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Abstract. We show that labelled Thompson groups and twisted Brin–Thompson groups are all acyclic.
This allows us to prove several new embedding results for groups. First, every group of type Fn

embeds quasi-isometrically as a subgroup of an acyclic group of type Fn that has no proper finite-index

subgroups. This improves results of Baumslag–Dyer–Heller (n = 1) and Baumslag–Dyer–Miller (n = 2)
from the early 80s, as well as a more recent result of Bridson (n = 2). Second, we show that every finitely

generated group embeds quasi-isometrically as a subgroup of a 2-generated, simple, acyclic group. Our

results also allow us to produce, for each n ⩾ 2, the first known example of an acyclic group that is of
type Fn but not Fn+1. These examples can moreover be taken to be simple. Furthermore, our examples

provide a rich source of universally boundedly acyclic groups.

Introduction

Recall that a (discrete) group G is called acyclic if it has the homology of a point. There is long-
standing interest in acyclic groups. Notably, Mather used a clever trick in [Mat71] to prove that the
compactly-supported homeomorphism groups of finite-dimensional Euclidean spaces are acyclic. The
idea of the proof leads to the definition of mitotic groups [BDH80], pseudo-mitotic groups [Var85] and
binate groups [Ber89], all of which are acyclic. De la Harpe and McDuff proved in [dlHM83] that many
automorphism groups of large structures are acyclic, including the permutation group of any infinite set.

A recent breakthrough of Szymik andWahl [SW19] shows that the Thompson group V is acyclic. Their
proof involves heavy algebro-topological machinery including homological stability, stable homotopy
theory and algebraic K-theory. Their results have subsequently been extended in [Li25, KLM+, PW24],
showing, for example, that the Brin–Thompson groups and many big mapping class groups are acyclic.

In a different direction, Kan and Thurston proved the following beautiful theorem in [KT76]: every
connected CW-complex has the homology of a group. A key step in their proof of this theorem is (a
simplicial version of) the following embedding result [KT76, Proposition 3.3]: every group G can be
embedded into an acyclic group C ′G of the same cardinality (except when G is finite, in which case C ′G
is at most countable). This was later improved by Baumslag–Dyer–Heller, who proved in [BDH80] that
every finitely generated group (and hence every countable group by [HNN49, Theorem IV]) embeds into
a finitely generated acyclic group. This was further extended by Baumslag–Dyer–Miller [BDM83], who
showed that every finitely presented group embeds into a finitely presented acyclic group.

Further results regarding embedding groups into acyclic groups were proven in [BM92, BCM04, Ber11].
We note that, in these embeddings, the host groups may be assumed, at most, to be finitely presented. It
is worth mentioning that, in these papers, the authors also found applications to several old conjectures
of embedding groups into acyclic groups, including resolving the Bass Conjecture for amenable groups
[BCM04, Theorem 1.2]. See also Chatterji–Mislin [CM03] for an another application, in their proof of
Atiyah’s L2-index theorem.

These embedding results and applications give rise to the following question, which is the natural
generalisation of this line of investigation.

Question 0.1. Does every group of type Fn embed into an acyclic group of type Fn?

Recall that a group G is said to be of type Fn (resp. of type F ) if there is an aspherical CW-complex
with fundamental group G and finite n-skeleton (resp. finitely many cells). It is of type F∞ if it is of
type Fn for each n ⩾ 1.
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Labelled Thompson groups. The construction of Thompson’s group V generalises to associate, to
any discrete group G, a corresponding labelled Thompson group V(G) together with a natural embedding
ι0 : G ↪→ V(G) (see §2.1 for the precise definition). This construction is natural in the sense that it forms
a functor

V: groups −→ groups.

This embedding has already been well studied in [Tho80, WWZZ25], whose results we summarise here.

Theorem ([Tho80, WWZZ25]). The functor V and the embedding ι0 have the following properties, for
any discrete group G:

(1) ι0 : G ↪→ V(G) is injective, and is also a quasi-isometric embedding when G is finitely generated;
(2) ι0 : G ↪→ V(G) is Frattini;
(3) V(G) has solvable word problem if and only if G has solvable word problem;
(4) V(G) is of type Fn if and only if G is of type Fn;
(5) V(G) has no proper finite-index subgroups;
(6) V(G) is 5-uniformly perfect;
(7) V(G) is boundedly acyclic.

The first goal of our paper is to add the following key property of V(G) to this list.

Theorem A (Theorem 2.6). For any discrete group G, the labelled Thompson group V(G) is acyclic.

We also observe two additional properties of the functor V. We recall that a group is called strongly
torsion generated if, for each n ⩾ 2, it is normally generated by a single element of order n.

Proposition B (Propositions 2.8 and 2.9). For any discrete group G, we have:

• the centre of V(G) is isomorphic to the centre of G;
• the group V(G) is strongly torsion generated.

These new properties allow us to deduce many new results related to acyclic groups, in particular
answering Question 0.1 in the positive.

Corollary 0.2. Any group of type Fn embeds quasi-isometrically as a subgroup of an acyclic group of
type Fn that has no proper finite-index subgroups.

Remark 0.3. Without the acyclicity property, this was first established by Bridson [Bri98]. Our em-
bedding has the advantage that it is functorial and explicit. Recall also that the first acyclic group with
no proper finite-index subgroups was constructed by Higman [Hig51]. Further examples of the same
flavour were produced by Bridson and Grunewald in [BG04, §4], which were used as an initial input in
their solution to Grothendieck’s problem on profinite rigidity. In contrast to our examples, these acyclic
groups are of finite cohomological dimension (they have geometric dimension 2). For more examples of
acyclic groups of finite cohomological dimension, see [BH03].

By Higman’s celebrated embedding theorem [Hig61], every recursively presented group embeds into
a universal finitely presented group. Applying Theorem A and Proposition B to this group, we deduce
the following corollary, which improves several results in the literature, including [BDM83, Theorem E],
[BM92, Theorem 6] and [Bri20, Theorem A].

Corollary 0.4. There is a finitely presented, strongly torsion generated, acyclic group with no proper
finite-index subgroups into which every recursively presented group embeds.

Given any abelian group A, Baumslag–Dyer–Heller constructed an acyclic group with centre isomor-
phic to A [BDH80, Theorem 7.1]. In the special case when A = Zn for any n ⩾ 1, they also constructed
finitely generated groups G with centre Zn and H1(G) = H2(G) = {0} [BDH80, Theorem 7.4]. Applying
Theorem A and Proposition B with G = A, we improve their results to the following.

Corollary 0.5. Any abelian group A is isomorphic to the centre of an acyclic, strongly torsion generated
group Γ. When A is finitely generated, Γ can be taken to be of type F∞.

Remark 0.6. This also improves a result of Berrick [Ber91, Theorem A], who showed that every abelian
group A is isomorphic to the centre of a perfect, strongly torsion generated group Γ.

More recently, Ould Houcine proved in [OH07] that every recursively presented abelian group A may
be realised as the centre of a finitely presented group G. By embedding G further into V(G), we have
the following result.
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Corollary 0.7. Every recursively presented abelian group A may be realised as the centre of a finitely
presented acyclic group.

In a different direction, Collins and Miller [CM99] constructed a group with compact 2-dimensional
classifying space, hence of type F (and thus also type F∞), that has unsolvable word problem. Taking
the labelled group G in Theorem A to be their group, we have the following interesting application.

Corollary 0.8. There exists an acyclic group of type F∞ that has unsolvable word problem and no proper
finite index subgroups.

One way to show that a group G is not of type Fn+1 is to show that Hn+1(G;Z) is not a finitely
generated abelian group. This is, for example, how Stallings [Sta63] found the first group of type F2 but
not F3. This idea was later generalised by Bieri [Bie76, Proposition 4.1] to find, for each n ⩾ 1, groups
of type Fn but not of type Fn+1. However, this approach clearly cannot be used if one is dealing with
acyclic groups, and it is an interesting question to find acyclic groups with exotic finiteness properties.
The Bestvina–Brady groups [BB97] provide a rich class of groups with exotic finiteness properties (indeed,
in retrospect the groups constructed by Stallings and by Bieri are examples of Bestvina–Brady groups),
but they are all locally indicable and hence cannot be acyclic. However, by taking G to be any group of
type Fn but not Fn+1 in Theorem A, we have the following.

Corollary 0.9. For any n ⩾ 1, there is an acyclic group of type Fn but not Fn+1.

In the case n = 1, such a group may also be constructed by embedding any finitely generated but not
recursively presented group into a finitely generated acyclic group using [BDH80]. However, to the best
of our knowledge, for each n ⩾ 2 no groups with such properties were previously known. In the case
n = 2, it is likely that the universal finitely presented acyclic group arising from [BDM83, Theorem E]
is not of type F3, but we are not aware of a proof.

Twisted Brin–Thompson groups. Our next goal is to prove that the twisted Brin–Thompson groups
are also acyclic. These groups were first constructed by Belk and Zaremsky [BZ22] as a generalisation of
Brin’s higher-dimensional Thompson groups [Bri04]. Given any group G acting faithfully on a countable
set S, they defined an associated twisted Brin–Thompson group, denoted by SVG. The key property of
the groups SVG is that they are always simple [BZ22, Theorem 3.4]. In fact, they provide a flexible way
to produce simple groups with good finiteness properties.

Theorem C (Theorem 2.22). The twisted Brin–Thompson groups are acyclic.

This theorem also holds even if we do not assume that the underlying set S is countable, as explained
in Remark 2.23. Combining Theorem C with [BZ22, Theorems A, B, 3.4] and taking S = G with the
regular G-action, we have the following.

