unique maximum of α1, . . . , αn, the α1-th term of the Cantor-Bendixson filtration is the
single point ωα1 ∈ [0, ωα1 ]. Thus the result follows from Theorem 1.8 and the characterisation of the
spaces O(n, α) in Remark 1.7.

In the second case, the α-th term of the Cantor-Bendixson filtration is the disjoint union of countably
infinitely many copies of {ωα} together with the point at infinity. The point at infinity is therefore the
unique point of (maximal) Cantor-Bendixson rank α+ 2.

In the third case, each component [0, ωαβ ] of the disjoint union vanishes before the λ-th term of the
Cantor-Bendixson filtration, since λ > αβ . It will therefore suffice to prove that the point at infinity
of the one-point compactification does lie in the λ-th term of the Cantor-Bendixson filtration, since it
will then follow that it is the unique point of (maximal) Cantor-Bendixson rank λ + 1. Suppose for a
contradiction that the point at infinity of the one-point compactification does not lie in the λ-th term of
the Cantor-Bendixson filtration; it must therefore vanish when passing from the γ-th term to the (γ+1)-
st term of the Cantor-Bendixson filtration, for some γ < λ. This means that it is an isolated point in
the γ-th term of the Cantor-Bendixson filtration. By definition of the one-point compactification, this
can only occur if the space that it is compactifying is already compact, which means that all but finitely
many of the components [0, ωαβ ] of the disjoint union must have vanished already by the γ-th term of
the Cantor-Bendixson filtration. However, the component [0, ωαβ ] vanishes precisely at the (αβ + 1)-st
term, so this means that all but finitely many of the αβ are smaller than γ. But this contradicts the
assumption that λ is the supremum of the αβ . □

2. Preliminaries on finite-type and compact support; organisation of the proofs

For definiteness, let us first recall the definition of the mapping class group of a surface, as well as a
basic construction that says essentially that it is functorial with respect to proper inclusions of surfaces.

Definition 2.1. For a surface S, its mapping class group is Map(S) = π0(Homeo∂(S)), the group of
isotopy classes of homeomorphisms of S that restrict to the identity on ∂S.

Lemma 2.2. If Σ ⊆ S is a properly-embedded subsurface, there is a well-defined homomorphism

(2.1) ι : Map(Σ) −→ Map(S)

given by extending homeomorphisms of Σ by the identity on Map(S).

Proof. To see that this is well-defined one just has to check that any homeomorphism representing an
element of Map(Σ) is the identity on its topological boundary as a subset of S, which is Σ ∩ (S ∖ Σ).
The assumption that Σ ⊆ S is a subsurface that is properly embedded – equivalently: closed as a subset
of S – implies that Σ ∩ (S ∖ Σ) is contained in ∂Σ, the boundary of Σ as an abstract surface. But by
Definition 2.1, homeomorphisms representing elements of Map(Σ) restrict to the identity on ∂Σ, hence
in particular on Σ ∩ (S ∖ Σ). □

Our first goal in this section is to prove Lemma 0.3, which we recall here.

Lemma 2.3 (Lemma 0.3). The homomorphisms (0.1) have the following properties:
• PMapF(S) → MapF(S) → Map(S) are injective with images Mapc(S) ⊆ Mapf (S) ⊂ Map(S).
• MapC(S) → PMapF(S) is a central extension whose kernel is free abelian of rank pS.

(The remaining statements of Lemma 0.3 follow immediately from these ones.) We will deduce this
lemma from the following fact, which is well-known in the finite-type setting and generalises with no
change to the infinite-type setting.

Proposition 2.4. Let S be an infinite-type surface with ∂S = ∅ and Σ ⊂ S a properly-embedded finite-
type subsurface. Assume that Σ is not an annulus and that S is obtained from Σ by attaching S1, . . . , Sb

along the boundary-components C1, . . . , Cb of Σ, where each ∂Si is a circle and none of the Si is a disc.
Then the kernel of (2.1) is the central subgroup of Map(Σ) freely generated by those Dehn twists TCi

for
which Si is a once-punctured disc.

Proof. If S were instead a finite-type surface then this would be precisely [FM11, Theorem 3.18], which
is proven using the Alexander method. In our setting, exactly the same proof goes through, using the
fact that the Alexander method is valid also for infinite-type surfaces, as proven in [HHMV19]. □
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Proof of Lemma 2.3. The statement that PMapF(S) → MapF(S) is injective is obvious, since PMap(Σ) ⊂
Map(Σ) is injective and we are taking a colimit over the same poset F(S) on each side.

To prove that MapF(S) → Map(S) is injective it will suffice, by general properties of colimits, to
show that there is a cofinal family of Σ ∈ F(S) such that Map(Σ) → Map(S) is injective. Let Σ ⊂ S be
any properly-embedded finite-type subsurface with b boundary-components C1, . . . , Cb. We may enlarge
it if necessary to ensure that each Ci is a separating curve of S. Denote the connected components of
(the closure of) S ∖ Σ by S1, . . . , Sb. We now enlarge Σ further by taking its union with those Si that
are of finite type (if any). Finally, we may enlarge Σ if necessary to ensure that it is not an annulus,
by increasing its genus (if S has positive genus) or increasing b (if S has genus zero, in which case
it must have infinitely many ends). We are now in the setting of Proposition 2.4, which implies that
Map(Σ) → Map(S) is injective since none of the Si is a once-punctured disc (indeed, we have ensured
that none of the Si is of finite type). By construction, the Σ ∈ F(S) for which we have proven this form
a cofinal family in F(S), so the result follows.

It is clear by construction that we have image(MapF(S) → Map(S)) = Mapf (S) and that

(2.2) image(PMapF(S) → Map(S)) ⊇ Mapc(S)

since compact surfaces are of finite type. What is slightly less clear is the converse of the inclusion (2.2).
To see this, suppose that φ ∈ Homeo(S) represents an element in the image of PMapF(S) → Map(S), so
we may assume that it has support contained in some finite-type subsurface Σ ⊂ S and the punctures
of Σ are fixed pointwise by φ. Denote by Σ′ ⊂ Σ a compact subsurface obtained by removing a small
open annular neighbourhood of each puncture of Σ. Since φ fixes the punctures of Σ pointwise, we may
modify it by an isotopy to have support contained in Σ′, and hence [φ] ∈ Mapc(S). This completes the
proof of the first point of the lemma.

By general properties of colimits, in order to prove that MapC(S) → PMapF(S) is surjective it suffices
to prove that, for any Σ ∈ F(S), there exists Σ′ ∈ C(S) with Σ′ ⊆ Σ such that Map(Σ′) → PMap(Σ) is
surjective. The argument in the previous paragraph proves exactly this.

To complete the proof of the second point of the lemma, it now just remains to identify the kernel of
MapC(S) → PMapF(S). Since we already know that PMapF(S) → Map(S) is injective, this is the same
as the kernel of MapC(S) → Map(S). To identify this, we use Proposition 2.4 again. Let Σ ⊂ S be any
compact subsurface with b boundary-components C1, . . . , Cb. As before, we may enlarge it if necessary
to ensure that each Ci is a separating curve of S and denote the connected components of (the closure
of) S ∖Σ by S1, . . . , Sb. We may enlarge Σ by taking its union with those Si that are compact (if any),
and ensure that Σ is not an annulus (as before). After doing this, none of the Si are discs (since we have
arranged that none of them are compact) so we are in the setting of Proposition 2.4, which tells us that
the kernel of Map(Σ) → Map(S) is the central subgroup freely generated by those Dehn twists TCi for
which Si is a once-punctured disc. Taking colimits, it follows that the kernel of MapC(S) → Map(S) is
the central subgroup freely generated by all colimits of Dehn twists of this form that arise as we allow
the compact subsurface Σ ⊂ S to vary. There is exactly one such colimit of Dehn twists in MapC(S)
for each puncture p of S, represented by the family of Dehn twists around Cϵ for ϵ > 0, where Cϵ is the
boundary component surrounding p of a compact subsurface Σ ⊂ S that is locally given by removing an
open annulus of radius ϵ from around p. Thus the kernel is a central subgroup with a basis in one-to-one
correspondence with the punctures of S. □

Remark 2.5. The group MapC(S) may be a little counterintuitive since it is not a subgroup of a
mapping class group in general. As an illustration, we note that it makes sense to consider it also when
S is finite-type, for example the once-punctured disc S = {x ∈ R2 | 0 < |x| ⩽ 1}. The family of annuli
Aϵ = {x ∈ R2 | ϵ ⩽ |x| ⩽ 1} for ϵ ∈ (0, 1) is cofinal in C(S), each Map(Aϵ) is infinite cyclic and the
homomorphisms Map(Aϵ) → Map(Aϵ′) for ϵ ⩾ ϵ′ are isomorphisms, so it follows that the colimit MapC(S)
is also infinite cyclic, although Map(S) is trivial. In this case a generator of MapC(S) is represented (for
example) by the formal colimit of the Dehn twists around the inner boundary components of the annuli
Aϵ, just like at the end of the proof above.

