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Abstract

Braid groups, mapping class groups and similar groups of geometric origin typically have
“wild” representation theory. One would therefore like to construct representations of these
groups by topological or geometric means, in order to be able to understand them with topo-
logical or geometric tools. As one very important example, Lawrence and Bigelow have con-
structed families of linear representations of the classical braid groups starting from actions on
the twisted homology of configuration spaces, which were then used by Bigelow and Krammer
to prove the linearity of the braid groups.

We give a unified construction of such topological representations: in each dimension d,
we construct a large family of representations of a category UDd whose automorphism groups
contain all mapping class groups andmotion groups in dimension d. There are three parameters
that one may vary in the construction: a submanifold Z ⊂ Rd and two integers ` > 2 and i > 0.
In particular, varying the parameter ` leads to a “pro-nilpotent” tower of representations, of
which we give several non-trivial examples in dimensions 2 and 3. The richer structure of the
category UDd (beyond its automorphisms) may moreover be used to organise the representation
theory of the family of groups in question.

This recovers and unifies many previously-known constructions, including those of Lawrence-
Bigelow, as well as the Long-Moody construction, using an iterative variant of our construction.
We also discuss some of the new families of representations that we obtain in dimensions 2
and 3, for the surface braid groups, loop braid groups and mapping class groups.

1. Introduction
The representation theory of mapping class groups and motion groups is very rich, and the subject
of much active research – see Birman and Brendle’s survey [BB05, §4] or Margalit’s expository
paper [Mar19] for instance. Their representation theory is in particular known to be wild, meaning
(roughly) that there can be no classification system for their irreducible representations with finitely
many parameters. For the braid groups on n > 6 strands, this follows from the work of Erdmann
and Nakano [EN02] on the representation theory of Hecke algebras; for n = 3 (and thus n = 4 due
to the surjection B4 � B3) it follows from work of Krugljak and Samŏılenko [KS80].
In order to understand the representation theory of these groups, we must therefore view them not
just as abstract groups, but use their associated geometry and topology. Combining this philosophy
(of studying these groups via their topology) with the philosophy of representation theory itself (of
studying groups via linear algebra), one is led naturally to homology — more precisely, the idea of
studying these groups via their actions on the homology of topological spaces naturally associated
to them.
Another philosophical idea adopted in this paper is to treat simultaneously families of groups that
belong together geometrically. Here a family of groups means a collection of groups Gi indexed
by a partially-ordered set (typically the natural numbers N) equipped with morphisms Gi → Gj
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whenever i 6 j. The idea is to require representations to respect the natural coherences between
the different groups in the family: this is more meaningful, since the groups naturally arise with
certain coherences between them. It should also make the representation theory a little less wild, by
using more of the natural structure of the families of groups and the ensuing imposed constraints.
For the family of braid groups Bn (where the inclusions are induced by adding a strand on the left),
Lawrence [Law90] and Bigelow [Big01] constructed well-known families of linear representations,
called the Lawrence-Bigelow representations, following different methods. They may be defined via
actions on twisted homology groups of configuration spaces of unordered points in a marked 2-disc.
The most famous of these are the family of (reduced) Burau representations originally introduced
by Burau in [Bur35] and the family of Lawrence-Krammer-Bigelow representations, which Bigelow
[Big01] and Krammer [Kra02] independently proved to be faithful.
Our goal is to develop a much more general construction, which:
• applies simultaneously to all mapping class groups and motion groups in a given dimension,
• respects the coherences between these groups, encoded by defining the representations on a
category containing all of these groups as (normal subgroups of) its automorphism groups,

• produces a much wider family of representations,
• produces interesting representations also over non-commutative rings.

In dimension d, we consider a certain topological category UDd, whose automorphism groups are
(roughly) diffeomorphism groups of d-manifolds fixing a given configuration of submanifolds in
their interior. Its associated discrete category π0(UDd) therefore contains all mapping class groups
of d-manifolds, as well as all motion groups in d-manifolds (as normal subgroups; cf. §4.3.3). Our
construction produces “twisted representations” of this category, namely functors

π0(UDd) −→ Mod•

to the category Mod• of right-modules over rings. This contains the category ModR for every ring
R, and it is an important question when our representations take values in such a subcategory; we
give a general criterion for this in §5.1.5. The construction depends on three parameters:
• a submanifold Z ⊆ Rd and a subgroup G of its mapping class group π0(Diff(Z)),
• an integer ` > 2,
• an integer i > 0.

Each of these parameters may be varied to obtain interesting representations. For example, the
family of Lawrence-Bigelow representations depends on an integer parameter k > 1; our construc-
tion recovers this in the case when Z is a 0-dimensional manifold of size k (and d = 2, ` = 2, i = k).
In dimensions d > 3, moreover, it becomes interesting to take higher-dimensional submanifolds of
Rd for Z, in particular in the case of the loop-braid groups (the group of motions of an n-component
unlink in R3).
The parameter ` > 2 controls the ground ring over which the representation is defined: it is the
group-ring of a group of nilpotency class at most ` − 1. There are cases where the output of our
construction is independent of ` (hence the ground ring is commutative), but there are also many
interesting cases where we obtain an infinite tower of representations as `→∞. In particular, the
family of Lawrence-Krammer-Bigelow representations is the ` = 2 term of such a tower.
The parameter i > 0 controls the degree in which we take homology. In the case of the Lawrence-
Bigelow representations, there is only one interesting degree in which we can take homology (the
homology in other degrees being trivial). However, more generally there can be many interesting
degrees in which to take homology. For example, if we consider the family of loop-braid groups
and the “naive” analogue of the Lawrence-Bigelow representations (taking Z to be a 0-dimensional
manifold of size k), then there are non-trivial homology groups in all degrees k 6 i 6 2k. These
particular representations will be studied in more detail in the sequel paper [PS21].
There are also several natural variations of our construction. First, one may change the “flavour”
of (twisted) homology that we use: notably Borel-Moore homology rather than ordinary homology
(also cohomology, compactly-supported cohomology, etc.). Second, there is also a “solvable” (as
opposed to “nilpotent”) variant of our construction, where the parameter ` controls the degree of
solvability of the group(-ring) over which the representations are defined; see §5.1.6. We focus in
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this paper on the nilpotent version since the lower central series of the relevant groups is generally
better-understood than their derived series. In particular, the stopping or non-stopping of the
lower central series of certain “mixed” motion groups determines whether or not we obtain an
infinite tower of representations as `→∞ (see above); this question is answered for mixed versions
of classical, loop- and surface braid groups in the companion paper [DPS21], joint with Jacques
Darné.
Finally, there is also a variant of our construction that may be iterated, in the sense that, instead of
a single (twisted) representation, it gives an endofunctor of the category of twisted representations.
It depends on the same parameters as above, plus one additional parameter, which we now explain.
The parameters Z,G, ` determine a functor a : C → Grp from any subcategory C ⊆ π0(UDd) to
the category of groups. The additional parameter is then a functor χ : ao C → C, where o is the
Grothendieck construction and this functor should be thought of morally as a “stabilisation map”.
The parameters Z,G, `, i, χ then determine an endofunctor of the category of twisted representa-
tions of C with values in Mod•. This is inspired by and recovers the Long-Moody construction; see
§6.
In the remainder of this introduction, we give more precise details of our constructions, results and
particular examples of homological representations that we construct.

Coherent families of representations. In order to deal with representations with some com-
patibility conditions, we are interested in collections of representations {%n : Gn → GLR(Mn)}n∈N
together with preferred maps mn : Mn →Mn+1 satisfying the property that the restriction of %n+1
to Gn with respect to mn is %n. Then we say that the representations {Mn}n∈N form a family of
linear representations of the groups {Gn}n∈N. Here we are assuming for simplicity that the family
of groups is indexed by N and the morphisms Gn → Gn+1 are injective.
This notion can be encoded in a functorial way. Let G be the groupoid with objects indexed by
non-negative integers, with the groups {Gn}n∈N as automorphism groups and with no morphisms
between distinct objects. For instance, we consider the braid groupoid β to deal with braid groups
and the decorated surfaces groupoid M2 for the mapping class groups of surfaces; see §4.4 and
§4.5. Suppose that we have chosen a category CG containing G as its underlying groupoid and with
a preferred morphism ιn : n → n + 1 for each object n, satisfying ιn ◦ g = g ◦ ιn for each g ∈ Gn.
In all of the examples addressed in this paper, such a category CG is constructed through Quillen’s
bracket construction using a monoidal structure on G (or G will be a module over another monoidal
groupoid); see §3. We denote by ModR the category of right R-modules for some ring R. A functor
CG → ModR then gives us a family of representations of the family of groups {Gn}n∈N. Moreover,
if CG has been constructed from G by “freely adjoining” the new morphisms ιn (as will be the
case in our examples), then a functor CG → ModR is equivalent to a family of representations of
{Gn}n∈N, in which case it will be referred to as a global representation.

Functorial homological constructions. Our overall procedure for defining global homological
representations is summarised in the diagram (1.1) below. A more elaborate version of this is
described in diagram (2.10) and Definition 2.21, but the essential ideas are the same. The desired
output is the diagonal functor CG → ModR, a (coherent) family of representations of {Gn}n∈N.
This is constructed in three steps:
• We first construct a topologically-enriched category Ct

G whose π0 recovers CG . We will always
construct the category CG using Quillen’s bracket construction, so we explain in §3.1 how this
construction may be lifted to topologically-enriched categories to produce an appropriate Ct

G .
This requires a technical result about commuting Quillen’s bracket construction with π0 (cf.
Lemma 3.8), which depends on a fibration condition which we verify in all of our examples;
see §3.3. In our examples, its morphism spaces may be identified (cf. Proposition 4.8) with
certain embedding spaces between manifolds.
In particular, we construct (see §3.2) topologically-enriched categories UDd that are designed
to contain all diffeomorphisms of d-manifolds (equipped with configurations), together with
all embeddings between such manifolds that correspond to splittings into boundary connected
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summands. Its associated discrete category π0(UDd) thus contains all mapping class groups
and motion groups in dimension d.

• The key geometric step is to construct a (continuous) functor F from Ct
G to CovQ, the category

of topological spaces equipped with regular coverings with fixed deck transformation group
Q. This geometric construction is the subject of §5.

• The remaining steps simply encode the idea of taking twisted homology of covering spaces.
The functor Lift takes a regular covering with deck transformation group Q to the corre-
sponding bundle of Z[Q]-modules, the functor −⊗V takes the fibrewise tensor product with
a (Z[Q], R)-bimodule V (“specialising the coefficients”), producing a bundle of R-modules,
and finally Hi is the twisted homology functor in degree i. See §2.3–§2.5 for more details.

CG

Ct
G CovQ TopZ[Q] TopR ModR

π0

F Lift −⊗ V Hi

Li(F ;V )

(1.1)

We also consider the slightly more general setting of twisted representations, where groups act on
the base ring R as well as on modules: we then denote the appropriate target category by Modtw

R .
In this setting, the target of the functor F is the analogous larger category Covtw

Q . Even more
generally, we allow the ring R and the deck transformation group Q to vary. The corresponding
larger categories in this case are denoted by Mod• and Cov•; they contain Modtw

R and Covtw
Q

respectively for each R and Q. These are described in more detail in §2.2.
There are also variants of this construction for relative homology where we work with categories of
pairs of spaces, and for Borel-Moore homology where we restrict to categories of locally compact
spaces and proper maps. In particular, using Borel-Moore homology is especially interesting when
the image of the functor F consists of configuration spaces of points in a surface; see §5.2.
Some of these representations have been defined and studied before — at least at the level of
individual groups, i.e. when restricted to the individual automorphism groups of CG — and indeed
one purpose of describing this general procedure for constructing homological representations is to
give a unified description for various different representations appearing in the literature, as well
as discovering new constructions by comparing representations coming from different settings in
this unified context.

