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Abstract

For a given bundle ξ : E → M over a manifold, configuration-section spaces on ξ parametrise
finite subsets z ⊆ M equipped with a section of ξ defined on M r z, with prescribed “charge”
in a neighbourhood of the points z. These spaces may be interpreted physically as spaces of
fields that are permitted to be singular at finitely many points, with constrained behaviour
near the singularities. As a special case, they include the Hurwitz spaces, which parametrise
branched covering spaces of the 2-disc with specified deck transformation group.

We prove that configuration-section spaces are homologically stable (with Z coefficients)
whenever the underlying manifold M is connected and has non-empty boundary and the charge
is “small” in a certain sense, and describe a model for the stable homology. This has a partial
intersection with the work on Hurwitz spaces of Ellenberg, Venkatesh and Westerland.
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1. Introduction

Configuration spaces of points in manifolds have been intensively studied in topology and geom-
etry, and may be interpreted physically as a model for particles moving in a background space. In
labelled configuration spaces, each particle is equipped with an additional parameter, taking values
in a fixed space X or, more generally, in a bundle over the underlying manifold. A more physically
relevant setting corresponds to equipping not the particles, but instead their complement, with a
map to X or a section of a bundle over the underlying manifold (this viewpoint is suggested in
[Seg14], for example). For maps to a fixed space X , these are the configuration-mapping spaces,
introduced in [EVW]. Since these spaces are intended to model particles moving in physical fields,
which typically take values in a (possibly non-trivial) bundle over the underlying manifold, one is
naturally led to consider, more generally, configuration-section spaces, which we introduce in §3.

Roughly, configuration-mapping spaces are defined as follows. Given a d-dimensional manifold
M , a space X and a set c ⊆ [Sd−1, X ] of unbased homotopy classes of maps from Sd−1 to X , a
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point of the k-th configuration-mapping space

CMapc
k(M ;X)

consists of a subset z ⊂ M̊ of the interior ofM of cardinality k and a continuous map f : Mrz → X .
Moreover, we require that the restriction of f to a small punctured neighbourhood of each point
of z lies in one of the homotopy classes in c. The homotopy class of the germ of f near p ∈ z may
be thought of as the “charge” (or “monodromy” or “singularity type”) of the particle p, and c is
therefore the set of allowed charges of the particles in the system being modelled. For a subset
D ⊆ ∂M (usually a point or a disc) and a basepoint ∗ ∈ X , one may also impose the boundary
condition that f(D) = {∗}. See §2 for precise definitions, including how to topologise this set, and
§3 for the generalisation to configuration-section spaces.

Some examples. In the special case d = 2 and X = BG (so c is a subset of [S1, BG] = Conj(G))
the space CMapc

k(M ;BG), up to homotopy equivalence, parametrises branched coverings of the
surface M with deck transformation group G and with monodromy around the branch points
lying in c. In particular, when M = D2, these are the Hurwitz spaces associated to the pair
(G, c); see Remark 2.14 and Example 3.27 for more details. The main result of [EVW16] is a
rational homological stability theorem for Hurwitz spaces when G is a finite group and c is a single
conjugacy class that generates G and is “non-splitting” (cf. Remark 1.1 below).

As mentioned above, the physical motivation for studying configuration-section spaces is their
interpretation as spaces of particles moving in fields defined on their complement. For example, we
may take X to be the Eilenberg-MacLane space K(Z, d) (in this case we have [Sd−1, X ] = {∗} so
c = {∗}) and consider the configuration-mapping space CMapc,∗

k (Dd;K(Z, d)). Its points consist

of a configuration z ⊂ Rd ∼= D̊d together with a based map f : Dd r z → K(Z, d), which may be
thought of (non-canonically) as associating a “phase” in S1 ≃ Ωd−1K(Z, d) to each particle p ∈ z.
However, this description of f as a separate phase for each particle cannot be made consistent as
the configuration z varies, so it is really modelling some non-local data associated to the whole
configuration of particles. In particular, when d = 3, this could be a model for an asymptotic part
of the moduli space of magnetic monopoles of total charge k in R3 (cf. [AH88, Proposition 3.12]
and [Seg97]). See Example 3.30 for further details.

Further examples, which are configuration-section spaces but not configuration-mapping spaces
(in general), include configuration spaces where the complement of the configuration is equipped
with a tangential structure (e.g. orientation, spin, etc) that need not extend to the whole of M
(see Example 3.28), or with a tuple of linearly independent vector fields (see Example 3.29).

Homological stability. Our main result is that configuration-section spaces are homologically
stable, subject to a condition on the “charge” c.

Theorem A Let M be a connected manifold of dimension d > 2 with basepoint ∗ ∈ ∂M . Let X be
a based space and choose an element g ∈ πd−1(X) that is fixed under the natural action of π1(X).
Set c = {{g}} ⊆ πd−1(X)/π1(X) = [Sd−1, X ]. Then there are stabilisation maps

CMapc,∗
k (M ;X) −→ CMapc,∗

k+1(M ;X) (1.1)

inducing isomorphisms on Hi(−;Z) in the range k > 2i+4 and surjections in the range k > 2i+2.
With field coefficients, these ranges may be improved to k > 2i+ 2 and k > 2i respectively.

See Theorem 8.5 for the precise statement, including the generalisation to configuration-section
spaces, where the analogue of the “charge” c is slightly more subtle to define.

This is an analogue of classical homological stability ([Seg73; McD75; Seg79]; see also [Ran13b])
for ordinary (unordered) configuration spaces on a connected, open manifold.

Remark 1.1 (Relation with the result of [EVW16].) In the case of Hurwitz spaces mentioned
above, our assumption is that c = {{g}} ⊆ Conj(G) is a single conjugacy class of size 1 (correspond-
ing to an element g of the centre of G). The result of [EVW16], by contrast, allows larger conjugacy
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classes, although it is specific to the setting of Hurwitz spaces Hurc
G,k ≃ CMapc,∗

k (D2;BG). These
two results are therefore somewhat orthogonal in terms of generality – and indeed our methods
are entirely different to those of Ellenberg, Venkatesh and Westerland.

In more detail, the main result of [EVW16] says that, in a stable range, the rational homology
groups Hi(Hurc

G,k;Q) are periodic with respect to k (with a period depending on the pair (G, c)),
as long as G is finite, the conjugacy class c generates G and c is “non-splitting” in the sense that
H ∩ c is either empty or a single conjugacy class for every subgroup H 6 G. On the other hand,
specialising Theorem A to the case (M = D2, X = BG), we show that the integral homology groups
Hi(Hurc

G,k;Z) are constant (1-periodic) in a stable range, as long as |c| = 1. The intersection of
our results is the case where G is finite cyclic and c = {g} for a generator g ∈ G.

Split-injectivity. For ordinary configuration spaces, and configuration spaces where the points
(rather than the complement) are labelled, the analogous stabilisation maps induce split-injections
on homology in all degrees. This follows from an easy argument (see [McD75, page 103]; also
[MT14, §4] for a diffeomorphism equivariant stable splitting) that depends on the existence of
multi-valued maps Ck(M) 99K Ck−r(M) that “forget r points from the configuration in all

(
k
r

)

possible ways”.

However, such maps do not exist for configuration-section spaces, since in this setting one cannot
simply forget a point; one must also extend the section on the complement of the configuration
to the forgotten point, which is in general impossible. Indeed, we expect that split-injectivity on
homology does not hold for configuration-section spaces in general. Nevertheless, we do have a par-
tial positive result in this direction, for configuration-mapping spaces under additional hypotheses
on the underlying manifold M : a certain map of spectral sequences, converging to the stabilisation
map (1.1) on homology, is split-injective on E2 pages. See Theorem 9.1 for the precise statement.
This relies on a detailed study of the monodromy action associated to the fibration (1.2), which is
carried out in the companion paper [PT].

Stable homology. It is well-known ([Seg73; McD75; Böd87]) that ordinary (unordered) configu-
ration spaces on a connected, open manifold model function and more generally section spaces, the
homology of which coincides with the stable homology of the configuration spaces. This remains
true also in our case.

Theorem B Let M be a connected manifold of dimension d > 2 with basepoint ∗ ∈ ∂M and ∗ ∈
L ( ∂M be a proper submanifold of the boundary. For any based space X and subset c ⊆ [Sd−1, X ],
there exists a bundle Ed(X, c) over M containing the trivial bundle M ×X such that

CΓc,∗(M,L;X) −→ Γ((M,L);Ed(X, c))

is a weak homotopy equivalence; here Γ((M,L);Ed(X, c)) denotes the space of sections that take
∗ ∈ ∂M to ∗ ∈ X and on ∂M r L take values in X.

This is the main result of the first part of [EVW]. In §10 below we extend their results to the
setting of configuration-section spaces. Combining Theorem B with Theorem A and an applica-
tion of the group completion theorem gives the following computation of the homology of finite
configuration-section spaces.

Corollary C Suppose that d > 2 and the subset c̃D ⊆ πd−1(X) has size 1. Then the scanning
maps

CΓc,∗
k (M ;X) −→ Γ(M ;Ed(X, c))[k]

induce isomorphisms on Hi(−;Z) in the range k > 2i+ 4 and surjections in the range k > 2i+ 2.
With field coefficients, these ranges may be improved to k > 2i + 2 and k > 2i respectively. Here
the subscript [k] on the right indicates those components that intersect non-trivially with the image.

See Theorem 10.12 and Corollary 10.16 for precise and more general versions of the above results.
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Outline. The paper is organised as follows. Sections 2 and 3 contain the precise definitions of
configuration-mapping spaces (recalled from [EVW]) and configuration-section spaces (a natural
generalisation that we introduce); several different classes of examples are also discussed in section
3 (see Roadmap 3.1 for a more detailed plan of section 3). The structure on configuration-section
spaces that we need, including the stabilisation maps, is encapsulated in the statement that they
form an E0-module over an Ed−1-algebra (cf. Remark 4.1 for the reasoning behind this terminol-
ogy). In section 4, we first explain precisely what this means (recalling along the way several
different flavours of Swiss cheese operads) and then define this structure on configuration-section
spaces in appropriate models (Proposition 4.10). In section 5 we then define the (up-to-homotopy)
monodromy action of the fundamental group π1(Ck(M̊)) coming from the forgetful map

CΓc,∗
k (M ; ξ) −→ Ck(M̊), (1.2)

where CΓc,∗
k (M ; ξ) denotes the k-th configuration-section space associated to a bundle ξ : E →M

and charge c. In section 7 we show that these actions, for k ∈ N, extend to a monodromy functor

C(M) −→ Ho(Top), (1.3)

where C(M) is a certain braid category on M recalled in section 6. Theorem A is proved in section
8 (see Theorem 8.5 for the precise statement). First, by a spectral sequence argument, it suffices
to prove twisted homological stability for ordinary configuration spaces with coefficients in the
composition of the monodromy functor (1.3) with homology in any fixed degree q. To apply the
known twisted homological stability results for configuration spaces, we prove (Proposition 8.6)
that this composite functor is polynomial of degree q. In section 9 we discuss the extension of
the monodromy functor to a larger braid category B♯(M) ⊇ C(M) and prove the partial split-
injectivity result mentioned above (Theorem 9.1). Finally, in section 10, we extend (and correct)
the arguments of [EVW] to the setting of configuration-section spaces to prove Theorem B and
Corollary C on the stable homology of configuration-section spaces.

2. Configuration-mapping spaces

We begin by recalling the definition of configuration-mapping spaces from [EVW], which gen-
eralises the classical notion of Hurwitz spaces [Cle72; Hur91]. In fact, we slightly extend the
definition of [EVW] by considering also non-orientable manifolds (we will generalise this further
to configuration-section spaces in the next section).

Let M be a smooth, compact, connected manifold with non-empty boundary of dimension d > 2
and let X be a space. Also, let

c ⊆ [Sd−1, X ]

be a non-empty subset of the set of (unbased) homotopy classes of maps Sd−1 → X . There is a
Z/2-action on the set [Sd−1, X ] given by precomposition by a reflection of the sphere, and, in the
case when M is non-orientable, we assume that c is a collection of fixed points of this action (see
Remark 2.3 for why). If M is orientable, there is no condition on c.

Remark 2.1 If X is path-connected, the set [Sd−1, X ] may be identified with the set of orbits
πd−1(X)/π1(X) for any choice of basepoint of X . When d = 2 this is the set of conjugacy classes
of π1(X).

Definition 2.2 (Configuration-mapping spaces, I.) For a positive integer k, the underlying set of
the configuration-mapping space

CMapc
k(M ;X)

is the set of pairs (z, f), where z is a subset of the interior M̊ of M of cardinality k and f is a
continuous map M r z → X with the following property: for any embedding e : Dd →֒ M where
e(Dd) ∩ z consists of a single point in the interior of e(Dd), we have

[f ◦ e ◦ i] ∈ c, (2.1)

where i denotes the inclusion Sd−1 →֒ Dd.
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Remark 2.3 The reason for assuming that c is a collection of fixed points of the involution on
[Sd−1, X ], in the case when M is non-orientable, is the following. In the definition of configuration-
mapping spaces above, the set c of homotopy classes of maps Sd−1 → X is to be thought of as the
set of permitted “monodromies” of the continuous map to X that is defined on the complement of a
configuration in M . If M is non-orientable, the monodromy of any such map around a configuration
point must automatically lie in a fixed point of [Sd−1, X ] under the involution. Hence, in this case,
we may as well ignore the non-fixed points of [Sd−1, X ], since it is impossible for them to occur,
and instead just consider subsets c of the set of fixed points of [Sd−1, X ] under the involution. This
is illuminated in more detail in Example 3.22, in the context of configuration-section spaces.

To topologise the set of Definition 2.2, we will give a second definition of CMapc
k(M ;X) that has

a natural topology, and then prove that there is a natural bijection between the two definitions.
To do this, we first recall some auxiliary definitions and results.

Definition 2.4 ([Pal60; Cer61]) If G is a topological group with a continuous left-action on a space
X , the action admits local sections if each x ∈ X has an open neighbourhood U and a continuous
map γ : U → G such that γ(x′).x = x′ for each x′ ∈ U .

The utility of this definition is given by the following result.

Proposition 2.5 ([Pal60, Theorem A]) If X and Y are left G-spaces such that the action of G on
Y admits local sections, and f : X → Y is G-equivariant, then f is a fibre bundle.

Definition 2.6 For a smooth manifold-with-boundary M , we write Diff∂(M) for the topological
group of self-diffeomorphisms of M that restrict to the identity on ∂M , equipped with the subspace
topology induced by the smooth Whitney topology on C∞(M,M), the space of all smooth self-
maps of M .

For a smooth manifold (without boundary) M , we write Diffc(M) for the topological group of
self-diffeomorphisms ϕ of M such that are compactly-supported, meaning that {p ∈M | ϕ(p) 6= p}
is relatively compact in M . This is topologised as follows. For a compact subset K of M , write
DiffK(M) for the topological group of self-diffeomorphisms ϕ of M such that {p ∈M | ϕ(p) 6= p} ⊆
K, equipped with the subspace topology induced by the Whitney topology on C∞(M,M). Note
that, as a set, Diffc(M) is the union of DiffK(M) over all choices of K. We define the topology of
Diffc(M) to be the colimit of the topologies of DiffK(M) over all choices of K.

Lemma 2.7 If M is a smooth manifold without boundary, the continuous left-action of Diffc(M)
on Ck(M̊) admits local sections.

Proof. Theorem B of [Pal60] implies, as a special case, that the action of Diff∂(M) on the ordered
configuration space Fk(M̊) admits local sections. Then one may use this, and the fact that the
covering map Fk(M̊)→ Ck(M̊) is Diff∂(M)-equivariant, to construct local sections for the action
of Diff∂(M) on Ck(M̊). Alternatively, the statement follows directly from Proposition 4.15 of
[Pal20].

Definition 2.8 (Configuration-mapping spaces, II.) Fix a subset ẑ ⊆ M̊ of cardinality k and
let Mapc

∗(M r ẑ, X) denote the space of continuous maps M r ẑ → X satisfying the condition
(2.1), equipped with the compact-open topology. Write Diff∂(M) for the group of diffeomorphisms
of M that fix a neighbourhood of ∂M , equipped with the smooth Whitney topology, and let
Diff∂(M, ẑ) denote the subgroup of diffeomorphisms that fix ẑ as a subset. This acts (on the right)
on Mapc(M r ẑ, X) by precomposition, and on Diff∂(M) by right-multiplication, and we define:

CMapc
k(M ;X) :=

Mapc(M r ẑ, X)×Diff∂(M)

Diff∂(M, ẑ)
. (2.2)

Lemma 2.9 There is a bijection between the set defined in Definition 2.2 and the space (2.2).

Proof. Consider the map
p : CMapc

k(M ;X) −→ Ck(M̊) (2.3)

5



given by [f, ϕ] 7→ ϕ(ẑ). There is a continuous left-action of Diff∂(M) on CMapc
k(M ;X) induced by

its action on itself by left-multiplication and (2.2), and on Ck(M̊) given by sending a configuration
to its image under a diffeomorphism. The map (2.3) is equivariant with respect to these actions.
The action of Diff∂(M) on Ck(M̊) admits local sections by Lemma 2.7 and hence (2.3) is a fibre
bundle by Proposition 2.5.

The fibre of (2.3) over a configuration z ∈ Ck(M̊) is

p−1(z) =
Mapc(M r ẑ, X)×Diff∂(M, ẑ) · ϕ

Diff∂(M, ẑ)
, (2.4)

where Diff∂(M, ẑ) ·ϕ denotes the coset of ϕ ∈ Diff∂(M) under the action of Diff∂(M, ẑ), where ϕ is
any diffeomorphism taking ẑ to z. There is a canonical identification of (2.4) with Mapc(Mrz,X)
via [f, ϕ] 7→ f ◦ ϕ−1. Hence a point of CMapc

k(M ;X) may be specified by its image under (2.3),
namely an unordered configuration z ∈ Ck(M̊), together with an element of the fibre p−1(z), which
is a continuous map M r z → X satisfying condition (2.1). This gives a natural bijection between
the set CMapc

k(M ;X) defined in Definition 2.2, and the formal definition (2.2).

Definition 2.10 (Configuration-mapping spaces with a boundary condition.) If we fix a subset
D ⊆ ∂M and a basepoint ∗ ∈ X , we may define

CMapc,D
k (M ;X)

to be the subspace of CMapc
k(M ;X) consisting of pairs (z, f) such that f(p) = ∗ for all p ∈ D.

Equivalently (via the proof of Lemma 2.9), we replace Mapc(M r ẑ, X) in (2.2) with its subspace
Mapc((M r ẑ, D), (X, ∗)) of maps taking D to {∗}. Typically, we will take D = Dd−1 ⊆ ∂M to be
an embedded disc.

Definition 2.11 (The associated fibre bundle.) From Definition 2.8 and the proof of Lemma 2.9,
we have a fibre bundle

p : CMapc
k(M ;X) −→ Ck(M̊) (2.5)

whose fibre over a configuration z ∈ Ck(M̊) is the space of maps M r z → X satisfying condition
(2.1), and whose total space CMapc

k(M ;X) is the configuration-mapping space. For D ⊆ ∂M
and based spaces X , there are also restricted versions of the configuration-mapping space, from
Definition 2.10,

CMapc,D
k (M ;X) ⊂ CMapc

k(M ;X),

corresponding to restricting each fibre of (2.5) to the space of maps of pairs (M r z,D)→ (X, ∗)
satisfying condition (2.1):

p : CMapc,D
k (M ;X) −→ Ck(M̊), (2.6)

with p−1(z) = Mapc((M r z,D), (X, ∗)).