Corollary 0.10. Every finitely generated group embeds quasi-isometrically into a 2-generated, simple,
acyclic group.

Taking G to be the nth Houghton group acting on the disjoint union of n copies of the natural numbers
S = {1, . . . , n} × N, the corresponding twisted Brin–Thompson group SVG is of type Fn−1 but not Fn
[BZ22, Corollary G]. By Theorem C and [BZ22, Theorem 3.4], we therefore have the following.

Corollary 0.11. For any n ⩾ 1, there is a simple, acyclic group of type Fn but not Fn+1.

Remark 0.12. The first family of simple groups of type Fn but not Fn+1 was constructed by Skipper,
Witzel and Zaremsky [SWZ19, Theorem 7.1] using the Röver–Nekrashevych groups Vd(G) associated to
certain self-similar subgroups G of the automorphism group of the rooted d-ary tree (for d ⩾ 4). It is
not clear whether these groups could also be acyclic, as the Higman–Thompson group Vd (as well as its
index-2 subgroup when d is odd) fails to be acyclic as soon as d ⩾ 3 [SW19, §6]. See also [MS] for more
calculations of the homology of Röver–Nekrashevych groups.

Remark 0.13. Recall that a group is called is universally boundedly acyclic if it is boundedly acyclic
over any complete valued field; see [FFLM23, §5] for more information. By [FFLM23, Theorem 5.2], a
group is universally boundedly acyclic if and only if it is boundedly acyclic over R and acyclic (over Z).
To the best of our knowledge, the only groups that were previously known to be universally boundedly
acyclic were binate groups [FFLM23, Theorem 1.4] and Thompson’s group V (by combining [And] and
[SW19]). Now, by Theorems A and C combined with [WWZZ25, Theorems 0.1 and 0.11], we know that
all labelled Thompson groups and all twisted Brin–Thompon groups are universally boundedly acyclic.
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Strategy and outline. Our proof of acyclicity both for labelled Thompson groups (Theorem A) and
for twisted Brin–Thompson groups (Theorem C) uses the framework of topological groupoids. We first
build topological groupoids whose topological full groups are isomorphic to the groups in question, then
apply Xin Li’s results [Li25] to reduce the proof to calculating the homology of topological groupoids,
which turns out to be much easier to handle. In §1 we review the basic properties of and results about
topological groupoids that we need. We then prove our results in §2: Theorem A in §2.1 (see Theorem
2.6) as well as Proposition B (see Propositions 2.8 and 2.9), and Theorem C in §2.2 (see Theorem 2.22).

In future work, we plan to adapt the methods of [SW19], rather than using topological groupoids, to
calculate the homology of generalised Röver–Nekrashevych groups, including labelled Higman–Thompson
groups Vd(G) for any d ⩾ 2.
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1. A quick introduction to topological groupoids

In this section we give a quick introduction to topological groupoids and their corresponding topolog-
ical full groups; see [Mat17, Ren80] for more information.

A groupoid is a small category whose morphisms are all invertible. As usual, we identify the groupoid
with its set of morphisms, denoted by G, and view its set of objects (also called units) G(0) as a subset of
G by identifying objects with the corresponding identity morphisms. By definition, a groupoid G comes
equipped with range and source maps r : G → G(0), s : G → G(0), a multiplication map

G ×s r G = {(g1, g2) | s(g1) = r(g2)} −→ G, (g1, g2) 7−→ g1g2

and an inversion map g 7→ g−1 : G → G satisfying r(g−1) = s(g), s(g−1) = r(g), gg−1 = r(g) and
g−1g = s(g). These structure maps must satisfy the usual list of axioms so that G is a small category;
see [Ren80, Section 1.1] for more details.

Definition 1.1 (Topological groupoids). A topological groupoid is a groupoid equipped with a topology
making the composition and inversion maps continuous. In addition, we assume that the topology on G
makes its subspace G(0) (which we call the unit space) locally compact and Hausdorff.

We note that the topological groupoid G itself need not be Hausdorff; only its subspace G(0) must be
Hausdorff. However, in this paper we will only need to consider Hausdorff topological groupoids.

Definition 1.2 (Étale groupoids). A topological groupoid G is called étale if the range and source maps
are local homeomorphisms.

We note that the definition implies that the unit space G(0) of an étale groupoid is an open subspace
of the whole space G.

Definition 1.3. An open subspace U ⊆ G is called an open bisection if the restricted range and source
maps r|U : U → r(U) and s|U : U → s(U) are bijections (and hence homeomorphisms if G is étale).

If the groupoid G is étale, then G has a basis for its topology consisting of open bisections. We note
that open bisections are always locally compact and Hausdorff because they are homeomorphic to open
subspaces of the unit space.

Definition 1.4 (Ample groupoids). A topological groupoid G is called ample if it is étale and its unit
space G(0) is totally disconnected.

Equivalently, an étale groupoid G is ample if and only if it admits a basis for its topology consisting
of compact open bisections. We also note that if G is ample, then by definition its unit space G(0) is

4



assumed to be totally disconnected and locally compact, which implies that it admits a basis of compact
open subsets.

Finally, we consider two notions of minimality for topological groupoids.

Definition 1.5. A topological groupoid is called minimal if for each x ∈ G(0), the corresponding orbit
G · x := {r(g) | g ∈ s−1(x)} is dense in G(0).

Definition 1.6. An ample groupoid G is called purely infinite minimal if for all compact open subspaces
U, V ⊆ G(0) with V ̸= ∅, there exists a compact open bisection σ ⊆ G such that s(σ) = U and r(σ) ⊆ V .

As the terminology suggests, purely infinite minimal implies minimal.

Lemma 1.7. An ample, purely infinite minimal groupoid is minimal.

Proof. Denote the groupoid in question by G. Let x ∈ G(0) and let V be a non-empty open subspace of
G(0). We must show that V ∩ (G · x) ̸= ∅, in other words that there exists g ∈ G such that s(g) = x
and r(g) ∈ V . Since G is ample, its unit space G(0) admits a basis of compact open subsets, as noted
above, so we may assume that V is compact, and we may also choose a compact open neighbourhood
U of x ∈ G(0). Applying Definition 1.6, we find a compact open bisection σ ⊆ G with s(σ) = U and
r(σ) ⊆ V . Since x ∈ U , we may therefore find some g ∈ σ with s(g) = x and r(g) ∈ V , as required. □

1.1. Examples. We now consider some important examples of topological groupoids. We first note that
ample groupoids generalise discrete groups.

Example 1.8. Every discrete group G, considered as a topological groupoid with a unique object and
morphism space G, is an ample groupoid.

The following groupoid will play a key role in our study.

Example 1.9. Consider {0, 1}N, the set of infinite sequences in 0, 1, equipped with the product topology.
Note that {0, 1}N is homeomorphic to the Cantor space; we will refer to it as the standard Cantor space
(often denoted by C). Define the one-sided shift ρ : {0, 1}N → {0, 1}N by sending x0x1x2 · · · to x1x2 · · · .
The groupoid attached to this shift of finite type is given by

V2 := {(y, n, x) ∈ {0, 1}N×Z×{0, 1}N | ∃ l,m ∈ Z with l,m ⩾ 0 such that n = l−m and ρl(x) = ρm(y)}
The topology of V2 is generated by the collection of all sets of the form

(1.1) {(y, l −m,x) ∈ V2 | x ∈ U, y ∈ V, ρl(x) = ρm(y)}
for fixed l,m ∈ Z with l,m ⩾ 0, and U, V open subspaces of {0, 1}N such that ρl and ρm restrict to
homeomorphisms

V
ρl−−→∼= ρl(V ) = ρm(U)

ρm←−−∼= U.

We note for future reference that the underlying space of the topological groupoid V2 splits as a disjoint
union, indexed by i ∈ Z, of the open subspaces

V2[i] := {(y, n, x) ∈ V2 | n = i}.

The unit space of V2 is given by V(0)
2 = {(x, 0, x) ∈ V2 | x ∈ {0, 1}N}, which is the diagonal subspace of

the product {0, 1}N×{0, 1}N, hence canonically homeomorphic to {0, 1}N. The source and range maps are
given by s((y, n, x)) = x, r((y, n, x)) = y, the multiplication is given by (z, n′, y)(y, n, x) = (z, n+ n′, x)
and the inversion is given by (y, n, x)−1 = (x,−n, y).

Note that the basic open set (1.1) is naturally in bijection with U , and with V , under the source and
range maps respectively. From this observation, it is clear that the source and range maps of V2 are

local homeomorphisms. Since the Cantor space V(0)
2
∼= {0, 1}N is totally disconnected, the groupoid V2

is ample.

Example 1.10. Given any two topological groupoids G1,G2, their product G1 × G2 naturally forms
a topological groupoid, with the topology of G1 × G2 given by the product topology. The unit space

(G1 × G2)(0) is simply the product of the two unit spaces G(0)1 × G(0)2 . If G1 and G2 are both étale (resp.
ample), then G1 × G2 is also étale (resp. ample).

Example 1.11 (cf. [Ren80, Definition I.1.7]). Let G be a topological groupoid and let H be a discrete
group acting on G from the left via a homomorphism f : H → Aut(G). We can then form the semi-direct
product G ⋊f H on the product space G ×H with the following groupoid structure: (γ, h) and (γ′, h′)
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are composable if and only if γ and f(h)(γ′) are composable, in which case the multiplication is given
by

(γ, h) · (γ′, h′) = (γ · f(h)(γ′), hh′).
Inversion is given by

(γ, h)−1 = (f(h−1)(γ−1), h−1)

and the range and source maps are given by

r((γ, h)) = (r(γ), e) and s((γ, h)) = (f(h−1)(s(γ)), e),

where e denotes the identity element of H. Note that the unit space of G⋊f H is the subspace G(0)×{e}
of the product space G × H, so it is homeomorphic to G(0); in particular it is locally compact and
Hausdorff. Moreover, it follows directly from the definitions that if G is an étale (resp. ample) groupoid,
then G ⋊f H is also étale (resp. ample).