Constructions of representations for motion groups. The first type of groups to which
we apply our construction are motion groups: given a closed submanifold A of the interior of a
manifold M , the motion group MotA(M) is the fundamental group of Emb(A, M̊)/Diff(A), the
space of embeddings of A into the interior ofM modulo diffeomorphisms of A. If A is orientable, we
may also consider Mot+

A(M), which is the fundamental group of Emb(A, M̊)/Diff+(A). Important
examples of (M,A) are:
• (D2, n points) — corresponding to the classical braid groups Bn

∼= Motn(D2);
• (S, n points) — corresponding to the braid groups Bn(S) ∼= Motn(S) on a surface S;
• (D3, Un), where Un is an n-component unlink in the interior of D3 — corresponding to the
loop-braid groups LBn

∼= Mot+
Un

(D3) and the extended loop-braid groups LB′n ∼= MotUn(D3).
In §5.1, we construct a functor UDd → Cov• depending on two parameters: a closed submanifold
Z ⊆ Rd and an integer ` > 1. (There is also a third parameter, which we are ignoring here
for simplicity.) The motion group MotA(M) is a normal subgroup of the automorphism group of
(M,A) in π0(UDd), so diagram (1.1) applied to this functor gives a (possibly twisted) representation
of MotA(M).
To give an idea of how this functor F : UDd → Cov• is constructed, we explain how to construct
π0(F ) : π0(UDd)→ π0(Cov•) restricted to MotA(M). To do this, we have to give a regular covering
together with an action up to homotopy of MotA(M). The key idea is to use the fact that MotA(M)
acts up to homotopy on the space of embeddings (modulo diffeomorphisms) of Z into M̊ rA. The
fundamental group of this space is the motion group MotZ(M r A), and one then has to define
appropriate quotients of this group so that the MotA(M)-action lifts to the corresponding regular
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covering. To do this, we use the following diagram, which we explain below:

1 MotZ(M rA) MotZtA(M) MotA(M) 1

1 Q
MotZtA(M)

Γ`(MotZtA(M))
MotA(M)

Γ`(MotA(M)) 1.

φ

The top row consists of the split-surjection MotAtZ(M) → MotA(M) given by forgetting the
manifold Z (we always require M to have non-empty boundary; the splitting uses this), whose
kernel is MotZ(M r A). Write Γ`(G) for the `-th term of the lower central series of a group G;
this explains two of the quotients, and the diagram is completed by defining Q to be the image
of MotZ(M r A) in the bottom-middle group. An easy diagram chase shows that the action of
MotA(M) on MotZ(M rA) preserves ker(φ), which is equivalent to saying that the action lifts to
the corresponding regular covering. (We also have to identify the geometric action of MotA(M)
on MotZ(M rA) with the action coming from the splitting on the top row; cf. Lemma 4.25.)
The quotient group Q is often the same for a whole family of motion groups (such as the three
mentioned above); we call this phenomenon Q-stability, and in this case the functor F restricted
to this family takes values in Covtw

Q ⊂ Cov•. In the case ` = 2, moreover, we show in §5.1.5 that
the functor takes values in CovQ ⊂ Cov•, so the resulting representations are always untwisted.
If we consider all ` > 1 simultaneously, these representations may be packaged together into a
“pro-nilpotent” tower of representations of the family of motion groups; see §5.1.7. Whether or
not this tower stops at some finite stage depends on the lower central series of the “mixed” motion
group MotZtA(M). This is investigated for the classical, surface and loop braid groups in [DPS21].
Many well-known representations arise as particular instances of this general homological construc-
tion. First of all, for the classical braids groups, we take Z to be a set of k > 1 unordered points in
the interior of D2. Quillen’s bracket construction defines a category Uβ having the braid groupoid
β as its underlying groupoid.

Theorem 1.1 (see Proposition 5.28 and Corollary 5.34) Choosing the quotients by the Γ2-term
and taking homology in degree k, the above procedure defines functors

LB1 : Uβ −→ ModZ[Z] and LBk : Uβ −→ ModZ[Z2] (for k > 2),

which encodes the Lawrence-Bigelow representations [Law90; Big04]. In particular, LB1 and LB2
encode the reduced Burau representations Lawrence-Krammer-Bigelow representations respectively.
If k = 2, applying the procedure for the quotient by the Γ`-term for ` > 3 provides twisted repre-
sentations LB2,` which are not equivalent to LB2. If we use Borel-Moore homology, the twisted
representations of braid groups encoded by LBBM

2,` are faithful.

More generally, we consider the braid groups on a connected compact surface S with one boundary-
component and take for Z a set of k > 1 unordered points in the interior of S. Quillen’s bracket
construction provides a category 〈β,βS〉 having the braid groups as automorphism groups. If S is
orientable of genus g > 1 we denote it by Σg,1, if it is non-orientable of genus h > 1 we denote it
by Nh,1.

Theorem 1.2 (see Propositions 5.35 and 5.37) Choosing the quotients by the Γ2-term and taking
homology in degree k, the above procedure defines functors

Lk(Σg,1, Γ2) : 〈β,βΣg,1〉 −→ ModZ[Q(k,2)(Σg,1)]

Lk(Nh,1, Γ2) : 〈β,βNh,1〉 −→ ModZ[Q(k,2)(Nh,1)],

where Q(k,2)(Σg,1) ∼= Z2g ⊕ (Z/2Z)dk and Q(k,2)(Nh,1) ∼= Zh ⊕ (Z/2Z)dk , with dk = 1 if k = 1 and
dk = 2 if k > 2. In the orientable case, if we take Γ3 quotients instead, we obtain

Lk(Σg,1, Γ3) : 〈β,βΣg,1〉 −→ Modtw
Z[Q(k,3)(Σg,1)],
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where Q(k,3)(Σg,1) = ker(Bk,n(Σg,1)/Γ3 � Bn(Σg,1)/Γ3), which is independent of n for n > 3.

For orientable surfaces, the option of taking the quotients by Γ3 is actually a reinterpretation of
the work of An and Ko in [AK10] — see [BGG17] — to extend some homological representations
from the classical braid groups to the surface braid groups; see §5.2.2.2.
Finally, for loop braid groups, we have two main choices for the parameter Z: one may take for Z a
set of k > 1 unordered points in the interior of D3, or else an embedded k-component unlink. In the
latter case we may either consider this to be an oriented unlink or an unoriented unlink. Quillen’s
bracket construction provides categories ULβ and ULβ′ having respectively the loop braid groups
and extended loop braid groups as automorphism groups.

Theorem 1.3 (see Propositions 5.40, 5.42 and 5.43) Choosing the quotients by the Γ2-term and
taking homology in degree k, the above procedure defines functors

L1(1,Lβ) : ULβ −→ ModZ[Z] L1(1,Lβ′) : ULβ′ −→ ModZ[Z/2]

Lk(k,Lβ) : ULβ −→ ModZ[Z⊕(Z/2)] Lk(k,Lβ′) : ULβ′ −→ ModZ[(Z/2)2]

L1(U1,Lβ) : ULβ −→ ModZ[Z⊕(Z/2)2] L1(U1,Lβ′) : ULβ′ −→ ModZ[(Z/2)3]

Lk(Uk,Lβ) : ULβ −→ ModZ[Z⊕(Z/2)4] Lk(Uk,Lβ′) : ULβ′ −→ ModZ[(Z/2)5]

L+
1 (U1,Lβ) : ULβ −→ ModZ[Z2] L+

1 (U1,Lβ′) : ULβ′ −→ ModZ[Z⊕(Z/2)]

L+
k (Uk,Lβ) : ULβ −→ ModZ[Z3⊕(Z/2)] L+

k (Uk,Lβ′) : ULβ′ −→ ModZ[Z2⊕(Z/2)2],

where k > 2.

Moreover, using non-stopping results for lower central series of partitioned tripartite welded braid
groups from [DPS21], we obtain infinite towers of representations when we consider all ` > 2 in
the cases Z ∈ {2, U2, U3} (that is, a configuration of two points or an unlink with either two or
three components).
In §7, we compute explicitly the matrices of the representations encoded by the top two functors,
L1(1,Lβ) and L1(1,Lβ′). These extend the reduced Burau representations of the classical braid
groups to LBn and LB′n respectively. The extension to LBn is straightforward, and was already
introduced by Vershinin in [Ver01, §4] by assigning explicit matrices to generators. The extension
to LB′n is more indirect: we must first reduce the ground ring Z[Z] to R = Z[Z/2], then extend the
underlying R-module Rn−1 of the reduced Burau representation to a larger, non-free R-module
and then extend the action of LBn on Rn−1 to an action of LB′n on this larger module. This
extension (in particular the matrices defining it) does not seem algebraically obvious, but it arises
naturally as part of our general topological construction. The variant of our construction using
reduced homology also defines extensions of the unreduced Burau representations to LBn and LB′n;
these are more straightforward again. See §7 for the full details and calculations.

Constructions of representations for mapping class groups. The second type of groups
to which we apply our construction are mapping class groups of manifolds. For a smooth manifold
M , the mapping class group MCG(M) of M is the group of isotopy classes of diffeomorphisms
of M fixing its boundary pointwise. More generally, if Z is a closed submanifold of M , we write
MCG(M,Z) for the group of isotopy classes of M fixing its boundary pointwise and sending Z
onto itself. We will focus on the case whereM is a compact, connected surface with one boundary-
component. Quillen’s bracket construction provides suitable categories UM+

2 and UM−2 having the
mapping class groups of orientable surfaces {Σg,1}g>0 and non-orientable surfaces together with
the disc {Nh,1}h>0 respectively as automorphism groups. (These are subcategories of π0(UD2).)
We consider two ways to define functors F : UDd → Cov•, which will then give us homological
representations of UM+

2 and UM−2 via diagram (1.1). The first one is the construction given in
§5.1, which we have already described above in the setting of motion groups. The idea for mapping
class groups is similar, using the natural action (up to homotopy) of MCG(M) on the space of
embeddings modulo diffeomorphisms of Z into the interior of M , whose fundamental group is the
motion group MotZ(M). We then take a characteristic quotient of this group, typically induced
by its lower central series, to lift this action to the corresponding covering space.
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In particular, for orientable surfaces, this principle recovers the following families of representations:

Theorem 1.4 (see §5.4.1.1 and Theorem 5.51) Taking Z to be a single point and using reduced ho-
mology in degree 1, choosing the quotients by the Γ`-term for each ` > 1, the above procedure defines
a global homological functor Mag` : UM+

2 → Mod• encoding the level-` Magnus representations
introduced by Suzuki [Suz05, §3].
Taking Z to be a set of k > 1 ordered points and removing a puncture from the boundary of each
surface, taking Borel-Moore homology in degree k and choosing the quotients by the Γ1-term, the
above procedure defines a global homological functor Mork : UM+

2 → Mod• encoding the Moriyama
representations introduced by Moriyama [Mor07].
Taking Z to be a set of k > 1 unordered points, taking homology in degree k and choosing the
quotients by the Γ3-term, the above procedure defines a global homological functor Blank : UM+

2 →
Mod•. Restricting to the Chillingworth subgroups of mapping class groups, the induced representa-
tion for the surface Σg,1 becomes an untwisted representation over the group-ring of Bk(Σg,1)/Γ3.