Remark 2.12 Condition (2.1) depends only on the homotopy class of the map f , so the subspace
Mapc(M r z,X) of Map(M r z,X) is a union of path-components (a similar statement also holds
for the version with boundary condition on D).

Remark 2.13 When X is a point (so necessarily c = [Sd−1, X ] = {∗}), we have, by definition
(2.2), CMapc

k(M ; ∗) = Diff∂(M)/Diff∂(M, ẑ). In this case, by (2.4), each fibre of the fibre bundle
(2.3) is a single point (here we are essentially using the fact that Diff∂(M) acts transitively on
Ck(M̊)), so (2.3) is a homeomorphism (since fibre bundles are open maps):

CMapc
k(M ; ∗) = Diff∂(M)/Diff∂(M, ẑ) ∼= Ck(M̊),

identifying the configuration-mapping space with the usual (unordered) configuration space in this
case.

Remark 2.14 When M = D2 is the 2-disc with D = I ⊆ ∂D2 an embedded interval in its
boundary and X = BG is the classifying space of a discrete group G (so c is a set of conjugacy
classes of G), we have a homotopy equivalence:

CMapc,I
k (D2;BG) ≃ Hurc

G,k,
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(see [EVW, §5.8]), where Hurc
G,k is the corresponding Hurwitz space, the moduli space (topologised

appropriately) of the data (up to an appropriate notion of equivalence) consisting of (S, s0, ν, i),
where:

• S is a Riemann surface with basepoint s0 ∈ ∂S
• ν : S → D2 is a based covering map, branched at k point in the interior of D2,
• i : G →֒ Deck(ν) is an embedding of groups,

such that G acts transitively on the generic fibres of ν and the monodromy of ν around each of its
branch points lies in one of the conjugacy classes in c. See also Example 3.27 and in particular the
weak equivalences (3.20).

3. Configuration-section spaces

We now explain how to generalise this notion to configuration-section spaces, where we consider
sections of a bundle over the complement of a configuration, instead of just a map to a fixed space.
This includes, for example, moduli spaces of configurations whose complement is equipped with
a tangential structure or with a tuple of linearly independent vector fields (which need not extend
over the whole manifold).

Roadmap 3.1 (Plan of the section.) We define the underlying set of configuration-section spaces
in Definition 3.2 and topologise it in Definition 3.6 (Lemma 3.7 gives the correspondence between
the two definitions). A version with a boundary condition is given in Definition 3.9. Up to this
point, however, these are the definitions of configuration-section spaces without any restriction on
the allowed “charge” of the section near a particle of the configuration (this is the analogue of
the subset c ⊆ [Sd−1, X ] for configuration-mapping spaces in the previous section, and can also be
thought of as the allowed “monodromy” of the section near a particle, or as a “singularity condition”
on the section). In order to define the appropriate analogue for configuration-section spaces, we
first construct in Definition 3.11 the covering space of local sections Σ(ξ) → M̊ associated to a
bundle over a manifold ξ : E →M . Any configuration-section of the bundle ξ determines a section
of the associated covering space Σ(ξ) (Construction 3.17 and Lemma 3.18), and this is then used
in Definition 3.19 to define configuration-section spaces with prescribed “monodromy” or “charge”.
The forgetful fibration associated to this configuration-section space is described in Definition 3.21.

After this setting up of the theory, we discuss several families of examples. Example 3.22 first
explains precisely how the notion of configuration-section space recovers the notion of configuration-
mapping space when the bundle ξ : E → M is trivial (in fact, certain subtleties in the case where
the base manifold M is non-orientable are explained more naturally from the configuration-section
viewpoint). There is a slight variation of configuration-section spaces where the section is given
only up to homotopy (Definition 3.23), which includes the example of configurations equipped
with a cohomology class on the complement (Example 3.24). We then discuss the examples of
Hurwitz spaces (Example 3.27), configurations with a tangential structure or tuple of linearly
independent vector fields on their complement (Examples 3.28 and 3.29) and “widely separated
magnetic monopoles” (Example 3.30).

Definition 3.2 (Configuration-section spaces, without prescribed monodromy, I.) Fix a smooth,
connected d-manifold M (possibly with boundary) and a fibre bundle ξ : E → M . For a non-
negative integer k, the (unrestricted) configuration-section space, as a set, is given by

CΓk(M ; ξ) = {(z, s) | z ⊆ M̊ subset of cardinality k, s : M r z → E section of ξ|Mrz}. (3.1)

We will topologise this, and construct the associated fibre bundle over Ck(M̊), in a similar way
as for configuration-mapping spaces in §2.

Definition 3.3 For a smooth manifold-with-boundary M and fibre bundle ξ : E → M , the auto-
morphism group Aut∂(ξ) is the subgroup

Aut∂(ξ) 6 Diff∂(M)×Homeo(E)

of those pairs (ϕ, g) such that ξ ◦ g = ϕ ◦ ξ. For a subset z ⊆ M̊ , we write Aut∂(ξ, z) for the
subgroup of (ϕ, g) such that ϕ(z) = z. Similarly, for subsets z, z′ ⊆ M̊ of the same cardinality, we

7



write Aut∂(ξ, z 7→ z′) for the subgroup of (ϕ, g) such that ϕ(z) = z′. If ∂M = ∅, we write Autc(ξ)
(resp. Autc(ξ, z) and Autc(ξ, z 7→ z′)) if we replace Diff∂(M) with Diffc(M) in the definition.

Remark 3.4 An element (ϕ, g) ∈ Aut∂(ξ) is determined by its second component g ∈ Homeo(E),
since a self-homeomorphism of the total space E can descend to a self-diffeomorphism of the base
manifold M in at most one way. Hence there is a continuous injection Aut∂(ξ) →֒ Homeo(E),
although the topology on Aut∂(ξ) is generally finer than the subspace topology induced by this
injection.

Lemma 3.5 If M is a smooth manifold-with-boundary and ξ : E → M is a fibre bundle, the
continuous left-action of Aut∂(ξ) on Ck(M̊) given by (ϕ, g) : z 7→ ϕ(z) admits local sections.

Proof. Let z ∈ Ck(M̊) and choose an embedded codimension-zero ball B ⊆ M̊ such that z ⊆ B̊. By
Lemma 2.7, there is an open neighbourhood U of z in Ck(B̊) and a continuous map γ : U → Diffc(B̊)
such that γ(z′).z = z′ for all z′ ∈ U . Choose a trivialisation of ξ|B̊. This induces a continuous group

homomorphism Diffc(B̊)→ Autc(ξ|B̊). Now extending both the diffeomorphism of the underlying

manifold and the homeomorphism of the total space by the identity on M r B̊ and on ξ−1(M r B̊)
defines a continuous group homomorphism Autc(ξ|B̊) → Aut∂(ξ). Composing both of these with

γ completes the construction of local sections for the action of Aut∂(ξ) on Ck(M̊).

Definition 3.6 (Configuration-section spaces, without prescribed monodromy, II.) Fix a subset
ẑ ⊆ M̊ of cardinality k, and define

CΓk(M ; ξ) :=
Γ(M r ẑ, ξ)×Aut∂(ξ)

Aut∂(ξ, ẑ)
, (3.2)

where, for a subspace S ⊆M , we write Γ(S, ξ) = {s ∈ Map(S,E) | ξ ◦ s = incl}. The right-action
of Aut∂(ξ, ẑ) on Γ(M r ẑ, ξ) is given by (ϕ, g) : s 7→ g−1 ◦ s ◦ ϕ.

Lemma 3.7 There is a bijection between the set defined in Definition 3.2 and the space (3.2).

Proof. There is a continuous map

p : CΓk(M ; ξ) −→ Ck(M̊) (3.3)

given by [s, (ϕ, g)] 7→ ϕ(z). This map is equivariant with respect to the continuous left-actions
of Aut∂(ξ), and the action of Aut∂(ξ) on Ck(M̊) admits local sections by Lemma 3.5. Thus, by
Proposition 2.5, the map (3.3) is a fibre bundle. The fibre of (3.3) over z ∈ Ck(M̊) is

p−1(z) =
Γ(M r ẑ, ξ)×Aut∂(ξ, ẑ 7→ z)

Aut∂(ξ, ẑ)
. (3.4)

Note that Aut∂(ξ) acts transitively on Ck(M̊). (This can be seen as follows. Let z, z′ ∈ Ck(M̊)
and choose an embedded codimension-zero ball B ⊆ M̊ such that z ∪ z′ ⊆ B̊. Since Diffc(B̊)
acts transitively on Ck(B̊), we may find a diffeomorphism ϕ of B̊ such that ϕ(z) = z′, lift it to an
automorphism of ξ|B̊ by a choice of trivialisation of ξ|B̊ and then extend it by the identity to obtain
an element of Aut∂(ξ) sending z to z′.) Thus the subspace Aut∂(ξ, ẑ 7→ z) is a coset of Aut∂(ξ, ẑ)
in Aut∂(ξ), and may be identified with Γ(M r z, ξ) via [s, (ϕ, g)] 7→ g ◦ s ◦ ϕ−1. Thus there is a
natural bijection between the set defined in Definition 3.2 and the formal definition (3.2).

Definition 3.8 (The associated fibre bundle.) From Definition 3.6 and the proof of Lemma 3.7,
we have a fibre bundle

p : CΓk(M ; ξ) −→ Ck(M̊) (3.5)

whose fibre over a configuration z ∈ Ck(M̊) is the space of sections Γ(M r z, ξ).

Definition 3.9 (Boundary conditions.) If we fix a subset D ⊆ ∂M and a section sD ∈ Γ(D, ξ),
we have a restricted version of the configuration-section space:

CΓD
k (M ; ξ) = {(z, s) ∈ CΓk(M ; ξ) | s|D = sD}. (3.6)
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Moreover, since D is contained in the boundary of M , the subspace CΓD
k (M ; ξ) ⊆ CΓk(M ; ξ) is

invariant under the action of Aut∂(ξ), so Proposition 2.5 and Lemma 3.5 imply that the restriction

p : CΓD
k (M ; ξ) −→ Ck(M̊) (3.7)

of the map (3.3) is a fibre bundle. The fibre p−1(z) over a configuration z ∈ Ck(M̊) is the space of
sections {s ∈ Γ(M r z, ξ) | s|D = sD} (generalising Definition 3.8, which corresponds to D = ∅).

We now wish to define configuration-section spaces with prescribed monodromy

CΓc
k(M ; ξ) ⊆ CΓk(M ; ξ).

In other words, we wish to specify a certain “local behaviour” c of the section s ∈ Γ(M r z, ξ) near
the “singularities” z ⊆ M̊ . To do this, we first construct a covering space over the interior M̊ of
M depending on the fibre bundle ξ : E →M .

Definition 3.10 (The covering space of local sections of ξ, informal.) Informally, the covering
space

η(ξ) : Σ(ξ) −→ M̊

is defined by prescribing that its fibre η(ξ)−1(p) over a point p in the interior of M consists of the
set of all germs of sections of ξ defined on a small punctured-disc neighbourhood of p in M .

Definition 3.11 (The covering space of local sections of ξ, formal.) Fix a point p ∈ M̊ . A local
section near p of ξ is a pair (B, σ) consisting of a subset B ⊆M homeomorphic to a d-dimensional
ball, containing p in its interior, together with a section σ of ξ|∂B . Let ∼ be the equivalence relation
on such pairs generated by (B, σ) ∼ (B′, σ′) if B is contained in the interior of B′ and the section
σ⊔σ′ defined on ∂B ⊔∂B′ extends to a section over B′ r int(B). Write [B, σ]p for the equivalence
class containing (B, σ).

Let Σ(ξ) be the set of all pairs (p, [B, σ]p) where p ∈ M̊ and [B, σ]p is an equivalence class of
local sections near p of ξ. We define a topology on Σ(ξ) as follows. Let (p, [B, σ]p) ∈ Σ(ξ) and
choose a representative (B, σ) for the equivalence class [B, σ]p. Define

Np,B,σ = {(q, [B, σ]q) | q ∈ int(B)} ⊆ Σ(ξ).

Then one may check that the collection N of the sets Np,B,σ for all (p, [B, σ]p) ∈ Σ(ξ) is a basis
for a topology T on Σ(ξ) such that the map

η(ξ) : Σ(ξ) −→ M̊

given by (p, [B, σ]) 7→ p is a covering map.

Remark 3.12 Although the basis N depends on a choice, for each point (p, [B, σ]p) ∈ Σ(ξ), of
a representative (B, σ) of the equivalence class [B, σ]p, the topology T that it generates does not
depend on these choices.

There is also a basepointed version of the covering space η(ξ). As before, letM be a d-dimensional
manifold and ξ : E →M a fibre bundle. Choose basepoints ∗ ∈ ∂M and ∗ ∈ E such that ξ(∗) = ∗.

Definition 3.13 (The covering space of pointed local sections.) Fix a point p ∈ M̊ . A pointed local
section near p of ξ is a pair (B, σ) consisting of a subset B ⊆M homeomorphic to a d-dimensional
ball, containing p in its interior and ∗ in its boundary, together with a section σ of ξ|∂B such that
σ(∗) = ∗. Let ∼ be the equivalence relation on such pairs generated by (B, σ) ∼ (B′, σ′) if B is
contained in int(B′) ∪ {∗} and the section σ ∨ σ′ defined on ∂B ∨ ∂B′ extends to a section over
B′ r int(B). Write [B, σ]∗p for the equivalence class containing (B, σ).

Let Σ∗(ξ) be the set of all pairs (p, [B, σ]∗p) where p ∈ M̊ and [B, σ]∗p is an equivalence class of
pointed local sections near p of ξ. Analogously to Definition 3.11, we define a topology on Σ∗(ξ)
such that the map

η∗(ξ) : Σ∗(ξ) −→ M̊
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given by (p, [B, σ]∗p) 7→ p is a covering map. There is a map of covering spaces over M̊

Σ∗(ξ) −→ Σ(ξ) (3.8)

given by (p, [B, σ]∗p) 7→ (p, [B, σ]p).

Definition 3.14 A singularity condition for ξ : E → M is a set of trivial components of the
covering η(ξ) : Σ(ξ) → M̊ . In other words, it is a subset of Γ(η(ξ)), the set of sections of η(ξ).
Similarly, a pointed singularity condition is a subset of Γ(η∗(ξ)).

Remark 3.15 The map (3.8) of covering spaces induces a function

(3.8) ◦ − : Γ(η∗(ξ)) −→ Γ(η(ξ)),

so a pointed singularity condition determines an (unpointed) singularity condition.

Remark 3.16 Over a point p ∈ M̊ , the fibre of η(ξ) : Σ(ξ)→ M̊ may be identified with the set of
(unbased) homotopy classes of maps [Sd−1, F ], where F = ξ−1(p). This identification is canonical
once we have chosen a local orientation of M̊ at p. Similarly, the fibre of η∗(ξ) : Σ∗(ξ) → M̊ may
be identified with πd−1(F ), after choosing a basepoint of F . Under these identifications, the map
(3.8)|p is the quotient πd−1(F ) ։ πd−1(F )/π1(F ) = [Sd−1, F ].

In order to define configuration-section spaces with prescribed singularity conditions, we need
to show that any configuration-section of the bundle ξ : E → M induces a section of the covering
η(ξ) : Σ(ξ)→ M̊ .

Construction 3.17 There is a locally-constant map

locξ : CΓk(M ; ξ) −→ Γ(η(ξ)) (3.9)

that records the local behaviour of a given configuration-section (z, s) in a punctured neighbour-
hood of each p ∈ M̊ . This is possible since, although s is not defined on all of M̊ , it is defined
on a punctured neighbourhood of every point of M̊ , since it is only undefined on a discrete subset
z ⊆ M̊ .

Formally, the construction is as follows. Given (z, s) ∈ CΓk(M ; ξ) and p ∈ M̊ , we need to choose
a point in the fibre η(ξ)−1(p). To do this, first modify (z, s) if necessary, staying within the same
path-component of CΓk(M ; ξ), so that p ∈ z. We pause the construction briefly to prove that this
is always possible:

Lemma 3.18 Given any (z, s) ∈ CΓk(M ; ξ) and p ∈ M̊ , there is a path in CΓk(M ; ξ) from (z, s)
to (z′, s′) such that p ∈ z′.

Proof. By the connectivity of M , we may find an embedded Dd ⊆ M containing p and a point
q ∈ z in its interior, and disjoint from zr{q}. Over this embedded disc, ξ is isomorphic to a trivial
bundle Dd ×X → Dd, so we have a map

CMap∂Dd

1 (Dd;X) −→ CΓk(M ; ξ)

that extends a 1-point configuration-mapping in Dd (agreeing with s|∂Dd on ∂Dd) by z r {q} and

s|Mr(z∪Dd). It therefore suffices to find a path in CMap∂Dd

1 (Dd;X) from ({q}, s|Dd) to ({p}, s′) for

some map s′ : Dd r {p} → X . Next, note that there is a natural left-action of Homeo(Dd; ∂Dd) on

CMap∂Dd

1 (Dd;X) given by pre-composition, so it suffices to find a path in Homeo(Dd; ∂Dd) from
the identity to a homeomorphism ϕ such that ϕ(p) = q. But Homeo(Dd; ∂Dd) acts transitively on
int(Dd) and is also path-connected (in fact contractible) by the Alexander trick.

Continuing with the construction, we may assume that p ∈ z. Choose an embedded d-dimensional
ball B ⊆M containing p in its interior and disjoint from z r {p}. Then define

locξ(z, s)(p) = (p, [B, s|∂B]p).

One may then easily check that this gives a well-defined locally-constant map of the form (3.9).
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Definition 3.19 (Configuration-section spaces with prescribed monodromy.) As in Definition 3.2,
let M be a smooth, connected d-manifold and let ξ : E → M be a fibre bundle. Also choose a
singularity condition c ⊆ Γ(η(ξ)) (cf. Definition 3.14). Then

CΓc
k(M ; ξ) := loc−1

ξ (c) ⊆ CΓk(M ; ξ).

In other words, it is the subspace of CΓk(M ; ξ) of configuration-sections (z, s) such that, if B ⊆M
is a subset that is homeomorphic to a d-dimensional ball, contains one point p of z in its interior
and is disjoint from zr {p}, then (p, [B, s|∂B ]p) ∈ Σ(ξ) lies in the image of one of the sections in c.

If we fix a subset D ⊆ ∂M and a section sD ∈ Γ(D, ξ), we define (just as in (3.6)):

CΓc,D
k (M ; ξ) = {(z, s) ∈ CΓc

k(M ; ξ) | s|D = sD}. (3.10)

Remark 3.20 Since (3.9) is locally-constant, the subspace CΓc
k(M ; ξ) of CΓk(M ; ξ) is a union of

path-components, and similarly for the restricted version (3.10) ⊆ (3.6). (Compare Remark 2.12.)