Finally, we note that there is a natural homomorphism f̃ : G ⋊f H → H given by f̃(γ, h) = h.

1.2. Topological full groups. We now consider the topological full group of a topological groupoid. To
avoid technicalities that will not be relevant for this paper, we will restrict ourselves to ample groupoids
with compact unit space.

Definition 1.12 (Topological full group). Let G be an ample groupoid with compact unit space G(0).
Its topological full group F (G) is the group of compact open bisections σ ⊆ G with r(σ) = G(0) = s(σ).
Multiplication in F (G) is given by multiplication of bisections, i.e. στ = {gh | g ∈ σ, h ∈ τ, s(g) = r(h)},
the identity element is σ = G(0) and inversion is given by σ−1 = {g−1 | g ∈ σ}.

Definition 1.13. An ample groupoid G with compact unit space is called effective if the interior of the
isotropy subgroupoid {g ∈ G | r(g) = s(g)} coincides with G(0).

Remark 1.14. Note that the interior of the isotropy subgroupoid always contains the unit space G(0);
the effectivity condition says that there does not exist any strictly larger open subspace of G inside the
isotropy subgroupoid.

If G is an effective, ample, Hausdorff groupoid, then the homomorphism F (G)→ Homeo(G(0)) sending
σ ∈ F (G) to the homeomorphism G(0) → G(0) given by s(g) 7→ r(g) for g ∈ σ is injective (see for example
[NO19, Lemma 3.1]), so that we may view F (G) naturally as a subgroup of Homeo(G(0)). We record this
as a lemma for future use.

Lemma 1.15. If G is an effective, ample, Hausdorff groupoid, then F (G) is naturally isomorphic to a
subgroup of Homeo(G(0)) via the embedding taking σ to rU ◦ (s|U )−1.

It is well-known that the topological full group F (V2) of the topological groupoid V2 is the Thompson
group V. For completeness, we give a detailed proof of this in Lemma 2.3, after properly introducing
the Thompson group V.

1.3. Homology of topological full groups. Recall that the main task of this paper is to calculate
the homology of some Thompson-like groups by viewing them as topological full groups. There is a
homology theory for étale groupoids: see for example [CM00] or [Mat12, §3] for details. It turns out that
the homology of étale groupoids is often much easier to calculate than the homology of their topological
full groups. The following theorem of Xin Li allows us to exploit this by connecting the homology of a
topological groupoid with the homology of its topological full group.

Theorem 1.16 ([Li25, Corollary D]). Let G be an ample groupoid that is purely infinite minimal and
whose unit space does not have isolated points. Fix k ∈ Z with k > 0. If H∗(G) = {0} for all ∗ < k, then
H∗(F (G)) = {0} for all 0 < ∗ < k and Hk(F (G)) ∼= Hk(G). In particular, if H∗(G) = {0} for all ∗ ⩾ 0,
then F (G) is acyclic.

2. Homology of some Thompson-like groups

In this section we calculate the homology of labelled Thompson groups and of twisted Brin–Thompson
groups by first realising them as topological full groups of some associated étale groupoids, then proving
that the groupoid homology of these étale groupoids vanishes in all degrees, which implies that the
topological full groups are acyclic by Theorem 1.16.
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2.1. Labelled Thompson groups. We first consider labelled Thompson groups. For a more detailed
introduction to these groups, see for example [WWZZ25, §1]; here we just discuss the minimum necessary
for our purposes.

Let us first recall the definition of the labelled Thompson groups. Let {0, 1}∗ denote the set of finite
words in the two-element alphabet {0, 1} and note that the underlying set of the Cantor space {0, 1}N
may be thought of as the set of infinite (N-indexed) words in {0, 1}. Given any finite word w ∈ {0, 1}∗,
let |w| denote its word length and let w{0, 1}N denote the subspace of the Cantor space {0, 1}N consisting
of (infinite) words starting with w. Note that w{0, 1}N is a clopen subset. We shall refer to these clopen
subsets of {0, 1}N as standard clopen subsets.

Definition 2.1. A finite subsetW ⊂ {0, 1}∗ is called a partition set of {0, 1}N if w1{0, 1}N∩w2{0, 1}N = ∅
for any two distinct w1, w2 ∈ W and

⋃
w∈W w{0, 1}N = {0, 1}N. In other words, the corresponding

standard clopen subsets w{0, 1}N for w ∈W must form a set-theoretic partition of {0, 1}N.

Note that there is a lexicographical ordering on {0, 1}∗ induced by 0 < 1. We will always list the
elements of a partition set from smallest to largest acccording to this ordering.

The Thompson group. Recall now that the Thompson group V is the subgroup of the homeomorphism
group of the Cantor space {0, 1}N consisting of those homeomorphisms ϕ for which there exists a partition
setW and a map σ : W → {0, 1}∗ such that ϕ is given by ϕ(wx) = σ(w)x for any w ∈W and x ∈ {0, 1}N.

If we write W ′ = σ(W ), then W ′ is also a partition set and σ is a bijection between the partition sets
W and W ′; thus we can represent the homeomorphism ϕ by the triple (W ′, σ,W ), which we call a table.
However, such a representation is not unique as one can replace an element u ∈W by the pair of elements
u0 and u1, correspondingly σ(u) ∈ W ′ by σ(u)0 and σ(u)1, without changing the homeomorphism ϕ.
Let us denote these new partition sets by W̄ and W̄ ′ and the new bijection by σ̄. Thus σ̄(w) = σ(w)
if w ̸= u, and σ̄(u0) = σ(u)0 and σ̄(u1) = σ(u)1. We call the table (W̄ ′, σ̄, W̄ ) obtained in this way an
expansion (W ′, σ,W ) and we call (W ′, σ,W ) a reduction of (W̄ ′, σ̄, W̄ ). We denote the equivalence class
of the table (W ′, σ,W ) under reduction and expansion by [W ′, σ,W ].

Each element of V can be uniquely represented by an equivalence class of tables as in the paragraph
above. Moreover, since we always list the elements of the partition sets W and W ′ from smallest to
largest, we may identity both of them with the set [n] = {1, 2, . . . , n} via the unique order-preserving
bijection. Thus we may assume that σ lies in the permutation group Sn of [n].

Labelled Thompson groups. Now let us fix a (discrete) group G and define the labelled Thompson group
V(G). The elements of V(G) will be equivalence classes of G-tables under the equivalence relation
generated by G-expansion and G-reduction; to define the underlying set of V(G) we therefore just have
to define G-tables, G-expansion and G-reduction.

A G-table is a triple of the form ({w′
1, . . . , w

′
n}, ((g1, . . . , gn), σ), {w1, . . . , wn}) where {w1, . . . , wn}

and {w′
1, . . . , w

′
n} are partition sets whose elements are listed in lexicographical order, σ is an element

in Sn and each gi ∈ G. We will freely pass between viewing σ as an element of Sn and as a bijection
{w1, . . . , wn} → {w′

1, . . . , w
′
n} via the unique order-preserving bijections with [n], as above. When we are

viewing σ as an element of Sn, we may also view the tuple ((g1, . . . , gn), σ) as an element of the wreath
product G ≀ Sn, so we may write any G-table more succinctly as (W ′, α,W ) for α ∈ G ≀ Sn and partition
sets W,W ′.

The G-expansion of ({w′
1, . . . , w

′
n}, ((g1, . . . , gn), σ), {w1, . . . , wn}) at the position i is defined by:

({w′
1, . . . , w

′
σ(i)0, w

′
σ(i)1, . . . , w

′
n}, ((g1, . . . , gi−1, gi, gi, gi+1, . . . , gn), σ̄), {w1, . . . , wi0, wi1, . . . , wn})

where σ̄(wj) = σ(wj) for j ̸= i and σ̄(wi0) = σ(wi)0 and σ̄(wi1) = σ(wi)1. In general, a G-expansion
of a G-table is a G-expansion as described above at any position 1 ⩽ i ⩽ n, and a G-reduction is the
reverse operation. We denote the equivalence class of the G-table (W ′, α,W ) under G-expansion and
G-reduction by [W ′, α,W ]. As indicated above, these equivalence classes are the elements of V(G).

We define the group operation of V(G) as follows. First, we define

[U, β,W ′][W ′, α,W ] = [U, βα,W ],

where α, β ∈ G ≀ Sn (here, n is the common size of the partition sets W,W ′, U) and βα uses the
multiplication rule in the wreath product G ≀ Sn. To verify that this gives a well-defined operation on
V(G), one checks that (i) this definition is stable under G-expansion and G-reduction and (ii) for any
two G-tables (U ′, β, U) and (W ′, α,W ) one may apply G-expansion operations until one has U = W ′.
The identity element is ({∅}, id, {∅}), where ∅ denotes the empty word, and the inverse of (W ′, α,W )
is given by (W,α−1,W ′), where α−1 is computed using the inverse in the wreath product G ≀ Sn.

7



Finally, we note that there is a natural embedding of groups ι0 : G ↪→ V(G) given by sending g ∈ G
to [{0, 1}, ((g, e), id), {0, 1}], where e denotes the identity element of G.

Labelled Thompson groups as topological full groups. We now build a topological groupoid whose topo-
logical full group is isomorphic to V(G). Recall that any discrete group may be viewed as a groupoid
with a unique object and the elements of the group as morphisms. Equipping the morphism space with
the discrete topology, we can therefore view any discrete group G as a topological groupoid. Using this
viewpoint, we can form the product groupoid V2×G, where V2 is the topological groupoid associated to
the Thompson group V described in Example 1.9.