The name of the functor Blank follows from the suggestion of [BGG11] that the ideas developed to
construct that functor were already explored by Christian Blanchet but have not been published.
However, the kind of construction of the above theorem is not optimal: as is highlighted in the above
results, it typically only gives twisted representations. One has to restrict to smaller subgroups
of mapping class groups so as to get untwisted representations. For this reason, we give a second
construction of a functor F : UDd → Cov• in §5.3 that is better adapted to mapping class groups
in the sense that it more often gives untwisted representations when we plug it into diagram (1.1).
(The precise meaning of this is given by Proposition 5.48.)
The idea is again to use the natural action (up to homotopy) of MCG(M) on the space of embed-
dings modulo diffeomorphisms of Z into the interior of M , whose fundamental group is MotZ(M).
However, instead of directly taking lower central quotients of this group to choose coverings, we
instead construct a 6-term diagram, similar to the one for motion groups, and choose the quotient
φ indirectly via the lower central quotients of the bigger mapping class group MCG(M,Z):

1 MotZ(M) MCG(M,Z) MCG(M) 1

1 Q
MCG(M,Z)

Γ`(MCG(M,Z))
MCG(M)

Γ`(MCG(M))) 1.

φ

Here, the top row consists of the split surjection MCG(M,Z)� MCG(M) given by forgetting the
condition that diffeomorphisms must send Z onto itself (as before, we always require M to have
non-empty boundary; the splitting uses this assumption), whose kernel may be identified with
MotZ(M).
This second method produces representations of mapping class groups that appear to be new, as
far as the authors are aware. For instance, when M = S is a surface, we take for Z a set of k > 1
unordered points and define:

Theorem 1.5 (see Propositions 5.54 and 5.55) Choosing the quotients by the Γ2-term and taking
homology in degree k, the above procedure defines global homological functors:
• Lk(Γ−,1) : UM+

2 −→ ModZ[Qk] where Q1 is trivial and Qk = Z/2Z for k > 2.
• Lk(N−,1) : UM−2 −→ ModZ[Qk] where Qk = (Z/2Z)2 for k > 3.

Iterative constructions. Long and Moody [Lon94] have introduced machinery which constructs
a representation of Bn from a representation of Bn+1. For instance it recovers the Burau repre-
sentation [Bur35] from a one-dimensional representation. This method and its variants have been
studied with a functorial point of view in [Sou19b] for braid groups and then generalised in [Sou19a]
for general families of groups.
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Our construction summarised in diagram (1.1) may also be automated and turned into machinery
detailed in diagram (2.15). Namely, for a family of groups {Gn}n∈N with an appropriate category
CG as above, suppose that we have a continuous functor F : CG → Cov• (for example, constructed as
in §5.1 or §5.3). Let r : Cov• → Grp be the functor that sends a covering to its deck transformation
group and suppose that we also have a continuous functor χ : (r ◦ F ) o CG → CG , where o is the
Grothendieck construction (cf. Definition 2.28). Writing Fct(C,D) for the category of functors
C → D, we have:

Theorem 1.6 (see Propositions 2.33, 6.4 and Theorem 6.2) For each i > 0, the above data defines
an endofunctor Λi(F ;χ) : Fct(CG ,Mod•) −→ Fct(CG ,Mod•) such that, for any V : CG → Mod•,

Λi(F ;χ)(V ) = Li(F ;V χr◦F ) : CG −→ Mod•

where V χr◦F is a certain canonical functor induced from V . The endofunctor Λi(F ;χ) is called the
homological representations iterative functor associated to F and χ.
For i = 1, if r ◦ F : CG → Grp takes values in the full subcategory of free groups, then Λ1(F ;χ)
recovers a generalised Long-Moody functor introduced in [Sou19a].

In particular, we prove in §6.2 that any family of low-dimensional complex irreducible repre-
sentations of braid groups is encoded by a global homological representation using this iterative
procedure.

Perspectives. A natural question for the representations arising from the above constructions is
to determine which of them are irreducible, which are indecomposable and how they decompose if
they are decomposable. In addition, keeping our functorial point of view, notions of polynomiality
may be introduced for functors from the discrete categories considered here to module categories:
we may investigate whether the above functorial representations are polynomial. These questions
are beyond the scope of the current paper but will be addressed in the sequel paper [PS21].
Furthermore, among the underlying prospects motivating our study stands the question of which
motion groups and mapping class groups are linear — in the sense that they act faithfully on a
finite-dimensional vector space. Indeed, this question remains wide open in the vast majority of
cases. Classical braid groups provide a famous positive answer to this question by Bigelow and
Krammer [Big01; Kra02], but there are also families with a negative answer, such as the automor-
phisms of free groups — which may be viewed mapping class groups of certain 3-manifolds — by
Formanek and Procesi [FP92]. The key representations that have provided positive answers have
all been homological representations. This suggests that a systematic treatment of homological
constructions that work for all motion groups and all mapping class groups is an important and
natural avenue for future investigations on the linearity of these families of groups.

Acknowledgements. The authors would like to thank Paolo Bellingeri, Tara Brendle, Oscar
Randal-Williams, Antoine Touzé, Christine Vespa and Emmanuel Wagner for illuminating discus-
sions and questions. In particular, they thank Antoine Touzé for pointing out the reference [EN02].
They would also like to thank Oscar Randal-Williams for inviting the first author to the University
of Cambridge in November 2019, where significant progress on the present article was made.

Outline. The paper is organised as follows. In §2, we introduce in detail the various tools to
define general homological functors as summarised in the diagram (1.1), assuming given a functor
F with values in covering spaces. In §3–§4, we introduce the appropriate categorical framework to
deal with all motion groups and mapping class groups simultaneously. In §5.1 and §5.3, we give
two general topological constructions of functors F taking values in covering spaces — combined
with all of the previous sections, this completes our general construction of global homological
representations of motion groups and mapping class groups. We then apply this construction to
motion groups (in §5.2) and mapping class groups (in §5.4) in dimensions 2 and 3. We study the
general procedure to iteratively construct homological functors in §6. Finally, in §7 we focus in a
more concrete way on Burau representations of the loop-braid groups, with explicit calculations.
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2. The general construction
As explained in the Introduction, the construction of global homological representations consists
of two main parts:

1. constructing continuous functors UDd → •Cov•,
2. constructing functors π0(UDd)→ •Mod• given a continuous functor UDd → •Cov•,

where •Cov• and •Mod• respectively denote categories of spaces equipped with bicoverings and
bimodules over A-algebras; cf. Definitions 2.2 and 2.3. Here, π0(C) is obtained from C by ap-
plying the functor π0 to all morphism spaces. In this section, we deal with step (2), producing
a homological representation of a category starting from a functor from a topological version of
that category to covering spaces. More precisely, assuming that we are given a continuous functor
F : C → •Cov• from any topologically-enriched category C, we use twisted homology to obtain an
induced functor Li(F ) : π0(C) → •Mod•. More generally, this construction may itself be twisted
by another functor V : C → •Mod• that is compatible with F , resulting in an induced functor
Li(F ;V ) : π0(C) → •Mod•. This generalisation allows step (2) of the construction to be iterated,
so that a continuous functor F : C → Cov• induces an endofunctor for the functor categories

Fct(C,Mod•) −→ Fct(C,Mod•).

We begin with an overview of the construction in §2.1, and give precise definitions of all of the
categories involved in §2.2. The three main steps of the construction are then described in detail
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in §2.3–§2.5. This is put together into the general construction (in its non-iterative version) in
§2.6, and the iterative version is described in §2.7. Throughout this section, we fix an associative,
unital ring A. The reader may prefer to assume that A = Z, since this will be the case in all of
our examples later.

2.1. Overview

We first give a brief overview of the construction of a homological representation of the discrete
category π0(C) starting from a functor from a topologically-enriched category C to covering spaces.
There are four versions of this, where the first three are increasingly general, and the fourth is an
“iterative” version of the third. Full details of the constructions are given in the remainder of this
section, and summarised in §2.6 and §2.7.
(1.) In the first version of the construction, we fix an A-algebra S and a group G. The inputs for
the construction consist of an (A[G], S)-bimodule V and a continuous functor F taking values in
the category whose objects are spaces X equipped with a quotient of π1(X) onto G. Such quotients
correspond to regular coverings of X with deck transformation group G, which gives this category
its name, CovG. The output is the functor Li(F ;V ) : π0(C)→ ModS .
The construction may be summarised in the following diagram (with inputs in red and outputs in
blue):

C

π0(C)

CovG TopA[G] TopS ModS
F Lift −⊗A[G] V Hi

Li(F ;V )

(2.1)

and consists in composing F with three functors:
• The functor Lift first takes a space X equipped with a quotient π1(X) � G to the corre-

sponding regular covering of X (this amounts to a certain lifting construction for morphisms,
whence the name). A regular covering with deck transformation group G is the same thing
as a principal G-bundle, and thus in particular a bundle of G-sets. The second step of this
functor is to replace each fibre with the free A-module that it generates, obtaining a bundle
of A[G]-modules. TopR is the category of spaces equipped with bundles of R-modules. See
§2.3 for more details.

• The second functor takes the fibrewise tensor product with the (A[G], S)-bimodule V , pro-
ducing a bundle of S-modules; cf. §2.4.

• Finally, Hi is simply the functor encoding twisted homology (in degree i) over S.
The categories and functors in diagram (2.1) are all topologically-enriched, but the right-hand
category ModS is in fact a discrete category. Hence the composition C → ModS factors uniquely
through the canonical functor C → π0(C) via a functor π0(C)→ ModS , which is the output of the
construction.
(2.) More generally, we may begin with a bimodule V as above and a functor F into the category
whose objects are spaces X equipped with a pair of quotients of π1(X), which may be thought of
as a category of bicoverings of X. The construction is analogous to the above, going via bundles
of bimodules to output a functor Li(F ;V ) : π0(C)→ •ModS , where •ModS is a certain category –
defined below – of (R,S)-bimodules, where R is allowed to vary. This construction is summarised
in the following diagram, which is a copy of diagram (2.11) below:

C

π0(C)

•CovG •TopA[G] •TopS •ModS
F Lift −⊗A[G] V Hi

Li(F ;V )
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(3.) This is in turn a special case of our first general construction, which is summarised in diagram
(2.10) below. The main point is that, in the general construction, the bimodule V is also allowed
to vary, in the sense that it is replaced by a functor V : C → •Mod• to the category of bimodules
that is compatible with the functor F : C → •Cov• in a specific sense; cf. Condition 2.19. This
recovers case (2.) above, i.e. diagram (2.11), exactly when V is a constant functor. See §2.6 for
more details.
(4.) Now that the input V has been generalised to a functor C → •Mod•, one may wonder whether
the construction, for fixed F and i, may be iterated (bearing in mind the fact that continuous
functors C → •Mod• are in bijective correspondence with functors π0(C)→ •Mod•). However, this
does not work as formulated above. In order to apply the construction above, the functor V is
required to satisfy the compatibility condition 2.19 (depending on F ). That V satisfies Condition
2.19 does not imply that Li(F ;V ) satisfies Condition 2.19, so we cannot apply the construction
Li(F ;−) again to Li(F ;V ). To solve this issue, we give a modified version of the construction that
may be iterated indefinitely, summarised in diagram (2.15), amounting to an endofunctor for the
functor categories Fct(C,Mod•) −→ Fct(C,Mod•); cf. Proposition 2.31. See §2.7 for more details.