Definition 3.21 (The associated fibration.) From Definition 3.9 we have a fibre bundle (3.7) with

total space CΓD
k (M ; ξ). By Remark 3.20, the subspace CΓc,D

k (M ; ξ) ⊆ CΓD
k (M ; ξ) is a union of

path-components. Thus, the restriction

p : CΓc,D
k (M ; ξ) −→ Ck(M̊) (3.11)

of the fibre bundle (3.7) to the subspace CΓc,D
k (M ; ξ) is a Hurewicz fibration.1 This is the associated

fibration of the configuration-section space CΓc,D
k (M ; ξ). Its fibre over z ∈ Ck(M̊) is denoted by

Γc,D(M r z; ξ) = {s ∈ Γ(M r z; ξ) | s|D = sD and locξ(z, s) ∈ c}.

As our first family of examples, we explain how to recover the notion of configuration-mapping
space of §2 in the case of a trivial bundle over M .

Example 3.22 If ξ is the trivial bundle M × X → M for a space X , then we clearly have an
identification

CΓk(M ; ξ) = CMapk(M ;X). (3.12)

If M is orientable, then the covering space η(ξ) : Σ(ξ)→ M̊ is simply the disjoint union of copies
of the trivial (identity) covering M̊ → M̊ , one for each element of [Sd−1, X ]. In other words, η(ξ)
is isomorphic as a covering space to the projection M̊ × [Sd−1, X ] → M̊ . Similarly, the covering
space η∗(ξ) : Σ∗(ξ) → M̊ is isomorphic as a covering space to the projection M̊ × πd−1(X)→ M̊ .
In each case, the isomorphism of covering spaces depends on a choice of orientation of M .

If M is non-orientable, then the covering space η(ξ) : Σ(ξ)→ M̊ is a disjoint union of a number
of copies of the identity covering M̊ → M̊ and a number of copies of the orientation double covering
M̊or → M̊ . More precisely, consider the involution on the set [Sd−1, X ] given by precomposition
by a reflection of Sd−1. There is one copy of the identity covering in η(ξ) for each fixed point of
this action and one copy of the orientation double covering in η(ξ) for each orbit of size two. In
other words, writing O1 = [Sd−1, X ]Z/2 for the set of orbits of size 1 and O2 for the set of orbits
of size 2 in [Sd−1, X ], we have that η(ξ) is isomorphic as a covering space to

pr ◦ (id ⊔ (or× id)) : (M̊ ×O1) ⊔ (M̊or ×O2) −→ M̊ × (O1 ⊔ O2) −→ M̊, (3.13)

where or is the orientation double covering of M̊ . The isomorphism is canonical up to the action
of the 2O2 deck transformations of (3.13) corresponding to the deck transformations of each of the
copies of M̊or (acting independently). There is an analogous involution on the set πd−1(X), and
the covering space η∗(ξ) : Σ∗(ξ) → M̊ is a disjoint union of one copy of the identity covering for
each fixed point of πd−1(X) and one copy of the orientation double covering for each orbit of size
two in πd−1(X). This may also be written in the form (3.13), where O1 and O2 now denote the
orbits of size 1 and 2 of the involution on πd−1(X), and the isomorphism is again canonical up to
the 2O2 deck transformations of (3.13) described above.

A singularity condition c ⊆ Γ(η(ξ)) therefore corresponds to (compare Remark 2.3):

1 The base space of the fibre bundle (3.7) is paracompact, so it is a Hurewicz fibration. In general, if f : E → B

is a Hurewicz fibration and E0 ⊆ E is a union of path-components, the composition f ◦ incl : E0 →֒ E → B is also
a Hurewicz fibration.
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• (if M is orientable) a subset of [Sd−1, X ],
• (if M is non-orientable) a subset of [Sd−1, X ]Z/2, the set of fixed points of [Sd−1, X ] under

the involution given by pre-composition with a reflection of Sd−1.

In the orientable case, this correspondence depends on a choice of orientation of M ; in the non-
orientable case, it does not depend on any choice. Analogously, a pointed singularity condition
corresponds either to a subset of πd−1(X) or a subset of πd−1(X)Z/2, depending on whether M is
orientable or not, respectively. Again, this correspondence depends on a choice of orientation of
M if M is orientable.

Interpreting the singularity condition c in this way on the right-hand side, the identification
(3.12) restricts to identifications:

CΓc
k(M ; ξ) = CMapc

k(M ;X) (3.14)

for each c ⊆ Γ(η(ξ)).

There is a natural variant of configuration-section spaces where configurations are equipped just
with homotopy-classes of sections on their complements:

Definition 3.23 (Configuration-section spaces up to homotopy.) Define hCΓk(M ; ξ) to be the
quotient of CΓk(M ; ξ) by the equivalence relation given by (z, s) ∼ (z′, s′) if z = z′ and the
sections s, s′ : M rz → E are homotopic through sections of ξ|Mrz , in other words, lie in the same
path-component of the space Γ(M r z, ξ). The locally-constant map (3.9) = locξ factors into the
quotient map CΓk(M ; ξ)→ hCΓk(M ; ξ) and a locally-constant map

hlocξ : hCΓk(M ; ξ) −→ Γ(η(ξ)), (3.15)

since homotopic sections of ξ|Mrz have the same local germs in punctured neighbourhoods of every
point in M . We then define

hCΓc
k(M ; ξ) := hloc−1

ξ (c)

for any singularity condition c ⊆ Γ(η(ξ)). We may equivalently define hCΓc
k(M ; ξ) to be the

quotient of CΓc
k(M ; ξ) by the restriction of the equivalence relation above. More generally, if we

fix a subset D ⊆ ∂M and a section sD ∈ Γ(D, ξ), we may define hCΓc,D
k (M ; ξ) to be the quotient

of CΓc,D
k (M ; ξ) by the equivalence relation given by (z, s) ∼ (z′, s′) if z = z′ and the sections s, s′

lie in the same path-component of the space

Γ(M r z, ξ; sD) = {s ∈ Γ(M r z, ξ) | s|D = sD}.

Example 3.24 (Configurations equipped with a cohomology class of the complement.) As a special
case, of course, we have configuration-mapping spaces up to homotopy

hCMapc
k(M ;X) = hCΓc

k(M ;M ×X).

As a set, hCMapc
k(M ;X) consists of pairs (z, f), where z ⊆ M̊ has cardinality k and f is a

homotopy class of maps Mrz → X whose monodromy around each point of z lies in c ⊆ [Sd−1, X ].
If we take X to be the Eilenberg-MacLane space K(G, d− 1) for an abelian group G, then c is a
subset of Hd−1(Sd−1;G) ∼= G and a point in

hCMapc
k(M ;K(G, d− 1))

is a configuration z ⊆ M̊ equipped with a cohomology class α ∈ Hd−1(M r z;G) whose restriction
to each embedded sphere Sd−1 ⊆M r z that encloses exactly one point of z, lies in c.

Before describing the next example of configuration-mapping spaces up to homotopy, we note
that, under certain conditions, configuration-mapping spaces up to homotopy have the same weak
homotopy type as the corresponding configuration-mapping spaces (not up to homotopy).
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Lemma 3.25 Let M be a compact, connected d-manifold with basepoint ∗ ∈ ∂M and X a based,
path-connected space with a choice of subset c ⊆ [Sd−1, X ]. Assume that M is homotopy equivalent
to a wedge of (d − 1)-spheres and that X is d-coconnected, meaning that πi(X) = 0 for all i > d.
Then, for any k > 0, the quotient map

CMapc,∗
k (M ;X) −→ hCMapc,∗

k (M ;X) (3.16)

is a weak homotopy equivalence. In particular, this holds if M = S is a compact, connected surface,
X = BG is the classifying space of a discrete group G and c is a set of conjugacy classes of G.

Proof. The quotient map fits into a map of fibration sequences:

Mapc,∗(M r z,X) π0(Mapc,∗(M r z,X))

CMapc,∗
k (M ;X) hCMapc,∗

k (M ;X)

Ck(M̊)

(⋆)

(3.16)
(3.17)

Since M is homotopy equivalent to a wedge of some number ℓ of (d−1)-spheres and has non-empty

boundary, we have M r z ≃
∨|z|+ℓ

Sd−1 and thus

Mapc,∗(M r z,X) ≃ (Ωd−1X)ℓ × (Ωd−1
c X)|z|, (3.18)

where Ωd−1
c X ⊆ Ωd−1X is the union of path-components corresponding to c ⊆ [Sd−1, X ] under

the identification of [Sd−1, X ] with πd−1(X)/π1(X). Since X is d-coconnected, the space (3.18) is
1-coconnected, in other words weakly contractible, and so the map (⋆) of fibres in (3.17) is a weak
homotopy equivalence, and therefore so is the map (3.16).

Remark 3.26 Lemma 3.25 generalises in an analogous way to configuration-section spaces, for a
bundle ξ : E →M equipped with a section over {∗} ⊆ ∂M , i.e., a point e0 ∈ E with ξ(e0) = ∗.

Example 3.27 (Hurwitz spaces.) Following on from Example 3.24, let S be a compact, connected
surface with boundary and now take X = K(G, 1) = BG for a (not necessarily abelian) discrete
group G. Note that Sr z, for any finite subset z ⊆ S̊, is aspherical, so we have a natural bijection

[S r z,BG] ∼= Hom(π1(S r z), G)/G,

where the quotient on the right-hand side is by the action of G given by post-composition by inner
automorphisms. A point in

hCMapc
k(S;BG)

therefore consists of a configuration z ⊆ S̊ equipped with a homomorphism π1(Srz)→ G modulo
inner automorphisms of G. If we now take D = {∗} ⊆ ∂S to be a point, we have a natural bijection

〈S r z,BG〉 ∼= Hom(π1(S r z), G),

where 〈−,−〉 denotes based homotopy classes of based maps, and so a point in

hCMapc,∗
k (S;BG)

consists of a configuration z ⊆ S̊ equipped with a homomorphism π1(S r z) → G. In particular,
if S = D2 we have a homeomorphism

hCMapc,∗
k (D2;BG) ∼= Hurc

G,k,
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where the right-hand side is the corresponding Hurwitz space. Moreover, Lemma 3.25 implies that
the quotient map

CMapc,∗
k (S;BG) −→ hCMapc,∗

k (S;BG) (3.19)

is a weak homotopy equivalence for any compact, connected surface-with-boundary S. In the case
S = D2, we therefore have weak homotopy equivalences (compare Remark 2.14):

CMapc,I
k (D2;BG) ≃ CMapc,∗

k (D2;BG) ≃ hCMapc,∗
k (D2;BG) ∼= Hurc

G,k. (3.20)

Example 3.28 (Tangential structures on the complement.) If θ : E → BO(n) is a type of tangential
structure, and τM denotes the homotopy class of maps M → BO(n) classifying the tangent bundle
of M , then a tangential structure of type θ on M is a lift of τM up to homotopy to a map M → E.
Equivalently, we may pick a specific map TM in the homotopy class τM , and a tangential structure
is then a lift up to homotopy of TM . In other words, it is a section up to homotopy of the pullback
bundle (TM )∗(θ) : (TM )∗(E)→M . The configuration-section space

hCΓk(M ; (TM )∗(θ))

is therefore the moduli space of k-point configurations in M whose complement is equipped with
a tangential structure of type θ, and its subspaces corresponding to a singularity condition c may
be interpreted as moduli spaces of configurations whose complement is equipped with a tangential
structure of type θ, whose monodromy around the configuration points is prescribed.

Example 3.29 (Linearly independent vector fields.) Let TM → M denote the tangent bundle
of M and write ξr : Linr(TM) → M for the associated fibre bundle whose fibre over p ∈ M is
the subspace of (TpM)r consisting of linearly independent r-tuples of tangent vectors at p. The
configuration-section space

CΓk(M ; ξr)

is then the moduli space of k-point configurations z ⊆ M̊ equipped with an r-tuple of linearly
independent vector fields on M r z. In particular, when r = 1, this is the space of configurations
equipped with a non-vanishing vector field on the complement.

Example 3.30 (Magnetic monopoles.) Going back to configuration-mapping spaces, we may con-
sider CMap∗

k(Dd;K(Z, d)). As remarked in the introduction, for a given configuration z ⊂ Rd ∼=
D̊d, the based map f : Dd r z → K(Z, d) may be thought of as a phase in S1 ≃ Ωd−1K(Z, d)
associated to each particle p ∈ z, after choosing a deformation retraction of Dd r z onto a wedge
of k copies of Sd−1. However, this deformation retraction cannot be chosen consistently as the
configuration z varies, so this description of an element of CMap∗

k(Dd;K(Z, d)) as a configuration
of particles equipped with phases in S1 is valid only in small neighbourhoods of the configuration-
mapping space. Globally, an element of CMap∗

k(Dd;K(Z, d)) models a configuration equipped
with some non-local data that does not decompose into pieces associated to each particle.

When d = 3, this space could be a model for an asymptotic part of the moduli space of magnetic
monopolesMk of total charge k in R3, namely the part consisting of “widely separated” monopoles
(cf. [AH88, Proposition 3.12], [Seg97]). We note that it is not the case that CMap∗

k(D3;K(Z, 3))
is the whole moduli space Mk, since the fundamental group of Mk is known to be Z (combining
[Don84] with [Seg79, Proposition 6.4]), whereas the fundamental group of CMap∗

k(D3;K(Z, 3))
surjects onto Σk via the forgetful map to Ck(R3). It is interesting to note that the full moduli
spaceMk is also homologically stable with respect to the “magnetic charge” k (combining [Don84]
with [Seg79, Proposition 1.1]).

4. On Em-modules over En-algebras

All of the structure that we will use in studying configuration-section spaces will arise from their
structure as an E0-module over an Ed−1-algebra, which will be defined explicitly, in appropriate
models, in this section. Before this, we recall the notion of Em-module over an En-algebra for any
0 6 m 6 n, and explain why, for n fixed, these notions coincide for all m ∈ {0, 1, . . . , n− 1}.
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Remark 4.1 The last sentence above means that, when d > 3, we may equally well describe
the structure that we construct as an “E1-module” over an Ed−1-algebra. However, since we also
consider the case of dimension d = 2, we prefer to use the term “E0-module” throughout, for
consistency. This diverges from the terminology of [Kra19], where the name “E1-module” is used
– this is (as we explain below) equivalent since that paper considers only En-algebras where n > 2.

We begin by recalling several different flavours of Swiss cheese operads. For an integer n > 0,
let Dn denote the closed unit disc in Rn. For a space X and an integer k > 0, let F̄k(X) denote
the ordered configuration space of k points in X labelled by positive real numbers:

F̄k(X) = {((x1, r1), . . . , (xn, rn)) ∈ (X × (0,∞))n | xi 6= xj for i 6= j}.

Fix an integer n > 0.

Definition 4.2 The little n-discs operad Dn has one colour a. For any integer k > 0 its space of
operations Dn(ak; a) is the subspace of F̄k(Dn) of configurations satisfying

(i) |xi| 6 1− ri

(ii) |xi − xj | > ri + rj for i 6= j.

Interpreting such configurations as little n-discs in Dn whose interiors are disjoint, with centres xi

and radii ri – see Figure 4.1(a) – the operadic composition is defined by embedding Dn into these
smaller discs by translations and dilations. The symmetric action is given by the natural action of
Σk on F̄k(Dn).

Definition 4.3 A Dn-module operad is any operad O with two colours a and m, and whose space
of operations O(ak,ml; a), for any integers k, l > 0, is equal to Dn(ak; a) for l = 0 and empty for
l > 1. Moreover, its operadic composition, restricted to the colour a, must be equal to that of Dn.

Fix two integers n > m > 0. We now define five different Dn-module operads, the Swiss cheese
operad (SCm,n), as well as its extended (ESCm,n), variant (VSCm,n), concentric (CSCm,n) and
linear (LSCn) cousins. In each case it will suffice to specify the spaces of operations O(ak,ml; m)
for integers k, l > 0 and describe how to extend the operadic composition of Dn to the colour m.

Remark 4.4 The original Swiss cheese operad SC1,2 was introduced by Voronov [Vor99], inspired
by constructions of Kontsevich [Kon94; Kon03]. The extended Swiss cheese operad ESCm,n was
introduced by Willwacher [Wil], who cites V. Turchin for its invention in codimension 1 (when
n = m + 1). The variant Swiss cheese operad VSCm,n was introduced by Idrissi [Idr]. The linear
Swiss cheese operad LSCn was introduced (under the name SCn) by Krannich [Kra19, §2.1].

Definition 4.5 (Extended, variant and original Swiss cheese operads.) Let ESCm,n(ak,ml; m) be
the subspace of F̄k+l(D

n) of configurations satisfying (i) and (ii) above, and

(iii) xi ∈ Dm for i > k + 1.

The space VSCm,n(ak,ml; m) is the subspace of configurations additionally satisfying the condition

(iv) dist(xi, D
m) > ri for i 6 k.

The space SCm,n(ak,ml; m) is the subspace of configurations satisfying conditions (i)–(iii) and

(v) xi ∈ Rm × (ri,∞)n−m for i 6 k.

(Note that condition (v) is stronger than condition (iv).) Interpreting such configurations again as
little non-overlapping n-discs inDn – see Figure 4.1(b–d) – we may extend the operadic composition
of Dn to each of these 2-coloured operads by embedding Dn into these smaller discs by translations
and dilations.

Definition 4.6 (The concentric Swiss cheese operad.) The space of operations CSCm,n(ak,ml; m)
is empty unless l = 1, in which case it is the subspace of F̄k+1(Dn) of configurations satisfying (i),
(ii) and (v) above, as well as

(vi) xk+1 = 0.

Its operadic composition is defined as before, interpreting these configuration spaces as spaces of
little non-overlapping discs – see Figure 4.1(e).
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1
4

3

2

∈ D2(a4; a)

(a)

1

3

2

12

∈ ESC1,2(a3,m2; m)

(b)

1

3
2

12

∈ VSC1,2(a3,m2; m)

(c)

13

2
12

∈ SC1,2(a3,m2; m)

(d)

13

2

∈ CSC1,2(a3,m; m)

(e) 1
3

2

0 t

∈ LSC2(a3,m; m)

(f)

Figure 4.1 Some operations of the little discs operad and of different flavours of Swiss cheese operads
in dimensions (1, 2). Little blue (m colour) discs are always centred on the x-axis. Little red (a colour)
discs are unrestricted in ESC1,2 (except that they must not overlap each other or the little blue discs,
of course). In VSC1,2, little red discs must be disjoint from the x-axis (little red discs are called aerial

and little blue discs terrestrial in [Idr]). In SC1,2, little red discs must lie in the upper half-disc (and we
may choose to think of the little blue discs simply as little half-discs attached to the x-axis). In CSC1,2

the same conditions apply to little red discs, and there is now required to be exactly one little blue
disc, centred at the origin. In LSC2, little red discs may lie anywhere in the rectangle. See Definitions
4.2, 4.5, 4.6 and 4.7 for the precise definitions.

Definition 4.7 (The linear Swiss cheese operad.) The space of operations LSCn(ak,ml; m) is empty
unless l = 1, in which case it is the subspace of F̄k([0,∞) × [−1, 1]n−1) × [0,∞) of configurations
((x1, r1), . . . , (xk, rk)) and t > 0 satisfying (ii) above, and

(vii) xi ∈ [ri, t− ri]× [ri − 1, 1− ri]
n−1.