Proposition 2.2. The topological full group of the topological groupoid V2 ×G is isomorphic to V(G).

To prove this, it will be convenient to see first why the topological full group F (V2) is isomorphic to
the Thompson group V. We provide a proof of this standard fact for the reader’s convenience.

Lemma 2.3. We have F (V2) ∼= V.

Proof. Recall from Example 1.9 that V2 is an ample groupoid with unit space the Cantor space {0, 1}N.
We would like to view its topological full group as a subgroup of Homeo({0, 1}N) by Lemma 1.15, so we
first check that it is effective, i.e., that the interior of its isotropy subgroupoid

Iso(V2) = {(y, n, x) ∈ V2 | r(y, n, x) = s(y, n, x)}

coincides with its unit space V(0)
2 . Since r((y, n, x)) = y and s((y, n, x)) = x, the elements in the isotropy

subgroupoid are precisely those of the form (x, n, x). Since V2 splits as the disjoint union of clopen
subspaces V2[i] for i ∈ Z (see Example 1.9), the isotropy subgroupoid splits correspondingly into clopen
subspaces Iso(V2)[i] = {(y, n, x) ∈ V2 | x = y and n = i}.

Clearly we have Iso(V2)[0] = V(0)
2 , so what we have to show is that the subspace

⋃
i̸=0 Iso(V2)[i] of V2

has empty interior. To see this, we first observe that every non-empty open subset of V2 is uncountable;

this follows from the fact that it is locally homeomorphic to the Cantor space {0, 1}N ∼= V(0)
2 and the

fact that the Cantor space has this property. Second, we observe that the elements of
⋃
i̸=0 Iso(V2)[i]

are precisely those of the form (x, i, x) for i ̸= 0, which implies that x must be eventually i-periodic.
There are only countably many eventually periodic sequences, so the subspace

⋃
i̸=0 Iso(V2)[i] must be

countable. Hence, by the first observation, the only open subset contained in it is the empty set. Thus,
it has empty interior, and we have shown that V2 is effective.

It is also clear that V2 is Hausdorff (it is a subspace of the product {0, 1}N × Z× {0, 1}N), so Lemma
1.15 tells us that F (V2) is a subgroup of Homeo({0, 1}N). By definition, the Thompson group V is also
a subgroup of Homeo({0, 1}N). We will show that they are equal as subgroups.

1. F (V2) ⊇ V. As discussed above, given any element g ∈ V, we can represent it by a table (W ′, σ,W )
where W,W ′ are finite partition sets of {0, 1}N. Suppose that w ∈ W is mapped to w′ ∈ W ′ under σ.
We need to prove that the prefix substitution homeomorphism w{0, 1}N → w′{0, 1}N can be represented
by a compact open bisection in V2. This compact open bisection may be represented diagrammatically
as follows:

w′{0, 1}N ρ|w
′|

−−−−→∼=
{0, 1}N ρ|w|

←−−−∼=
w{0, 1}N,

where |−| denotes word length. Explicitly, the compact open bisection is:

{(y, |w| − |w′|, x) ∈ V2 | y ∈ w′{0, 1}N, x ∈ w{0, 1}N, ρ|w
′|(y) = ρ|w|(x)},

which may alternatively be written as

{(w′z, |w| − |w′|, wz) | z ∈ {0, 1}N}.

2. F (V2) ⊆ V. Note first that the unit space of V2 is the Cantor space, which is compact. Now, any
element f ∈ F (V2) may be represented as the disjoint union of finitely many compact open bisections of
the form

{(y, l −m,x) ∈ V2 | y ∈ U ′, x ∈ U, ρm(y) = ρl(x)},
where l,m ∈ Z and U,U ′ are open subspaces of {0, 1}N. Up to subdivision, we may assume that U and
U ′ are standard clopen subsets. Thus we may represent f as the disjoint union of finitely many compact
open bisections of the form

{(y, |wi| − |w′
i|, x) ∈ V2 | y ∈ w′

i{0, 1}N, x ∈ wi{0, 1}N, ρ|w
′
i|(y) = ρ|wi|(x)},
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where wi and w
′
i are words in {0, 1}∗. Putting all of the wi (resp. w

′
i) together, we get a partition set W

(resp.W ′) of {0, 1}N. Letting σ be the bijection taking wi to w
′
i, we have represented the homeomorphism

f by the table (W ′, σ,W ). But this, by definition, represents an element of the Thompson group V. □

Proof of Proposition 2.2. We will construct group homomorphisms I : F (V2×G)→ V(G) and J : V(G)→
F (V2 ×G) that are inverse to each other.

Note first that the unit space of V2 × G is V(0)
2 × {e}, since the unit space of G consists of just the

identity element e of the group (cf. also Example 1.10). This is homeomorphic to the Cantor space C; in
particular it is compact.

Any element f ∈ F (V2×G) may be written as a disjoint union of finitely many compact open bisections
of the form

{((y, l −m,x), g) ∈ V2 ×G | x ∈ U, y ∈ U ′, ρm(y) = ρl(x)},
where l,m ∈ Z, U,U ′ are open subspaces of {0, 1}N and g ∈ G is fixed. Just as before, we may assume
by subdivision that U,U ′ are standard clopen sets. In particular, we may represent the element f by a
G-table (W ′, ((g1, . . . , gn), σ),W ), where W,W ′ are finite partition sets with n elements. This gives an
element in V(G), which we denote by I(f). This defines the map I, which one may readily check is a
group homomorphism.

To construct J , we start with an element of V(G), which is an equivalence class of G-tables, which
we denote by [W ′, ((g1, . . . , gn), σ),W ]. Suppose that w ∈ W is mapped to w′ ∈ W ′ under σ, and that
it is the ith element (1 ⩽ i ⩽ n) in W in the lexicographical ordering. We consider the compact open
bisection represented by the following diagram:

w′{0, 1}N × {e} ρ|w
′|×ki−−−−−−→∼=

{0, 1}N × {e} ρ|w|×hi←−−−−−−∼=
w{0, 1}N × {e},

where hi, ki are any two fixed elements in G such that k−1
i hi = gi. Note that here the choices of hi and

ki are not unique. Taking the disjoint union of these compact open bisections over all w ∈W , we obtain
an element of F (V2 × G), which we define to be the image of [W ′, ((g1, . . . , gn), σ),W ] under J . This
defines the map J , which one may again readily check is a group homomorphism.

One may directly check, unwinding the definitions, that I ◦ J = idV(G) and J ◦ I = idF (V2×G). □

Lemma 2.4. We have Hi(V2 ×G) = 0 for any i ⩾ 0.

Proof. Recall that Matui proved in [Mat12, Theorem 4.14] that Hi(V2) = 0 for any i ⩾ 0. The lemma
now follows immediately from the Künneth formula [Mat16, Theorem 2.4]. □

Lemma 2.5. The groupoid V2 ×G is purely infinite minimal.

Proof. Recall that the unit space of G consists of the single identity element e. So the unit space of
V2×G is {0, 1}N×{e}, which is a Cantor space. The result now follows from the fact that the topological
groupoid V2 is purely infinite minimal. In fact, give any compact open subspaces U,U ′ ⊆ (V2 × G)(0)
with U ′ ̸= ∅, we can find coverings of U and U ′ by disjoint standard clopen sets:

U =
⋃
i∈I

ui{0, 1}N × {e} and U ′ =
⋃
j∈J

u′j{0, 1}N × {e},

where ui, u
′
j ∈ {0, 1}∗. Since U and U ′ are compact, we may take I and J to be finite. Up to decomposing

u′j{0, 1}N × {e} further into smaller standard clopen sets, we can assume that |I| < |J |. Then for each
1 ⩽ i ⩽ |I|, we can build a bisection as follows:

u′i{0, 1}N × {e}
ρ|u

′
i|×e−−−−−→∼=

{0, 1}N × {e} ρ|ui|×e←−−−−−∼=
ui{0, 1}N × {e}.

To check that this bisection is compact and open, we note that it is the compact open set described by:

{((y, |ui| − |u′i|, x), e) | x ∈ ui{0, 1}N, y ∈ u′i{0, 1}N, ρ|u
′
i|(y) = ρ|ui|(x)},

or equivalently:

{((u′iz, |ui| − |u′i|, uiz), e) | z ∈ {0, 1}N}.
Thus, for each 1 ⩽ i ⩽ |I|, we have a compact open bisection taking ui{0, 1}N onto u′i{0, 1}N. Since

they have disjoint ranges and sources, we may take their union to obtain a compact open bisection taking
U =

⋃
1⩽i⩽|I| ui{0, 1}N onto

⋃
1⩽i⩽|I| u

′
i{0, 1}N ⊆ U ′. □

We are now ready to prove the following theorem, which is Theorem A of the introduction.
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Theorem 2.6. The labelled Thompson group V(G) is acyclic for any discrete group G.

Proof. Note first that the groupoid V2 ×G is an ample groupoid whose unit space is the Cantor set (see
Examples 1.8, 1.9 and 1.10); in particular, its unit space does not have isolated points. By Lemma 2.5,
the groupoid V2 ×G is purely infinite minimal. Thus, by Lemma 2.4 and Theorem 1.16, the topological
full group F (V2 ×G) is acyclic, and the result now follows from Proposition 2.2. □

The centre of labelled Thompson groups. We also take this opportunity to calculate the centre of V(G).
To do this, we will use the following result of Wu-Wu-Zhao-Zhou [WWZZ25].