2.2. Categories

In this subsection, we define the different categories involved in the construction.

Remark 2.1 In fact, all of the categories that we define are topologically-enriched categories – in
other words their morphism sets are equipped with topologies such that composition is continuous
– and all functors are continuous functors. We will therefore implicitly write category to mean
topologically-enriched category and functor to mean continuous functor. The morphism spaces of
the categories defined in this section are all equipped with topologies derived in an obvious way
from the compact-open topology for sets of maps between topological spaces.

Definition 2.2 (The category of bicoverings.) The category •Cov• is the category of spaces
equipped with bicoverings. An object of •Cov• is a path-connected, based space X admitting a
universal covering (i.e., locally path-connected and semi-locally simply-connected), equipped with
a pair of surjective homomorphisms

φ1 : π1(X) −→ Q1 φ2 : π1(X) −→ Q2

such that the induced homomorphism (φ1 × φ2) ◦∆: π1(X)→ Q1 ×Q2 is also surjective. Via the
correspondence between path-connected, regular coverings of X and normal subgroups of π1(X),
this is the same as a pair of normal subgroups N1, N2 of π1(X) (corresponding to regular coverings
XN1 → X and XN2 → X) such that the square

XN1∩N2 XN2

XN1 X

y

is a pullback square. A morphism in •Cov• from (X,φ1, φ2) to (X ′, φ′1, φ′2) is a based, continuous
map f : X → X ′ such that the induced homomorphism π1(f) sends ker(φ1) into ker(φ′1) and ker(φ2)
into ker(φ′2). This implies that there are unique homomorphisms α1 : Q1 → Q′1 and α2 : Q2 → Q′2
such that

φ′1 ◦ π1(f) = α1 ◦ φ1 and φ′2 ◦ π1(f) = α2 ◦ φ1.

If G is a group, the category GCov• is the subcategory of •Cov• on those objects (X,φ1, φ2) such
that Q1 = G and those morphisms f such that the induced homomorphism α1 mentioned above
is equal to idG. Similarly, we have a subcategory •CovG. If G is the trivial group, we drop it from
the notation, and write Cov• and •Cov respectively for these subcategories of •Cov•. Note that
•Cov and Cov• are abstractly isomorphic, but not equal as subcategories of •Cov•. As another
variant, we write Covtw

G ⊂ Cov• for the full subcategory on those objects (X,φ1, φ2) such that
Q1 = G (this is generally larger than CovG).
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Definition 2.3 (The category of bimodules.) The category •Mod• is the category of bimodules
over A-algebras. An object of •Mod• is a pair of associative, unital A-algebras (R,S) together
with an (R,S)-bimodule V . A morphism from (R,S, V ) to (R′, S′, V ′) is a pair of A-algebra
homomorphisms ϕ : R→ R′ and ψ : S → S′ preserving units, together with a morphism of (R,S)-
bimodules θ : V → (ϕ,ψ)∗(V ′).
For any A-algebra R, we have a subcategory RMod• ⊂ •Mod• on those objects (R′, S′, V ′) where
R′ = R and those morphisms (ϕ,ψ, θ) where ϕ = idR (note that this is generally not a full
subcategory). If moreover R is the trivial A-algebra, we drop it from the notation, and write Mod•
for RMod•. Similarly, we have •ModS and RModS for A-algebras R and S. Note that RModS is
just the category of (R,S)-bimodules, as usually defined. Furthermore, for a fixed A-algebra S,
we write Modtw

S ⊂ Mod• for the full subcategory on those objects (S′, V ′) where S′ = S (this is
generally larger than ModS).

Definition 2.4 (Bundles of G-sets and of R-modules.) For a path-connected space X, a bundle of
left G-sets over X is a fibre bundle over X with fibre a left G-set T and structure group AutG(T ),
the automorphism group of T as a left G-set. See, for example, [Ste51, §2] for the definition of
fibre bundle with specified fibre and structure group. In general, for a space X, a bundle of left
G-sets over X is a bundle of left G-sets over each of its path-components. Bundles of left R-
modules, (R,S)-bimodules and other algebraic structures are defined similarly. However, we will
shortly replace this definition with a slightly different one that is equivalent for our purposes — see
Definition 2.5 and Remark 2.6 below.

If X is a space with the property that each path-component admits a universal covering (equiva-
lently, X is locally path-connected and semi-locally simply-connected), then a bundle of left G-sets
over X is equivalent to a functor from the fundamental groupoid π61(X) to the category GSet of
left G-sets. More precisely, for any space X, a bundle of left G-sets over X (which is in particular
a covering of X, since it is a bundle with discrete fibres) determines a functor π61(X) → GSet
via unique path-lifting. If X satisfies the above conditions, the induced functor from the category
of bundles of left G-sets over X to the functor category Fct(π61(X),GSet) is an equivalence. An
exactly analogous statement holds for bundles of R-modules, (R,S)-bimodules and other algebraic
structures — if the base space X is locally path-connected and semi-locally simply-connected, then
these correspond equivalently to functors from the fundamental groupoid π61(X) to the appropri-
ate category of algebraic structures.

Definition 2.5 (Bundles of G-sets and of R-modules, replacing Definition 2.4.) For any space X,
a bundle of left G-sets over X is a functor

π61(X) −→ GSet,

where π61(X) is the fundamental groupoid of X and GSet is the category of left G-sets. Similarly,
a bundle of left R-modules over X is a functor from π61(X) to the category of left R-modules and
a bundle of (R,S)-bimodules over X is a functor from π61(X) to the category of (R,S)-bimodules.

Remark 2.6 Definitions 2.4 and 2.5 agree whenever X is locally path-connected and semi-locally
simply-connected. In all of our examples, the base space X will have these properties, so we will
freely pass between these two viewpoints of bundles of algebraic structures over X.

Definition 2.7 (The category of bundles of bimodules.) The category •Top• is the category of
bundles of bimodules over A-algebras. An object of •Top• is a space X together with a pair of
associative, unital A-algebras (R,S) and a bundle of (R,S)-bimodules over X, meaning a functor
ξ : π61(X) → RModS (cf. Remark 2.6), where π61(X) is the fundamental groupoid of X. A
morphism from (X,R, S, ξ) to (X ′, R′, S′, ξ′) is a continuous map f : X → X ′, two A-algebra
homomorphisms ϕ : R → R′ and ψ : S → S′ preserving units, and an endofunctor F : RModS →
RModS such that (ϕ,ψ)∗ ◦ ξ′ ◦π61(f) = F ◦ ξ, where (ϕ,ψ)∗ : R′ModS′ → RModS is the restriction
functor induced by ϕ and ψ.
For any A-algebra R, we have a subcategory RTop• ⊂ •Top• on those objects (X ′, R′, S′, ξ′) where
R′ = R and those morphisms (f, ϕ, ψ) where ϕ = idR (note that this is generally not a full
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subcategory). If moreover R is the trivial A-algebra, we drop it from the notation, and write Top•
for RTop•. Similarly, we have •TopS and RTopS for A-algebras R and S. For a fixed A-algebra S,
we write Toptw

S ⊂ Top• for the full subcategory on those objects (X ′, S′, ξ′) where S′ = S (this is
generally larger than TopS).

Via the correspondence of Remark 2.6 between bundles of bimodules over X and functors out of
π61(X), the endofunctor F above corresponds to a bundle map, covering f , from ξ to (ϕ,ψ)∗(ξ′).
Note also that •Mod• is equivalent to the full subcategory of •Top• on those objects whose under-
lying space is a point.

Notation 2.8 Writing A-Alg for the category of associative, unital A-algebras and Grp for the
category of groups, there are obvious forgetful functors

•Cov• Grp •Mod• ⊂ •Top• A-Alg
`

r

`

r

that remember just the left (respectively right) underlying group or A-algebra. For example, an
object (X,R, S, ξ) of •Top• is sent under ` to R and under r to S.

Definition 2.9 Write •Top•Mod• for the pullback of the forgetful functors ` : •Mod• → A-Alg
and r : •Top• → A-Alg:

•Top•Mod• •Mod•

•Top• A-Alg.
r

`
y

(2.2)

In other words, an object of •Top•Mod• consists of a space X, a triple of A-algebras (R,S, T ), a
bundle of (R,S)-bimodules over X and an (S, T )-bimodule V .

2.3. From bicoverings to bundles of bimodules

Proposition 2.10 There is a natural continuous functor

Lift : •Cov• −→ •Top•, (2.3)

taking bicoverings to bundles of bimodules, such that the squares

•Cov• •Top•

Grp A-Alg

Lift

A[(−)op]
` `

•Cov• •Top•

Grp A-Alg

Lift

A[−]
r r (2.4)

commute, where A[−] : Grp→ A-Alg takes a group to its group A-algebra and (−)op : Grp→ Grp
takes a group to its opposite.

Proof. On objects, this is defined as follows. Let (X,x0, φ1 : π1(X,x0)→ Q1, φ2 : π1(X,x0)→ Q2)
be an object of •Cov•. The normal subgroup

K := ker(φ1) ∩ ker(φ2) = ker((φ1 × φ2) ◦∆) / π1(X,x0) (2.5)

corresponds to a regular covering of X with deck transformation group Q := Q1 ×Q2. In order to
specify a particular regular covering of X, rather than just an isomorphism class of such, we will
be slightly more careful. Start with the universal covering X̃ of X; more specifically, the standard
model for X̃ whose underlying set consists of endpoint-preserving homotopy classes of paths in X
starting at x0. This is equipped with an action of π1(X,x0); take the quotient of X̃ by the action
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of the subgroup K. We denote this regular covering by ξK : XK = X̃/K → X. Whether deck
transformations act on the left or the right is an arbitrary convention. We will consider them to act
on the right, since this agrees with the typical convention that the structure group of a principal
bundle (of which regular coverings are examples) acts on the total space on the right. This is a
bundle of right Q-sets over X (whose fibres all happen to be isomorphic to Q itself). Since Q is
the product Q1 × Q2, we may equally view ξK as a bundle of (Qop

1 , Q2)-bisets over X, where a
(G,H)-biset is a set equipped with a left G-action and a compatible right H-action.
Now replace each fibre of ξK with the free A-module generated by that fibre; this forms a bundle of
(A[Qop

1 ],A[Q2])-bimodules overX. The operation of “taking free A-modules fibrewise” is simplest to
describe by viewing bundles of (G,H)-bisets over X as functors π61(X)→ GSetH to the category
of (G,H)-bisets, and similarly bundles of (R,S)-bimodules over X as functors π61(X)→ RModS
to the category of (R,S)-bimodules. In this viewpoint, the operation is simply post-composition
with the free functor A[−] : Qop

1
SetQ2 → A[Qop

1 ]ModA[Q2]. Denote the resulting bundle of bimodules
by Afib[ξK ] : Afib[XK ]→ X. This defines Lift on objects:

Lift(X,x0, φ1, φ2) = (X,A[Qop
1 ],A[Q2], Afib[ξK ]).