Its operadic composition is given by interpreting these configurations as configurations of little non-
overlapping discs and embedding Dn by translations and dilations, as well as placing copies of the
cuboid [0, t]× [−1, 1]n−1 end-to-end in the first coordinate direction and adding the corresponding
values of t. See Figure 4.1(f), and also [Kra19, Definition 2.1] for precise formulas for the operadic
composition.

By definition, there are inclusions of operads

CSCm,n −֒→ SCm,n −֒→ VSCm,n −֒→ ESCm,n (4.1)

that restrict to the identity map of Dn on the a colour. The natural inclusions of discs Dn →֒ Dn+1

and cubes [−1, 1]n−1 →֒ [−1, 1]n induce dimension-increasing inclusions (see Figure 4.2)

LSCn −→ LSCn+1 and XSCm,n −→ XSCm,n+1 (4.2)

(for X ∈ {E,V,∅,C}) and similarly

XSCm−1,n −→ XSCm,n (4.3)

(for X ∈ {E,V,∅,C}), which commute with the “flavour-changing” inclusions (4.1). The connection
between the four operads (4.1) and the linear Swiss cheese operads is given by the following lemma.
Recall that a weak equivalence of operads is a map of operads O→ P such that the maps of spaces
O(ak,ml; a)→ P(ak,ml; a) and O(ak,ml; m)→ P(ak,ml; m) are all weak equivalences.

Lemma 4.8 For any 0 6 m 6 n there is a map of operads

ιm,n : LSCn −→ CSCm,n (4.4)
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1

3

2

12 7−→

Figure 4.2 The dimension-increasing inclusion ESC1,2(a3, m2; m) → ESC1,3(a3, m2; m). The number-
ing of the 3-discs has been omitted on the right-hand side to avoid overloading the diagram.

0 t

e−t

e−te−t

ι0,2

ι1,2
(4.3)

∼ ∼

Figure 4.3 The map ιm,n and the homotopy-commutativity of the right-hand triangle of (4.5).

commuting with (4.2) and (4.3) in the sense that the following diagrams commute up to homotopy:

LSCn CSCm,n

LSCn+1 CSCm,n+1

ιm,n

ιm,n+1

(4.2) (4.2) LSCn

CSCm−1,n

CSCm,n

ιm−1,n

ιm,n

(4.3) (4.5)

When 0 6 m 6 n−1, the map ιm,n is a weak equivalence of operads, so (4.3) : CSCm−1,n → CSCm,n

is also a weak equivalence of operads in this range.

Proof. The map ιm,n is defined as pictured (for the cases (m,n) = (1, 2) and (m,n) = (0, 2)) in
Figure 4.3: a configuration in the rectangle is mapped via the indicated mapping of the rectangle
onto a segment of the annulus, together with an appropriate rescaling of the labels in (0,∞) of the
configuration points (interpreted as radii). The fact that ιm,n is a weak equivalence of operads for
m 6 n − 1 follows from the fact that this mapping is a homeomorphism from the rectangle onto
a proper segment of the annulus (when m = n it is a quotient map from the rectangle onto the
whole annulus). The left-hand square of (4.5) commutes on the nose, and the right-hand triangle
of (4.5) commutes up to a “stretching” homotopy that is also pictured in Figure (4.5) (in the case
(m,n) = (1, 2)).

Remark 4.9 The map ιn,n : LSCn → CSCn,n, on the other hand, is not a weak equivalence: for
example, the space LSCn(a,m; m) is contractible, whereas the space CSCn,n(a,m; m) is homotopy
equivalent to Sn−1.

Algebras. Recall that, in general, an algebra over a two-coloured operad O (with colours a and
m) consists of a pair of spaces (Xa, Xm) together with maps

O(ak,ml; a)× (Xa)k × (Xm)l −→ Xa and O(ak,ml; m)× (Xa)
k × (Xm)l −→ Xm
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satisfying appropriate associativity axioms. In the following, we will write Y = Xa (corresponding
to the red colour in Figure 4.1) and X = Xm (corresponding to the blue colour in Figure 4.1).

Algebras over Swiss-cheese operads. Algebras over Dn are En-algebras, by definition. Now,
the restriction of SCm,n to the a colour is Dn and its restriction to the m colour is isomorphic to
Dm, so an algebra over SCm,n is a pair (X,Y ) consisting of an En-algebra Y , an Em-algebra X ,
together with an additional structure intertwining them. The same remarks apply also to VSCm,n

and ESCm,n, so algebras over each of these three operads consist of an En-algebra acting on an
Em-algebra, where the precise meaning of “acting” depends on the flavour.

The restriction of the concentric Swiss cheese operad CSCm,n to the a colour is again Dn, but
now its restriction to the m colour is trivial (it has no l-ary operations except when l = 1, and its
space of 1-ary operations is homeomorphic to (0, 1], so contractible). Algebras over CSCm,n are
thus Em-modules over En-algebras, without any Em-algebra structure on the module. By Lemma
4.8, we have CSCm,n ≃ CSCm′,n for any m,m′ 6 n − 1, so the notions of “Em-module over an
En-algebra”, for fixed n, are equivalent for all m ∈ {0, 1, . . . , n− 1}, and are equivalently encoded
by the linear Swiss cheese operad LSCn. On the other hand, the notion of “En-module over an
En-algebra” is stronger, and not encoded by the linear Swiss cheese operad, as pointed out in
Remark 4.9.

Linear Swiss cheese structures on configuration-section spaces. Below, we define certain
homotopy equivalent models Ċ(M) ≃ C(M̊) and ĊΓc,D(M ; ξ) ≃ CΓc,D(M ; ξ) for configuration
spaces and configuration-section spaces (see Definitions 4.12 and 4.13, and Lemma 4.14). Definition
4.13 also explains how a singularity condition c ⊆ Γ(η(ξ)) determines a subset cD ⊆ [Sd−1, X ]. We
use a slight abuse of notation by writing CMapc,∂(Dd;X) instead of CMapcD,∂(Dd;X). We also
abbreviate ∂Dd to ∂ and write 1

2∂ for one hemisphere of ∂Dd.

Proposition 4.10 We have the following linear Swiss cheese structures on configuration and
configuration-section spaces:

(i). (Ċ(M), C(D̊d)) is an algebra over LSCd,
(ii). (ĊΓc,D(M ; ξ),CMapc,∂(Dd;X)) is an algebra over LSCd,

(iii). (ĊΓc,D(M ; ξ),CMapc, 1

2
∂(Dd;X)) is an algebra over LSCd−1.

Moreover, the maps of pairs

(ĊΓc,D(M ; ξ),CMapc,∂(Dd;X)) →֒ (ĊΓc,D(M ; ξ),CMapc, 1

2
∂(Dd;X))→ (Ċ(M), C(D̊d)) (4.6)

are maps of LSCd−1-algebras, and their composition is a map of LSCd-algebras. Here, the first map
is the inclusion and the second map sends a configuration-section to its underlying configuration,
forgetting the section.

Point (i) is essentially [Kra19, Lemma 5.1], and part of points (ii) and (iii) – the Dd-algebra
structure, but not the LSCd- and LSCd−1-algebra structures – is [EVW, Propositions 2.6.1 and
2.6.2]. Before proving Proposition 4.10, we first define the appropriate models for configuration
and configuration-section spaces referred to above.

Definition 4.11 Let M be a manifold equipped with an embedded codimension-zero disc D ⊆ ∂M
in its boundary and a collar neighbourhood of ∂M , namely an embedding b : (−∞, 0]× ∂M →M
such that b(0, x) = x for all x ∈ ∂M . Define:

M̂ = M ∪b (R×D) and M̂r = M ∪b ((−∞, r]×D)

for r ∈ [0,∞). Diagrammatically, M̂ may be seen as follows, where M is green and R×D is blue
(and hence (−∞, 0]×D, which is identified with b((−∞, 0]×D) ⊆M , is turquoise).
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M

im(b)

D

∂M

−∞ 0 r ∞

M̂

Definition 4.12 Let Ċk(M) be the subspace of Ck(M̂) × (0,∞) of pairs (z, t) with z ⊆ int(M̂t),
and define

Ċ(M) =
⊔

k∈N

Ċk(M).

Definition 4.13 Let M , D and b be as in Definition 4.11. Also choose a bundle ξ : E → M , a
subset c ⊆ Γ(η(ξ)) (cf. Definition 3.14) and a section sD of ξ|D. Denote by ∗ the centre of the disc
D ⊆ ∂M , let X = ξ−1(∗) and choose a point x0 ∈ X . Choose a trivialisation ϕ : ξ|D ∼= D×X such
that sD corresponds to the constant section of D ×X at x0. Using ϕ, glue ξ along D = D × {0}

to the trivial X-bundle over [0,∞) × D to obtain a bundle on M̂ , which we denote by ξ̂. Since
the construction η(−) of Definition 3.11 commutes with restriction, we have restriction maps of
sections

Γ(η(ξ̂))
−|M

−−−−→ Γ(η(ξ))
−|D

−−−→ Γ(η(ξ|D)) ∼= [Sd−1, X ],

where the last bijection is induced by the trivialisation ϕ of ξ|D and the fact that η of a trivial
bundle over an orientable d-manifold with fibre X is the trivial covering space with fibre [Sd−1, X ]
(see Example 3.22). Note that the first restriction map −|M is a bijection, since any section of η(ξ)

may be extended uniquely to a section of η(ξ̂), due to the fact that η(ξ̂) is trivial over D× [0,∞).
Thus the subset c ⊆ Γ(η(ξ)) determines subsets

ĉ ⊆ Γ(η(ξ̂)) and cD ⊆ [Sd−1, X ].

Define ĊΓc,D
k (M ; ξ) to be the subspace of CΓĉ

k(M̂ ; ξ̂) × (0,∞) of elements (z, s, t) consisting of a
real number t > 0 and a configuration-section (z, s) such that

• z ⊆ int(M̂t),
• s is the constant section at x0 on the subspace [t,∞)×D ⊆ M̂ ,

and let
ĊΓc,D(M ; ξ) =

⊔

k∈N

ĊΓc,D
k (M ; ξ).

We will also use the following slight abuse of notation:

CMapc,∂(Dd;X) =
⊔

k∈N

CMapcD,∂Dd

k (Dd;X) , CMapc, 1

2
∂(Dd;X) =

⊔

k∈N

CMapcD ,∂0Dd

k (Dd;X),

where ∂0D
d = ∂Dd ∩ {xd 6 0} is the southern hemisphere of ∂Dd.

Lemma 4.14 For each k, there are natural embeddings

Ck(M) −֒→ Ċk(M) and CΓc,D
k (M ; ξ) −֒→ ĊΓc,D

k (M ; ξ)

admitting deformation retractions. In particular, C(M) ≃ Ċ(M) and CΓc,D(M ; ξ) ≃ ĊΓc,D(M ; ξ).

Proof. We will prove this just for the second embedding (for configuration-section spaces), since
the proof for the first embedding (for configuration spaces) is identical, forgetting the sections and
considering just configurations of points. The embedding is defined by sending a configuration-
section (z, s) of ξ to the element (z, ŝ, 1) of ĊΓc,D

k (M ; ξ), where ŝ is the section of ξ̂|M̂rz given by
extending s by the constant section at x0 on D × [0,∞).

We now construct a deformation retraction of ĊΓc,D
k (M ; ξ) onto the image of this embedding.

First we choose a family of diffeomorphisms ϕ : [0, 1]× [0,∞)→ Diff(M̂) with the properties that
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1
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2
7−→

1
3

2

0 t t′

7−→

t′ t′ + t

Figure 4.4 The maps (4.7) defining the LSCd action on (ĊΓc,D(M ; ξ), CMapc,∂(Dd; X)), in dimension
d = 2 and for k = 3. The light green, yellow, blue and orange colours represent sections defined on the
complement of each configuration. Light grey indicates regions where the section is constant at the
basepoint of X (note that ξ is trivial with fibre X over the grey regions, so this makes sense).

(i) ϕ(0, t) = id and (ii) ϕ(1, t)(M̂t) ⊆ M . Namely, we define ϕ(u, t) to be the identity outside of
N = (∂M × (−∞, 0]) ∪ (D × [0,∞)), and for a point (x, v) of N , define ϕ(u, t)(x, v) = (x, v − ut).

This may be lifted to a family of automorphisms ϕ̃ : [0, 1]×[0,∞)→ Aut(ξ̂) such that ϕ̃(u, t) covers
ϕ(u, t), using the observation that the obvious projection p : N → ∂M is a homotopy equivalence,

so we may identify ξ̂|N with p∗(ξ̂|∂M ). The deformation retraction is defined by sending (z, s, t),
at time u ∈ [0, 1], to:

(
ϕ(u, t)(z) , ϕ̃(u, t) ◦ s ◦ ϕ(u, t)−1 , (1− u)t+ u

)
.

Proof of Proposition 4.10. The LSCd action on (ĊΓc,D(M ; ξ),CMapc,∂(Dd;X)) is determined by
maps

LSCd(ak; a)× (CMapc,∂(Dd;X))k −→ CMapc,∂(Dd;X)

LSCd(ak,m; m)× (CMapc,∂(Dd;X))k × ĊΓc,D(M ; ξ) −→ ĊΓc,D(M ; ξ),
(4.7)

which are defined by picture in Figure 4.4. The LSCd−1 action on (ĊΓc,D(M ; ξ),CMapc, 1

2
∂(Dd;X))

is determined by maps

LSCd−1(ak; a)× (CMapc, 1

2
∂(Dd;X))k −→ CMapc, 1

2
∂(Dd;X)

LSCd−1(ak,m; m)× (CMapc, 1

2
∂(Dd;X))k × ĊΓc,D(M ; ξ) −→ ĊΓc,D(M ; ξ),

(4.8)

which are defined by picture in Figure 4.5. The fact that these are well-defined actions of linear
Swiss cheese operads may be verified easily from the construction. This gives the action of LSCd for
case (ii) and of LSCd−1 for case (iii). The action of LSCd for case (i) is identical to that for case (ii),
forgetting all sections and remembering just the configurations (compare the bottom line of Figure
4.4 with [Kra19, Figure 4]). The statements that the maps (4.6) respect the LSCd−1 structures
(and that their composition respects the LSCd structures) is also clear from the construction.

5. Monodromy actions

Definition 5.1 Let f : E → B be a Serre fibration and F = f−1(b) for a point b ∈ B. Assume
either that F is a CW-complex or that f is a Hurewicz fibration. Then the monodromy action of
f is the action-up-to-homotopy

monf : π1(B, b) −→ π0(hAut(F )) (5.1)
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3 1 2
7−→

3 2 1

0 t

t′

7−→

t′ t′ + t

Figure 4.5 The maps (4.8) defining the LSCd−1 action on (ĊΓc,D(M ; ξ), CMapc, 1

2
∂(Dd; X)), also in

dimension d = 2 and for k = 3. The light green, yellow, blue and orange colours represent sections
defined on the complement of each configuration. Light grey indicates regions where the section is
constant at the basepoint of X (note that ξ is trivial with fibre X over the grey regions, so this makes
sense). Dotted regions indicate that the map to X is extended into this region by defining it to be
independent of the vertical direction in this region. (Cf. Figure 7.1 for a 3-dimensional picture.)

of π1(B, b) on the fibre F defined as follows. Given an element [γ] ∈ π1(B, b) and a representative
loop γ : [0, 1]→ B, let g : F × [0, 1]→ E be a choice of lift in the diagram:

F E

F × [0, 1] [0, 1] B

incl

γ

(−, 0) f (5.2)

and define
monf ([γ]) = [g(−, 1)].

Remark 5.2 In fact, all one needs for Definition 5.1 is a continuous map f : E → B and a point
b ∈ B such that f satisfies the homotopy lifting property with respect to F and F × [0, 1] (cf. the
proof of Lemma 5.3 below).

Lemma 5.3 The construction of Definition 5.1 using the lifting diagram (5.2) gives a well-defined
group homomorphism (5.1).

Proof. Suppose that γ′ is another representative of [γ] and that g′ is a lift of γ′ in the diagram
(5.2) (with γ replaced by γ′). Let k : F × [0, 1]2 → E be a choice of lift in the diagram:

F ×
( )

E

F × [0, 1]2 [0, 1]2 B

g1 ∪ constincl ∪ g2

h

incl f (5.3)

where h is a homotopy γ ≃ γ′ relative to endpoints. Then k|F ×{1}×[0,1] is a homotopy g(−, 1) ≃
g′(−, 1) of self-maps of F . This implies that the construction of Definition 5.1 gives a well-defined
function monf : π1(B, b)→ π0(Map(F, F )). It remains to prove that monf is a homomorphism of
monoids, since it will then follow that it has image contained in the underlying group π0(hAut(F ))
of π0(Map(F, F )). It is clear that monf takes the constant loop to the identity map of F , since in
this case we may take the lift in (5.2) to be the projection F × [0, 1] ։ F followed by the inclusion
F →֒ E. We therefore just have to prove that

monf ([γ2.γ1]) = monf ([γ2]) ◦monf ([γ1])
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for elements [γ1], [γ2] ∈ π1(B, b). Choose lifts g1 and g2 in the diagrams:

F E

F × [0, 1] [0, 1] B

incl

γ1

(−, 0) f
g1

F E

F × [1, 2] [1, 2] B

incl

γ2

(−, 1) f
g2

(5.4)

so we have monf ([γ2]) ◦monf ([γ1]) = [g2(−, 2) ◦ g1(−, 1)]. We may now define a lift F × [0, 2]→ E
of the diagram:

F E

F × [0, 2] [0, 2] B

incl

γ2.γ1

(−, 0) f (5.5)

by:

(x, t) 7−→

{
g1(x, t) t ∈ [0, 1]

g2(g1(x, 1), t) t ∈ [1, 2].

By definition, it follows that monf ([γ2.γ1]) = [g2(g1(−, 1), 2)] = [g2(−, 2) ◦ g1(−, 1)].

Notation 5.4 From now on, we fix, once and for all, choices of the objects of Definitions 4.11 and
4.13, namely:

• a manifold M equipped with an embedded codimension-zero disc D ⊆ ∂M with centre ∗,
• a collar neighbourhood of ∂M , namely an embedding b : (−∞, 0]× ∂M →֒M so that b(0,−)

is the inclusion ∂M ⊂M ,
⊲ This determines the manifold M̂ and its submanifolds M̂r (r ∈ [0,∞)) as in Definition 4.11.
• a fibre bundle ξ : E →M , with basepoint x0 ∈ X := ξ−1(∗),
• a subset c ⊆ Γ(η(ξ)) (cf. Definition 3.14),
• a trivialisation θ : ξ|D ∼= D ×X .
⊲ We write sD for the section of ξ|D corresponding to the constant section of D ×X at x0.

⊲ Using the trivialisation θ, we extend ξ by a trivial X-bundle to obtain a bundle ξ̂ over M̂ .

Recall the homotopy-equivalent models Ċk(M) ≃ Ck(M̊) and ĊΓc,D
k (M ; ξ) ≃ CΓc,D

k (M ; ξ) for
configuration spaces and configuration-section spaces from §4 (Definitions 4.12 and 4.13).

Lemma 5.5 There is a Hurewicz fibration

ĊΓc,D
k (M ; ξ) −→ Ċk(M) (5.6)

given by forgetting the section data of a configuration-section.