Theorem 2.7 ([WWZZ25, Theorem 2.1]). Any proper normal subgroup of V(G) is contained in the
kernel of the map π : V(G)→ V that forgets the labels, i.e., it sends [W ′, ((g1, . . . , gn), σ),W ] ∈ V(G) to
[W ′, σ,W ] ∈ V.

Let us now consider the embedding ι∅ : G ↪→ V(G) given by sending g ∈ G to [{∅}, ((g), id), {∅}],
where ∅ denotes the empty word. Let Z(H) denote the centre of a group H.

Proposition 2.8. The centre of V(G) is Z(ι∅(G)), in particular it is isomorphic to Z(G).

Proof. Let us first show that Z(ι∅(G)) ⊆ Z(V(G)). Let [W ′, α,W ] be an element in V(G) where W,W ′

are partition sets and α = ((g1, . . . , gn), σ) ∈ G ≀ Sn. For any z ∈ Z(G), we have:

[{∅}, ((z), id), {∅}][W ′, α,W ][{∅},((z), id), {∅}]−1 =

= [W ′, ((z, . . . , z), id)α((z−1, . . . , z−1), id),W ]

= [W ′, ((z, . . . , z), id)((g1, . . . , gn), σ)((z
−1, . . . , z−1), id),W ]

= [W ′, ((z, . . . , z), id)((g1z
−1, . . . , gnz

−1), σ),W ]

= [W ′, ((zg1z
−1, . . . , zgnz

−1), σ),W ]

= [W ′, ((g1, . . . , gn), σ),W ] (since z ∈ Z(G))
= [W ′, α,W ].

Thus ι∅(z) = [{∅}, ((z), id), {∅}] lies in the centre of V(G).
We proceed to show that Z(ι∅(G)) ⊇ Z(V(G)). Let π : V(G)→ V be the homomorphism that forgets

all the labels in G. By Theorem 2.7, Z(V(G)) is a subgroup of ker(π). Hence any element ζ ∈ Z(V(G))
may be represented by a G-table of the form (Pn, ((z1, z2, . . . , z2n), id), Pn) for some n ⩾ 1 and some
elements zi ∈ G, where Pn denotes the partition set of {0, 1}N given by the set of all words of length
exactly n. Note that |Pn| = 2n. Let Gn be the subgroup {[Pn, ((g1, g2, . . . , g2n), id), Pn] | gi ∈ G, 1 ⩽
i ⩽ 2n} of V(G). Then Gn ∼= G2n and the centre of Gn is (Z(G))2

n

under this identification. Since
ζ lies in the centre of V(G), it commutes with every element of Gn. This implies that zi ∈ Z(G)
for each 1 ⩽ i ⩽ 2n. We next verify that zi = zj for all 1 ⩽ i, j ⩽ 2n. If this is not the case, we
choose some i ̸= j such that zi ̸= zj and let σ be the bijection of Pn that transposes i and j and is
the identity elsewhere. Then [Pn, ((e, e, . . . , e), σ), Pn] conjugates ζ = [Pn, ((z1, z2, . . . , z2n), id), Pn] to
[Pn, ((zσ(1), zσ(2), . . . , zσ(2n)), id), Pn]. Since zi ̸= zj , we have

[Pn, ((z1, z2, . . . , z2n), id), Pn] ̸= [Pn, ((zσ(1), zσ(2), . . . , zσ(2n)), id), Pn]

by the definition of σ, contradicting the assumption that ζ is in the centre of V(G). Thus we have shown
that every element of the centre of V(G) is of the form [Pn, ((z, z, . . . , z), id), Pn] for some z ∈ Z(G). By
definition, [Pn, ((z, z, . . . , z), id), Pn] = [{∅}, ((z), id), {∅}] = ι∅(z). This completes the proof. □

Strong torsion generation. Finally, we observe that V(G) is strongly torsion generated.

Proposition 2.9. For each n ⩾ 2, there is an element g ∈ V(G) of order n that normally generates
V(G). In other words, V(G) is strongly torsion generated.

Proof. Let g ∈ V be an element of order n, and consider it as an element of V(G) by choosing all labels
to be the identity element of G. We must show that its normal closure ⟨g⟩V(G) is all of V(G). But this
follows from Theorem 2.7, since ⟨g⟩V(G) does not lie in the kernel of π : V(G)→ V. □

2.2. Twisted Brin–Thompson groups. In this subsection, we construct topological groupoids whose
corresponding topological full groups are the twisted Brin–Thompson groups. We then apply Theorem
1.16 to show that all twisted Brin–Thompson groups are acyclic. We begin with a review of the basics
of twisted Brin–Thompson groups; for further details, see [BZ22].
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Brin–Thompson groups. Recall that C = {0, 1}N is the the space of infinite sequences in the alphabet
{0, 1} equipped with the product topology. For any set S, its associated Cantor cube CS is the space∏
s∈S C, again equipped with the product topology, whose elements are all functions S → C. Recall that
{0, 1}∗ denotes the set of finite words in the alphabet {0, 1}. We say that a function ψ : S → {0, 1}∗ has
finite support if ψ(s) ∈ {0, 1}∗ is the empty word for all but finitely many s ∈ S. Given such a function
ψ, its associated dyadic brick in CS is the subset

B(ψ) =
{
κ ∈ CS | ψ(s) is a prefix of κ(s) for each s ∈ S

}
.

For example, CS itself is the dyadic brick associated to the function S → {0, 1}∗ that sends every element
to the empty word. Note that there is a canonical homeomorphism hψ : CS → B(ψ) defined by

hψ(κ)(s) = ψ(s) · κ(s),

where · denotes concatenation of words. More generally, if B(φ) and B(ψ) are dyadic bricks, we refer to
the composition hψ ◦ h−1

φ as the canonical homeomorphism from B(φ) to B(ψ).

Given any two partitions B(φ1), . . . , B(φn) and B(ψ1), . . . , B(ψn) of CS into the same number of
dyadic bricks, we can define a homeomorphism CS → CS by sending each B(φi) to the corresponding
B(ψi) by the canonical homeomorphism. The group of all homeomorphisms of CS defined in this way is
called the Brin–Thompson group SV. When S is finite, this group was first defined by Brin [Bri04].

Twisted Brin–Thompson groups. Now let G be a group acting faithfully on a countable set S. For each
element γ ∈ G, let τγ : CS → CS be the twist homeomorphism that permutes the coordinates of points
in CS according to γ. In other words, τγ is the homeomorphism of CS defined by

(2.1) τγ(κ)(s) = κ(γ−1s)

for all κ ∈ CS and s ∈ S.
In general, given any two dyadic bricks B(φ) and B(ψ) and an element γ ∈ G, we define the associated

twist homeomorphism B(φ)→ B(ψ) to be the composition hψ ◦ τγ ◦ h−1
φ (writing composition as usual

from right to left), where hφ : CS → B(φ) and hψ : CS → B(ψ) are the canonical homeomorphisms. We
call this the canonical twist homeomorphism associated to γ between these dyadic bricks.

Given any two partitions {B(φ1), . . . , B(φn)} and {B(ψ1), . . . , B(ψn)} of CS into the same number of
dyadic bricks, together with elements γ1, . . . , γn ∈ G, we can define a homeomorphism of CS by mapping
each B(φi) to B(ψi) via the canonical twist homeomorphism associated to γi. For this homeomorphism,
{B(φ1), . . . , B(φn)} is called the domain partition and {B(ψ1), . . . , B(ψn)} is called the image partition.
The group of all homeomorphisms of CS constructed in this way forms the twisted Brin–Thompson group
SVG. The key property of SVG is that it is always simple [BZ22, Theorem 3.4].

Topological groupoids associated to Brin–Thompson groups. Recall from Example 1.9 and Lemma 2.3
that V2 is the topological groupoid associated to the Thompson group V. We now define a topological
groupoid associated to the Brin–Thompson group SV.

Definition 2.10. Let SV2 be the topological groupoid with:

(1) Unit space:
∏
S V

(0)
2 equipped with the product topology.

(2) Morphism space:
{
(γs)s∈S ∈

∏
S V2

∣∣ γs ∈ V(0)
2 for all but finitely many s

}
equipped with the

subspace topology induced from the product topology on
∏
S V2. A basis for this topology is

given by
{∏

s∈S Us
∣∣ Us ⊆ V2 is open and Us = V(0)

2 for all but finitely many s
}
.

We note that, since V(0)
2
∼= C and S is countable, the unit space of SV2 is homeomorphic to CS , which is

homeomorphic to C, so it is locally compact and Hausdorff. Thus SV2 is indeed a topological groupoid
according to our convention in Definition 1.1.

If S is finite, this is just the product groupoid
∏
S V2, whereas if S is infinite, it is a proper subgroupoid

of
∏
S V2. Let us denote the range and source maps of the copy of V2 in the s coordinate by rs and ss.

Then the range and source maps r and s of SV2 are given by:

r = (rs)s∈S and s = (ss)s∈S .

Since V2 is étale, the maps rs and ss are local homeomorphisms for each s ∈ S. Using this, we may
deduce the following.

Lemma 2.11. The topological groupoid SV2 is ample, in particular it is étale.
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Proof. We must check that the range and source maps of SV2 are local homeomorphisms, and that its
unit space is totally disconnected. For the second condition, we simply recall from above that its unit
space is homeomorphic to the Cantor space C (since any countable product of copies of C is homeomorphic
to C), which is totally disconnected.