Remark 2.6. As a complement to Lemma 2.3 we discuss briefly the difference between Mapc(S) and
Mapf (S). If φ is a self-homeomorphism of S, its induced action on Ends(S) sends the subset P(S) of
punctures (cf. Definition 0.6 for this notation) onto itself. If φ has support contained in a finite-type
subsurface, the induced permutation of P(S) lies in the subgroup Bijf (P(S)) ⊆ Bij(P(S)) of bijections
with finite support. If the induced permutation is trivial, we may shrink the support of φ outside of an
open neighbourhood of the punctures of S, which is then compact, so in this case [φ] lies in Mapc(S).
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Putting this together, we have a short exact sequence

(2.3) 1 → Mapc(S) −→ Mapf (S) −→ Bijf (P(S)) → 1.

Alternatively, this may be deduced as a corollary of Lemma 2.3. For each properly-embedded finite-type
Σ ⊂ S we have a short exact sequence 1 → PMap(Σ) → Map(Σ) → Bij(P(Σ)) → 1; taking the colimit
over Σ ∈ F(S) and applying the first part of Lemma 2.3, we obtain (2.3).

We have the following observation, part of which was already stated in Lemma 0.3.

Corollary 2.7. We have the following coincidences of questions.
• If pS ∈ {0, 1} then Mapc(S) = Mapf (S) and so Questions (II) and (III) coincide.
• If pS = 0 then MapC(S) = PMapF(S) and so Questions (I), (II) and (III) all coincide.

Proof. The first statement follows from the short exact sequence (2.3) and the second statement follows
from the second point of Lemma 2.3 (and the first statement). □

Organisation of the proofs. We finish this section by briefly describing the overall organisation of
the proofs of Theorems A–F, which occupy §3–§8. All of the vanishing results are proven in §3–§6 and
all of the non-vanishing results are proven in §7–§8, organised as follows:

§3 — Theorem A
§4 — Theorem B, except for part B(3)
§5 — Theorem F – and hence in particular Corollary G
§6 — Theorem D(1)
§7 — Most of our non-vanishing results, namely:

§7.1 — Theorem C
§7.2 — Theorem D(2)
§7.3 — Theorem D(3) and – more generally – Theorem E

§8 — Our last non-vanishing result – Theorem B(3) – whose proof has a different flavour from §7.

3. Grid surfaces and shiftable subsurfaces

Most of our vanishing results, including Theorem A, use the idea of grid surfaces. In this section, we
introduce this notion, prove the key Proposition 3.6 and use it to prove Theorem A.

Remark 3.1. The proof of Proposition 3.6 uses an infinite iteration argument that goes back to [Mat71],
who applied it to the group Homeoc(Rd) of compactly-supported homeomorphisms of Euclidean space.
The argument was axiomatised by [BDH80] into the concept of mitotic groups, which are always acyclic.
These are related to the concept of the suspension of a group, and the argument is therefore sometimes
called a suspension argument. The argument was further generalised in [Ber89] to binate groups (which
include all mitotic groups), which were also discovered independently (under the name pseudo-mitotic
groups) by [Var85]. A particular class of binate groups is the class of dissipated groups [Ber02]. See
[FFLM23, Section 3] for further information.

In each of those cases, the argument aims to prove the vanishing of the homology of a group, whereas,
in our case, we aim to prove that a group homomorphism induces the zero map on homology. This is a
little more subtle and requires a kind of “two-dimensional” infinite iteration, which we formalise in the
notion of grid surfaces (Definition 3.2). Another effect of this subtlety is that we can only prove our
vanishing results on homology with coefficients in a field ; see Remark 3.13 for why this is. We note that
one could also use [Var85, Proposition 1.4] to prove Proposition 3.6; see Remark 3.7.

Definition 3.2. Let Σ be a surface with one boundary component. The associated grid surface Gr(Σ)
is constructed as follows:

• Glue an annulus to ∂Σ and denote the resulting surface by Σ̄. Identify ∂Σ̄ with ∂[0, 1]2 ⊂ R2.
• Define Gr(Σ) to be the quotient of Z×N× Σ̄ that glues the boundaries Z×N× ∂Σ̄ together in
a half-plane grid. See Figure 3.1.

• Similarly, define GrZ(Σ) to be the quotient of Z× Z× Σ̄ that glues the boundaries Z× Z× ∂Σ̄
together in a full-plane grid.

Notation 3.3. In the above setting, for a subset A ⊆ N, we write GrA(Σ) for the subsurface of Gr(Σ)
given by the image of Z×A× Σ̄. For example, see Figure 3.1 for illustrations of Gr[n,∞)(Σ) =: Gr⩾n(Σ),
Gr{n}(Σ) =: Grn(Σ) and Gr[0,n](Σ).

We also write Σi,j for the (i, j)th copy of Σ in Gr(Σ). Unless otherwise specified, we shall always
identify Σ with Σ0,0 ⊂ Gr(Σ).
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Figure 3.1. The grid surface Gr(Σ) together with subsurfaces GrA(Σ) for various sub-
sets A ⊆ N. Each circle contains a copy of Σ; the region between each circle and the
boundary of the corresponding square is the annulus in the first point in Definition 3.2.

Figure 3.2. The infinite strip surface Str(Σ) (Definition 3.8).

Remark 3.4. The meaning of the notation Σi,j explained in Notation 3.3 is used only in the present
section, and so it should not cause confusion with the more standard meaning of Σg,b to denote the
connected, compact, orientable surface of genus g with b boundary-components, which is its meaning in
the other sections of this paper.

Remark 3.5. The mapping class group of the surface (with non-compact boundary) Gr(Σ) is defined in
the usual way, as the group of isotopy classes of homeomorphisms that preserve the boundary pointwise.

The key technical result of this section is the following.

Proposition 3.6. For any surface Σ with one boundary component, the map

(3.1) Map(Σ) −→ Map(Gr(Σ)),

given by extending homeomorphisms by the identity, induces the zero map on homology with field coeffi-
cients in all positive degrees. Hence the same is true also for Map(Σ) → Map(GrZ(Σ)).

Remark 3.7. We give a direct proof of this proposition below. One could also prove it using the notion
of pseudo-mitosis [Var85, Definition 1.2], as follows. One first notices that the embedding Map(Σ) ↪→
Map(Gr0(Σ)) has a pseudo-mitosis. Hence, by [Var85, Proposition 1.4], it induces the zero map on
homology in degree 1 for any field coefficients. To promote this to any degree we use the self-similarity of
the grid surface. Let Str(Σ) be the strip surface in Figure 3.2, embedded as a vertical strip in Gr(Σ). Let
us take H = Map(Str(Σ)) and G = Map(Gr(Σ)) in [Var85, Proposition 1.4]; the “horizontal translation”
(modified in a neighbourhood of the boundary line so as to fix it pointwise) is then part of a pseudo-
mitosis for H ⊂ G. Taking A ⊂ H to be Map(Σ) ↪→ Map(Str(Σ)), we notice that this embedding induces
the zero map on homology in degree 1 for any field coefficients by what we showed above, since we may
factor it through the embedding Map(Σ) ↪→ Map(Gr0(Σ)) using a homeomorphism Str(Σ) ∼= Gr(Σ) (see
for example Lemma 3.9 below). Hence [Var85, Proposition 1.4] implies that the composition A ⊂ H ⊂ G,
which is the embedding Map(Σ) ↪→ Map(Gr(Σ)), induces the zero map on homology in degrees 1 and
2 with any field coefficients. Iterating this trick, we conclude inductively that Map(Σ) ↪→ Map(Gr(Σ))
induces the zero map on homology in all positive degrees with any field coefficients.