In order to define Lift on morphisms, we first note that, although we did not need it to define the
functor on objects, the regular covering ξK : XK → X associated to (X,x0, φ1, φ2) comes equipped
with a particular choice of basepoint of XK , covering the basepoint x0 of X. This is because the
standard construction of the universal cover X̃ has a canonical basepoint (namely the constant
path at x0), and therefore so does its quotient XK . Let us denote this basepoint by x̃0 ∈ XK .
Now suppose we have a morphism (X,φ1, φ2) → (Y, φ′1, φ′2) in •Cov•, that is, a continuous map
f : X → Y such that f(x0) = y0, f∗(ker(φ1)) ⊆ ker(φ′1) and f∗(ker(φ2)) ⊆ ker(φ′2). We recall from
Definition 2.2 that this determines certain homomorphisms α1 : Q1 → Q′1 and α2 : Q2 → Q′2, which
determine A-algebra homomorphisms A[αop

1 ] : A[Qop
1 ]→ A[(Q′1)op] and A[α2] : A[Q2]→ A[Q′2]. Let

K = ker(φ1) ∩ ker(φ2) L = ker(φ′1) ∩ ker(φ′2)

and write ξK : XK → X and ξL : Y L → Y for the corresponding regular covering spaces. By
covering space theory, for each point ỹ ∈ ξ−1

L (y0), there is a unique continuous map XK → Y L

that lifts the composition f ◦ξK : XK → Y and that takes x̃0 to ỹ. We therefore obtain a uniquely-
determined lift

f̃ : XK −→ Y L

by requiring f̃(x̃0) = ỹ0. Extending this map A-linearly in each fibre results in a map

Afib[f̃ ] : Afib[XK ] −→ Afib[Y L]

of bundles of A-modules. Finally, one may check that Afib[f̃ ] is a map of bundles of (A[Qop
1 ],A[Q2])-

bimodules, covering f , from Afib[ξK ] to Afib[ξL], where the latter is given the structure of a bundle
of (A[Qop

1 ],A[Q2])-bimodules via A[αop
1 ] and A[α2]. This uses the interpretation of morphisms of

•Top• from Remark 2.6. Hence we may define

Lift(f) = (f,A[αop
1 ],A[α2],Afib[f̃ ]).

Remark 2.11 (Modified lifting.) As a brief aside, we mention a non-functorial modification of the
lifting functor, defined as follows. We recall that an input object for the lifting functor consists of
a space X and a jointly surjective pair of maps φ1 : π1(X) → Q1 and φ2 : π1(X) → Q2, and the
output is the tuple (A[Q1],A[Q2], X, ξ), where ξ is a certain bundle of (A[Q1],A[Q2])-bimodules
over X. Via the ring homomorphism A[π1(X)] → A[Q2], we may consider ξ to be a bundle of
(A[Q1],A[π1(X)])-bimodules over X. Define:

Lift′(X,φ1, φ2) = (A[Q1],A[π1(X)], X, ξ).

This defines a function on the objects ob(•Cov•)→ ob(•Top•). This definition cannot, however, be
extended to morphisms in general, so this function of object sets cannot be extended to a modified
lift functor. Nevertheless, this alternative “modified lifting function” at the level of objects can be
useful for constructing Markov functions (which need not be representations) on the classical braid
groups. See for example [Con18; BC18].
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2.4. Fibrewise tensor product

In this short subsection, we define the “fibrewise tensor product” functor

⊗ : •Top•Mod• −→ •Top•. (2.6)

Notation 2.12 Recall from Definition 2.7 that, for two A-algebra homomorphisms α : R → R′

and β : S → S′, we denote the corresponding restriction functor R′ModS′ → RModS by (α, β)∗.

Definition 2.13 We define the functor (2.6) as follows.
• (On objects.) We recall that an object of •Top•Mod• consists of a space X, three A-algebras
R,S, T , an (S, T )-bimodule V and a bundle ξ : π61(X) → RModS of (R,S)-bimodules over
X. Define its image under (2.6) to be the following object of •Top•:

(X,R, T, π61(X) ξ−→ RModS
−⊗SV−−−−→ RModT ).

• (On morphisms.) A morphism of •Top•Mod• from (X,R, S, T, V, ξ) to (X ′, R′, S′, T ′, V ′, ξ′)
consists of a continuous map f : X → X ′, A-algebra homomorphisms α : R→ R′, β : S → S′

and γ : T → T ′, a homomorphism θ : V → (β, γ)∗V ′ of (S, T )-bimodules and a natural
transformation τ : ξ ⇒ (α, β)∗ ◦ ξ′. Define its image under (2.6) to be the morphism

(f, α, γ, τ̂)

of •Top•, where τ̂ : (− ⊗S V ) ◦ ξ ⇒ (α, γ)∗ ◦ (− ⊗S′ V ′) ◦ ξ′ is the natural transformation
defined as follows. First, note that, for any (R,S′)-bimodule A and (S′, T )-bimodule B, there
is a canonical homomorphism of (R, T )-bimodules

β∗A⊗S β∗B −→ A⊗S′ B,

which is an isomorphism if β : S → S′ is surjective. Using this fact, we define τ̂ on the object
x of π61(X) by

ξ(x)⊗S V −→ (α, β)∗(ξ′(x))⊗S V
−→ (α, β)∗(ξ′(x))⊗S (β, γ)∗V ′

−→ (α, 1)∗(ξ′(x))⊗S′ (1, γ)∗V ′

= (α, γ)∗(ξ′(x)⊗S′ V ′),

where the first arrow is induced by τx, the second is induced by θ and the third is the
canonical homomorphism from above.

Remark 2.14 This definition is somewhat formal, but it has a very natural geometric interpreta-
tion. If we view a bundle as an actual bundle over X (cf. Remark 2.6) and choose an open cover
U of X together with trivialisations of the bundle over each U ∈ U , then we may take the tensor
product over each U (since the bundle is now trivial over each U and it is obvious how to define
this) and then glue these trivial bundles back together again using the same transition functions
as for the original bundle.

Notation 2.15 There are forgetful functors •Top•Mod• → •Top• and •Top•Mod• → •Mod•
coming from the pullback square (2.2). For a continuous functor F : C → •Top•Mod•, denote its
compositions with these two forgetful functors by

F1 : C −→ •Top• and F2 : C −→ •Mod•

respectively. With this notation, we define F1 ⊗ F2 by F1 ⊗ F2 := ⊗ ◦ F .

2.5. Twisted homology

Over a fixed A-algebra R, one may view local coefficient systems on a space X as bundles of right
R-modules over X. In this viewpoint, homology with local coefficients (in any fixed degree i > 0)
is a functor of the form

Hi : TopR −→ ModR. (2.7)
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See, for example [DK01, §5.4] or [Pal18b, §5.1]. The following fact may be proven by directly gen-
eralising the usual construction of singular twisted homology, keeping careful track of the variable
bimodule structure.

Proposition 2.16 In any degree i > 0, homology with local coefficients extends to a functor

Hi : •Top• −→ •Mod• (2.8)

such that the square

•Top• •Mod•

TopR ModR

Hi

Hi

(2.9)

commutes for any A-algebra R. There are exactly analogous statements for relative homology (on
a category of bimodule bundles over pairs of spaces) and Borel-Moore homology (where we must
restrict to locally-compact spaces and proper maps). Moreover, there are similar statements for
cohomology (including compactly-supported cohomology, where we must again restrict to locally-
compact spaces and proper maps), although the domain category is not the opposite of •Top•, but
rather another category •Top←• defined below.

Definition 2.17 The category •Top←• has the same objects as •Top•, but its morphisms are
slightly different: they are contravariant on the underlying spaces and covariant on bimodule
bundles (local systems). More precisely, its morphisms are exactly as in Definition 2.7, except that
the map f goes in the opposite directionX ′ → X and the compatibility condition is correspondingly
changed to (ϕ,ψ)∗ ◦ ξ′ = F ◦ ξ ◦ π61(f). See also [DK01, Theorem 5.12].

Remark 2.18 (Interpreting twisted homology as homology of covering spaces.) The homological
representations that we construct will be a composition of functors, ending with (2.8) (or one of its
variants, such as twisted Borel-Moore homology). Thus, restricted to each object of the domain,
they will give a representation of its automorphism group on the twisted homology of some space
X equipped with a local system L. Typically, L will correspond to a regular covering X̂ → X (in
fact, it will always arise from a regular covering, followed possibly by a fibrewise tensor product).
If so, the twisted homology H∗(X;L) is canonically isomorphic to H∗(X̂), by Shapiro’s lemma for
covering spaces, so we may think of the homological representation as an action on the untwisted
homology of the covering space X̂. — However, this last remark only applies to (twisted) ordinary
homology, and not to (twisted) Borel-Moore homology, since Shapiro’s lemma for covering spaces is
generally false for Borel-Moore homology. For example if X̂ → X is the universal covering R→ S1

then HBM
1 (S1;L) = 0 6∼= Z ∼= HBM

1 (R). See [AP20, §6.1 and §6.2] for further details.

2.6. The general construction

The first version of our general construction is obtained by concatenating the lifting functor of
§2.3, the fibrewise tensor product of §2.4 and twisted homology §2.5.
Suppose that we are given a topologically-enriched category C, which is assumed to be nice, meaning
that, for each pair of objects (x, y), the connected components of the morphism space C(x, y) are
path-connected. Note that this condition holds whenever each C(x, y) is locally path-connected,
and it ensures that, for any discrete category D, any continuous functor C → D factors (uniquely)
through C → π0(C). The input for the construction consists of
◦ a continuous functor F : C → •Cov•,
◦ a continuous functor V : C → •Mod•,
◦ a positive integer i > 0,

satisfying Condition 2.19 below, where we recall (cf. Notation 2.8) that ` and r denote functors
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•Cov• Grp •Mod• ⊂ •Top• A-Alg
`

r

`

r

that remember just the first (respectively second) underlying group or A-algebra.

Condition 2.19 The functors F and V are required to be compatible in the sense that

A[r ◦ F ] = ` ◦ V,

where A[−] denotes the free functor Grp→ A-Alg.

Lemma 2.20 Given continuous functors F and V satisfying Condition 2.19 and an integer i > 0,
there is a naturally associated functor π0(C)→ •Mod•.

Proof. The construction is as follows. Condition 2.19 implies that ` ◦ V = r ◦ Lift ◦ F , and hence
that the functors Lift ◦ F and V determine a functor C → •Top•Mod• by the universal property
of the pullback. This is then composed with the fibrewise tensor product and twisted homology
to obtain a functor of the form C → •Mod•. Since •Mod• is a discrete category and C is nice, this
factors uniquely through a functor

π0(C) −→ •Mod•,
which is the output of the construction. This may be summarised diagrammatically as follows
(where the input is red and the output is blue):

C •Cov• •Top•

•Mod• Grp A-Alg

•Top•Mod• •Top• •Mod•

π0(C)

F Lift

V r r
A[−]

`

⊗ Hi

Li(F ;V )

p
(2.10)

Definition 2.21 (The general construction.) Given continuous functors F and V satisfying Condi-
tion 2.19, define Li(F ;V ) to be the functor given by Lemma 2.20. Using the notational convention
described in Notation 2.15, this may be written as

Li(F ;V ) = Hi ◦ ((Lift ◦ F )⊗ V ).