For the first condition, we fix a point γ = (γs)s∈S in SV2 and must find an open neighbourhood U of γ
in SV2 such that r(U) and s(U) are open in (SV2)(0) and the maps r|U : U → r(U) and s|U : U → s(U) are

homeomorphisms. There are only finitely many coordinates s ∈ S for which γs /∈ V(0)
2 ; for these values

of s let us choose any open neighbourhood Us of γs in V2 such that rs(Us) and ss(Us) are open in V(0)
2

and the maps rs|Us : Us → rs(Us) and ss|Us : Us → ss(Us) are homeomorphisms; such neighbourhoods
exist since we know that rs and ss are local homeomorphisms. For the other coordinates s ∈ S, where
we have γs ∈ V(0)

2 , let us choose Us = V(0)
2 . In this case it is also true that the restrictions of rs and

ss to Us are homeomorphisms onto their images, since the source and range maps of any topological
groupoid, restricted to the unit space, are simply the identity map of the unit space. In particular we

have rs(Us) = ss(Us) = V(0)
2 in this case.

We now take U =
∏
s∈S Us and note that this is an open neighbourhood of γ in SV2 (indeed, it is a

basic open set of the form mentioned in Definition 2.10). Noting that r|U =
∏
s∈S rs|Us and similarly

for s|U , it follows that r|U and s|U are both homeomorphisms onto their images. Finally, we must check

that r(U) and s(U) are open in (SV2)(0) =
∏
S V

(0)
2 . We have r(U) =

∏
s∈S rs(Us) with all but finitely

many of the rs(Us) equal to V(0)
2 and each rs(Us) open in V(0)

2 , so r(U) is open in the product topology

on
∏
S V

(0)
2 . Exactly the same argument shows that s(U) is also open in the product topology. □

Remark 2.12. If we took SV2 to be simply the product groupoid
∏
S V2, the proof of the lemma above

would not work, since an infinite product of local homeomorphisms need not be a local homeomorphism
in general.

Alternatively, one could wonder whether we could instead take the product
∏
S V2 in the box topology

instead of the product topology. In this case it would be true that the source and range maps are local
homeomorphisms, because arbitrary box products of local homeomorphisms are local homeomorphisms.
However, the unit space of

∏
S V2 in the box topology would be

∏
S C in the box topology (where C is the

Cantor space). In the case where S is (countably) infinite, this space is not locally compact, by [Wil84,
Theorem 1.3], so it cannot be the unit space of a topological groupoid, by our convention in Definition
1.1.

Since SV2 is ample, it admits a basis for its topology consisting of compact open bisections (see the
paragraph just after Definition 1.4). In fact, we may describe such a basis as follows. Let F ⊆ S be a

finite subset, let Us ⊂ V2 be any compact open bisection for s ∈ F and set Us = V(0)
2 for s ∈ S ∖ F .

Then
∏
s∈S Us is a compact open bisection in SV2. Since the topology of V2 admits a basis consisting of

compact open bisections (because it is ample), the compact open bisections of SV2 constructed in this
way provides a basis for its topology.

Lemma 2.13. The ample groupoid SV2 is effective.

Proof. We adapt to the setting of SV2 the argument from the proof of Lemma 2.3 of the fact that V2
is effective. (The fact that SV2 is effective does not follow formally from the fact that V2 is effective, as
explained in Remark 2.14 below.)

Recall that elements of SV2 are collections of triples (ys, ns, xs)s∈S where we have xs, ys ∈ {0, 1}N = C,
ns ∈ Z, the infinite words xs and ys are eventually equal after a relative shift by ns, and for all but
finitely many indexing elements s ∈ S we have (ys, ns, xs) = (xs, 0, xs). This is topologised as a subspace
of the product space (C ×Z×C)S = CS ×ZS ×CS . In fact, since all but finitely many of the ns are zero,
it is a subspace of the product space CS × Z∗ × CS , where Z∗ denotes the space of functions Funf (S,Z)
of finite support, i.e., that send all but finitely many elements of S to zero. Although ZS is not discrete
unless S is finite (when S is countably infinite it is homeomorphic to the Baire space), its subspace Z∗

is discrete, and so SV2 naturally splits as the disjoint union of the clopen subspaces

SV2[m] = {(ys, ns, xs)s∈S ∈ SV2 | ns = ms for all s ∈ S}
indexed by m = (ms)s∈S ∈ Z∗. The isotropy subgroupoid of SV2 is

Iso(SV2) = {(ys, ns, xs)s∈S ∈ SV2 | ys = xs for all s ∈ S},
and the splitting of SV2 induces a splitting of Iso(SV2) as the disjoint union of the clopen subspaces

Iso(SV2)[m] = SV2[m] ∩ Iso(SV2),
12



again indexed by m = (ms)s∈S ∈ Z∗.
We must prove that the interior of Iso(SV2) in SV2 is equal to the unit space (SV2)(0), which is:

(SV2)(0) = {(ys, ns, xs)s∈S ∈ SV2 | ys = xs and ns = 0 for all s ∈ S}.

The splittings allow us to compute the interior component-wise. It is clear from the descriptions above
that (SV2)(0) = Iso(SV2)[0], where 0 ∈ Z∗ denotes the identically-zero function S → Z. Since the unit
space (SV2)(0) is always an open subspace in any étale groupoid, it follows that the interior of Iso(SV2)[0]
in SV2[0] is precisely (SV2)(0). It therefore remains to prove for any non-zero m ∈ Z∗ that Iso(SV2)[m],
as a subspace of SV2[m], has empty interior.

Let us therefore fix any non-zero m ∈ Z∗ and choose an element s0 ∈ S so that ms0 ̸= 0 ∈ Z. Suppose
that U is an open subset of SV2[m] that is contained in Iso(SV2)[m]; our task is to prove that U is empty.
For this purpose, we may assume that U is a basic open subset, so we may assume that it is of the form

U =
∏
s∈S Us for open subspaces Us ⊆ V2. (We also have that Us = V(0)

2 for all but finitely many s ∈ S,
but we will not need this.) We will prove that Us0 is empty, which will imply that U is empty.

To show that Us0 is empty, we first recall from the proof of Lemma 2.3 the following property of the
topology of V2: every open subset of V2 is either empty or uncountable. This follows from the fact that
every open subset of the Cantor space C is either empty or uncountable, since V2 is locally homeomorphic
to C. Thus it will suffice to prove that Us0 is countable. To see this, note that the elements of Us0 are
all of the form (x,ms0 , x) for x ∈ C = {0, 1}N, since U is contained in Iso(SV2)[m]. Since ms0 ̸= 0, the
infinite word x must be eventually ms0-periodic. Thus (x,ms0 , x) 7→ x is an injection of Us0 into the set
of eventually ms0 -periodic infinite words in {0, 1}. But there are only countably many such words. □

Remark 2.14. One cannot simply formally deduce effectiveness of SV2 from effectiveness of V2 in the
case when S is infinite. Directly from the definitions, we see that Iso(SV2) = SV2 ∩ (

∏
S Iso(V2)), where

the intersection is taken inside the product
∏
S V2. Since V2 is effective, we know that the interior of

Iso(V2) in V2 is equal to V(0)
2 , which implies by properties of the product topology that the interior of∏

S Iso(V2) in
∏
S V2 is equal to

∏
S V

(0)
2 . Let us temporarily writeX =

∏
S V2, A = SV2, B =

∏
S Iso(V2)

and C =
∏
S V

(0)
2 . In this notation, we have IntX(B) = C, and to prove effectiveness of SV2 we would

need to deduce that IntA(A∩B) = C. However, in general we have IntA(A∩B) = A∩IntX(B∪(X∖A)),
which may be larger than A ∩ (IntX(B) ∪ IntX(X ∖A)) = A ∩ IntX(B) = A ∩ C = C.

Topological groupoids associated to twisted Brin–Thompson groups. Let us return to the setting where we
have a group G with a faithful action on a countable set S given by a homomorphism α : G→ Sym(S).
The action α induces a left action of G on the topological groupoid SV2 by permuting the coordinates.
Precisely, viewing elements of SV2 as functions S → V2, this action is given by pre-composing with the
action α of G on S:

(2.2) g · (γ : S → V2) = (γ ◦ α(g−1) : S → V2).

(The −1 is needed on the right-hand side in order for this to be a left action, since pre-composition is a
right action.) The formula (2.2) for the action may be rewritten in coordinates as:

(2.3) g · (γs)s∈S = (γg−1s)s∈S .

Here, on the right-hand side, we write the left action of an element h ∈ G on s ∈ S simply by concatena-
tion as hs rather than α(h)(s). Thus, by Example 1.11, we may form the semi-direct product topological
groupoid SV2 ⋊G.

Remark 2.15. A priori, there is no reason to take the topological groupoid to be V2 in the construction.
In fact, given a faithful action of G on a countable set S, and any topological groupoid G with compact
unit space, the definition of the twisted topological groupoid SG⋊G still makes sense. Further properties
of these groupoids and their full groups will be studied in [WZ].

Lemma 2.16. The topological groupoid SV2 ⋊G is ample and effective and its unit space does not have
isolated points.

Proof. By Lemma 2.11, we already know that SV2 is ample. As explained in Example 1.11, it follows
that SV2 ⋊G is also an ample groupoid. In addition, the unit space of the semi-direct product SV2 ⋊G
is (SV2)(0) × {e}, where e denotes the identity element of G, so it is also homeomorphic to the Cantor
space C; in particular it has no isolated points.
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It remains to prove that SV2 ⋊ G is effective. In other words, we need to verify that the interior of
the isotropy subgroupoid

Iso(SV2 ⋊G) = {(γ, g) ∈ SV2 ⋊G | r((γ, g)) = s((γ, g))}

coincides with the unit space (SV2 ⋊G)(0). Clearly (SV2 ⋊G)(0) is contained in Iso(SV2 ⋊G), and it is
open in SV2 ⋊G, so it lies in the interior of Iso(SV2 ⋊G). We therefore have to show that Iso(SV2 ⋊G)
has no other interior points.