In order to apply Proposition 3.6 in examples, it will be useful to have a simpler description of Gr(Σ).
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Definition 3.8. Let Σ be a surface with one boundary component. The infinite strip surface Str(Σ) is
constructed, similarly to Definition 3.2, to be the quotient of N × Σ̄ that glues the boundaries N × ∂Σ̄
together in a one-dimensional ray. See Figure 3.2.

Clearly Str(Σ) embeds properly into Gr(Σ) (compare Figures 3.1 and 3.2). But in fact we have:

Lemma 3.9. The surfaces Str(Σ) and Gr(Σ) are homeomorphic.

Proof. Let S ⊂ Str(Σ) be the complement of a closed collar neighbourhood (this is, of course, homeomor-
phic to Str(Σ)). It will suffice to describe a proper embedding of S into Gr(Σ) such that the complement
of its image is a closed collar neighbourhood of Gr(Σ). Such a proper embedding may be constructed
easily as soon as one chooses a bijection υ : N → Z× N such that υ(n) and υ(n+ 1) are neighbours (at
ℓ1-distance 1 from each other) for every n. For example one may take the “snake bijection” that progres-
sively fills each ℓ∞-ball around (0, 0). Alternatively, the fact that Str(Σ) and Gr(Σ) are homeomorphic
may be deduced from the classification of surfaces with non-compact boundary [BM79] (although quoting
this much more general classification result is overkill here). □

Definition 3.10. A properly-embedded subsurface Σ ⊂ S is called shiftable if the inclusion Σ ⊂ S
extends to a proper embedding Str(Σ) ↪→ S.

Remark 3.11. Elsewhere, a subsurface Σ ⊂ S is sometimes called “shiftable” if there is a homeomor-
phism of S such that all of the iterated images of Σ under this homeomorphism are pairwise disjoint. It
turns out that these two definitions are equivalent, but we will not need this fact here.

Corollary 3.12. Let Σ ⊂ S be a properly-embedded subsurface and suppose that it is shiftable. Then the
natural map Map(Σ) → Map(S) induces the zero map on homology with field coefficients in all positive
degrees.

Proof. Since Σ is shiftable, the map Map(Σ) → Map(S) factors as Map(Σ) → Map(Str(Σ)) → Map(S).
Hence the result follows from Proposition 3.6 and Lemma 3.9. □

Proof of Proposition 3.6. The second statement of the proposition follows from the first statement, since
Map(Σ) → Map(GrZ(Σ)) factors through (3.1).

To prove the first statement, we first define various homomorphisms that we shall need. For m ∈ Z
and n ∈ N, let

(3.2) ψ̄m,n : Map(Σ) −→ Map(Grn(Σ))

be the homomorphism that sends [φ] ∈ Map(Σ) to the mapping class represented by the homeomorphism
of Grn(Σ) that acts by φ on Σi,n for each i ⩾ m and by the identity elsewhere. We also write

(3.3) ψm,n : Map(Σ) −→ Map(Gr⩾n(Σ))

for the composition of ψ̄m,n with the natural homomorphism Map(Grn(Σ)) → Map(Gr⩾n(Σ)) given by
extension by the identity. We write

(3.4) ιn : Map(Σ) −→ Map(Gr⩾n(Σ))

for the homomorphism sending [φ] to the mapping class represented by the homeomorphism of Gr⩾n(Σ)
that acts by φ on Σ0,n and by the identity elsewhere. Note that ι0 is precisely the map (3.1) in Proposition
3.6. Finally, we define

(3.5) ηn and νn : Map(Σ)×Map(Σ) −→ Map(Gr⩾n(Σ))

to send ([φ1], [φ2]) to the mapping class represented by the homeomorphism of Gr⩾n(Σ) that acts:
• by φ2 on Σi,n for all i ⩾ 1,
• (for ηn:) by φ1 on Σ0,n,
• (for νn:) by φ1 on Σ0,n+1,
• by the identity elsewhere.
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The proof will use the following commutative diagram.

Map(Σ) Map(Σ)×Map(Σ)

Map(Gr⩾n+1(Σ))×Map(Grn(Σ))

Map(Gr⩾n(Σ))

Map(Gr⩾n(Σ))

Map(Gr⩾n(Σ))

∆ ηn

glue

ιn+1 × ψ̄1,n

νn
crot

csh

ψ1,n

(3.6)

Here, ∆ denotes the diagonal map and “glue” is the map that takes two homeomorphisms defined on
Gr⩾n+1(Σ) and on Grn(Σ) and glues them to a homeomorphism on Gr⩾n(Σ) = Gr⩾n+1(Σ) ∪ Grn(Σ).
The right-hand vertical maps csh and crot are conjugation by the (vertically bounded) homeomorphisms
sh and rot : Gr⩾n(Σ) → Gr⩾n(Σ) defined, respectively, by shifting one step to the right on the nth row
and by rotating by ninety degrees in the subsurface containing Σi,j for i ∈ {−1, 0} and j ∈ {n, n+ 1}.

The statement that we shall prove – by induction on j – is the following. Let us fix a field K. Then
for every n ∈ N and j ⩾ 1, the induced map

(3.7) (ιn)∗ : Hj(Map(Σ);K) −→ Hj(Map(Gr⩾n(Σ));K)

is the zero map. In particular, this will complete the proof of the proposition, which corresponds to the
special case of n = 0. The base case j = 0 is vacuous, so we let j ⩾ 1, fix any n ∈ N and assume as
inductive hypothesis that (3.7) is the zero map for smaller values of j and for all values of n.

Let us apply the Künneth theorem to the product of maps ιn+1 × ψ̄1,n in diagram (3.6). It implies
that we have a commutative square

j⊕
k=0

Hk(Map(Σ))⊗Hj−k(Map(Σ))

j⊕
k=0

Hk(Map(Gr⩾n+1(Σ)))⊗Hj−k(Map(Grn(Σ)))

Hj(Map(Σ)×Map(Σ)) Hj(Map(Gr⩾n+1(Σ))×Map(Grn(Σ)))

⊕
(ιn+1)∗ ⊗ (ψ̄1,n)∗

(ιn+1 × ψ̄1,n)∗

∼ =

∼=

in which the vertical maps are isomorphisms and the coefficients of homology are K in each case. Let
α ∈ Hj(Map(Σ);K) be any element. Naturality of the Künneth decomposition, applied to the two
projections Map(Σ)×Map(Σ) ↠ Map(Σ), implies that the image of ∆∗(α) in the top-left corner of this
square has 0-th component equal to 1⊗α and j-th component equal to α⊗ 1. The inductive hypothesis
implies that the top horizontal map is the zero map on the k-th component for all 0 < k < j. It follows
that the image of ∆∗(α) in the top-right corner of the square is 1⊗(ψ̄1,n)∗(α)+(ιn+1)∗(α)⊗1. Composing
this with the right-hand vertical isomorphism and the map on homology induced by the “glue” map of
(3.6), we obtain the element (ψ1,n)∗(α) + (ιn+1)∗(α) ∈ Hj(Map(Gr⩾n(Σ));K). It therefore follows that
the map on Hj(−;K) induced by the map across diagram (3.6) is equal to (ψ1,n)∗ + (ιn+1)∗. But
it is also equal to (ψ1,n)∗, so we must have (ιn+1)∗ = 0. Since ιn and ιn+1 are conjugate as maps
Map(Σ) → Map(Gr⩾n(Σ)), it follows that also (ιn)∗ = 0, as claimed. □

Remark 3.13. The obstruction to upgrading our vanishing results from field coefficients to arbitrary
(in particular, integral) coefficients is due to the failure of naturality of the Künneth decomposition
(i.e. the failure of the Künneth short exact sequence to admit a natural splitting), which prevents the
last paragraph of the above proof from going through unless one knows that the Tor terms vanish.

In §4 we will apply Corollary 3.12 to prove the vanishing results of Theorem B. We finish this section
by proving, directly from Proposition 3.6, the special case of Theorem B corresponding to Theorem A.