Remark 2.22 In many interesting examples, the functor V : C → •Mod• will be constant at some
object (R,S, V ) of •Mod•, where R and S are A-algebras and V is an (R,S)-bimodule. In this
case, Condition 2.19 is equivalent to saying that we must have R = A[G] for some group G and
that the functor F : C → •Cov• must have image contained in the subcategory •CovG ⊂ •Cov•.
The diagram (2.10) then simplifies to:

C

π0(C)

•CovG •TopA[G] •TopS •ModS
F Lift −⊗A[G] V Hi

Li(F ;V )

(2.11)

The special case of Lemma 2.20 in the setting of Remark 2.22 is:

Corollary 2.23 Fix a group G and an A-algebra S. Given a continuous functor F : C → •CovG, an
(A[G], S)-bimodule V and an integer i > 0, there is a naturally associated functor π0(C)→ •Mod•
given by diagram (2.11) above.
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Remark 2.24 (Other variants of homology.) All of the above constructions go through identi-
cally if we replace (twisted) ordinary homology with (twisted) Borel-Moore homology, cohomology,
compactly-supported cohomology, reduced homology, etc., as long as we modify each category in
the construction accordingly. For example, if we wish to use twisted Borel-Moore homology, we
must restrict to locally compact spaces and proper maps, so in particular the input functor F must
take values in this subcategory of •Cov•. Similarly, if we wish to use twisted cohomology, we must
replace •Top• with the “ambivariant” version •Top←• , as described in Definition 2.17, and similarly
for •Cov•, and F must take values in •Cov←• instead of •Cov•.
Remark 2.25 Another possible simplification is to omit the step where we take the fibrewise tensor
product with V . Let us write the output of this simplified construction (which depends only on
F ) by Li(F ). This is actually a special case of the setting where we do take the fibrewise tensor
product with a particular VF determined by F ; in other words, we have Li(F ) = Li(F ;VF ). The
“trivial” coefficient system VF may be constructed as follows. We denote by triv : A-Alg→ •Mod•
the functor that sends R to the bimodule (R,R,R). Then VF is the composition triv ◦A[−]◦ r ◦F .
In this case, the diagram (2.10) simplifies to:

C

π0(C)

•Cov• •Top• •Mod•
F Lift Hi

Li(F ) = Li(F ;VF )

(2.12)

Remark 2.26 If F takes values in a subcategory of •Cov• with some restriction on the left module
structure, then Li(F ;V ) will take values in the subcategory of •Mod• with the corresponding
restriction on the left module structure. Similarly, if V takes values in a subcategory of •Mod• with
some restriction on the right module structure, then Li(F ;V ) will take values in the subcategory
of •Mod• with the same restriction on the right module structure. For example, if V takes values
in •Mod and F takes values in tw

G Cov•, then Li(F ;V ) will take values in tw
A[G]Mod (∼= Modtw

A[G]).

Connected components, path-components and semifunctors. There is a small subtlety
related to connected components and path-components in diagram (2.1), and the other diagrams
illustrating the constructions. We first describe this at the level of spaces, and then at the level of
topological categories, i.e. categories enriched over the symmetric monoidal category of topological
spaces with the Cartesian product.
If f : X → Y is a continuous map with target a discrete space Y , then f must be constant on
each connected component of X, hence in particular on each path-component of X, so there is a
well-defined induced function π0(X)→ Y , in other words, f factors uniquely as X → π0(X)→ Y
in the category of sets. In order for this statement to be true also in the category of spaces, we
must either give π0(X) the discrete topology and assume that the path-components of X are open
(which is equivalent to saying that its path-components and its connected components coincide),
or more generally, without this assumption, give π0(X) the quotient topology induced from X and
the surjective function X � π0(X) (this will be the discrete topology if and only if X satisfies the
assumption mentioned before).
An exactly analogous discussion holds for a continuous functor C → D from a topologically-
enriched category C to a discrete category D, where the corresponding assumption on C is that
each morphism space C(c, c′) has open path-components. In diagram (2.1), we would like π0(C)
to be a discrete category – since ultimately we are trying to construct representations of certain
discrete categories – so we must make this assumption about C in order for diagram (2.1) to be
strictly correct. In all of our examples, this condition will indeed be satisfied (in fact C(c, c′) will
always be locally contractible, which is much stronger).
A second minor subtlety is that, in our examples, C will typically only be a semi-category (a
category without identities), although π0(C) will be a (usual) category. The diagrams above should
therefore be interpreted as diagrams of semifunctors. However, the induced arrow from π0(C) is
always in the end a functor. See §3.4 for why we must allow C to be a semi-category, and Lemma
5.10 for the statement that the output of the construction is nevertheless a functor.
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2.7. An iterative version

We may view the construction above, for a fixed i > 0 and functor F : C → •Cov•, as sending a
functor of the form C → •Mod• to another functor of the same form. However, this does not imply
that we may iterate the procedure, since the input functor V : C → •Mod• is required to satisfy
Condition 2.19 with respect to F . In this subsection, we describe a variant of the construction
which may be iterated.

Definition 2.27 Fix a topologically-enriched category C. Denoting by Cat/C the slice category
of Cat over C, recall that the Grothendieck construction is a functor∫ C =

∫
: Fct(C,Cat) −→ Cat/C,

that, on objects, takes a functor F : C → Cat to the functor
∫
F → C, where the objects

ob(
∫
F ) = {(c, a) | c ∈ ob(C), a ∈ ob(F (c))}

and a morphism in
∫
F from (c, a) to (c′, a′) is a morphism f : c→ c′ in C together with a morphism

g : a → F (f)(a′) in F (c). The functor
∫
F → C simply takes (c, a) to c on objects and (f, g) to f

on morphisms.

Definition 2.28 For a continuous functor a : C → Grp, we may compose it with the inclusion
i : Grp → Cat into the category of small categories and then apply the (topologically enriched)
Grothendieck construction to this functor. Let us denote the resulting topologically enriched
category by ao C. In other words, we define

ao C =
∫ C(i ◦ a).

Denoting by 0 the functor C → Grp sending all objects to the trivial group, there exists a unique
natural transformation 0 → a. Applying the Grothendieck construction, this induces a section
C = 0 o C ↪→ ao C of the projection functor ao C → C which we denote by sa. Note that, if C is
a group G (considered as a one-object discrete category), then the functor a is simply a choice of
another group H and a G-action on H, and we have ao C = H oG. Hence, we may think of the
construction ao C as a semi-direct product with many objects.

Lemma 2.29 Suppose we are given continuous functors

a : C −→ Grp and χ : ao C −→ C,

and write χ̄ for the endofunctor of C given by composing χ with the natural inclusion sa : C ↪→ aoC.
Then any family of right modules parametrised by C has – after shifting by χ̄ – a canonical bimodule
structure determined by a and χ. More precisely, for any functor V : C → Mod•, there is a canonical
functor V χa : C → •Mod• making the following diagram commute:

C

Grp

Mod•

•Mod•

A-Alg

C
χ̄ V

V χa

A[−]

a

forget

`

(2.13)

Proof. The category ao C has the same objects as C, with morphisms given by

HomaoC(c, c′) = {(ϕ, g) | ϕ ∈ HomC(c, c′), g ∈ a(c′)}

with composition given by (ϕ′, g′) ◦ (ϕ, g) = (ϕ′ ◦ ϕ, g′.a(ϕ′)(g)). In particular, the automorphism
group AutaoC(c) splits canonically as the semi-direct product a(c) o AutC(c). Together with the
functors χ and V , noting that χ̄(c) = χ(c) on objects, we obtain a homomorphism

a(c) ↪−→ a(c) o AutC(c) ∼= AutaoC(c)
χ−−→ AutC(χ̄(c)) V−−→ AutMod•(V (χ̄(c))),
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which is natural in c. If we write V (χ̄(c)) = (Wc, Sc), where Sc is an A-algebra and Wc is a right
Sc-module, this means that we have – naturally in c – a left a(c)-action on Wc that is compatible
with the right Sc-action. Extending A-linearly and writing Rc = A[a(c)], this means that we have –
naturally in c – extended (Wc, Sc) to an object (Rc,Wc, Sc) of •Mod•. This is the functor V χa .

Remark 2.30 Note that, if χ is the canonical projection functor, then χ̄ is the identity and, for
each object c of C, the bimodule V χa (c) is obtained from the right-module V (c) simply by giving it
the trivial left-action of A[a(c)]. In our constructions, however, χ̄ will typically not be the identity,
but rather a kind of “shift” or “stabilisation” endofunctor of C.

The iterative version of our general construction is as follows. We first fix the data of
• a continuous functor F : C → Cov•, and
• a continuous functor χ : ao C → C,

where
a := r ◦ F. (2.14)

Now suppose we begin (as input) with a functor

V : C −→ Mod•.

The relation (2.14) implies that r ◦ Lift ◦ F = A[a], and hence that the functor Lift ◦ F and the
functor V χa from Lemma 2.29 determine a functor of the form C → Top•Mod•. This is then
composed with the fibrewise tensor product and twisted homology to obtain a functor of the form

C −→ Mod•,

which is the output of the iterative construction. This may be summarised diagrammatically as
follows (the input is red, the rest of diagram (2.13) of Lemma 2.29 is green and the output is blue):

C Cov• Top•

C

Mod• •Mod•

Grp A-Alg

Top•Mod• Top• Mod•

F Lift

χ̄

V

forget

V χa

r r
A[−]

`

⊗ Hi

Λi(F ;χ)(V )

p

a

(2.15)

In the notation of Definition 2.21, we may write:

V 7−→ Li(F ;V χr◦F ). (2.16)

From an easy check of the definitions, we see that this construction is natural in V in the following
sense.

Proposition 2.31 (The iterative construction.) Given continuous functors F and χ as above, the
assignment (2.16) is functorial in V , in other words, it extends to an endofunctor

Fct(C,Mod•) −→ Fct(C,Mod•). (2.17)

Notation 2.32 Let us denote the endofunctor (2.17) of Proposition 2.31 by Λi(F ;χ), so

Λi(F ;χ)(V ) = Li(F ;V χr◦F ).
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We will sometimes wish to perform a similar iterative construction when we do not have a con-
tinuous functor F : C → Cov•, but only a functor taking values in the discrete category π0(Cov•).
In this case we may as well suppose that C is also a discrete category (since continuous functors
C → π0(Cov•) correspond bijectively to functors π0(C) → π0(Cov•)). The construction works
equally well with such an F : we may simply apply the functor π0( ) – replacing the morphism
spaces in a topological category with their sets of path-components – to the whole diagram (2.15),
where we note that the pullback square of topological categories (2.2) remains a pullback square
after applying π0( ).
More precisely, let us fix a category C and the data of
• a functor F : C → π0(Cov•), and
• a functor χ : ao C → C,

where a := r◦F . Then the diagram obtained from (2.15) by applying the functor π0( ) determines
an assignment

V 7−→ Λi(F ;χ)(V ). (2.18)

As before, this is natural in V in the following sense.

Proposition 2.33 Given a category C and functors F and χ as above, the assignment (2.18)
extends to an endofunctor

Λi(F ;χ) : Fct(C,Mod•) −→ Fct(C,Mod•). (2.19)

Remark 2.34 (Other variants of homology.) As in the previous subsection (on the non-iterative
version of the construction), we may replace ordinary (twisted) homology with other flavours, such
as Borel-Moore homology, cohomology, etc., as long as we make the appropriate modifications of
the intermediate categories (in particular, F will have to take values in the appropriate modification
of Cov•). See Remark 2.24 for more details.