Proof. The forgetful map (5.6) is defined by (z, s, t) 7→ (z, t), where t > 0 is a real number, z is a

configuration in the interior of M̂t and s is a section of ξ̂ over M̂t r z. There are homeomorphisms

Ċk(M) ∼= Ck(M̊)× (0,∞) and ĊΓc,D
k (M ; ξ) ∼= CΓc,D

k (M ; ξ)× (0,∞) (5.7)

under which (5.6) corresponds to the map p × id(0,∞), where p is the Hurewicz fibration (3.11).
Hence (5.6) is also a Hurewicz fibration. The homeomorphisms above may be defined as follows. Let
D′ be an open codimension-zero disc in ∂M containing D in its interior. Choose an identification
of b((−∞, 0]×D′) ⊆M with (−∞, 0]×D so that b({0}×D) corresponds to {0}×D (Figure 5.1).
This induces an embedding D × R →֒ M̂ , and we obtain a homeomorphism ψr : M̂ → M̂ for each
r ∈ R by defining ψr(x, t) = (x, t+ r) for (x, t) ∈ D ×R and ψr(y) = y for y ∈ M̂ r (D×R). The
left-hand homeomorphism of (5.7) may then be defined by

(z, t) 7−→ (ψ−t(z), t).
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M

im(b)

D

0−∞

∞

Figure 5.1 The turquoise region is b((−∞, 0]×D′) and is identified with (−∞, 0]×D so that b({0}×D)
corresponds to {0} × D. For illustration, four other slices {t} × D under this identification are drawn.

Choosing a trivialisation of ξ̂|D×R (extending the identity trivialisation of ξ̂|D×[0,∞), which is trivial

by construction), we may lift ψr : M̂ → M̂ to a bundle-homeomorphism ψ̃r : ξ̂ → ξ̂. The right-hand
homeomorphism of (5.7) may then be defined by

(z, s, t) 7−→ (ψ−t(z), ψ̃t ◦ s ◦ ψ−t, t).

Remark 5.6 The homeomorphisms (5.7) constructed in the proof of Lemma 5.5 give an alternative
proof of Lemma 4.14, although the construction of (5.7) is a little more ad hoc.

Definition 5.7 For a real number r > 1, let pr = (∗, r − 1
2 ) ∈ D × [0,∞) ⊆ M̂ , where ∗ denotes

the centre of the disc D. For an integer k > 1, the k-th “standard configuration” in M̂ is defined
to be zk = {p1, p2, . . . , pk}, and the basepoint of Ċk(M) is defined to be (zk, k).

Remark 5.8 Stabilisation maps for configuration spaces and configuration-section spaces will be
defined in §7, using the E0-module structure of §4. However, at the level of configuration spaces,
it is already clear that the stabilisation map Ċk(M)→ Ċk+1(M) should be defined by

(z, t) 7−→ (z ⊔ {pt+1}, t+ 1).

Lemma 5.9 The fibre of (5.6) over (zk, k) ∈ Ċk(M) is the space

Γc,D
k (M ; ξ) := ΓcD,D×{k}

(
M̂k r zk; ξ̂

)
(5.8)

of sections s of ξ̂ defined over M̂k r zk ⊆ M̂ such that

• the restriction of s to a small punctured neighbourhood of pi lies in cD ⊆ [Sd−1, X ] for each
i ∈ {1, . . . , k}, where cD is as in Definition 4.13,
• the restriction of s to D × {k} ⊆ ∂M̂k is constant at the basepoint x0 of X.

Corollary 5.10 We have a Hurewicz fibration sequence of the form

Γc,D
k (M ; ξ) −→ ĊΓc,D

k (M ; ξ) −→ Ċk(M). (5.9)

Proof of Corollary 5.10. This follows immediately from Lemmas 5.5 and 5.9.

Proof of Lemma 5.9. Directly from the definitions, the fibre of (5.6) over (zk, k) may be described
as written, except that the first condition says that s must satisfy the singularity condition ĉ ⊆
Γ(η(ξ̂)), where ĉ is determined by c ⊆ Γ(η(ξ)) as explained in Definition 4.13. But all of the points

of zk lie in D × [0,∞) ⊆ M̂ , over which the bundle ξ̂ is trivial with fibre X , so the singularity
conditions around these points are equivalent to the conditions written in the lemma.

Definition 5.11 Let
Br(M) =

[
π1(Ċk(M))

]
k∈N

denote the groupoid whose objects are N, whose automorphism group of k ∈ N is π1(Ċk(M)) and
which has no morphisms between distinct objects.
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Definition 5.12 Fix (M,D, ∗, b, ξ, x0, c, θ) as in Notation 5.4. The associated monodromy functor

Monc,D(M, ξ) : Br(M) −→ Ho(Top) (5.10)

takes the object k ∈ N to the fibre Γc,D
k (M ; ξ) of (5.6). On automorphisms of k, it is defined by

the monodromy action (5.1), with f = (5.6).

6. Braid categories

Definition 6.1 ([Gra76, p. 219]) The Quillen bracket construction 〈D, C〉 of a category C equipped
with a left-action of a monoidal category D is the category with the same objects as C, and with
morphisms given by 〈D, C〉(c, c′) = colimD(C(−⊕ c, c′)), where ⊕ is the action of D on C. In other
words, a morphism c → c′ in 〈D, C〉 is an equivalence class of morphisms ϕ : d ⊕ c → c′ in C with
d in D, and where (d1, ϕ1) ∼ (d2, ϕ2) if there exists θ : d1 → d2 in D such that ϕ1 = ϕ2 ◦ (θ⊕ idc).
This comes equipped with a canonical functor

C −→ 〈D, C〉

given by the identity on objects and by ϕ 7→ 0⊕ϕ on morphisms, where 0 is the unit object of the
monoidal structure on D.

Lemma 6.2 The groupoid Br(Dd) has a monoidal structure given by taking the boundary connected
sum of two discs. If d > 2 it is braided and if d > 3 it is symmetric. Now let M be a connected
d-manifold with non-empty boundary, and let D ⊆ ∂M be an embedded (d − 1)-dimensional disc.
There is a well-defined action of Br(Dd) on Br(M) given by boundary connected sum along D.

Proof. Let us write Br(M) = π1(Ċ(M), {zk}k∈N), the fundamental groupoid of Ċ(M) with respect
to the set of basepoints {zk ∈ Ċk(M) | k ∈ N}. This is a skeleton for, hence equivalent to, the
full fundamental groupoid π1(Ċ(M)), with objects all points of Ċ(M). When M = Dd we have
π1(Ċ(Dd)) ≃ π1(C(D̊d)), since Ċ(Dd) andC(D̊d) are homotopy equivalent. By Proposition 4.10(i),
C(D̊d) is an Ed-algebra and Ċ(M) is an E0-module over it. Passing to fundamental groupoids and
pulling back along the equivalences, this gives rise to the structure on Br(Dd) and Br(M) claimed
in the lemma.

Remark and Notation 6.3 Note that Br(D1) is the free monoidal category on one object, Br(D2)
is the free braided monoidal category on one object and Br(D3) is the free symmetric monoidal
category on one object. We will therefore abbreviate these groupoids byM, B and S respectively.
The standard inclusions D1 →֒ D2 →֒ D3 induce monoidal functorsM →֒ B →֒ S (the second one
is also braided monoidal), and for d > 3 the standard inclusion D3 →֒ Dd induces an isomorphism
S ∼= Br(Dd).

Definition 6.4 ([Kra19, §5.2]) Let M be a connected d-manifold with non-empty boundary, with
d > 2, and let D ⊆ ∂M be an embedded (d − 1)-dimensional disc. By Lemma 6.2, there is a
well-defined action of the braided monoidal category Br(Dd) on Br(M). The standard inclusion
D2 →֒ Dd induces a braided monoidal functor B → Br(Dd), and hence an action of B on Br(M).
Using Definition 6.1, we may therefore define the category C(M) = 〈B,Br(M)〉, which is equipped
with a canonical functor

Br(M) −→ C(M). (6.1)

Lemma 6.5 The functor (6.1) is the inclusion of the underlying groupoid of C(M).

Proof. This is an immediate generalisation of the proof of [RW17, Proposition 1.7].

Remark 6.6 Our notation is the reverse of that of [Kra19], since we are using the opposite
convention of considering left-actions of monoidal categories.
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Definition 6.7 ([Pal18, §2.3 and §3.1]) The categories B(M) and B♯(M) both have N as their set
of objects. A morphism k → ℓ in B♯(M) is a path γ, up to endpoint-preserving homotopy, in the

space Cr(M̊) for some r, satisfying γ(0) ⊆ {p1, . . . , pk} and γ(1) ⊆ {p1, . . . , pℓ}. Composition is
defined by analogy with composition of partially-defined functions: given morphisms γ : k → ℓ and
δ : ℓ→ m, let r = |γ(1)∩ δ(0)| and define δ ◦ γ to be the path in Cr(M̊) obtained by concatenating
the corresponding restrictions of γ and δ. A morphism k → ℓ in the subcategory B(M) ⊆ B♯(M)
is a path γ as above, with r = k.

Remark 6.8 The categories B(M) and B♯(M) were denoted by Bf(M) and B(M) respectively in
[Pal18]. We have modified that notation to fit more naturally with the standard notation FI and
FI♯ for the categories of finite sets and injections, and of finite sets and partially-defined injections,
respectively, as well as with the notation of [Kra19]. We note (cf. [Kra19, Remark 5.10]) that, if
dim(M) > 3 and M is simply-connected, then B(M) ∼= FI and B♯(M) ∼= FI♯.

Lemma 6.9 Under the conditions of Definition 6.4, there is a canonical functor

C(M) −→ B(M),

which is the identity on objects and is also:

• full, for any M ,
• faithful (and hence an isomorphism) if and only if dim(M) > 3 and M is simply-connected.

Proof. The set of morphisms m → n of C(M) is empty if m > n, and if m 6 n it is naturally
identified with the orbit set Bn(M)/Bm, where Bn(M) = π1(Cn(M), {p1, . . . , pn}) and Bm acts
on Bn(M) via the homomorphism vm

n−m : Bm → Bn(M) of Definition 7.1 below followed by right-
multiplication of Bn(M) on itself. On the other hand, the set of morphisms m → n of B(M) is
also empty if m > n, and if m 6 n it is a homotopy class of paths in Cm(M) from the basepoint
configuration {p1, . . . , pm} to a subconfiguration of {p1, . . . , pn}.

The functor C(M) → B(M) is defined on morphisms as follows. Given a morphism m → n of
C(M), represented by a loop of configurations γ in Cn(M) based at {p1, . . . , pn}, forget all strands
of γ that start at pi for m+1 6 i 6 n. The result is a path of configurations in Cm(M) representing
a morphism m→ n of B(M).

Given any path of configurations δ in Cm(M) from {p1, . . . , pm} to a subconfiguration of {p1, . . . , pn},
it is always possible to “adjoin strands” to δ to extend it to a loop of configurations γ in Cn(M).
This implies that the functor C(M)→ B(M) is full.

The fact that the functor C(M)→ B(M) is faithful if dim(M) > 3 and M is simply-connected
is stated in Remark 5.10 of [Kra19]. It also follows from Lemma 4.1 of [Til16], which implies that
the functor is given by Σn/Σm → Inj(m,n) on morphism-sets (from m to n); we already know
that this is surjective, so injectivity follows from a simple counting argument.

If M is 2-dimensional or π1(M) is non-trivial, it is easy to construct pairs of distinct morphisms
1 → 2 in C(M) that become equal in B(M), i.e., after forgetting the second strand of a 2-strand
braid on M . Thus the conditions that dim(M) > 3 and M is simply-connected are necessary for
C(M)→ B(M) to be a faithful functor.

Summary 6.10 Let M be a connected d-manifold with non-empty boundary, with d > 2, and let
D ⊆ ∂M be an embedded (d− 1)-dimensional disc. There are then canonical functors

Br(M) −֒→ C(M) −→→ B(M) −֒→ B♯(M) (6.2)

that all act by the identity on their common set of objects (which is N). The first and third functors
are faithful, and the second functor is full. The second functor is also faithful (and therefore an
isomorphism) if and only if M is simply-connected and has dimension at least 3.

7. Stabilisation maps and extension to C(M)

As in §5, we fix the data (M,D, ∗, b, ξ, x0, c, θ) of Notation 5.4, namely a bundle ξ : E →M over
a d-manifold, a disc D ⊆ ∂M , etc.
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1

0 1

(a) Choices of elements of LSCd−1(a, m; m) and of CMapc, 1

2
∂(Dd; X).

The light green region represents a map Ddr{0} → X in one of the homotopy
classes cD ⊆ [Sd−1, X], where cD is determined by c as in Definition 4.13,
sending the southern hemisphere of ∂Dd to {x0} ⊆ X.

M̂t

t t + 1

(b) The stabilisation maps of (7.1). Given a (blue) configuration-section
(z, s) lying in M̂t with s|D×{t} = constx0

, add a new point at pt+1 = (∗, t + 1

2
)

and extend the section as illustrated: grey indicates the constant map to x0,
green indicates the configuration-section in Dd chosen above and dotted-green
indicates that the green region is extended, as in Figure 4.5, by defining it to
be independent of the vertical direction in this region.

Figure 7.1 Stabilisation maps for configuration-section spaces.

Stabilisation maps. Let us choose, once and for all, an element of LSCd−1(a,m; m) consisting of

one (d− 1)-disc in a (d− 1)-rectangle of width 1, as well as an element of CMapc, 1

2
∂(Dd;X) where

the configuration has exactly one point. See Figure 7.1(a).

By Proposition 4.10, the pair (ĊΓc,D(M ; ξ),CMapc, 1

2
∂(Dd;X)) is an algebra over the linear Swiss

cheese operad LSCd−1 (i.e. ĊΓc,D(M ; ξ) is an E0-module over the Ed−1-algebra CMapc, 1

2
∂(Dd;X)).

Moreover, the pair (Ċ(M), C(D̊d)) is an algebra over LSCd, and hence also over LSCd−1 by restric-
tion, and the maps

(ĊΓc,D(M ; ξ),CMapc, 1

2
∂(Dd;X)) −→ (Ċ(M), C(D̊d))

that send a configuration-section to its underlying configuration (forgetting the section) are maps
of LSCd−1-algebras. This structure induces (horizontal) stabilisation maps

ĊΓc,D
k (M ; ξ) ĊΓc,D

k+1(M ; ξ)

Ċk(M) Ċk+1(M)

(7.1)

commuting with the (vertical) forgetful maps, for all k ∈ N. Concretely, the top horizontal map is
given by the second line of (4.8), plugging in our choices of elements above. The bottom horizontal
map is defined similarly, ignoring sections and considering just configurations. See Figure 7.1(b).
Note that the bottom horizontal map of (7.1) is exactly as already described in Remark 5.8.

Definition 7.1 The map
π1(Ċk(M)) −→ π1(Ċk+1(M))

of fundamental groups induced by the stabilisation map (7.1) will be denoted by σk. Identifying
the interior of the (d− 1)-disc D ⊆ ∂M with (−1, 1)d−1, we also have inclusions

(−1, 1)× {0}d−2 × (k, k + ℓ) −֒→ int(M̂k+ℓ)
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7−→

k − 2 k − 1 k k + ℓ

pk−2 pk−1 pk

Figure 7.2 The map (7.2) inducing vℓ
k

: Bℓ → π1(Ċk+ℓ(M)).

for integers k > 0 and ℓ > 1, which induce maps

Cℓ((−1, 1)× {0}d−2 × (k, k + ℓ)) −→ Ċk+ℓ(M) (7.2)

given by S 7→ (S ⊔ {p1, . . . , pk}, k + ℓ) as illustrated in Figure 7.2. The induced map

Bℓ
∼= π1(Cℓ((−1, 1)× {0}d−2 × (k, k + ℓ))) −→ π1(Ċk+ℓ(M)) (7.3)

of fundamental groups is denoted by vℓ
k.

The maps σk : π1(Ċk(M)) → π1(Ċk+1(M)) and vℓ
k : Bℓ → π1(Ċk+ℓ(M)) of Definition 7.1 may

be used to characterise extensions of functors along the inclusion Br(M) ⊂ C(M):

Proposition 7.2 ([Kra19, §5.2]) Let M be a connected d-manifold, for d > 2, and let D ⊆ ∂M be
an embedded (d−1)-dimensional disc. Choose a collar neighbourhood b as in Notation 5.4 and take
the basepoint ∗ ∈ ∂M to be the centre of D. Let F : Br(M)→ D be a functor. An extension of F
to the larger category C(M) ⊇ Br(M) is equivalent to a choice of morphism sk : F (k)→ F (k + 1)
of D for each k ∈ N such that, for any k > 0, ℓ > 1, α ∈ π1(Ċk(M)) and β ∈ Bℓ, the following
two diagrams commute, where sℓ

k = sk+ℓ−1 ◦ · · · ◦ sk+1 ◦ sk.

F (k) F (k + 1)

F (k) F (k + 1)

sk

sk

F (α) F (σk(α)) F (k)

F (k + ℓ)

F (k + ℓ)

sℓ
k

sℓ
k

F (vℓ
k(β)) (7.4)

Proposition 7.3 The stabilisation maps (7.1) determine an extension of the monodromy functor
(5.10) = Monc,D(M, ξ) : Br(M)→ Ho(Top) to a functor

M̃onc,D(M, ξ) : C(M) −→ Ho(Top). (7.5)

Proof. We will apply Proposition 7.2 with D = Ho(Top) and F = (5.10) = Monc,D(M, ξ). Recall

that Monc,D(M, ξ) sends k to the fibre Γc,D
k (M, ξ) of the Hurewicz fibration (5.6) over the basepoint

(zk, k) ∈ Ċk(M). The bottom horizontal map of the map of Hurewicz fibrations (7.1) preserves
basepoints, so its top horizontal map restricts to a map of fibres

F (k) = Γc,D
k (M, ξ) −→ Γc,D

k+1(M, ξ) = F (k + 1),

which we define to be sk. It remains to check the two conditions (7.4) of Proposition 7.2.

The element α ∈ π1(Ċk(M)) acts on F (k) = Γc,D
k (M, ξ) through a “point-pushing” diffeomor-

phism θα of M̂k r zk. (Only the isotopy class of θα is important, since the diagrams (7.4) live in
the homotopy category.) The element σk(α) ∈ π1(Ċk+1(M)) is the extension of α to a loop of k+1
points in M̂k+1 given by leaving the point pk+1 fixed. Hence we may choose the point-pushing
diffeomorphism θσk(α) of M̂k+1 r zk+1 (through which σk(α) acts on F (k + 1) = Γc,D

k+1(M, ξ)) to
be the extension of θα by the identity on (D× [k, k+ 1])r {pk+1}. This implies that the left-hand
square of (7.4) commutes up to homotopy.

Now consider any element s ∈ F (k), a section of ξ̂ defined on M̂k r zk. Extend it in a standard

way ℓ times, as shown in Figure 7.1(b), to obtain a section s̄ of ξ̂ defined on M̂k+ℓ r zk+ℓ. The
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restriction of s̄ to P = (D × [k, k + ℓ]) r {pk+1, . . . , pk+ℓ} may be thought of as a map P → X ,

since ξ̂ is trivial over P . Note that this map P → X does not in fact depend on s: it just consists
of ℓ concatenated copies of the standard map to X illustrated on the right-hand side of Figure
7.1(b). We denote it by fℓ : P → X . Any element β ∈ Bℓ determines a self-diffeomorphism (up to
isotopy) β : P → P by point-pushing.