Proof of Theorem A. Let Σ be a compact subsurface of L, the Loch Ness monster surface. Our goal
is to prove that the homomorphism Map(Σ) → Map(L) induces the zero map on homology with field
coefficients in all positive degrees. (I.e. a negative answer to Question (I) for L, which is equivalent to
Question (II) for L by Lemma 0.3 since L has no punctures.) By including Σ into a larger compact
subsurface if necessary, we may assume that it has exactly one boundary component and positive genus.
The pair (L,Σ) is homeomorphic to the pair (GrZ(Σ),Σ), so the result follows from Proposition 3.6. □
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4. Transferring homology classes to shiftable subsurfaces

In this section we generalise Theorem A by proving the vanishing results of Theorem B (namely all of
Theorem B except for part B(3), which we prove later in §8). This depends fundamentally on Corollary
3.12 from the previous section, together with a technique (Proposition 4.1) to transfer the support of
homology classes to shiftable subsurfaces using Harer’s homological stability results for mapping class
groups of finite-type surfaces.

Proposition 4.1. Suppose that gS = ∞ and let Σ ⊂ S be a properly-embedded finite-type subsurface of
S. If Σ is not compact, then we additionally assume either that pS = 0 or that S has a mixed end. For
each integer i ⩾ 1, there exists another properly-embedded subsurface Σ′ ⊆ S such that:

(1) Σ ∩ Σ′ is an interval in ∂Σ and in ∂Σ′;
(2) Σ′ is shiftable in S;
(3) the extension map Map(Σ′) → Map(Σ ∪ Σ′) is surjective on homology up to degree i.

This proposition, along with Corollary 3.12, quickly implies the vanishing results of Theorem B.

Proof of the vanishing results of Theorem B assuming Proposition 4.1. Let S and its subsurface Σ ⊂ S
be as in Proposition 4.1; we need to prove that the homomorphism Map(Σ) → Map(S) induces the zero
map on homology with field coefficients in all positive degrees. Let K be a field and fix a homological
degree i ⩾ 1. Let the subsurface Σ′ ⊂ S be as in the conclusion of Proposition 4.1. Since Σ′ is shiftable,
we know from Corollary 3.12 that the induced map Hi(Map(Σ′);K) → Hi(Map(S);K) is zero. Since
the intersection Σ ∩ Σ′ is an interval in each of their boundaries, their union in S is their boundary
connected sum, and we may consider the extension map Map(Σ′) → Map(Σ ∪ Σ′), which by part (3)
of Proposition 4.1 induces a surjection Hi(Map(Σ′);K) ↠ Hi(Map(Σ ∪Σ′);K). From the commutative
diagram of homomorphisms induced by extension maps

Hi(Map(Σ);K)

Hi(Map(Σ ∪ Σ′);K) Hi(Map(S);K)

Hi(Map(Σ′);K)

0

it then follows that Hi(Map(Σ);K) → Hi(Map(S);K) is also the zero map. □

The proof of Proposition 4.1 has two ingredients: Lemma 4.2 and Theorem 4.3.

Lemma 4.2. Let S and its subsurface Σ ⊂ S be as in Proposition 4.1. If Σ has exactly one boundary
component, then it is shiftable.

Proof. For any infinite-type surface S, it follows from the construction in [Ric63, §5] that, if e is a non-
planar end of S and g is any non-negative integer then there exists a proper embedding Str(Σg,1) ↪→ S
of the infinite strip surface such that all unbounded sequences in Str(Σg,1) converge in S to e. Similarly,
if e is a mixed end of S (Definition 0.10) and g, n are non-negative integers then there exists a proper
embedding Str(Σn

g,1) ↪→ S such that all unbounded sequences in Str(Σn
g,1) converge in S to e.

Putting ourselves now in the setting of Lemma 4.2, suppose first that Σ is compact, so it is homeo-
morphic to Σg,1 for some g ⩾ 0. Since gS = ∞ there is at least one non-planar end e of S, so we may
choose a proper embedding Str(Σg,1) ⊂ S as in the previous paragraph. Since the property of being
shiftable is preserved under self-homeomorphisms of S, we may assume by applying an appropriate self-
homeomorphism of S that the subsurface Σ ⊂ S is the subsurface of Str(Σg,1) ⊂ S corresponding to the
left-most copy of Σg,1 in the infinite strip (cf. Figure 3.2). Thus Σ ⊂ S is shiftable.

Now suppose that Σ is non-compact, so it is homeomorphic to Σn
g,1 for some g ⩾ 0 and n ⩾ 1. This

implies that pS > 0, which by assumption means that S has a mixed end e, and so we may choose
a proper embedding Str(Σn

g,1) ⊂ S as in the first paragraph of the proof. As above, we may assume
by applying a self-homeomorphism of S that the subsurface Σ ⊂ S is the subsurface of Str(Σn

g,1) ⊂ S
corresponding to the left-most copy of Σn

g,1 in the infinite strip. Thus Σ ⊂ S is shiftable. □

The second ingredient is a collection of homological stability results for mapping class groups of
connected, finite-type, orientable surfaces. We recall just the statements about surjectivity, since these
are all that we shall need.
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Theorem 4.3. The genus-increasing, boundary-component-increasing, puncture-increasing and capping
maps, which are each defined by extending homeomorphisms by the identity, induce surjections on ho-
mology in the following ranges of degrees.

(1) The map Hi(Σ
n
g,b) → Hi(Σ

n
g,b♮Σ1,1) = Hi(Σ

n
g+1,b) is surjective for g ⩾ 3

2 i.

(2) The map Hi(Σ
n
g,b) → Hi(Σ

n
g,b♮Σ0,2) = Hi(Σ

n
g,b+1) is surjective for g ⩾ 3

2 i.

(3) The map Hi(Σ
n
g,1) → Hi(Σ

n
g ) filling the boundary circle with a disc is surjective for g ⩾ 3

2 (i−1).

(4) The map Hi(Σ
n
g,b) → Hi(Σ

n
g,b♮Σ

1
0,1) = Hi(Σ

n+1
g,b ) is surjective for n ⩾ 2i.

Proof. Parts (1)–(3) are all due to Harer [Har85, Theorem 0.1], except with a larger lower bound on g
(Harer does not directly consider the capping map, but part (3) follows indirectly from his results about
his map called η). Improvements to this lower bound were made by Ivanov [Iva93], Boldsen [Bol12] and
Randal-Williams [RW16]; see also the survey by Wahl [Wah13], which gives the best-known ranges. Part
(4) is due to Hatcher-Wahl [HW10, Proposition 1.5]. □

Proof of Proposition 4.1. Assume first that Σ is compact, so it is homeomorphic to Σg,b for some g ⩾ 0
and b ⩾ 1. Since gS = ∞, the definition of gS implies that we may find another subsurface Σ′′ ⊂ S,
disjoint from Σ, that is homeomorphic to Σh,1 for a genus h as large as we choose. Let us choose h ⩾ 3

2 i.
Since S is path-connected, we may choose a path from a point on the boundary of Σ to a point on
the boundary of Σ′′ and whose interior is contained in S ∖ (Σ ⊔ Σ′′). Let Σ′ be the union of Σ′′ and a
tubular neighbourhood of this path; this is again homeomorphic to Σh,1. It satisfies condition (1) of the
proposition by construction. Since it has exactly one boundary component, it satisfies condition (2) of
the proposition by Lemma 4.2. Since h ⩾ 3

2 i, it satisfies condition (3) of the proposition by parts (1)
and (2) of Theorem 4.3, since the extension map Map(Σ′) → Map(Σ ∪ Σ′) may be factored into finitely
many genus-increasing maps and finitely many boundary-component-increasing maps.

Now suppose that Σ is non-compact, so it is homeomorphic to Σn
g,b for some g ⩾ 0 and b, n ⩾ 1.

This implies that S has at least one puncture, i.e. pS > 0, so by assumption S has a mixed end, in
particular pS = ∞. The proof is then the same as in the previous paragraph, except that we choose Σ′′

to be homeomorphic to Σm
h,1 for h ⩾ 3

2 i and m ⩾ 2i, using the fact that gS = pS = ∞. The rest of the

proof is then identical, except that to verify condition (3) of the proposition we also need part (4) of
Theorem 4.3, factoring the extension map Map(Σ′) → Map(Σ ∪ Σ′) into finitely many genus-increasing
maps, boundary-component-increasing maps and puncture-increasing maps. □

Remark 4.4. Part (2) of Theorem 4.3 is notable in that, when increasing the number b of boundary
components, the range in which homological stability holds depends on the genus g, not on b. This was
crucial in the proof of Proposition 4.1 above, since we were free to choose Σ′ to have as high genus and
as many punctures as necessary, but it had to have a single boundary component, in order to be able to
apply Lemma 4.2.