3. Topological categories of decorated manifolds
In this section, we define the categories that will serve as the domain of the “homological represen-
tations” that we will construct in §5. They are obtained from certain monoidal groupoids by the
Quillen bracket construction, an operation that enlarges a given monoidal groupoid to a monoidal
category having the original monoidal groupoid as its underlying groupoid. More precisely, we will
start with certain topologically-enriched monoidal groupoids, so we first describe, in §3.1, a topo-
logical enrichment of the Quillen bracket construction and show that it behaves well with respect
to the functor π0 that replaces all morphism spaces with their sets of path-components, subject to
a Serre fibration condition. In §3.2, we then define the topologically-enriched monoidal groupoids
that we wish to consider, and prove that they satisfy this Serre fibration condition.
Informally, the idea is that the domain category used in §5, for a given dimension d > 2, will be a
topologically-enriched category UDd having the property that the automorphism groups of π0(UDd)
contain all motion groups and mapping class groups in dimension d. To construct this, we define
in §3.2 a topological groupoid Dd whose automorphism groups are the diffeomorphism groups of
all d-dimensional “decorated manifolds”. The topologically-enriched Quillen bracket construction
of §3.1 then gives us a topologically-enriched category UDd such that π0(UDd) ∼= U(π0(Dd)). The
underlying groupoid of π0(UDd) is therefore π0(Dd), consisting of all mapping class groups of
d-dimensional “decorated manifolds”, which contain all d-dimensional motion groups as normal
subgroups.

3.1. A topological enrichment of the Quillen bracket construction

Throughout this section, we fix a topological monoidal groupoid (G, \, 0) and a topological category
(M, \) with a continuous left-action of G. We use the abbreviation ob to denote the set of objects
of a category. We refer the reader to [Mac98] for a complete introduction to the notions of (strict)
monoidal categories and modules over them. We recall that, by topological category, we mean a
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category enriched over the symmetric monoidal category of topological spaces with the Cartesian
product.

Definition 3.1 The category 〈G,M〉 is defined to have the same objects as M, and for objects
X,Y ofM, we define Hom〈G,M〉(X,Y ) to be the quotient space[ ⊔

A∈ob(G)

HomM(A\X, Y )
]
/∼,

where ∼ is the equivalence relation given by (A,ϕ) ∼ (A′, ϕ′) if and only if ϕ = ϕ′ ◦ (σ\idX) for
some σ ∈ HomG(A,A′). For two morphisms [A,ϕ] : X → Y and [B,ψ] : Y → Z in 〈G,M〉, the
composition is defined by [B,ψ] ◦ [A,ϕ] = [B\A,ψ ◦ (idB\ϕ)]. Note that this may also be written
as the colimit

Hom〈G,M〉(X,Y ) = colim
G

[HomM(−\X, Y )].

Remark 3.2 There is a canonical faithful functor c〈G,M〉 : M ↪→ 〈G,M〉 defined as the identity
on objects and sending φ ∈ HomM(X,Y ) to [0, φ].

Example 3.3 A topological monoidal groupoid G has a continuous left-action on itself given by
its monoidal structure, so we may always takeM = G and consider the category 〈G,G〉.

Notation 3.4 As an abbreviation, we denote the category 〈G,G〉 by UG.

If the categories G and M are both discrete, then Definition 3.1 recovers the classical bracket
construction of Quillen. This is a particular case of a more general construction of [Gra76, p.219].
Assuming in addition that M is a groupoid (as for all the examples discussed in this paper cf.
§4), following mutatis mutandis [RW17, Proposition 1.7], if (G, \, 0) has no zero divisors – meaning
that A\B ∼= 0 if and only if A ∼= B ∼= 0 for all objects A and B of G – and if AutG(0) = {id0},
thenM is isomorphic to the maximal subgroupoid of 〈G,M〉 (i.e. the subcategory which has the
same objects as 〈G,M〉 and of which the morphisms are the isomorphisms of 〈G,M〉). We record
this for future use:

Lemma 3.5 Suppose that G and M are discrete groupoids, that G has no zero divisors and that
its monoidal unit has no non-trivial automorphisms. Then the canonical functor of Remark 3.2
above is an isomorphism fromM onto the maximal subgroupoid of 〈G,M〉.

Under these assumptions, ifM is a groupoid with non-negative integers as objects and a family of
groups {Gn}n∈N as isomorphisms, then Quillen’s bracket construction consists in just “artificially”
adding to M morphisms which go from n to n + 1: this justifies the use of this construction as
source category to encode compatible representations of families of groups.

Remark 3.6 A topological version of Quillen’s bracket construction is mentioned briefly in Remark
2.10 of [Kra19], although there the categories are topological in the sense of being categories internal
to the category of topological spaces, rather than topologically-enriched categories. Lemma 3.8
below is stated for topologically-enriched categories, but it is likely that it has an analogue for
categories internal to the category of topological spaces, in which case Lemma 2.11 of [Kra19]
would be a particular case of this analogue.

This construction is of course functorial in M and G in an appropriate sense. We mention some
properties of this functoriality that we will need.

Lemma 3.7 Let D be a topological monoidal groupoid and let G1 ⊆ G2 ⊆ D and M1 ⊆ M2 ⊆ D
be subgroupoids such that, for i = 1, 2, Gi is closed under −\− and Mi is closed under g\− for
each object g of Gi. Then there is a canonical functor 〈G1,M1〉 −→ 〈G2,M2〉. Moreover,
• if G1 = G2 = G, the functor 〈G,M1〉 −→ 〈G,M2〉 is an inclusion of a subcategory, which is
full if the inclusionM1 ⊆M2 is full;

• ifM1 =M2 =M, the functor 〈G1,M〉 −→ 〈G2,M〉 is the identity on objects, and is faithful
– thus an inclusion of a subcategory – if the inclusion G1 ⊆ G2 is full.
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In particular, there is a canonical functor 〈G1,M1〉 −→ UD, which is an inclusion of a subcategory
if the inclusion G1 ⊆ D is full.

Proof. The objects of 〈Gi,Mi〉 are the objects of Mi, so we define the functor on objects as the
inclusion ob(M1) ↪→ ob(M2). A morphism in 〈Gi,Mi〉 from X to Y is represented by a choice of
object A of Gi and a morphism A\X → Y of Mi. We may therefore send such a morphism, for
i = 1, to the morphism, for i = 2, represented by the same data, since G1 ⊆ G2 and M1 ⊆ M2.
It is straightforward to check that this assignment respects the defining equivalence relation, so
induces a continuous map of morphism spaces, and that it also respects composition and identities.
The statements in the two bullet points may be verified by unwinding the definition of morphisms
in 〈Gi,Mi〉.

Lemma 3.8 Let G be a topological monoidal groupoid and M a topological category with a con-
tinuous left-action of G. Assume that, for each object A of G and each pair of objects X,Y ofM,
the quotient map

HomM(A\X, Y ) −→ HomM(A\X, Y )/AutG(A) (3.1)

is a Serre fibration. Then there is a canonical isomorphism of categories

π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉. (3.2)

Proof. First note that π0(〈G,M〉) and 〈π0(G), π0(M)〉 have the same object set, by the definition
of the discrete and topologically-enriched Quillen bracket constructions, and the functor π0. Specif-
ically, their common object set is ob(M). It therefore remains to show that, for objects X and Y
ofM, there is a natural bijection between π0(Hom〈G,M〉(X,Y )) and Hom〈π0(G),π0(M)〉(X,Y ). Set

Φ =
⊔

A∈ob(G)

HomM(A\X, Y ).

Unravelling the definitions, what we need to prove is that there is a natural bijection

π0(Φ/∼t) ∼= π0(Φ)/∼h,

where ∼t is the equivalence relation given by (A,ϕ) ∼t (A′, ϕ′) if and only if there is a morphism
σ ∈ HomG(A,A′) such that ϕ = ϕ′◦(σ\idA), and ∼h is the equivalence relation given by (A, [ϕ]) ∼h
(A′, [ϕ′]) if and only if there is a morphism σ ∈ HomG(A,A′) such that ϕ ' ϕ′ ◦ (σ\idA). Note that
the only difference between these definitions is that the equality is replaced by a homotopy in the
definition of ∼h. As sets, these are both quotients of (the underlying set of) Φ, so we just need to
show that, given two elements (A,ϕ) and (A′, ϕ′) of Φ, they have the same image in π0(Φ/∼t) if
and only if they have the same image in π0(Φ)/∼h.
(a) Suppose first that (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ)/∼h. This means that
there is a morphism σ ∈ HomG(A,A′) and a path γ : [0, 1] −→ HomM(A\X, Y ) ⊆ Φ with γ(0) =
(A,ϕ) and γ(1) = (A,ϕ′ ◦ (σ\idA)). Composing with the projection Φ → Φ/∼t and writing
[−]t for the equivalence classes with respect to ∼t, we obtain a path in Φ/∼t from [(A,ϕ)]t to
[(A,ϕ′ ◦ (σ\idA))]t = [(A′, ϕ′)]t. Hence (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ/∼t).
(b) To prove the converse, we first make an assumption, which we will justify later. Namely,
we assume that quotient map q : Φ −→ Φ/∼t is a Serre fibration. Now assume that (A,ϕ) and
(A′, ϕ′) have the same image in π0(Φ/∼t), so there is a path δ : [0, 1]→ Φ/∼t with δ(0) = [(A,ϕ)]t
and δ(1) = [(A′, ϕ′)]t. By our assumption that q is a Serre fibration, we may lift this to a path
ε : [0, 1] → Φ with ε(0) = (A,ϕ) and ε(1) ∼t (A′, ϕ′). Its image ε([0, 1]) is path-connected, so
it must lie in HomM(A\X, Y ) ⊆ Φ. Hence we have a path ε : [0, 1] −→ HomM(A\X, Y ) with
ε(0) = (A,ϕ) and ε(1) = (A,ϕ′′) ∼t (A′, ϕ′), for some ϕ′′ ∈ HomM(A\X, Y ). The relation
(A,ϕ′′) ∼t (A′, ϕ′) means that there is a morphism σ ∈ HomG(A,A′) such that ϕ′′ = ϕ′ ◦ (σ\idA).
Hence ε is a homotopy witnessing that ϕ ' ϕ′◦(σ\idA), so we have shown that (A, [ϕ]) ∼h (A′, [ϕ′]),
in other words, (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ)/∼h.
(c) It now just remains to prove our earlier assumption that q is a Serre fibration. Directly from
the definition, one may easily verify the following two facts:
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•
⊔
i fi :

⊔
iEi → B is a Serre fibration if and only if each fi : Ei → B is a Serre fibration.

• f : E → B is a Serre fibration if and only if f(E) is a union of path-components of B and
f : E → f(E) is a Serre fibration.

It therefore suffices to prove that
(i) q(HomM(A\X, Y )) is a union of path-components of Φ/∼t for each A ∈ ob(G),
(ii) HomM(A\X, Y )→ q(HomM(A\X, Y )) is a Serre fibration for each A ∈ ob(G).

Let us partition ob(G) into equivalence classes Oα, under the equivalence relation where two objects
A,A′ of G are equivalent if and only if there is a morphism A → A′ in G. This is an equivalence
relation since G is a groupoid. We may then write Φ =

⊔
α Φα, where

Φα =
⊔

A∈Oα

HomM(A\X, Y ).

The equivalence relation ∼t on Φ clearly preserves the topological disjoint union
⊔
α Φα, so we

have
Φ/∼t =

⊔
α

(Φα/∼t).