Recall from Example 1.11 that r((γ, g)) = (r(γ), e) and s((γ, g)) = (g−1 · s(γ), e) where · denotes the
left action of G on SV2 described in (2.3). Hence the isotropy subgroupoid may be described as:

Iso(SV2 ⋊G) = {(γ, g) ∈ SV2 ⋊G | r(γ) = g−1 · s(γ)}
= {((γs)s∈S , g) ∈ SV2 ⋊G | (r(γs))s∈S = g−1 · (s(γs))s∈S}
= {((γs)s∈S , g) ∈ SV2 ⋊G | (r(γs))s∈S = (s(γgs))s∈S}.

Since G has the discrete topology, this splits as the disjoint union of the clopen subspaces

Iso(SV2 ⋊G)⟨g⟩ = Iso(SV2 ⋊G) ∩ (SV2 × {g})
∼= {(γs)s∈S ∈ SV2 | r(γs) = s(γgs) for each s ∈ S} ⊂ SV2.

Let us denote the subspace of SV2 described just above by SV2⟨g⟩. In this notation, what we have to
show is that the interior of SV2⟨e⟩ in SV2 is equal to (SV2)(0) and that for every g ∈ G with g ̸= e the
interior of SV2⟨g⟩ in SV2 is empty.

In the case g = e, note that SV2⟨e⟩ = Iso(SV2). By Lemma 2.13, the groupoid SV2 is effective, so the
interior of SV2⟨e⟩ = Iso(SV2) as a subspace of SV2 is equal to (SV2)(0).

Now let g ̸= e and choose an element s0 ∈ S such that gs0 ̸= s0 (which exists since the action of
G on S is faithful). Suppose that U is an open subset of SV2 that is contained in SV2⟨g⟩; we must
prove that U is empty. We may assume that U is a basic open subset, so in particular it is of the form
U =

∏
s∈S Us for open subspaces Us ⊆ V2. It will suffice to prove that Us0 × Ugs0 is empty. First note

that every element of Us0 × Ugs0 is of the form ((y,m, x), (z, n, y)) with x, y, z ∈ C and m,n ∈ Z, since
U is contained in SV2⟨g⟩. The map

r × s : Us0 × Ugs0 −→ C × C

is open, since it is a product of local homeomorphisms. In particular its image (r×s)(Us0×Ugs0) is open
in C × C. But (r × s)(Us0 × Ugs0) is also contained in the diagonal ∆(C). The diagonal ∆(C) has empty
interior in the product C × C (since C has no isolated points), so (r× s)(Us0 ×Ugs0) must be empty, and
hence Us0 × Ugs0 must be empty as well. □

Recall from Example 1.11 that, given an element (γ, g) ∈ SV2 ⋊ G, the range and source maps are
given by r((γ, g)) = (r(γ), e) and s((γ, g)) = (g−1 · s(γ), e), where by an abuse of notation we use r and
s to denote the range and source maps of both SV2 and SV2 ⋊G.

For the next two results, we will need to understand in more detail what the compact open bisections
of SV2⋊G look like. By definition, using the above description of the range and source maps of SV2⋊G
and the fact that G has the discrete topology, we see that:

• if U is a compact open bisection of SV2 and g ∈ G then U × {g} is a compact open bisection of
SV2 ⋊G;

• any compact open bisection of SV2 ⋊ G is a finite disjoint union of subsets U × {g} as in the
previous point.

Now every compact open bisection U of SV2 is of the form U =
∏
s∈S Us, where each Us is a compact

open bisection of V2 and Us = V(0)
2 for all but finitely many s. Finally, we recall that all compact open

bisections of V2 may be written as finite disjoint unions of standard compact open bisections, which have
the following form:{

(y, |w| − |w′|, x) ∈ V2
∣∣∣ x ∈ w{0, 1}N, y ∈ w′{0, 1}N, ρ|w

′|(y) = ρ|w|(x)
}

=
{
(w′z, |w| − |w′|, wz) ∈ V2

∣∣∣ z ∈ {0, 1}N} ,
where w and w′ are words in {0, 1}∗.

Proposition 2.17. The topological full group of SV2 ⋊G is the twisted Brin–Thompson group SVG.
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Remark 2.18. The twisted Brin–Thompson group SVG is known to be a full group (in the sense of
[BBMZ, Definition 2.24]) in the homeomorphism group of the Cantor space: see [BBMZ, top of p. 56].
However, to calculate its homology using our approach, one needs more than this: it must be realised as
the topological full group of an explicit topological groupoid, as in Proposition 2.17.

Proof of Proposition 2.17. By Lemma 2.16, the topological groupoid SV2 ⋊G is ample and effective. It
is also clear that it is Hausdorff (it is a subspace of the product (C × Z × C)S × G), so by Lemma 1.15
it is naturally a subgroup of Homeo(CS). The twisted Brin–Thompson group SVG is by definition a
subgroup of Homeo(CS). We will show that they are equal as subgroups.

1. F (SV2 ⋊G) ⊇ SVG. Let f ∈ SVG. By definition, this means that there are two finite collections
of dyadic bricks {B(φ1), . . . , B(φn)} and {B(ψ1), . . . , B(ψn)} forming dyadic partitions of the Cantor
space CS , together with elements g1, . . . , gn ∈ G, such that f maps each B(ψi)→ B(φi) via the following
composition of maps:

f |B(ψi) : B(ψi)
h−1
ψi−−−→∼= CS

τgi−−−→ CS
hφi−−−→∼= B(φi),

where τgi is the twist homeomorphism (2.1) permuting the coordinates of CS via the action of gi ∈ G on
the coordinate set S.

We need to prove that such a local homeomorphism represents a compact open bisection in SV2 ⋊G.
Recall that, by definition,

B(ψi) =
{
κ ∈ CS | ψi(s) is a prefix of of κ(s) for each s ∈ S

}
=
∏
s∈S

Bs(ψi) =
∏
s∈S
{x ∈ C | ψi(s) is a prefix of of x} =

∏
s∈S

ψi(s){0, 1}N,

and ψi : S → {0, 1}∗ has finite support, i.e., ψi(s) is the empty word for all but finitely many elements
of S. The homeomorphism h−1

ψi
can therefore be represented by the product of shift homeomorphisms∏

s∈S
ρ|ψi(s)|.

Note that ρ|ψi(s)| = id for all but finitely many s ∈ S. The same reasoning also applies to the homeo-
morphism h−1

φi . Hence f |B(ψi) can be written as the following composition of maps (from left to right):∏
s∈S

Bs(ψi)

∏
s∈S ρ

|ψi(s)|

−−−−−−−−−→∼=
CS

τgi−−−→ CS
∏
s∈S ρ

|φi(s)|

←−−−−−−−−∼=

∏
s∈S

Bs(φi).

Redistricted to each coordinate s, both ρ|ψi(s)| and ρ|ϕi(s)| are homeomorphisms, and the standard clopen
subspaces Bs(ψi) = ψi(s){0, 1}N and Bs(φi) = φi(s){0, 1}N are compact open subspaces of C. Also, τgi
is a fixed homeomorphism of CS given by a permutation of coordinates. Restricted to one coordinate s,
we therefore have the composition of maps

Bs(ψi)
ρ|ψi(s)|−−−−−→∼=

Cs
id−−→ Cgis

(ρ|φi(gis)|)−1

−−−−−−−−−→∼=
Bgis(φi),

where Cs = C denotes the copy of the Cantor set in the s coordinate and id: Cs → Cgis is the identity
map under these identifications. This homeomorphism is realised by the compact open bisection

Wi =
∏
s∈S
Us × {gi}

of SV2 ⋊G, where for each s ∈ S, the (standard) compact open bisection Us of V2 is the following:

Us =
{
(y, |φi(s)| − |ψi(g−1

i s)|, x) ∈ V2
∣∣∣ y ∈ Bg−1

i s(ψi), x ∈ Bs(φi), ρ
|φi(s)|(x) = ρ|ψi(g

−1
i s)|(y)

}
=
{(
ψi(g

−1
i s)z , |φi(s)| − |ψi(g−1

i s)| , φi(s)z
)
∈ V2

∣∣∣ z ∈ {0, 1}N} .
Note that, since φi and ψi have finite support, this is equal to V(0)

2 for all but finitely many coordinates
s ∈ S, so this is indeed a compact open bisection of SV2 ⋊G (see the discussion before the proposition).
Finally, taking the disjoint union over i ∈ {1, . . . , n}, we have a compact open bisection

n∐
i=1

Wi

of SV2 ⋊G realising the homeomorphism f , so f ∈ F (SV2 ⋊G).
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2. F (SV2 ⋊ G) ⊆ SVG. Now let f ∈ F (SV2 ⋊ G). By the discussion of compact open bisections of
SV2 ⋊ G just before the proposition, this means that f can be written as (the homeomorphism of CS
corresponding to) a finite disjoint union of compact open bisections of the form W =

∏
s∈S Us × {g},

where Us ⊆ V2 is a compact open bisection of V2 of the form:

Us =
{
(y, |ws| − |w′

s|, x) ∈ V2
∣∣∣ x ∈ ws{0, 1}N, y ∈ w′

s{0, 1}N, ρ|w
′
s|(y) = ρ|ws|(x)

}
=
{
(w′

sz , |ws| − |w′
s| , wsz) ∈ V2

∣∣∣ z ∈ {0, 1}N} ,
where ws, w

′
s ∈ {0, 1}∗ for each s ∈ S and ws = w′

s = ∅ for all but finitely many s ∈ S. In particular,
ws and w

′
s may be regarded as functions w,w′ : S → {0, 1}∗ with finite support, so we may consider the

associated dyadic bricks B(w) and B(w′). We also define w̄ : S → {0, 1}∗ by w̄s = wgs and consider
its associated dyadic brick B(w̄). The homeomorphism associated to the compact open bisection W is
therefore the following composition (from right to left):

B(w′) =
∏
s∈S

w′
s{0, 1}N

r←−∼= W
s−→∼=
∏
s∈S

ws{0, 1}N = B(w)
g−1

−−−→∼=
∏
s∈S

wgs{0, 1}N = B(w̄).