5. Genus zero surfaces with countably infinitely many punctures

In this section we prove Theorem F, concerning the case when S has genus zero and its space of ends
is a closed ordinal interval of the form [0, ωα]. The proof is different when α is a (countable) successor
ordinal and when it is a (countable) limit ordinal; we will deal with these two cases separately – see
Proposition 5.3 and Corollary 5.5.

Definition 5.1. For a countable ordinal α, let us write Σ(α) = S2 ∖ [0, ωα] and Σ◦(α) = D2 ∖ [0, ωα].
In other words, up to homeomorphism, Σ(α) is the unique genus-zero surface whose space of ends is
homeomorphic to [0, ωα] and Σ◦(α) is the result of removing the interior of a closed disc from Σ(α).

5.1. Successor ordinals. Let us first suppose that α is a successor ordinal, in other words α = β + 1
for some ordinal β. In this case, Σ(α) may be realised as a (full-plane) grid surface:

Lemma 5.2. There is a homeomorphism GrZ(Σ
◦(β)) ∼= Σ(α).

Proof. Clearly GrZ(Σ
◦(β)) has genus zero, so by the classification of surfaces it suffices to show that its

space of ends is homeomorphic to [0, ωα]. By construction, its space of ends is the one-point compactifi-
cation of disjoint union of countably infinitely many copies of [0, ωβ ]; by Lemma 1.10 this is [0, ωα]. □

Half of Theorem F – the case when α is a successor ordinal – is given by the following.
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Figure 5.1. The surface S ∼= Σ(λ) from the proof of Proposition 5.4, where each square
labelled by αn denotes a copy of Σ◦(αn) = D2 ∖ [0, ωα] (see Definition 5.1). There is an
exhaustive filtration of S by properly-embedded subsurfaces Sn

∼= Σ◦(αn), described in
the proof of Proposition 5.4; the boundaries of S1 and S3 are outlined in red.

Proposition 5.3. Suppose that α is a countable successor ordinal. Then the inclusion

ιf (Σ(α)) : Mapf (Σ(α)) ↪−→ Map(Σ(α))

induces the zero map on homology in positive degrees with any field coefficients.

Proof. Let Σ ⊂ Σ(α) be a properly-embedded subsurface of finite type and denote by ι the homomor-
phism Map(Σ) → Map(Σ(α)) given by extending homeomorphisms by the identity. Identifying Σ(α)
with the grid surface GrZ(Σ

◦(β)) by Lemma 5.2, the subsurface Σ ⊂ GrZ(Σ
◦(β)) must be bounded, since

it is of finite type and therefore must be bounded away from the non-isolated end “at infinity”. Hence
Σ is contained in a sub-square of the grid of side-length n for some n ⩾ 1. Zooming out by a factor of

n, we may identify GrZ(Σ
◦(β)) with the grid surface GrZ(♮

n2

Σ◦(β)), in which each “piece” of the grid is
the boundary connected sum of n2 copies of Σ◦(β). By applying an appropriate shift homeomorphism,

we may assume that Σ is contained in the copy of ♮n
2

Σ◦(β) at the coordinates (0, 0) in the grid. The
homomorphism ι therefore factors as

Map(Σ) −→ Map(♮n
2

Σ◦(β)) −→ Map(GrZ(♮
n2

Σ◦(β))) = Map(Σ(α)),

where each homomorphism is given by extending homeomorphisms by the identity. The result therefore

follows by applying Proposition 3.6 to the surface ♮n
2

Σ◦(β). □

5.2. Limit ordinals. Let us now suppose that α = λ is a limit ordinal. Since it is also countable, its
cofinality is precisely ω (see Remark 1.11), meaning that there is a strictly increasing sequence αn of
ordinals (indexed by natural numbers n ∈ N = ω) whose supremum is λ. Let us fix a choice of such a
sequence for the remainder of this section.

Proposition 5.4. Let Σ be a properly-embedded finite-type subsurface of Σ(λ). Then Σ is contained in
a properly-embedded subsurface homeomorphic to Σ◦(αn) for some n ∈ N. Moreover, this subsurface is
shiftable in Σ(λ).

The second half of Theorem F – the case when α = λ is a limit ordinal – follows immediately:

Corollary 5.5. Suppose that λ is a countable limit ordinal. Then the inclusion

ιf (Σ(λ)) : Mapf (Σ(λ)) ↪−→ Map(Σ(λ))

induces the zero map on homology in positive degrees with any field coefficients.

Proof. Let Σ ⊂ Σ(λ) be a properly-embedded subsurface of finite type. Proposition 5.4 implies that the
homomorphism Map(Σ) → Map(Σ(λ)) factors as Map(Σ) → Map(Σ◦(αn)) → Map(Σ(λ)), where the
second homomorphism Map(Σ◦(αn)) → Map(Σ(λ)) is induced by the inclusion of a shiftable subsurface;
the result therefore follows from Corollary 3.12. □
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Figure 5.2. An extension of the inclusion Sn ⊂ S (depicted in the case n = 3) to a
proper embedding Str(Sn) ↪→ S, proving that Sn is shiftable in S.

Proof of Proposition 5.4. Let us construct a full-plane “grid surface” similarly to Definition 3.2, except
that each square in the grid with coordinates (i, j) ∈ Z × Z is filled in with a copy of Σ◦(αmax(−j,0)).
Equivalently, we begin with a copy of the half-plane grid surface Gr(Σ◦(α0)), glue on a new row to the
bottom of the grid filled with copies of Σ◦(α1), then another row filled with copies of Σ◦(α2), etc, until
the whole grid is filled; see Figure 5.1. Let us denote this surface by S. Also, for each n ⩾ 1, we denote
by Sn ⊂ S the subsurface given by the union of all (2n − 1)2 pieces whose coordinates (i, j) satisfy
max(|i|, |j|) ⩽ n − 1, together with the piece whose coordinates are (0,−n); see Figure 5.1. It follows
from Lemma 1.10 that S is homeomorphic to Σ(λ) and each Sn is homeomorphic to Σ◦(αn). Also, the
Sn (for n ∈ N) form an exhaustive filtration of S by properly-embedded subsurfaces.

Now let Σ ⊂ Σ(λ) ∼= S be any properly-embedded finite-type subsurface. It must be bounded away
from the non-isolated end of S “at infinity”, so it must be contained in Sn for some n ∈ N. To finish the
proof, we just have to show that Sn is shiftable in S: this is demonstrated pictorially in Figure 5.2. □

6. The punctured and unpunctured Cantor tree surfaces

In this section we prove Theorem D(1), dealing with the case when S has genus zero and has either 0
or 1 punctures (isolated planar ends). This corresponds to exactly two possible homeomorphism types of
surfaces: the sphere minus a Cantor set S2∖C (the “Cantor tree surface”) and the plane minus a Cantor
set R2 ∖ C (the “punctured Cantor tree surface”). In both cases, we use the following result about the
disc minus a Cantor set D2 ∖ C (the “one-holed Cantor tree surface”).

Theorem 6.1 ([PW, Theorem B]). Map(D2 ∖ C) is acyclic, i.e. Hi(Map(D2 ∖ C)) = 0 for all i > 0.

Proof of Theorem D(1). Let S be an infinite-type surface of genus zero with either no punctures (isolated
ends) or exactly one puncture; in other words S is homeomorphic either to S2∖C or to R2∖C. Let Σ ⊂ S
be a properly-embedded finite-type subsurface; our goal is to prove that Map(Σ) → Map(S) induces the
zero map on homology in all positive degrees.