Claim: fℓ ◦ β is homotopic to fℓ through maps sending the two ends D× {k} and D× {k+ ℓ}
to the basepoint x0 ∈ X .

This claim implies that s̄ ·β is homotopic to s̄ through maps sending D×{k+ ℓ} to x0, in other

words, there is a path s̄ ·β ∼ s̄ in Γc,D
k+ℓ(M, ξ) = F (k+ ℓ), and moreover these paths may be chosen

continuously in s. In other words, the right-hand triangle of (7.4) commutes up to homotopy.

It therefore remains to prove the claim above, and it will suffice to prove it when β is the standard
generator of Bℓ that interchanges the two punctures pi and pi+1 for k + 1 6 i 6 ℓ− 1. We will do
this diagrammatically for dimensions d > 3 and by considering fundamental groups for dimension
d = 2.

First assume that d > 3. In this case, Figure 7.3 illustrates a “bird’s eye” view of the map
fℓ : P → X , where P = (D× [k, k+ ℓ])r {pk+1, . . . , pk+ℓ}, by collapsing the “vertical” direction of
Figures 7.1(b) and 7.2 (corresponding to the last copy of [−1, 1] in our identification of D ⊆ ∂M
with [−1, 1]d−1). Since d > 3 the resulting bird’s-eye-view picture still has d − 1 > 2 dimensions
(only two are pictured in Figure 7.3, of course). Now consider the point-pushing diffeomorphism
β : P → P corresponding to the generator of the braid group that interchanges the punctures pi

and pi+1. From Figure 7.3, and due to the fact that (the bird’s eye view of) fℓ is the same in a
small neighbourhood of each puncture pk+1, . . . , pk+ℓ, it is clear that the homotopy class of fℓ ◦β is
the same as that of fℓ. Moreover, a homotopy connecting them may be chosen to be supported in
a small neighbourhood of an arc connecting pi and pi+1, so it does not affect the ends D×{k} and
D× {k+ ℓ} of P , which are therefore still mapped to the basepoint x0 ∈ X during the homotopy.
This proves the claim when d > 3.

When d = 2 we do not collapse the vertical direction, and in this case Figure 7.4(a) illustrates
the map fℓ : P → X without any dimension reduction, and Figure 7.4(b) illustrates the effect of
the point-pushing diffeomorphism β : P → P that interchanges the punctures pi and pi+1. We will
argue that 7.4(a) ≃ 7.4(b) relative to the left, bottom and right edges of the rectangle (and hence
in particular relative to the left and right edges of the rectangle, which is the statement of the
claim above).

A map P → X sending the left, bottom and right edges of the rectangle to the basepoint x0 ∈ X
corresponds, up to relative homotopy, to an ordered ℓ-tuple of elements of π1(X,x0). Recall that,

when defining the stabilisation maps, we chose an element of CMap
c, 1

2
∂

1 (D2;X) (see Figure 7.1(a)),
which is, up to homotopy, a choice of element κ ∈ π1(X,x0) lying in one of the conjugacy classes
cD ⊆ [S1, X ] = Conj(π1(X,x0)), where cD is determined by c as explained in Definition 4.13.
The map 7.4(a): P → X therefore corresponds to the ordered ℓ-tuple (κ, κ, . . . , κ). Now the effect
of the point-pushing diffeomorphism β : P → P , under this correspondence, is to interchange the
i-th and (i + 1)-st elements of an ordered tuple while conjugating one by the other; in symbols:
(. . . , λi, λi+1, . . .) 7→ (. . . , λiλi+1λ

−1
i , λi, . . .). But the ordered ℓ-tuple (κ, κ, . . . , κ) corresponding

to 7.4(a) is clearly fixed under this action, so 7.4(b) = 7.4(a) ◦ β also corresponds to (κ, κ, . . . , κ),
and therefore 7.4(a) ≃ 7.4(b) relative to the left, bottom and right edges of the rectangle.

Remark 7.4 The general setting of [Kra19] is for E0-modules over E2-algebras; the theorem
stated in the next section (Theorem 8.7) in terms of the category C(M) is a rephrasing of this in
a special case. If d > 3, the fact that the configuration-section spaces on M form an E0-module
over an Ed−1-algebra, hence in particular over an E2-algebra, automatically implies that we have
an extension to C(M). On the other hand, when d = 2, it is not tautological that we have an
extension to C(M), although it is still true, by Proposition 7.3.
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k k + ℓ

pk+1 pk+2 pi pi+1 pk+ℓ

· · · · · ·

Figure 7.3 A bird’s eye view of the map fℓ : P → X, where P = (D × [k, k + ℓ]) r {pk+1, . . . , pk+ℓ}.
Grey indicates the constant map to the basepoint x0 ∈ X and the green regions are mapped to X as
in Figure 7.1(b), depending in particular on our choices in Figure 7.1(a). The red arrows illustrate the
effect of the point-pushing diffeomorphism β : P → P .

(a)

k k + ℓ

pk+1 pk+2 pi pi+1 pk+ℓ

· · · · · ·

(b)

k k + ℓ

pk+1 pk+2 pi pi+1 pk+ℓ

· · · · · ·

Figure 7.4 (a) The map fℓ : P → X when d = 2, with colour-coding as in Figure 7.3. (b) The map
fℓ ◦ β : P → X, where β is the point-pushing diffeomorphism interchanging the punctures pi and pi+1.

8. Polynomiality and stability

In this section we complete the proof of our main homological stability result for configuration-
section spaces. First, we show that the composition of (7.5) with the functor Hi(−;K) : Ho(Top)→
VectK → Ab is “of degree 6 i” for all i > 0 and all fields K. Via a result of [Kra19] (recalled below
as Theorem 8.7), this implies twisted homological stability for configuration spaces with coefficients
in Hi((7.5);K), which then implies the desired result by a spectral sequence comparison argument.

Polynomial functors. The category C(M) has a canonical endofunctor

s : C(M) −→ C(M)

defined as follows. The maps σk : π1(Ċk(M)) → π1(Ċk+1(M)) induced by the stabilisation maps
(cf. Definition 7.1) induce an endofunctor of Br(M) given by k 7→ k + 1 on objects. Similarly, the
standard inclusions of braid groups Bk → Bk+1 induce an endofunctor of B given by k 7→ k + 1
on objects. The endofunctor B → B is braided monoidal and the two endofunctors B → B and
Br(M)→ Br(M) are compatible with the left-action of B on Br(M), so they induce an endofunctor
of C(M) = 〈B,Br(M)〉, which we denote by s. There is moreover a natural transformation

ι : idC(M) −→ s

given by the morphisms ιk = (1, idk+1) : k → k + 1 of C(M) for k ∈ N. (Recall that a morphism
a→ b in C(M) is determined by an object c of B and a morphism a+ c→ b of Br(M).) We note
that s(ιk) = (1, v2

k(τ1)) = v2
k(τ1) ◦ ιk+1, where τ1 ∈ B2 is the standard generator and v2

k : B2 →
π1(Ċk+2(M)) is the homomorphism defined in Definition 7.1.
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Definition 8.1 For a category C equipped with an endofunctor s : C → C and natural transfor-
mation ι : idC → s, and an abelian category A, the degree of a functor T : C → A takes values in
{−1}∪N∪{∞} and is defined recursively as follows. The only functor T of degree −1 is T = 0. If
functors of degree 6 d have been defined, we say that T has degree d+ 1 if and only if the natural
transformation T ι : T → Ts is split injective in the functor category Fun(C,A) and the functor

∆T = coker(T ι : T → Ts) : C → A

has degree d. Once all functors of finite degree have been defined, all remaining functors are said
to have degree ∞.

Remark 8.2 For C = C(M), equipped with the endofunctor and natural transformation described
above, this corresponds to the notion of “split degree at 0” of [Kra19, Definition 4.6]. There are
an analogous endofunctor s and natural transformation ι on the category B♯(M) (which commute
with the functor C(M)→ B♯(M) from Summary 6.10), and when C = B♯(M) equipped with these,
the definition above corresponds to the degree of [Pal18, Definition 3.1]. In this setting, the degree
of T has an alternative characterisation in terms of cross-effects of T (Definition 3.15 and Lemma
3.16 of [Pal18]). See also [Pal] for a more general overview of notions of degree of a functor via
recursion (as above) or via cross-effects.

Lemma 8.3 Let C be a category as in Definition 8.1, A an abelian category, T1 and T2 : C → A
functors and A ∈ ob(A). Then we have

• deg(T1 ⊕ T2) = max{deg(T1), deg(T2)},
• deg(T1 ⊗A) 6 deg(T1), and, more generally,
• deg(T1 ⊗ T2) 6 deg(T1) + deg(T2) whenever deg(T1) and deg(T2) are non-negative,

where we assume that (A,⊗) is an abelian monoidal category for the second and third points.

Proof. This is a direct generalisation of [Pal18, Lemma 3.18], whose proof also generalises directly.

Definition 8.4 Let C be as in Definition 8.1. We say that a functor

T : C −→ Ho(Top)

has slope 6 λ, for λ ∈ (0,∞), if for every field K and for each integer i > 0, the composite functor

Hi(−;K) ◦ T : C −→ VectK

has degree 6 λi in the sense of Definition 8.1.

Our main homological stability result is the following. Suppose that we have chosen a bundle
over a manifold ξ : E →M , a disc D ⊆ ∂M , a singularity condition c ⊆ Γ(η(ξ)), etc, as described
in Notation 5.4. In particular, the singularity condition c determines a subset cD ⊆ [Sd−1, X ],
where X is the fibre of ξ over the basepoint of M , as explained in Definition 4.13, and thus a
subset c̃D ⊆ πd−1(X), defined to be the preimage of cD under the canonical projection

πd−1(X) −→ πd−1(X)/π1(X) ∼= [Sd−1, X ].

Theorem 8.5 Suppose that the subset c̃D ⊆ πd−1(X) has size 1. Then the stabilisation maps

CΓc,D
k (M ; ξ) −→ CΓc,D

k+1(M ; ξ)

induce isomorphisms on integral homology up to degree k
2 − 2 and surjections up to degree k

2 − 1.
With coefficients in a field, both of these ranges may be improved by one.

In particular, this implies Theorem A of the introduction. The main technical input for this is
the following.

Proposition 8.6 If |c̃D| = 1, the functor (7.5) = M̃onc,D(M, ξ) has slope 6 1.
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We will also use part of Theorem D of [Kra19], which we recall in the following:

Theorem 8.7 ([Kra19, part of Theorem D]) Let (M,D, b, ∗) be as in Proposition 7.2 and let

G : C(M) −→ Ab

be a functor to the category of abelian groups. If deg(G) 6 r, then the maps

Hi(Ċk(M);G(k)) −→ Hi(Ċk+1(M);G(k + 1)),

induced by the stabilisation maps (7.1) together with the functor G, are isomorphisms in the range
of degrees 2i 6 k − r − 2 and surjections in the range of degrees 2i 6 k − r.

Proof of Theorem 8.5 (homological stability for configuration-section spaces). From the fibration se-
quences (5.9) and the stabilisation maps (7.1), we have a map of fibration sequences of the form:

Γc,D
k (M, ξ) Γc,D

k+1(M, ξ)

ĊΓc,D
k (M ; ξ) ĊΓc,D

k+1(M ; ξ)

Ċk(M) Ċk+1(M),

(8.1)

which has an associated map of Serre spectral sequences

Hp(Ċk(M);Hq(Γc,D
k (M, ξ);K)) Hp(Ċk+1(M);Hq(Γc,D

k+1(M, ξ);K))

Hp+q(ĊΓc,D
k (M ; ξ);K) Hp+q(ĊΓc,D

k+1(M ; ξ);K)

⇒ ⇒

(8.2)

for any field K. By Proposition 8.6, the functor Hq(−;K) ◦ M̃onc,D(M, ξ) has degree 6 q for each
q > 0, and hence Theorem 8.7 implies that (8.2) is an isomorphism on E2 pages in the range of
bidegrees 2p 6 k − q − 2, and a surjection for 2p 6 k − q. In particular, it is an isomorphism for
total degree p + q 6 k

2 − 1 and a surjection for p + q 6 k
2 . By a spectral sequence comparison

argument (see [Zee57, Theorem 1] or [CDG13, Remarque 2.10]), the same statements hold also
in the limit. Composing with the homotopy equivalences of Lemma 4.14, we conclude that the
stabilisation maps

CΓc,D
k (M ; ξ) ≃ ĊΓc,D

k (M ; ξ) −→ ĊΓc,D
k+1(M ; ξ) ≃ CΓc,D

k+1(M ; ξ) (8.3)

induce isomorphisms on K-homology up to degree k
2 − 1 and surjections up to degree k

2 . Applying
this for K = Fp and using the maps of long exact sequences induced by the short exact sequences
of coefficients 0→ Z/pr → Z/pr+1 → Z/p→ 0, we deduce the same statements for homology with
coefficients in Z(p∞), where Z(p∞) is the direct limit of Z/p → Z/p2 → Z/p3 → · · · . Then using
the short exact sequence of coefficients

0→ Z −→ Q −→ Q/Z =
⊕

p

Z(p∞)→ 0,

we conclude that the stabilisation maps (8.3) induce isomorphisms on integral homology up to
degree k

2 − 2 and surjections up to degree k
2 − 1.

Proof of Proposition 8.6. Let K be a field and i > 0 an integer. Write

Fi = Hi(−;K) ◦ M̃onc,D(M, ξ) : C(M) −→ VectK.
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In this notation, we need to show that deg(Fi) 6 i, where deg(−) is as in Definition 8.1.

Recall that we have assumed that the subset c̃D ⊆ πd−1(X) has cardinality 1, and denote by Z
the corresponding path-component of Ωd−1X . Also write Y = ΓD(M, ξ) for the space of sections
of ξ : E →M that restrict to the fixed section sD (cf. Notation 5.4) on D ⊆ ∂M . There are natural
maps

ek : Y × Zk −→ Γc,D
k (M, ξ) = M̃onc,D(M, ξ)(k), (8.4)

defined in Figure 8.1, such that the square

Y × Zk Y × Zk+1

Γc,D
k (M, ξ) Γc,D

k+1(M, ξ)

ek ek+1

commutes up to homotopy, where the bottom horizontal map is the stabilisation map (namely the
top horizontal map of (8.1), which is also M̃onc,D(M, ξ)(ιk)) and the top horizontal map is the
obvious inclusion (s, f1, . . . , fk) 7→ (s, f1, . . . , fk, ∗), where ∗ ∈ Z is any basepoint (exactly which
basepoint does not matter since Z is path-connected). Moreover, the map (8.4) is a topological

embedding, and it is not hard to define a deformation retraction of Γc,D
k (M, ξ) onto its image –

hence (8.4) is a homotopy equivalence.

Now consider an automorphism α ∈ AutC(M)(k) = π1(Ċk(M)), which, via the endofunctor s of

C(M), induces an automorphism s(α) = σk(α) ∈ π1(Ċk+1(M)). (Recall that the notation σk(−)
was introduced in Definition 7.1.) One may check that, under the identifications (8.4), we have an
equality

M̃onc,D(M, ξ)(s(α)) = M̃onc,D(M, ξ)(α) × idZ (8.5)

in the group of homotopy automorphisms up to homotopy π0(hAut(Y × Zk+1)).

Next, consider the morphism ιk : k → k+1 of C(M). As observed earlier in this section, we have
the identity s(ιk) = v2

k(τ1) ◦ ιk+1, where τ1 ∈ B2 is the standard generator and the homomorphism
v2

k : B2 → π1(Ċk+2(M)) is as in Definition 7.1. We also noted above that, under the identifications
(8.4), the map M̃onc,D(M, ξ)(ιk) corresponds to the obvious inclusion of Y × Zk into Y × Zk+1

using the fixed basepoint ∗ of Z. Using this, one may check that, under the identifications (8.4),
we have an equality

M̃onc,D(M, ξ)(s(ιk)) = M̃onc,D(M, ξ)(ιk)× cZ (8.6)

in the homotopy set π0(Map(Y × Zk+1, Y × Zk+2)) = [Y × Zk+1, Y × Zk+2], where cZ : Z → Z
is the identity map if d > 3, and if d = 2 it is the homotopy automorphism of Z ⊆ ΩX given by
conjugating a given loop in the path-component Z of ΩX by the fixed loop ∗ ∈ Z.

The morphisms of C(M) are generated by its automorphisms together with the morphisms ιk
for k ∈ N, so the identifications (8.4), (8.5) and (8.6) imply that we have a natural isomorphism

M̃onc,D(M, ξ) ◦ s ∼= M̃onc,D(M, ξ)× C(cZ) (8.7)

of functors C(M) → Ho(Top), where, for an endomorphism f : A → A in Ho(Top), the functor
C(f) : C(M)→ Ho(Top) sends each object to A, each automorphism to idA and each morphism ιk
to f . Applying Hi(−;K) and using the Künneth theorem (including the naturality of the Künneth
isomorphism), the decomposition (8.7) induces an isomorphism of functors

Fi ◦ s ∼=

i⊕

j=0

Fi−j ⊗Hj(C(cZ);K), (8.8)

such that the natural transformation Fi ι : Fi → Fi ◦ s corresponds, under (8.8), to the inclusion of
the j = 0 summand, where we are using the fact that Z is path-connected to identify H0(C(cZ);K)
with the constant functor at K.
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0 k

M · · · D

Figure 8.1 The map ek : Y × Zk −→ Γc,D

k
(M, ξ) from the proof of Proposition 8.6, where Z is a given

path-component of Ωd−1X = Map((Dd−1, ∂Dd−1), (X, {x0})) and Y = ΓD(M, ξ).

Given inputs (s, f1, . . . , fk), the section ek(s, f1, . . . , fk) of ξ̂ over M̂k r zk is given by s in the yellow
region (namely M) and by the maps f1, . . . , fk on the red arcs (representing embedded (d − 1)-discs
with their boundary on the bottom face of D × [0, k]). Recall that, over (D × [0, k]) r zk, the bundle
is trivial with fibre X, so we may think of sections as maps (D × [0, k])r zk → X. The bottom face of
D × [0, k] is sent to the basepoint x0 of X. We then extend the map in the red regions by defining it to
be constant along radii centred at the punctures zk, and we extend it in the green regions by defining
it to be constant in the vertical direction.

Using (8.8) and the fact that Fi ι corresponds to the inclusion of the j = 0 summand under this
identification, we deduce (i) that Fi ι is split-injective in the functor category Fun(C(M),VectK)
and (ii) that we have an isomorphism of functors

∆Fi
∼=

i⊕

j=1

Fi−j ⊗Hj(C(cZ);K). (8.9)

The fact that cZ is a homotopy automorphism, i.e., invertible in Ho(Top), implies that the functor
Hj(C(cZ);K) sends each ιk to an isomorphism, which implies, by definition, that

deg(Hj(C(cZ);K)) 6 0. (8.10)

We now prove that deg(Fi) 6 i by induction on i > 0. For i = 0, the identification (8.9) says
that ∆F0 = 0. Together with the fact that F0 ι is split-injective, this implies that deg(F0) 6 0.
For i > 1, using the identification (8.9), Lemma 8.3, the fact (8.10) and the inductive hypothesis,
we see that

deg(∆Fi) = deg
( i⊕

j=1

Fi−j ⊗Hj(C(cZ);K)
)
6 maxi

j=1{deg(Fi−j)} 6 i− 1.