The additional action of g−1 on the right-hand side arises because of the formula s((γ, g)) = (g−1 ·s(γ), e)
for the source map of SV2 ⋊ G. Reversing each of these maps and identifying W with CS (using the
evident identifications of each Us with C), we may rewrite this as follows:

B(w′)

∏
s∈S ρ

|w′
s|

−−−−−−−−→∼=
CS

∏
s∈S ρ

|ws|

←−−−−−−−−∼=
B(w)

g←−∼= B(w̄).

We may rewrite the homeomorphism CS ← B(w̄) above as follows:∏
s∈S

ρ|ws| ◦ g = g ◦

(
g−1 ◦

∏
s∈S

ρ|ws| ◦ g

)
= g ◦

∏
s∈S

ρ|w̄s|,

and hence the homeomorphism associated to the compact open bisectionW may be rewritten as follows:

B(w′)

∏
s∈S ρ

|w′
s|

−−−−−−−−→∼=
CS

τg−1

−−−−→∼=
CS

∏
s∈S ρ

|w̄s|

←−−−−−−−−∼=
B(w̄),

where we now write τg−1 instead of g−1 for the middle homeomorphism, following the notation (2.1).
We now note that this is precisely the canonical twist homeomorphism associated to the dyadic bricks
B(w̄), B(w′) and the group element g−1, as described at the beginning of §2.2.

Since the domain and image of f are the whole Cantor cube CS , it follows that, as we run through
the finite disjoint union of compact open bisections W corresponding to f as above, their sources and
ranges each form a dyadic partition of CS and f is defined on each dyadic brick in the source partition
by a canonical twist homeomorphism as above. This means, by definition, that f lies in SVG. □

Lemma 2.19. The ample groupoid SV2 ⋊G is purely infinite minimal.

Proof. Recall that the unit space of SV2⋊G is CS×{e}, where e denotes the identity element of G. This
is homeomorphic to the Cantor space C, which is compact. Now let U and W ̸= ∅ be two compact open
subsets of the unit space. We need to find a compact open bisection σ ⊆ SV2 ⋊ G such that s(σ) = U
and r(σ) ⊆W .

Any compact open subspace of CS is a finite disjoint union of dyadic bricks, so we may choose coverings
of U andW by finitely many pairwise disjoint dyadic bricks, which we denote by B(φ1), B(φ2), . . . B(φn)
and B(ψ1), B(ψ2), . . . B(ψm) respectively, associated to finitely-supported functions φi, ψi : S → {0, 1}∗.
Up to subdivision, we may assume that m ⩾ n. It suffices now to construct compact open bisections σi
of SV2 ⋊G such that s(σi) = B(φi) and r(σi) = B(ψi) for each 1 ⩽ i ⩽ n. Let

Ui,s =
{
(y, |φi(s)| − |ψi(s)|, x) ∈ V2

∣∣∣ x ∈ φi(s){0, 1}N, y ∈ ψi(s){0, 1}N, ρ|ψi(s)|(y) = ρ|φi(s)|(x)
}

for each s ∈ S and 1 ⩽ i ⩽ n. Then for each 1 ⩽ i ⩽ n the subset

σi =
∏
s∈S
Ui,s × {e} ⊂ SV2 ⋊G

is a compact open bisection with the required source and range.
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Finally, since the dyadic bricks B(φ1), B(φ2), . . . B(φn) are pairwise disjoint, and similarly for the
dyadic bricks B(ψ1), B(ψ2), . . . B(ψm), we may take the disjoint union σ = σ1⊔· · ·⊔σn to obtain another
compact open bisection σ ⊆ SV2 ⋊G that has s(σ) = U and r(σ) = B(ψ1) ⊔ · · · ⊔B(ψn) ⊆W . □

Lemmas 2.16 and 2.19 together imply that the topological groupoid SV2 ⋊G satisfies the conditions
of Theorem 1.16. It remains to show that the homology of SV2 ⋊ G vanishes in every degree. We first
calculate the homology of the groupoid SV2.

Lemma 2.20. We have Hi(SV2;Z) = 0 for any i ⩾ 0.

Proof. Let S′ = S∖{s} for some s ∈ S. (We may assume that S is non-empty since otherwise SV2 = ∅V2
is the trivial groupoid.) Notice that the groupoid V2 × S′V2 is isomorphic to SV2. Since Hi(V2;Z) = 0
for any i ⩾ 0, the Künneth formula [Mat16, Theorem 2.4] implies that Hi(SV2;Z) = 0 for any i ⩾ 0. □

Proposition 2.21. We have Hi(SV2 ⋊G;Z) = 0 for any i ⩾ 0.

Proof. With the help of Lemma 2.20, this calculation follows immediately from the spectral sequence in
[Mat12, Theorem 3.8(2)]. Namely, this spectral sequence is of the form:

E2
p,q = Hp(G;Hq(SV2;Z))⇒ Hp+q(SV2 ⋊G;Z).

From the previous lemma we know that Hq(SV2;Z) = 0 for any q ⩾ 0, so on the E2 page of the spectral
sequence we have E2

p,q = Hp(G;Hq(SV2;Z)) = Hp(G; 0) = 0 for any p, q ⩾ 0. Thus the entire spectral
sequence vanishes and we have Hi(SV2 ⋊G;Z) = 0 for any i ⩾ 0. □

Theorem 2.22 (Theorem C). For any group G acting faithfully on a countable set S, the associated
twisted Brin–Thompson group SVG is acyclic.

Proof. As noted above, Lemmas 2.16 and 2.19 imply that the topological groupoid SV2 ⋊G satisfies the
conditions of Theorem 1.16. By Proposition 2.21, we have Hi(SV2⋊G;Z) = 0 for any i ⩾ 0, so Theorem
1.16 tells us that its topological full group F (SV2 ⋊ G) is acyclic. But by Proposition 2.17, this is the
twisted Brin–Thompson group SVG. Thus SVG is acyclic. □

Remark 2.23. The only way in which we used the assumption that S is countable in this section was
in order to have CS ∼= C, which was used to deduce that the unit spaces of SV2 and SV2 ⋊G (which are
both homeomorphic to CS) have the appropriate point-set topological properties, namely that they are:

• Hausdorff,
• totally disconnected,
• without isolated points,
• locally compact.

However, if S is an uncountable set, then the space CS still satisfies all of these hypotheses, even though
CS ̸∼= C in this case.1 For the first three properties above, this is because they are preserved under
taking arbitrary products. Although the last property (local compactness) is not preserved under taking
arbitrary products, the combined property of being locally compact and compact is preserved under
taking arbitrary products. Thus, since C is compact and satisfies the above properties, all of its powers
CS also satisfy these properties. The proofs in this section are therefore valid also for any uncountable
set S; in particular, Theorem C is also true in this case.

The proof of simplicity of SVG due to Belk–Zaremsky [BZ22, Theorem 3.4] depends on countability
of S in order to have CS ∼= C, since it uses a criterion of Bleak–Elliott–Hyde [BEH24, Theorem 4.18] for
simplicity of subgroups of Homeo(C). However, it is still true that SVG is simple when S is uncountable.

Lemma 2.24. For any group G acting faithfully on a set S, the group SVG is simple.

When S is countable, this is precisely [BZ22, Theorem 3.4]. The argument below, deducing the general
case from the countable case, is due to Matthew Zaremsky (personal communication).

Proof of Lemma 2.24. Each element α ∈ SVG is a composition of finitely many canonical twist homeo-
morphisms, each of which involves only finitely many elements of G and finitely many dyadic bricks, each
of which is supported on finitely many coordinates of S. Denote by H ⊆ G the subgroup generated by
the relevant elements of G, and denote by T ⊆ S the union of the H-orbits of the relevant coordinates of

1For uncountable S we have CS ̸∼= C because CS is not second countable (indeed XS is not second countable for any
non-indiscrete space X). If S has at least continuum cardinality (a stronger condition unless assuming the Continuum

Hypothesis), then we moreover have |CS | > |C|.
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S. Then H and T are both countable and α ∈ TVH ⊆ SVG, where we are viewing TVH as a subgroup
of SVG by sending an element α of TVH ⊆ Homeo(CT ) to the element α× idS∖T of SVG ⊆ Homeo(CS),
where idS∖T denotes the identity map of CS∖T . By the same argument, any given countable collection
of elements of SVG is contained in a subgroup of the form TVH ⊆ SVG with H and T countable.

Now let α and β be any two non-trivial elements of SVG. To prove that SVG is simple it will suffice
to show that β ∈ ⟨α⟩SVG , i.e. that β is contained in the normal closure of α in SVG. By the previous
paragraph, we know that α, β ∈ TVH ⊆ SVG for some countable subgroup H ⊆ G and some countable
H-invariant subset T ⊆ S. By [BZ22, Theorem 3.4] we know that TVH is simple, and hence β ∈ ⟨α⟩TVH .
But ⟨α⟩TVH ⊆ ⟨α⟩SVG , and so we also have β ∈ ⟨α⟩SVG . □
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