First assume that Σ is compact. Since S has genus zero, so does Σ, so it is homeomorphic to a
sphere with n holes for some n ⩾ 1. The complement S ∖ Σ thus has n components, partitioning the
end-space of S into n clopen subsets E1, . . . , En. Since the end-space of S is homeomorphic either to
C or to C ⊔ {∗}, and all non-empty clopen subsets of C are homeomorphic to C again, we may assume
(reordering if necessary) that E1, . . . , En−1 are each homeomorphic to C or ∅ and En is homeomorphic
to C or ∅ or C ⊔ {∗} or {∗}. Denote by Σ′ the subsurface of S given by the union of Σ together with
the n− 1 components of the complement S∖Σ corresponding to E1, . . . , En−1. Since Σ

′ has genus zero,
one (compact) boundary-component and has end-space homeomorphic to the disjoint union of some
number (possibly zero) of copies of C, it is homeomorphic either to D2 or to D2∖C. The homomorphism
Map(Σ) → Map(S) factors through Map(Σ′), which is either the trivial group (if Σ′ ∼= D2) or isomorphic
to Map(D2 ∖ C), whose homology in all positive degrees vanishes by Theorem 6.1.
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Now assume that Σ is non-compact (but still finite-type). This implies that we must have S ∼= R2∖C
and Σ ∼= Σ1

0,n for some n ⩾ 1. Removing an open annular neighbourhood of the unique puncture (point

at infinity) of S, we obtain subsurfaces S′ ⊂ S and Σ′ ⊂ Σ such that S′ ∼= D2 ∖ C, Σ′ ∼= Σ0,n+1 and
Σ′ = Σ ∩ S′. Their mapping class groups fit into a map of central extensions

(6.1)

0 Z Map(Σ′) Map(Σ) 1

0 Z Map(S′) Map(S) 1.

id

The induced map of Lyndon–Hochschild–Serre spectral sequences includes the commutative square

(6.2)

E2
i+2,0

∼= Hi+2(Map(Σ)) Hi+2(Map(S)) ∼= E2
i+2,0

E2
i,1

∼= Hi(Map(Σ)) Hi(Map(S)) ∼= E2
i,1

for each i ⩾ 0. The vertical maps are d2-differentials and the horizontal maps are the homomorphisms
induced by Map(Σ) → Map(S) (which we would like to show are zero for i > 0). By Theorem 6.1, the
group Map(S′) is acyclic, which implies by an easy diagram chase that the differential E2

i+2,0 → E2
i,1 on

the right-hand side of (6.2) is an isomorphism for all i and that Hi(Map(S)) = 0 for i odd. We claim that
the central extension 0 → Z → Map(Σ′) → Map(Σ) → 1 is a trivial extension and postpone the proof
of this to the next paragraph. This implies that the corresponding Lyndon–Hochschild–Serre spectral
sequence collapses; in particular the differential E2

i+2,0 → E2
i,1 on the left-hand side of (6.2) is the zero

map. It follows that the top horizontal map Hi+2(Map(Σ)) → Hi+2(Map(S)) is the zero map for all
i ⩾ 0. This completes the proof except in degree 1. But we have already observed that Hi(Map(S)) = 0
when i is odd, in particular when i = 1, so this case is also dealt with.

Finally, we have to justify our claim that the central extension 0 → Z → Map(Σ′) → Map(Σ) → 1
is a trivial extension. The middle group is Map(Σ′) ∼= Map(Σ0,n+1), which is the pure ribbon braid
group on n strands. It decomposes as Zn×PBn, where PBn denotes the pure braid group on n strands.
By [FM11, §9.3, p. 252], this decomposes as PBn

∼= Z(PBn) × PBn/Z(PBn), where Z(PBn) denotes
the centre of PBn, which is infinite cyclic generated by the full twist ∆2. Putting this all together, we
have a decomposition Map(Σ′) ∼= Zn × Z{∆2} × PBn/Z(PBn). The central subgroup Z ⊂ Map(Σ′)
under consideration is generated by the Dehn twist around the outer boundary, which corresponds under
this identification to the element ((1, . . . , 1),∆2) ∈ Zn × Z{∆2}. Via this description it is clear that
it generates a direct factor of Map(Σ′), in other words the quotient by this central subgroup admits a
section: hence it is a trivial central extension. □

Remark 6.2. In contrast to our other vanishing results, Theorem D(1) holds for any coefficients, not
only for coefficients in a field.

7. Non-trivial compactly-supported classes

In this section we prove all of our non-vanishing results, except for Theorem B(3) whose proof is
deferred to §8. In §7.1 we prove Theorem C, dealing with the case when S has non-zero but finite genus.
In §7.2 we prove Theorem D(2), concerning Question (III) in the case when S has finitely many but at
least two punctures. In §7.3 we prove Theorem E, concerning the case when S has genus zero and there
is a finite, topologically-distinguished subset A ⊂ Ends(S) with |A| ⩾ 4. In the special case when A is
the set of punctures of S, this also proves Theorem D(3).

7.1. Finite, non-zero genus. In this subsection, we prove Theorem C, which we state slightly more
precisely as the following:

Proposition 7.1. Suppose that 1 ⩽ gS <∞. Then the integral homology H∗(Map(S)) contains non-zero
classes that are supported on a compact subsurface of S homeomorphic to ΣgS ,1. More precisely, we may
find such classes in degree 1 when gS = 1 and in degree 2 when gS ⩾ 2.

In the proof, we will need the following calculations of low-degree homology groups of mapping class
groups of closed, orientable surfaces.
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Lemma 7.2. We have H1(Map(Σ1)) ∼= Z/12 and

H2(Map(Σg)) ∼=


Z/2 g = 2

Z⊕ Z/2 g = 3

Z g ⩾ 4.

Proof. For the first statement, Map(Σ1) is isomorphic to SL2(Z), whose abelianisation is Z/12. For the
second statement, see [Kor02, Theorem 6.1 and the paragraph following it] for g ⩾ 4 and g = 2. The case
g = 3 is not unambiguously settled in [Kor02]; instead, see [Sak12, Corollary 4.10]. See also [BCRR20,
Lemma A.1] for these and many more related calculations. □

Proof of Proposition 7.1. Since S has finite genus gS , all of its ends are planar and it is homeomorphic
to ΣgS ∖ E, where E is the image of an embedding Ends(S) ↪→ ΣgS of the end-space of S. Choose an
embedded disc D ⊂ ΣgS containing E in its interior. There are homomorphisms

(7.1) Map(ΣgS ∖ D̊) −→ Map(ΣgS ∖ E) −→ Map(ΣgS )

given respectively by extending homeomorphisms of ΣgS∖D̊ (that are the identity on ∂D) by the identity
on D ∖ E and extending homeomorphisms of ΣgS ∖ E to (its Freudenthal compactification) ΣgS in the
unique possible way (see [PW24, Appendix B] for why this determines a well-defined homomorphism of
mapping class groups). The composition of the two homomorphisms (7.1) is the classical capping map

Map(ΣgS ∖ D̊) → Map(ΣgS ) that extends homeomorphisms by the identity on D. This map induces a
surjection on Hi whenever gS ⩾ 3

2 (i−1) by part (3) of Theorem 4.3. In particular, it induces a surjection
on H1 whenever gS ⩾ 1 and on H2 whenever gS ⩾ 2. It therefore suffices to check that H1(Map(Σ1)) ̸= 0
and that H2(Map(ΣgS )) ̸= 0 when gS ⩾ 2. This follows from Lemma 7.2. □

7.2. Finitely many punctures but at least two. In this subsection, we prove Theorem D(2). In
fact, this part of Theorem D does not require the assumption that gS = 0, so we may strengthen it to:

Proposition 7.3. Suppose that 2 ⩽ pS < ∞. Then H∗(Map(S)) contains a non-trivial class that is
supported on a properly-embedded finite-type subsurface of S.

Proof. Since p = pS is finite, there is a properly-embedded subsurface of S homeomorphic to the punc-
tured disc D2 ∖ P , where P is a finite set of size p in the interior of D2. This induces an extension map
Bp = Map(D2∖P ) → Map(S), where Bp denotes the braid group on p strands. For any homeomorphism
of S, its induced action on the end-space Ends(S) must send the subset of punctures onto itself, so there
is a well-defined map Map(S) → Sp recording this permutation. The composition Bp → Sp records the
permutation induced by a braid, and is surjective. Since abelianisation (−)ab = H1(−) is a right-exact
functor, the composition of the induced maps H1(Bp) → H1(Map(S)) → H1(Sp) is also surjective. Since
H1(Sp) ∼= Z/2 (here we are using the assumption that p ⩾ 2), we may choose a lift α ∈ H1(Bp) of the
non-trivial element of H1(Sp). The image of α in H1(Map(S)) is then a non-trivial class supported on
a properly-embedded finite-type subsurface. □

The above proof does not work when p = pS = 1, since H1(Sp) is trivial in this case. Indeed, in
this case, the answer to Question (III) depends also on the genus of S. If gS = 0 then S must be
homeomorphic to R2 ∖ C and the answer is given in §6 above. The case when 0 < gS <∞ is covered by
Proposition 7.1 above. The case when gS = ∞ is dealt with in §8 below.