Together with the fact that Fi ι is split-injective, this implies by definition that deg(Fi) 6 i.

Remark 8.8 (The hypothesis of Proposition 8.6.) The assumption |c̃D| = 1 (where c̃D ⊆ πd−1(X)
is the subset induced by the “singularity condition” c ⊆ Γ(η(ξ))) of Proposition 8.6 means that
the corresponding subspace Z ⊆ Ωd−1X is a single path-component, rather than a union of several
path-components. The path-connectedness of Z is used in a key way for the identification (8.9)
of ∆Fi in terms of Fi−1, Fi−2, . . .. If Z were disconnected, we would have H0(C(cZ);K) = Kπ0(Z)

and, denoting by Z0 the path-component of Z containing its basepoint, the identification (8.9)
would become

∆Fi
∼= Fi ⊗Kπ0(Z)r{Z0} ⊕

i⊕

j=1

Fi−j ⊗Hj(C(cZ);K),

which would break the inductive argument, since this decomposition involves Fi itself.

Remark 8.9 (Naturality of the Künneth theorem.) In order to transform the identification (8.7)
of functors C(M)→ Ho(Top) into the identification (8.8) of functors C(M)→ VectK, we used the
Künneth theorem for field coefficients, which does not involve any Tor terms. If we had worked
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instead with Z coefficients, we would have obtained a decomposition similar to (8.8) – at the level
of objects – including also some Tor terms. The appearance of the Tor terms themselves is no
problem, since one may prove an analogue of the second and third points of Lemma 8.3 for Tor(−)
instead of ⊗, so they behave as desired with respect to degree. The problem instead is that the
Künneth short exact sequences are split, but not naturally split (unless – of course – the Tor terms
vanish). Thus, we would not have been able to obtain a decomposition of functors analogous to
(8.8), since the naturality of the Künneth theorem, in the case where the Tor terms vanish, was
key to upgrading (8.8) from an isomorphism at the level of objects to an isomorphism of functors.
See also Remark 4.4 of [Pal18] for a similar comment about the (non-)naturality of the splitting of
the Künneth short exact sequence.

Remark 8.10 (Improving the range of stability.) Our main homological stability result states that,
on homology with field coefficients, the stabilisation maps (8.3) induce isomorphisms up to degree
k
2 − 1 and surjections up to degree k

2 . This then implies the analogous statements for homology
with integral coefficients – but only in a range of degrees that is smaller by one, i.e., isomorphisms
up to degree k

2 − 2 and surjections up to degree k
2 − 1.

However, under certain hypotheses, this loss of one in the range of degrees for integral homology
may be avoided: namely, if the integral homology groups H∗(Ωd−1X ;Z) and H∗(ΓD(M, ξ);Z) are
torsion-free in all degrees. Under this assumption, one may run the proof of Proposition 8.6 using
Z in place of K, since the torsion-freeness assumption implies that one may apply the Künneth
theorem for Z coefficients without the appearance of any Tor terms (see Remark 8.9 above for the
importance of the vanishing of the Tor terms, and see Remark 4.4 of [Pal18] for the analogous
remark in a similar setting). We could then also run the proof of Theorem A directly with Z

coefficients, without any need to pass from field coefficients to Z coefficients at the end, which is
where we lose 1 from the range of stability.

Note that, in the case where M = D2 and X = BG, this hypothesis amounts to requiring that
H∗(G;Z) is torsion-free in all degrees. (In particular, this means that the abelianisation of G must
be torsion-free, which is not the case for G finite cyclic or G = A ⋊ Z/2, where A is abelian and
Z/2 acts by inversion.)

9. Extension to B♯(M) and split-injectivity

In this brief section we prove a split-injectivity result for the homology of configuration-mapping
spaces, under certain conditions on the underlying manifold M . Let us fix a connected manifold
M , an embedded disc D ⊆ ∂M , a based space X and a subset c ⊆ [Sd−1, X ]. Recall that the

stabilisation maps CMapc,D
k (M ;X) → CMapc,D

k+1(M ;X) fit into a map of fibre sequences of the
form (8.1), inducing a map of their associated Serre spectral sequences:

Hp(Ċk(M); Hq(Mapc,D(M̂k r zk, X);Z)) Hp(Ċk+1(M); Hq(Mapc,D(M̂k+1 r zk+1, X);Z))

Hp+q(CMapc,D

k (M ; X);Z) Hp+q(CMapc,D

k+1
(M ; X);Z)

⇒ ⇒

(9.1)

(Note that above we take coefficients in Z rather than in a field, as was the case in (8.2).)

The main result of this section is the following.

Theorem 9.1 Let M have dimension at least 3 and assume that either π1(M) = 0 or the handle-
dimension of M is at most dim(M) − 2. Then the map of Serre spectral sequences (9.1) above is
split-injective on each entry of the E2 pages.

Remark 9.2 Note that, since M is connected and has non-empty boundary, its handle-dimension
is at most dim(M)−1. Thus the only manifolds excluded by the additional hypotheses of Theorem
9.1 are (i) surfaces and (ii) non-simply-connected manifolds of maximal handle dimension.

Recall from §7 that we have a monodromy functor

C(M) −→ Ho(Top) (9.2)
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encoding both the stabilisation maps and the monodromy action of π1(Ċk(M), zk) on the fibre

Mapc,D(M̂k r zk, X) of the fibration CMapc,D
k (M ;X)→ Ċk(M) for each k (see Proposition 7.3).

Recall also from §6 that we have a functor of braid categories

C(M) −→ B♯(M) (9.3)

(see Summary 6.10).

Proposition 9.3 Let dim(M) > 3 and assume that either π1(M) = 0 or the handle-dimension of
M is at most dim(M)− 2. Then the monodromy functor (9.2) extends to B♯(M).

Proof. The fibre Mapc,D(M̂k r zk, X) of the fibration CMapc,D
k (M ;X)→ Ċk(M) decomposes up

to homotopy as Map∗(M,X) × (Ωd−1
c X)k, where Ωd−1

c X denotes the union of path-components
of the loopspace Ωd−1X corresponding to the subset c ⊆ [Sd−1, X ]. Since M has dimension at
least 3, the fundamental group π1(Ċk(M)) decomposes as π1(M)k ⋊Σk [Til16, Lemma 4.1]. Under
these identifications, and under the given assumptions on M , [PT, Corollary 7.2] implies that the
monodromy action is given, for αi ∈ π1(M), σ ∈ Σk, f ∈ Map∗(M,X) and gi ∈ Ωd−1

c X , by the
following formula:

(α1, . . . , αk;σ) · (f, g1, . . . , gk) = (f, ḡ1, . . . , ḡk), (9.4)

where ḡi = f∗(αi).gσ(i).sgn(αi). The element f∗(αi) ∈ π1(X) acts on the point gσ(i) ∈ Ωd−1
c X via

the usual action-up-to-homotopy of π1(X) on the iterated loopspaces of X . The sign sgn(αi) ∈
{±1} depends on whether or not the loop αi lifts to a loop in the orientation double cover of M ,
and −1 acts on gσ(i) ∈ Ωd−1

c X via a reflection of Sd−1.

The formula (9.4) may be visualised as follows (cf. Figure 7.1 of [PT]). The element (α1, . . . , αk;σ)
of π1(M)k⋊Σk is a k-strand braid, where the strands may pass through each other, and where each
strand is labelled by an element of π1(M). The element (f, g1, . . . , gk) is acted upon by pushing
the i-th element gi backwards along the i-th strand of the braid while acting on it by f∗( ) of the
label of that strand as well as the involution sgn( ) of the label of the strand.

This description of the monodromy action immediately suggests how to extend the monodromy
functor (9.2) to B♯(M), since the morphisms of B♯(M) have a similar combinatorial description
when M has dimension at least 3. Namely, a morphism m→ n in B♯(M) may be viewed as a braid
(whose strands may cross each other) from a subset of {1, . . . ,m} to a subset of {1, . . . , n}, where
each strand is labelled by an element of π1(M) (cf. [Kra19, Remark 5.10]). In fact, we will define
an extension of the monodromy functor to B♯(M)op, but this will finish the proof since B♯(M) is
canonically isomorphic to its opposite category.

To define the extension of the monodromy functor to B♯(M)op, we describe how a morphism
m→ n of B♯(M) acts on (f, g1, . . . , gn) for f ∈ Map∗(M,X) and gi ∈ Ωd−1

c X . First, fix a basepoint
∗ ∈ Ωd−1

c X . If there is a strand ending at position i, we push the i-th element gi backwards along
this strand, acting on it by f∗( ) and sgn( ) of the strand’s label. We then fill in any blanks in
the resulting partial m-tuple of elements of Ωd−1

c X with the basepoint ∗.

In formulas, this is written as follows. A morphism m → n of B♯(M) is given by a partially-
defined injective function σ from a subset of {1, . . . ,m} to a subset of {1, . . . , n} and an element
αi ∈ π1(M) for each i ∈ dom(σ). This morphism acts by

(f, g1, . . . , gn) 7−→ (f, ḡ1, . . . , ḡm),

where ḡi = f∗(αi).gσ(i).sgn(αi) if i ∈ dom(σ) and ḡi = ∗ otherwise.

Remark 9.4 The assumption that either π1(M) = 0 or the handle-dimension of M is at most
dim(M) − 2 is essential in the proof above. Indeed, the monodromy action is in general given
by a more complicated formula than (9.4) without these assumptions (cf. [PT, Remark 7.3]). In
particular, there is a non-trivial action on the component f ∈Map∗(M,X) of the tuple.

Proof of Theorem 9.1. By [Pal18, Theorem A and Remark 1.3], for any abelian group-valued func-
tor T : B♯(M)→ Ab, the induced stabilisation maps on T -twisted homology

H∗(Ck(M);T (k)) −→ H∗(Ck+1(M);T (k + 1))
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are split-injective in all degrees. This implies the statement of Theorem 9.1 by applying it to the
extended monodromy functor B♯(M)→ Ho(Top) of Proposition 9.3 composed with the homology
functor Hq(−;Z) : Ho(Top)→ Ab.

Remark 9.5 Split-injectivity of a map of Serre spectral sequences on each entry of the E2 pages
does not, however, automatically imply split-injectivity on any of the further pages, since we do
not know whether the splittings commute with the differentials.

10. Group-completion and stable homology

The identification of the stable homology follows a relatively well-established path. For con-
figuration spaces of manifolds with labels in a fixed space this is semi-classical [May72] [McD75],
[Seg73], [Böd87], [Sal01]. In the case of configuration-mapping spaces this has been done in [EVW].
Here we also generalise the arguments to configuration-section spaces.2

In the classical setting an important role is played by the scanning map from the configuration
spaces to certain mapping or section spaces. The part that differs from one situation to the other,
is the identification of the ‘local data’, i.e. what is seen in a small disk modulo its boundary. The
remaining arguments are nearly formal and – somewhat surprisingly – remain so also in our case
where the data associated to a configuration depends on global information rather than the local
information in the neighborhood of the configuration points themselves.

In outline, we will first consider configuration-section spaces of any number of particles where
the particles can ‘vanish’ at the boundary or in some other subspace of the underlying manifold
M and establish a quasi-fibration sequence for them. Then we identify the ‘local data’. Using
an induction on the handlebody decomposition of M we can then ‘integrate’ the local data to
the whole manifold. Finally, using the group-completion theorem we relate this to the finite
configuration-section spaces.

10.1. Relative configuration-section spaces and quasi-fibrations. Let M be a compact,
connected manifold of dimension d and N ⊂ M be a co-dimension zero closed submanifold such
that M r N is open. As before, let ξ : E → M be a fibre bundle and let S be a subspace of M .
We assume that ξ has a canonical section s0 defined over all of M and the sections that we will
consider agree with s0 on S. (In previous sections, we imposed “boundary conditions” on subsets
D ⊆ ∂M ; the definition generalises straightforwardly to arbitrary subsets S ⊆M .) Let c ⊆ Γ(η(ξ))
be a singularity condition (cf. Definition 3.14).

Definition 10.1 Let CΓc,S(M,N ; ξ) be the quotient of CΓc,S(M ; ξ) =
∐

k CΓc,S
k (M ; ξ) by the

equivalence relation (z, s) ∼ (z′, s′) whenever

z ∩M rN = z′ ∩M rN and s|MrN = s′|MrN .

So (z, s) and (z′, s′) agree outside the interior of N .

Thus points can disappear as they move into the submanifold N . It will be convenient to also
allow points to disappear on the boundary of M . In that case we will write

CΓc,S(M,∂M ; ξ)

were we interpret this to mean that ∂M is thickened to a small collar b : [−ǫ, 0]× ∂M ⊂M to fit
the above definition.

Proposition 10.2 Let M ′ be a compact co-dimension 0 submanifold of M , such that (M ′, N∩M ′)
is connected. Then the canonical quotient map

CΓc,S(M,N ; ξ)
π
−→ CΓc,S(M,M ′ ∪N ; ξ)

2 We also correct the arguments in [EVW] in several places: this includes the statement of the quasi-fibration
sequence in Proposition 10.2; the proof of Theorem 10.12 and in particular the correction of diagram (10.2).
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is a quasi-fibration with fibre
CΓc′,S′∪∂′

(M ′, N ∩M ′; ξ′);

here S′ = S ∩M ′; ∂′ = ∂M ′ ∩ ∂K where K = (M rM ′) is the closure of the complement of M ′

in M ; ξ′ := ξ|M ′ and c′ ⊆ Γ(η(ξ′)) are the restrictions of ξ and c to M ′.

Proof. We need to identify the fibre π−1((z, s)) where (z, s) ∈ CΓc,S(M,N ; ξ) is a representative of
(z, s) ∈ CΓc,S(M,M ′∪N ; ξ); here s ∈ Γ(Mrz, ξ) is a section satisfying the restrictions imposed by
c and S. By definition, this fibre consists of all those (z′, s′) that agree with (z, s) when restricted
to K. Thus z′ r (K ∩ z′) can be an arbitrary subset of the interior of M ′ and s′ is a section of ξ′

which agrees with s on the interface ∂′ = ∂M ′ ∩ ∂K. Taking the relation introduced by N into
account, we see that

π−1((z, s)) = {(z′, s′) ∈ CΓc′,S∩M ′

(M ′, N ∩M ′; ξ′) | s′|∂′ = s|∂′}.

Thus the fibre is independent of z and in case that s|∂′ = s0|∂′ it is precisely given by the fibre of
the proposition.

To show π is a quasi-fibration in the sense of Dold-Thom [DT58] we use the natural filtrations
by number of points in the configuration of the base space:

Bk := {(z, s) ∈ CΓc,S(M,M ′ ∪N ; ξ) with |z| 6 k}.

Step 1: We will prove that π restricted to Bk r Bk−1 is a fibration.3 For this note that the map

Bk rBk−1 → CΓc′′,S∩K
k (K; ξ′′) sending (z, s) to (z ∩ (M rM ′), s|K) is a homeomorphism onto its

image of points (z′′, s′′) where s′′ extends to a section over all of M while restricting to s0 over S.
Let Γ(E|∂′) denote the space of sections of E restricted to ∂′ and consider the homeomorphism

φ : (Bk rBk−1)×Γ(E|∂M′) CΓc′,S∩M ′

(M ′, N ∩M ′; ξ) −→ π−1(Bk rBk−1)

defined by
φ((z′′, s′′), (z′, s′)) = (z′′ ∪ z′, s′′ ∪∂′ s′).

Here the fibre product is taken using the natural maps that take (a configuration and) a section
to its restriction over ∂′. As these are fibrations, the projection of the source of φ to Bk rBk−1 is
a fibration, thus proving (1).

Step 2: Let U be a tubular neighbourhood of M ′ in M and let Jt be an isotopy of M such that

J0 = idM and J1(U) ⊂M ′ while for all t ∈ [0, 1] Jt(S) ⊂ S and Jt(N ∩ U) ⊂ N.

We can now define Uk ⊂ Bk with at most k − 1 point in M r U . So in particular Bk−1 ⊂ Uk.
Define a homotopy Ht by the formula

Ht(z, s) = (Jt(z), s ◦ J−1
t ).

By definition this commutes with π and hence is a fiberwise homotopy. We want to show that
H1 : π−1(z, s) → π−1(H1(z, s)) induces a homotopy equivalence on fibres over points (z, s) ∈ Uk.
But this follows as (M ′, N ∩M ′) is connected and both fibres can be identified with

CΓc′,S′

(M ′, N ∩M ′; ξ′).

Together Step 1 and Step 2 prove that π satisfies the Dold-Thom criteria for a quasi-fibration.

3 Up to homeomorphism we may assume that none of the k points are in [−ǫ, 0] × ∂M ′ ⊂ K.
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10.2. Local data. We will now identify the ‘local data’ for the scanning process. By definition,
‘local data’ is the restriction of the configuration section spaces to a disk relative to its boundary.
In other words, it is the configuration section space on the disk where points can disappear at the
boundary. As the fibre bundle ξ is locally trivial, the ‘local data’ in the case of configuration-section
spaces does not see the global twisting of ξ. We can thus assume we have a trivial bundle with
fixed, based fibre X and a fixed subset c ⊆ πd−1(X) of monodromies, and thus reduce to the case
of configuration-mapping spaces.

Let (X, ∗) be a pointed space and let c ⊆ πd−1(X) be a subset of monodromies.

Definition 10.3 Let Ad(X, c) be the pushout of the diagram

Dd ×Mapc(Sd−1, X)
i
←− Sd−1 ×Mapc(Sd−1, X)

ev
−→ X,

where the left arrow is the inclusion and the right arrow the evaluation map ev(t, f) := f(t). Let
A′

d(X, c) be the homotopy fibre of the natural inclusion X → Ad(X, c). When c = πd−1(X) we
drop c from the notation and write Ad(X) and A′

d(X).

Lemma 10.4 Ad(X, c) ≃ CMapc(Dd, ∂Dd;X).

Proof. We expand on the arguments given in [EVW].

Let C01 denote the subspace of CMapc(Dd, ∂Dd;X)4 of pairs (z, f) where z ∩ int(Dd) has size
either zero or one. By radial expansion, we have a deformation retraction

CMapc(Dd, ∂Dd;X) ≃ C01.

The radial expansion varies continuously with the configuration z: If z1 ∈ z is the closest point
to zero, and z2 ∈ z the second most close (it could be as close as z1) then the radial expansion
proceeds at rate 1/|z2|.

Note that
C01 = C0 ∪ C1,

where

• C0 is the subspace of C01 of pairs (z, f) where z ⊆ N(∂),
• C1 is the subspace of C01 of pairs (z, f) where z ⊆ int(Dd) has cardinality one,

and hence

• C0 ∩C1 is the subspace of C01 of pairs (z, f) where z ⊆ N(∂) ∩ int(Dd) has cardinality one.

Note that the inclusion C0 ∩C1 →֒ C1 is a (closed) cofibration, since we may exhibit (C1, C0 ∩C1)
as an NDR-pair by using a closed 2ǫ-neighbourhood of ∂Dd. Hence we have

CMapc(Dd, ∂Dd;X) ≃ C01 = C0 ∪ C1 = Pushout(C1 ←֓ C0 ∩ C1 →֒ C0)

≃ hPushout(C1 ←֓ C0 ∩ C1 →֒ C0).