7.3. Genus zero with a finite, topologically-distinguished set of ends. We next prove Theorem E
(which in particular implies Theorem D(3)). Recall from Definition 0.13 the notion of a topologically
distinguished subset. The following is a refinement of Theorem E.

Proposition 7.4. Suppose that S has genus zero and that Ends(S) has a finite, topologically distinguished
subset of size n ⩾ 2. Set k = n − 1 if n is even and k = 1

2 (n − 1) if n is odd. Then there is a compact
subsurface Σ ⊂ S and a commutative diagram

(7.2)

H1(Map(Σ)) Z/k

H1(Map(S)) Z/2k,

·2

where the left-hand vertical map is induced by Map(Σ) ⊂ Map(S), the right-hand vertical map is mul-
tiplication by 2 and the top horizontal map is surjective. In particular, if n ⩾ 4, there are non-trivial
classes in H1(Map(S)) that are supported on the compact subsurface Σ ⊂ S.
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Remark 7.5. We do not require the finite, topologically-distinguished subset of Ends(S) in Proposition
7.4 to be homogeneous; for example, it may consist of n points that are each (individually) topologically-
distinguished. The bottom horizontal map of (7.2) is surjective if and only if this is not the case, i.e. two
of the points of the (chosen) topologically-distinguished subset are similar, i.e. have homeomorphic open
neighbourhoods.

Proof of Proposition 7.4. We first note that the second statement follows from the first: when n ⩾ 4 we
have k ⩾ 2, so the element 2 ∈ Z/2k is non-trivial and pulls back through H1(Map(S)) to H1(Map(Σ)).
Hence we just have to prove the first statement.

Denote by A ⊂ Ends(S) a topologically distinguished subset of size n. Since Ends(S) is Hausdorff and
zero-dimensional, we may partition it into clopen subsets E1, . . . , En such that each Ei contains exactly
one point of A. Let Si = D2 ∖Ei for i ∈ {1, . . . , n} and denote by Σ0,n the compact, connected, genus-0
surface with n boundary components. Gluing S1, . . . , Sn into the n holes of Σ0,n we obtain S2∖Ends(S),
which is homeomorphic to S. There is therefore an extension homomorphism Map(Σ0,n) → Map(S) given
by extending homeomorphisms by the identity on each Si. On the other hand, since A ⊂ Ends(S) is a
topologically distinguished subset, we have a homomorphism Map(S) → Map(S2 ∖A) given by filling in
all ends of S except A. Next, there is a central extension [FM11, §9.1.4]

1 → Z/2 −→ Bn(S2) −→ Map(S2 ∖A) → 1,

where the generator of the kernel is sent to a full twist in the spherical braid group Bn(S2). This is sent
to n(n − 1) in Bn(S2)ab ∼= Z/(2n − 2), which is 0 if n is even and n − 1 if n is odd. Let us consider
the quotient of Bn(S2) onto its abelianisation Z/(2n− 2) when n is even and the further quotient onto
Z/(n−1) when n is odd; we may write this uniformly as the quotient Bn(S2) ↠ Z/2k where k = n−1 if
n is even and k = 1

2 (n−1) if n is odd. By construction, the kernel Z/2 ⊂ Bn(S2) of the central extension
above is sent to zero in this quotient, so it factors through a quotient Map(S2 ∖ A) ↠ Z/2k. Putting
everything together, we have maps

(7.3) Map(Σ0,n) −→ Map(S) −→ Map(S2 ∖A) −→ Z/2k.

The composition Map(Σ0,n) → Z/2k is not surjective: its image is instead the cyclic subgroup of order
k generated by 2 ∈ Z/2k. To see this, first note that a pre-image of the element 2 ∈ Z/2k in Map(Σ0,n)
is given by a homeomorphism that “pushes” one boundary component in a full loop around another
boundary component. This implies that the image contains the cyclic subgroup generated by 2. On
the other hand, it cannot be larger than this, since each element of Map(Σ0,n) fixes the n boundary
components pointwise and hence its induced permutation of A is trivial, which is an even permutation.
Thus we have the following commutative diagram:

Map(Σ0,n) Z/k

Map(S) Z/2k.

·2

Taking abelianisations, we obtain the desired commutative diagram (7.2) with Σ = Σ0,n. □

8. Classes detected by wreath products of the circle group

In this section we prove Theorem B(3), which we restate in a stronger form as Proposition 8.1 below.
We want to consider surfaces of infinite genus with finitely many (and at least one) punctures. However,
it will be more convenient to think of the punctures as marked points, so we fix a surface S of infinite
genus and no punctures, together with a non-empty, finite subset P ⊂ S, and we shall be interested in
Question (II) for the surface S ∖ P . In other words, we are interested in the image of the map

(8.1) H∗(Mapc(S ∖ P )) −→ H∗(Map(S ∖ P ))

induced by the inclusion Mapc(S ∖ P ) ⊂ Map(S ∖ P ). Question (II) asks whether its image is non-zero
for some positive degree ∗ > 0. In fact we may prove that it is non-zero in every even degree:

Proposition 8.1. Let S be a connected, orientable surface of infinite genus with no punctures and P ⊂ S
a non-empty, finite subset. Then the image of the map (8.1) contains a Z summand in every even degree;
in particular it is non-zero.

A key ingredient of the proof is a construction due to Bödigheimer and Tillmann [BT01].
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Notation 8.2. For a surface S (possibly with boundary) and finite subset P ⊂ S̊ of its interior, denote
by Diff(S, P ) the topological group of diffeomorphisms of S that fix P setwise and ∂S pointwise, equipped
with the weak (“smooth compact-open”) topology [Hir76, §2.1].

Definition 8.3 ([BT01, §3]). For a surface S (possibly with boundary) and finite subset P ⊂ S̊ of size
p = |P |, let
(8.2) τ : Diff(S, P ) −→ S1 ≀Sp = (S1)p ⋊Sp

be the continuous homomorphism defined as follows. Choose a bijection i 7→ xi : {1, . . . , p} → P and
choose a tangent vector vi ∈ Txi

S for each i ∈ {1, . . . , p}. For a diffeomorphism φ, the map τ records the
induced permutation σ(φ) of {1, . . . , p} under the chosen bijection and the angle θi(φ) between Dφ(vi)
and vσ(i) for each i ∈ {1, . . . , p}, where Dφ denotes the derivative of φ.

Notation 8.4. Write BG for the classifying space of a topological group G. When G is discrete the
homology of BG agrees with the group homology of G, so we shall write H∗(BG) = H∗(G).

Construction 8.5. Let S be a surface with no punctures and P ⊂ S a finite subset of size p = |P |. We
shall use (8.2) to construct a map

(8.3) BMapf (S ∖ P ) −→ B(S1 ≀Sp).

Let Σ ⊂ S be a compact subsurface containing P in its interior. We then have maps

(8.4) Map(Σ∖ P ) ∼= π0(Diff(Σ, P )) ↞− Diff(Σ, P ) −→ S1 ≀Sp,

where the right-hand map is (8.2). These are all compatible with the maps induced by inclusions of
subsurfaces, so there are induced maps of colimits

(8.5) colim
Σ

(Map(Σ∖ P )) ∼= colim
Σ

(π0(Diff(Σ, P ))) ↞− colim
Σ

(Diff(Σ, P )) −→ S1 ≀Sp,

where each colimit is taken over the poset of all compact subsurfaces Σ ⊂ S with P ⊂ Σ̊. Since S has
no punctures, the subsurfaces Σ∖ P ⊂ S ∖ P form a cofinal family in F(S ∖ P ), so the left-hand group
in (8.5) may be identified with Mapf (S ∖ P ), by Lemma 2.3.

The middle map in (8.4) is a weak homotopy equivalence by [EE69, ES70] and hence so is the middle
map in (8.5). Taking classifying spaces and inverting this map, we obtain the desired map (8.3).

Remark 8.6. By construction, restricting (8.3) to (the classifying space of) Mapc(S ∖ P ), we obtain a
commutative square:

(8.6)

BMapc(S ∖ P ) B(S1)p

BMapf (S ∖ P ) B(S1 ≀Sp).

The key ingredient to prove Proposition 8.1 is the following corollary of the main result of [BT01].

Theorem 8.7. If S is a connected, orientable surface of infinite genus with no punctures and P ⊂ S is
a finite subset, then the maps

(8.7) H∗(Mapf (S ∖ P )) −→ H∗(B(S1 ≀Sp)) and H∗(Mapc(S ∖ P )) −→ H∗(B(S1)p)
induced on homology by (8.6) each admit a section.

Proof. In fact, [BT01] makes a stronger statement. Let us write (−)+ for the Quillen plus-construction of
a topological space (see [BT01, §2] for a brief summary of some key properties of the plus-construction and
for example [Ber82] for further details). According to [BT01, Theorem 1.1 (2)], the space BMapf (S∖P )+
splits, up to homotopy equivalence, as the product of BΓ+

∞ and B(S1 ≀Sp)
+, where Γ∞ denotes the colimit

of Map(Σg,1) as g → ∞, and (the plus-construction of) the map (8.3) is the projection onto the second
factor of this decomposition. It therefore admits a section up to homotopy, so the result follows upon
taking homology since (−)+ does not change the homology of a space. In [BT01], this result is stated
for the particular surface S = colimg→∞(Σg,1), but the homology H∗(Mapf (S ∖P )) is the same for any
surface S satisfying the hypotheses of the theorem, by [Har85]; alternatively, the proof of [BT01] goes
through for any such surface S, by taking the colimit of an appropriate diagram of stabilisation maps,
corresponding to a filtration of S by compact subsurfaces.

This deals with the left-hand map of (8.7). Restricting to Mapc(S ∖ P ) ⊆ Mapf (S ∖ P ) corresponds
to restricting to the pure mapping class group for each finite-type subsurface over which we are taking
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the colimit (see Lemma 2.3). Hence the exact same argument also proves that the right-hand map of
(8.7) admits a section, using [BT01, Theorem 1.1 (1)] instead of [BT01, Theorem 1.1 (2)]. □

To complete the proof of Proposition 8.1 we need one further ingredient.

Proposition 8.8. If S is a connected, orientable surface with no punctures and P ⊂ S is a finite subset,
then the map (8.3) extends along B(incl) : BMapf (S ∖ P ) → BMap(S ∖ P ).

Before proving this, we first explain how (together with Theorem 8.7) it implies Proposition 8.1, and
hence Theorem B(3).

Proof of Proposition 8.1. By Theorem 8.7 and Proposition 8.8, we have a commutative diagram

H∗(BS1) H∗(B(S1)p) H∗(Mapc(S ∖ P )) H∗(B(S1)p)

H∗(B(S1 ≀Sp)) H∗(Mapf (S ∖ P )) H∗(B(S1 ≀Sp))

H∗(Map(S ∖ P )) H∗(BS1)

in which the horizontal compositions H∗(B(S1)p) → H∗(B(S1)p) and H∗(B(S1 ≀Sp)) → H∗(B(S1 ≀Sp))
are identities. The top-left horizontal map is induced by the homomorphism S1 → (S1)p sending t 7→
(t, 0, . . . , 0) and the bottom-right vertical map is induced by the homomorphism S1 ≀ Sp → S1 sending
(t1, . . . , tp;σ) 7→ t1 + · · · + tp. By construction, the map from the top-left to the bottom-right of the
diagram is the identity. Thus we have factored the identity of H∗(BS1) = H∗(CP∞) through the map
(8.1). It follows that the image of (8.1) contains a direct summand isomorphic to H∗(CP∞), which is a
copy of Z in every even degree. □

Proof of Proposition 8.8. At the level of diffeomorphism groups, the construction clearly extends to a
well-defined continuous homomorphism Diff(S, P ) → S1 ≀Sp. Indeed, Definition 8.3 does not make any
compactness assumptions. The only subtlety lies in descending this homomorphism to the mapping class
group.

We first recall the construction of the map (8.3) in more detail. In the diagram in Figure 8.1, S and
P ⊂ S are as in Proposition 8.8 and Σ ⊂ S is any compact subsurface containing P in its interior. The
natural map from the diffeomorphism group to the homeomorphism group of any smooth surface is a weak
equivalence (in particular an isomorphism on π0)

1 and the restriction map Homeo(S, P ) → Homeo(S∖P )
is an isomorphism of topological groups when S has no punctures, since one may define an inverse by
extending homeomorphisms uniquely to the Freudenthal compactification of S∖P and then discarding all
ends that are not punctures (these are preserved by any homeomorphism). Thus all of the vertical maps
in Figure 8.1 are either weak equivalences or isomorphisms. The horizontal map across the top is the
homomorphism (8.2) of Definition 8.3. To identify its domain with Map(Σ∖P ) = π0(Homeo(Σ∖P )), we
need to know that the diagonal maps on the left-hand side are also weak equivalences, which follows either
from [EE69, ES70] at the level of diffeomorphism groups or from [Ham66] at the level of homeomorphism
groups. Taking the colimit over all Σ, and then taking classifying spaces, we obtain the map (8.3).

To see that (8.3) extends to BMap(S∖P ), we need to know that the diagonal maps on the right-hand
side are also weak equivalences. This follows from the main result of [Yag00], which extends [Ham66] to
non-compact surfaces, proving that Homeo(S ∖ P ) has contractible components (and thus contractible
path-components), so the projection Homeo(S ∖ P ) → π0(Homeo(S ∖ P )) is a weak equivalence. There
is a small additional subtlety: for this projection map to make sense, one has to equip Map(S ∖ P ) =
π0(Homeo(S ∖ P )) with the quotient topology induced by the compact-open topology, whereas we are
interested in it as an abstract group, equivalently equipped with the discrete topology. Let us temporarily
take the convention that Map(S ∖ P ) denotes the mapping class group with the quotient topology and
Map(S∖P )δ denotes the same group with the discrete topology. Since Map(S∖P ) is totally disconnected
(in fact it is homeomorphic to the Baire space NN [AV20, Thm 4.2]), the map Map(S∖P )δ → Map(S∖P )
given by the identity of the underlying groups is a weak equivalence. Together, this implies that the map
(8.3) extends from BMapf (S ∖ P ) = Bcolim

Σ
(Map(Σ∖ P )) to BMap(S ∖ P )δ. □

1This follows essentially from smoothing theory [KS77, Essay V]. See [PW, Appendix A] for a brief explanation, which
emphasises that the underlying surface does not have to be compact.
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S1 ≀SpDiff(Σ, P ) Diff(S, P )

Homeo(Σ, P ) Homeo(S, P )

Homeo(Σ∖ P ) Homeo(S ∖ P )

π0(Diff(Σ, P )) π0(Diff(S, P ))

π0(Homeo(Σ, P )) π0(Homeo(S, P ))

π0(Homeo(Σ∖ P )) π0(Homeo(S ∖ P ))

Map(Σ∖ P )

Map(S ∖ P )δ

Map(S ∖ P )

≃

∼=

≃

∼=

∼=

∼=

∼=

∼=

≃

= =

Figure 8.1. The diagram used to construct the extension of (8.3) to BMap(S ∖ P ) in
the proof of Proposition 8.8. The surface S is connected, orientable and has no punctures
(in other words, all of its ends are either non-planar or non-isolated), P ⊂ S is a finite
subset and Σ ⊂ S is a compact subsurface containing P in its interior.
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[FFLM23] Francesco Fournier-Facio, Clara Löh, and Marco Moraschini. Bounded cohomology and binate groups. J. Aust.

Math. Soc., 115(2):204–239, 2023.

22



[FM11] Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton, NJ: Princeton University Press,

2011.
[Ham66] Mary-Elizabeth Hamstrom. Homotopy groups of the space of homeomorphisms on a 2-manifold. Illinois J.

Math., 10:563–573, 1966.
[Har85] John L. Harer. Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. (2),

121(2):215–249, 1985.
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