It therefore suffices to identify the two inclusion maps C0 ∩ C1 →֒ C0 and C0 ∩ C1 →֒ C1 up to
homotopy with the two maps in the diagram of Definition 10.3, since Ad(X, c) is the pushout of
this diagram, and thus also the homotopy pushout, since the map i of the diagram is a cofibration.

There are homotopy equivalences

C1
g1

−−→ Dd ×Mapc(Sd−1, X) C0 ∩ C1
g01

−−−→ Sd−1 ×Mapc(Sd−1, X) C0
g0

−−→ X

given, respectively, by

(z, f) 7→ (z, f |Sd−1) (z, f) 7→
(
− z

|z| , f |Sd−1

)
(z, f) 7→ f(0).

4 Strictly speaking, we extend both Dd and ∂Dd by a small collar [1, 1 + ǫ] × ∂Dd.
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(The reason for the negative sign in the middle formula will become clear below.) Moreover, one
may easily write down a homotopy

g1 ◦ inclusion ≃ inclusion ◦ g01 : C0 ∩ C1 −→ Dd ×Mapc(Sd−1, X),

using the straight line in Dd between a given point z ∈ N(∂) ∩ int(Dd) and − z
|z| . This identifies

the inclusion C0 ∩ C1 →֒ C1 with the inclusion map i of Definition 10.3.

Similarly, we may define a homotopy

g0 ◦ inclusion ≃ ev ◦ g01 : C0 ∩ C1 −→ X,

by (z, f) 7→ f(− tz
|z| ) for t ∈ [0, 1]. This is well-defined, since, for all z ∈ N(∂) ∩ int(Dd), the line

segment in Dd between 0 and − z
|z| does not pass through z, and hence f is defined on all of this

line segment. (This is the reason for defining the homotopy equivalence g01 with the negative sign
in the formula above; without the negative sign, we would be forced to consider the line segment
between 0 and z

|z| instead, which passes through z, meaning that f is not defined on the whole line

segment.) This identifies the inclusion C0 ∩ C1 →֒ C0 with the map ev of Definition 10.3.

We will now identify multiple deloopings of configuration-mapping spaces associated to Dd. For
this it is easier to work with cubes rather than with disks. Thus we fix an identification of the
d-disk with the d-cube via a homeomorphism that takes the southern hemisphere of the boundary
of the cube less one of its faces:

Dd ≡ Id and
1

2
∂ ≡ ∂Id r (Id−1 × {1}); (10.1)

here I = [0, 1]. Recall from Proposition 4.10 that the disjoint union of the configuration mapping

spaces CMapc,S
k (Dd;X), k > 0, is an Ed-algebra when S = ∂ and an Ed−1-algebra when S =

1
2∂. Thus these two spaces have d and respectively d − 1 fold classifying spaces. The homotopy
commuting product structures correspond to stacking the cubes along different pairs of opposite
faces that are mapped to the basepoint in X . As in the case of configuration spaces with labels
and other similar cases, it turns out that taking the classifying space with respect to multiplication
corresponding to one such pair of opposite faces is equivalent to allowing the configurations to
vanish on those faces which we will now make precise. We introduce the notation

Bk(CMapc,S(Dd;X)) := CMapc,S(Id, ∂Ik × Id−k;X).

Lemma 10.5 There are homotopy equivalences

(i) s1 : B1(CMapc,∂(Dd;X))
≃
−→ B(CMapc,∂(Dd;X));

(ii) s1 : B1(CMapc, 1

2
∂(Dd;X))

≃
−→ B(CMapc, 1

2
∂(Dd;X)).

Proof. For c = πd−1(X), this is Lemma 3.3.1 of [EVW]. The proof follows standard arguments,
compare [May72], [McD75], [Sal01], and automatically extends to an arbitrary set c of mon-
odromies.

Lemma 10.6 There are homotopy equivalences

(i) sk : Bk−1(CMapc,∂(Dd;X))
≃
−→ ΩBk(CMapc,∂(Dd;X)) for 1 < k 6 d;

(ii) sk : Bk−1(CMapc, 1

2
∂(Dd;X))

≃
−→ ΩBk(CMapc, 1

2
∂(Dd;X)) for 1 < k < d.

Proof. For c = πd−1(X), this is Lemma 3.5.1 of [EVW]. The proof follows standard arguments,
compare [May72], [McD75], [Sal01], and automatically extends to an arbitrary set c of mon-
odromies.
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Lemma 10.7 There are homotopy equivalences

Ad(X, c) ≃ Bd(CMapc,∂(Dd;X)) and A′
d(X, c) ≃ Bd−1(CMapc, 1

2
∂(Dd;X)).

Proof. For c = πd−1(X), this is Lemma 3.5.2 of [EVW] and the proof generalises for an arbitrary
set c of monodromies. Indeed, the first homotopy equivalence holds by Lemma 10.4, the definition
of Bk, and because CMapc,∂(Id, ∂Id;X) ≃ CMapc(Id, ∂Id;X) as the restriction on the maps to
be constant on the boundary imposes no additional restriction in the quotient configuration space
where all sections are identified that agree on the complement of a collar of the boundary.

Corollary 10.8 There are homotopy equivalences

(i) ΩBCMapc,∂(Dd;X) ≃ ΩdA(X, d) for d > 1;

(ii) ΩBCMapc, 1

2
∂(Dd;X) ≃ Ωd−1A′

d(X, c) ≃Map∗((Dd, Sd−1); (Ad(X, c);X)) for d > 2.

Proof. To prove part (ii), note that there is a string of homotopy equivalences

ΩBCMapc, 1

2
∂(Dd;X) ≃ ΩB1(CMapc, 1

2
∂(Dd;X))

≃ Ωd−1Bd−1(CMapc, 1

2
∂(Dd;X))

≃ Ωd−1A′
d(X, c).

The first and second homotopy equivalence follow from Lemma 10.5 and repeated application of
Lemma 10.6. The last homotopy equivalence follows from Lemma 10.7. The second homotopy
equivalence in part (ii) follows as by definition A′(X, c) is the homotopy fibre of the canonical
inclusion of X into A(X, c). An entirely analogous argument proves part (i).

10.3. Integrating local data for general manifolds. As in the classical case for configuration
spaces with labels [McD75], the configuration-section spaces are describing section spaces of certain
bundles that depend on the tangent bundle of the underlying manifold. Thus we need the following
fiberwise generalisation of Ad(X, c).

As before, let M be compact and connected, and fix a metric on M . Denote by DdM and
Sd−1M the associated disk and sphere bundles of the tangent bundle TM .

Definition 10.9 Let Ed(ξ, c) be the fibre-wise pushout of the diagram

DdM ×M Mapc
M (Sd−1M, ξ)

i
←− Sd−1M ×M Mapc

M (Sd−1M, ξ)
ev
−→ ξ,

where MapM denotes the space of fiberwise maps between bundles over M and ev is the fiberwise
evaluation. Thus Ed(ξ, c) is a fibre bundle over M with fibres Ad(X, c) for X a typical fibre of ξ.
Write E′

d(ξ, c) for the fibrewise homotopy fibre of the map of fibre bundles ξ → Ed(ξ, c) over M .

Example 10.10 If ξ is the trivial fibration with fibre X and M is parallelisable then Ed(ξ, c) is
the trivial fibration with fibre Ad(X, c), and E′

d(ξ, c) is the trivial fibration with fibre A′
d(X, c), the

homotopy fibre of the natural inclusion X → Ad(X, c).

Example 10.11 One reason to consider non-trivial bundles ξ over M is because it allows us to
‘untwist’ the tangent bundle. Thus if ξ is the sphere bundle of the cotangent bundle T ∗M then
Ed(ξ, c) is the trivial fibration with fibre Ad(Sd−1, c).

Let M be pointed and have non-empty boundary and let L ( ∂M be a (d − 1)-dimensional
closed proper submanifold embedded in the boundary ∂M . Write

ΓS((M,L);Ed(ξ, c))

for the sections of Ed(ξ, c) → M which restrict on {∗} ∪ S to s0 and on ∂M r L take values in
ξ|∂M ⊂ Ed(ξ, c)|∂M .
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Theorem 10.12 There is a weak homotopy equivalence

CΓc,∗(M,L; ξ) −→ Γ((M,L);Ed(ξ, c)).

Proof. One proceeds by induction on a handle decomposition of M using the quasi-fibration se-
quence of Proposition 10.2.

As M is of dimension d and has boundary, we can choose a handle decomposition of M that
only contains handles of index k < d. In the initial stage of our induction, the case when M = Dd,
both spaces are contractible: Since M retracts via isotopies into (a collar neighborhood of) L, all
configurations can be contracted to the empty configuration and the maps in the fibre are pointed
maps from the disk Dd to X . Similarly, the section space consist of pointed maps to X .

Now assume that M is obtained from M ′ by attaching a k-handle Dk × Dd−k for 0 < k < d
along Sk−1 × Dd−k to the boundary of M ′. As before in (10.1) we identify the d-disk with the
d-cube. Then

M = M ′ ⊔∂′ Id where ∂′ = ∂Ik × Id−k.

We may assume that L ( ∂M ′ does not intersect ∂′. Consider the following diagram:

CΓc′,∗∪∂′

(M ′, L; ξ′) −−−−→ CΓc,∗(M,L; ξ) −−−−→ CΓc,∗(M,L ∪M ′; ξ′′)
y

y
y

Γ∂′

((M ′, L);Ed(ξ′, c′)) −−−−→ Γ((M,L);Ed(ξ, c)) −−−−→ Γ((Id, ∂′);Ed(ξ′′, c′′))[ξ].

(10.2)

Here ξ′ and ξ′′ denote the bundle ξ restricted to appropriate submanifolds of M , and similarly c′

and c′′ are restrictions of c. The upper row is a quasi-fibration by Proposition 10.2. Note that
(M ′, L) is indeed connected.

In the lower row of diagram (10.2), the subscript [ξ] on the right denotes the subspace of those

s′′ ∈ Γ((Id, ∂′);Ed(ξ′′, c′′))

that are restrictions of sections in Γ((M,L);Ed(ξ, c)). This selects entire connected components of
the section space determined by the homotopy class in π0(Γ(∂′;Ed(ξ′′, c′′)) defined by the restriction
of s′′ to ∂′ ≃ Sk−1. In this case however, since s′′|∂′ also has to extend over Id, it must be
nullhomotopic in the first place as a map to A(X, d) and can thus be extended to a section over
M . Thus

Γ((Id, ∂′);Ed(ξ′′, c))[ξ] = Γ((Id, ∂′);Ed(ξ′′, c)).

If s0|Id denotes the base point in Γ((Id, ∂′);Ed(ξ′′, c)), then the fibre of the bottom right restriction
map is simply given by those sections defined on M ′ that agree with s0 on ∂′. This describes the
section space on the left if we also remember the restriction imposed by L. Thus, also the lower
row of diagram (10.2) is a fibration sequence.

The vertical maps of diagram (10.2) are the scanning maps and the diagram commutes. Consider
the right down arrow. By Lemmas 10.6 and 10.7 we have

Γ((Id, ∂′);Ed(ξ′′, c′′)) ≃ Map∗((Id, Ik × ∂Id−k); (Ad(X, c), X))

≃ Ωd−k−1A′(X, c)

≃ Bk(CMapc,∗(Id, ∂Ik × Id−k;X))

≃ CΓc′′,∗(Id, ∂′; ξ′′).

Restricting both sets to those components with sections s′′ that can be extended to all of M and
noting

CΓc′′,∗(Id, ∂′; ξ′′)[ξ] ≃ CΓc,∗(M,L ∪M ′; ξ)

shows that the right down arrow of diagram (10.2) is a weak homotopy equivalence.
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Now consider the left down arrow of diagram (10.2). It is also the left down arrow of the following
commutative diagram:

CΓc′,∗∪∂′

(M ′, L; ξ′) −−−−→ CΓc′,∗(M ′, L ∪ ∂′; ξ′)
|∂′

−−−−→ Γ(∂′; ξ∂′)[ξ′]y ≃

y =

y

Γ∂′

((M ′, L);Ed(ξ′, c′)) −−−−→ Γ((M ′, L ∪ ∂′);Ed(ξ′, c′))
|∂′

−−−−→ Γ(∂′; ξ∂′)[ξ′].

The space on the right is the space of based sections of ξ|∂′ = ξ′|∂′ that can be extended to sections
of ξ′ on M ′ r z for some configuration z′ in M ′ or, equivalently, to sections of Ed(ξ′, c′). This
is exactly the image of the maps |∂′ that restricts the sections s′ to ∂′ and have as fibers (over
the constant map) the spaces on the left. The middle arrow is a weak homotopy equivalence by
induction hypothesis, and hence so is the left down arrow of this diagram and of diagram (10.2).

Finally, invoking the Five Lemma, we see that also the middle arrow of diagram (10.2) is a weak
homotopy equivalence.

10.4. Group completions and the stable homology. We now relate the homology of the
spaces in Theorem 10.12 to the homology of the configuration section spaces for finite configura-
tions.

We first recall the group completion theorem from [Qui94] [MS76].

Theorem 10.13 Let A be a well-pointed topological monoid. The canonical map of a monoid into
its (derived) group completion induces an isomorphism

H∗(A)[π0A
−1] ≃ H∗(ΩBA)

whenever the localisation can be constructed by left fractions, and in particular whenever π0(A) is
in the centre of H∗(A).

Let π0(A) be generated by s1, . . . , sn and define s := s1 . . . sn. Then

H∗(A)[π0(A)−1] ≃ H∗(A)[s−1] ≃ H∗(A∞)

where A∞ := Tel(A
s
−→ A

s
−→ . . . ) is the telescope (or homotopy colimit) on left multiplication by

a representative of s in A. One can construct a comparison map α : A∞ → ΩBA following [MS76]:
Consider the map p : A∞ ×A EA → BA. The source space is the telescope of A ×A EA ≃ ∗, and
hence is contractible itself. Under the conditions of the theorem, McDuff and Segal show that the
map p is a homology fibration and the canonical map from the fibre to the homotopy fibre

α : A∞ −→ ΩBA

is hence an H∗-isomorphism. If A is homotopy commutative [Ran13a] [MP15], or satisfies a some-
what weaker condition [Gri], then the map p is a homology fibration for all abelian coefficients and
the map α is therefore acyclic. In particular, the fundamental groups of all components of A∞ are
perfect, and α induces a weak homotopy equivalence on the plus construction.

Example 10.14 Consider the monoids

A� := CMapc,∂(Dd;X) and A⊔ := CMapc, 1

2
∂(Dd;X).

For d > 2 the monoid A�, and for d > 3 the monoid A⊔ are homotopy commutative by Proposition
4.10 and hence satisfy the conditions of the group completion theorem. Assuming π0 is finitely
generated, we have that α is acyclic and, by Corollary 10.8, for any (abelian) local coefficient
system L the following are isomorphisms

(i) H∗(A�,∞;L) ≃ H∗(ΩdA(X, d);L) for d > 2;

(ii) H∗(A⊔,∞;L) ≃ H∗(Ωd−1A′(X, d);L) for d > 3.

42



We will now generalise the above discussion from monoids A to modules M over A, or in our
main example from the disk Dd to more general manifolds M . Let A be homotopy commutative,
s be a product of generators of A and let M be an A-module. Using the A-module structure define
the telescope

M∞ := Tel(M
s
−→M

s
−→ . . . ).

Then arguing as before, the map p : M∞×AEA→ BA is a homology-fibration. Thus the canoncial
map

M∞ −→ hofib(p : M∞ ×A EA→ BA) (10.3)

from the fibre to the homotopy fibre of p is a homology isomorphism, compare [MS76] [MP15].

Returning to our main example of configuration-section spaces, let ξ : E →M be a fibre bundle
over a connected manifold M of dimension d > 2 with path-connected fibre X . Let D denote a
(d− 1)-dimensional disc in the boundary of M . Define

M := CΓc,D(M ; ξ) =
⊔

k>0

CΓc,D
k (M ; ξ).

Theorem 10.15 For d > 3, there are isomorphisms

H∗(M∞) ≃ H∗(Γ(M ;Ed(ξ, c))).

By Proposition 4.10, M is a module over both A� and A⊔. To identify the homotopy fibre of p
we will consider the A⊔ module structure, and hence have to assume d > 3 to ensure that A⊔ is
homotopy commutative.

Proof. Using diagram (10.4) below we will identify the homotopy fiber of p as the space in (10.5)
below. This holds for d > 2. When d > 3, p is a homology fibration and the homology equivalence
(10.3) implies the theorem.

Let M1 = M ∪D Id be the manifold from Definition 4.11 and write D1 for the copy {1} × Id−1

of D = {0} × Id−1 in the boundary of M1. Using similar notation as in diagram (10.2), we have
the following commutative diagram

M∞ ×A⊔
EA⊔

≃
−−−−→ CΓc1,∗((M1, D1); ξ1)

≃
−−−−→ Γ((M1, D1);Ed(ξ1, c1))

p

y π

y res

y

BA⊔
≃

−−−−→ CΓc′,∗((Id, D ∪D1); ξ′)
≃

−−−−→ Γ((Id, D ∪D1);Ed(ξ′, c′)).

(10.4)

The vertical map π is the quotient map of Proposition 10.2 which lets configuration points in M
disappear. The right vertical map restricts sections on M1 to Id. Reasoning as for diagram (10.2),
res is surjective and has fibre

ΓD(M,D;E(ξ, c)) ≃ Γ(M,D;E(ξ, c)) (as ∗ ∈ D ≃ ∗). (10.5)

By Theorem 10.12 the two horizontal maps on the right are weak homotopy equivalences and
the right square commutes up to homotopy. Indeed, let S = 1

2∂ r D with ∗ ∈ S and replace
the configuration-section spaces and the section spaces by those decorated by S. With these
replacements the square commutes.

By by part (ii) of Lemma 10.5 we have homotopy equivalences

BA⊔ ≃ CΓc′, 1

2
∂((Id, D ∪D1); ξ′) ≃ CΓc′,∗((Id, D ∪D1); ξ′).

The proof of part (ii) of Lemma 10.5 generalises to give also a homotopy equivalence

M×A⊔
EA⊔ ≃ CΓc, 1

2
∂(M+, D+; ξ) ≃ CΓc,∗(M+, D+; ξ).

The stabilisation maps induce a homotopy equivalence on these spaces, and hence also the top left
horizontal map is a homotopy equivalence. The left square clearly commutes.
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Note that we did not need to make any restriction on c to apply the group completion theorem.
We also note that diagram (10.4) holds for all d > 2 but we need homotopy commutativity of A⊔

in order to deduce that p is a homology fibration. However, if we know independently that p is
a homology fibration, as for example when we know that the components of M satisfy homology
stability, the conclusion of the theorem still holds. Thus combining the above with Theorem 8.5 we
can identify the stable homology of the finite configuration-section spaces in the following cases.

Corollary 10.16 Suppose that d > 2 and the subset c̃D ⊆ πd−1(X) has size 1. Then the scanning
maps

CΓc,D
k (M ; ξ) −→ Γ(M ;Ed(ξ, c))[k]

induce isomorphisms on integral homology up to degree k
2 − 2 and surjections up to degree k

2 − 1.
With coefficients in a field, both of these ranges may be improved by one. Here the subscript [k] on
the right indicates those components that intersect non-trivially with the image.
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