Also note that, for any two objects A,A′ ∈ Oα (for fixed α), we have q(HomM(A\X, Y )) =
q(HomM(A′\X, Y )). So, if we make a choice of object Aα ∈ Oα for each α, we have a decomposition
of Φ/∼t as a topological disjoint union:

Φ/∼t =
⊔
α

q(HomM(Aα\X, Y )).

This immediately implies point (i) above.
For point (ii), note that two elements ϕ,ϕ′ ∈ HomM(A\X, Y ) have the same image under q if and
only if they are ∼t-equivalent, which is equivalent to saying that they lie in the same orbit of the
AutG(A)-action on HomM(A\X, Y ). Hence the map

qA : HomM(A\X, Y ) −→ q(HomM(A\X, Y )) (3.3)

is isomorphic to (3.1), at least on underlying sets. If we can show that they are isomorphic also
as continuous maps of spaces, then we will be done, since we know by hypothesis that (3.1) is a
Serre fibration. Since (3.1) and (3.3) are surjective continuous maps with the same domain and
the same point-fibres, and we know moreover that (3.1) is a quotient map, it suffices to prove that
(3.3) is also a quotient map.
Let U ⊆ q(HomM(A\X, Y )) be a subset such that q−1

A (U) is open in HomM(A\X, Y ). We need
to show that U is open in q(HomM(A\X, Y )). To see this, let A ∈ Oα and note that, by the fact
discussed above that the equivalence relation ∼t preserves the decomposition of Φ into a topological
disjoint union, the restriction

qα = q|Φα : Φα −→ q(Φα) = q(HomM(A\X, Y ))

is a quotient map. So it suffices to show that q−1
α (U) is open in Φα. Now, from the definitions, we

observe the following description of the subset

q−1
α (U) ⊆ Φα =

⊔
A′∈Oα

HomM(A′\X, Y ).

For each object A′ ∈ Oα, choose an isomorphism σA′ : A′ → A in G. This induces a homeomorphism

ΥA′ = − ◦ (σA′\id) : HomM(A\X, Y ) −→ HomM(A′\X, Y ).

Then we have
q−1
α (U) =

⊔
A′∈Oα

ΥA′(q−1
A (U)).

Since q−1
A (U) is open in HomM(A\X, Y ), it follows that ΥA′(q−1

A (U)) is open in HomM(A′\X, Y )
for each A′ ∈ Oα. Thus q−1

α (U) is open in Φα, as required.
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0 t

Figure 3.1 An illustration of the notation for the solid cylinder Bdt from Notation 3.9 for d = 3. Its
lower boundary ∂`B3

t is coloured yellow, its base bB3
t is yellow-green and the codimension-2 stratum

∂bB3
t = ∂D2 × {0} is blue.

0 ε ε 0

e1 e2M =

0 ε ε 0

e′1 e′2 = M ′

0 ε

e1M\M ′ =

ε 0

e′2

Figure 3.2 Two decorated manifolds and their boundary connected sum.

3.2. Topological groupoids of decorated manifolds

Fix an integer d > 2. First, we define the notion of decorated manifolds and their morphisms. The
idea is that the groups π0(Diff(−)) of decorated manifolds will contain all motion groups as normal
subgroups; cf. Remark 4.24.

Notation 3.9 (Solid cylinders.) We denote by Dd−1 the closed unit (d − 1)-dimensional disc in
Rd−1. For a real number t > 0, we will write Bdt = Dd−1× [0, t] for the solid d-dimensional cylinder
of height t. We will also write

∂`Bdt = (∂Dd−1 × [0, t]) ∪ (Dd−1 × {0})

and call this the lower boundary of Bdt , as well as bBdt = Dd−1 × {0} and call this the base of Bdt .
This is illustrated in Figure 3.1.

Definition 3.10 (Boundary-cylinders.) Let M be a smooth d-manifold. A boundary-cylinder for
M is a topological embedding e : Bd1 ↪→M such that e−1(∂M) = ∂`Bd1 and e is a smooth embedding
except on the (d − 2)-sphere ∂bBd1. Two boundary-cylinders e, e′ are equivalent if they are equal
when restricted to Bdε ⊆ Bd1 for some ε > 0. An equivalence class of boundary-cylinders is called a
boundary-cylinder germ.

Definition 3.11 (Decorated manifolds.) A decorated manifold is a smooth d-manifoldM , equipped
with a closed submanifold A ⊂ int(M) and a pair (e1, e2) of boundary-cylinder germs for M r A
such that e1(bBd1) and e2(bBd1) are disjoint. See Figure 3.2 for a schematic picture.

Definition 3.12 (Morphisms of decorated manifolds) A morphism of decorated manifolds from
(M,A, e1, e2) to (M ′, A′, e′1, e′2) is a smooth, proper (preimages of compact subspaces are compact)
map ϕ : M →M ′ such that ϕ(A) ⊆ A′ and such that, for some ε > 0 and for each i ∈ {1, 2}, we have
ϕ(ei(Bdε )) = e′i(Bdε ) and the composition (e′i)−1 ◦ϕ◦ei : Bdε → Bdε is the identity. Write C∞dec(M,M ′)
for the set of such morphisms, where by abuse of notation we are abbreviating (M,A, e1, e2) to M
and (M ′, A′, e′1, e′2) to M ′.
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Definition 3.13 (Morphism spaces.) The set C∞dec(M,M ′) is topologised as a colimit of Whitney
topologies, as follows. First choose representative boundary cylinders for the boundary-cylinder
germs ei and e′i. This ensures that the condition in Definition 3.12 makes sense for a fixed ε ∈ (0, 1),
not just for an unspecified ε ∈ (0, 1) that is quantified over.
Now fix ε ∈ (0, 1) and write C∞dec,ε(M,M ′) for the subset of C∞dec(M,M ′) where the condition in
Definition 3.12 holds for this fixed ε. Equip each subset C∞dec,ε(M,M ′) with the subspace topology
induced from the smooth Whitney topology on the set C∞(M,M ′) of all smooth maps from M to
M ′; for details of the Whitney topology, see for example [Hir76, Chapter 2]. As a set, C∞dec(M,M ′)
is the union of C∞dec,ε(M,M ′) over all choices of ε ∈ (0, 1); we equip C∞dec(M,M ′) with the colimit
topology induced by the increasing filtration {C∞dec,ε(M,M ′)}ε∈(0,1).
Different choices of representative boundary-cylinders for the boundary-cylinder germs ei and e′i
will result in different filtrations. However, any two such filtrations are cofinal in each other, so
the colimit topology induced on C∞dec(M,M ′) does not depend on this choice.
Note also that this topology may differ from the subspace topology that inherited directly from
the Whitney topology on C∞(M,M ′) (the colimit topology may be finer). However, these two
topologies on C∞dec(M,M ′) are weakly equivalent. In particular, they have the same π0.

Definition 3.14 (Boundary connected sum.) Let (M,A, e1, e2) and (M ′, A′, e′1, e′2) be two deco-
rated d-manifolds. Define

M\M ′ = (M tM ′)/∼,
where ∼ is the equivalence relation generated by e2(x, 0) ∼ e′1(x, 0) for all (x, 0) ∈ bBd1. We give
this a smooth structure as follows. There are obvious topological embeddings

M r e2(bBd1) ↪−→M\M ′ and M ′ r e′1(bBd1) ↪−→M\M ′,

and another topological embedding

Dd−1 × [−1, 1] ↪−→M\M ′

given by (x, t) 7→ e2(x,−t) for t 6 0 and (x, t) 7→ e′1(x, t) for t > 0, where we have implicitly chosen
representative boundary-cylinders for the boundary-cylinder germs e2 and e′1. We define a smooth
structure on M\M ′ by declaring that these are both smooth embeddings.
This is a well-defined smooth structure, since:
• the smooth structures induced by these embeddings are compatible on intersections, due to
the fact that boundary-cylinders are smooth embeddings away from ∂bBd1;

• the smooth structure of M\M ′ is determined, except on e2(bBd1) = e′1(bBd1), by the smooth
structures of M and M ′. The embedding of Dd−1 × [−1, 1] induced by (boundary-cylinders
representing the boundary-cylinder germs) e2 and e′1 is therefore only required to extend this
smooth structure to e2(bBd1) = e′1(bBd1). As a result, the smooth structure does not depend
on the choice of representative boundary-cylinders, but only their germs.

Finally, we define:

(M,A, e1, e2) \ (M ′, A′, e′1, e′2) = (M\M ′, A tA′, e1, e
′
2).

See Figure 3.2 for a schematic illustration.

Remark 3.15 The usual definition of boundary connected sum of two smooth manifolds M,M ′

depends on a choice of embedded disc in the boundary of each manifold, and a method of “straight-
ening corners” after gluing these discs together. Up to diffeomorphism, the resulting smooth mani-
foldM\M ′ depends only on the choice of a boundary-component ofM and ofM ′, and orientations
of these if they are orientable (this is a result of Palais’ Disc theorem [Pal60a, Theorem B and
Corollary 1] and the existence of collar neighbourhoods). However, in order for \ to induce a well-
defined monoidal structure on some category of manifolds with boundary (which we will do just
below), it must be well-defined on the nose, not just up to diffeomorphism (since objects are man-
ifolds, not diffeomorphism-classes of manifolds). The definition of decorated manifolds is designed
so that these additional choices are built in, and no additional choices are required in Definition
3.14 above.
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Definition 3.16 (Decorated manifold categories.) Let Decd be the topological category defined as
follows. Its objects are all decorated manifolds (M,A, e1, e2) of dimension d, as in Definition 3.11.
The space of morphisms fromM = (M,A, e1, e2) toM ′ = (M ′, A′, e′1, e′2) is the space C∞dec(M,M ′)
defined in Definition 3.12 and topologised in Definition 3.13. Note that composition is continuous
in this topology, since it is a colimit of Whitney topologies and composition of smooth, proper
maps is continuous in the Whitney topology.
Let Dd be the underlying topological groupoid of Decd. In other words, its objects are all decorated
manifolds of dimension d and its morphisms are those morphisms (M,A, e1, e2)→ (M ′, A′, e′1, e′2)
of decorated manifolds whose underlying smooth map ϕ : M →M ′ is a diffeomorphism and ϕ(A) =
A′.

The boundary connected sum of Definition 3.14 induces a semi-monoidal structure on Decd, and
hence on Dd:

Definition 3.17 (Semi-monoidal structure.) We define the functor

\ : Decd ×Decd −→ Decd
on objects via the boundary connected sum of Definition 3.14. Now suppose we are given morphisms
ϕ : (L,A, e1, e2) → (L′, A′, e′1, e′2) and ψ : (M,B, f1, f2) → (M ′, B′, f ′1, f ′2) in Decd. By definition,
these are smooth, proper maps L→ L′ andM →M ′ that take A and B into A′ and B′ respectively,
and are compatible with the given boundary-cylinder germs. This compatibility implies that they
glue to a well-defined, smooth map L\M → L′\M ′, which is moreover a morphism

(L,A, e1, e2) \ (M,B, f1, f2) −→ (L′, A′, e′1, e′2) \ (M ′, B′, f ′1, f ′2)

of Decd. It is then easily checked that this gives Decd the structure of a topological semi-monoidal
groupoid; cf. §3.4.

Remark 3.18 (Monoidal and semi-monoidal structures.) This is a somewhat technical side remark
to explain certain choices in our definitions. The semi-monoidal structure \ on Decd does not have a
unit, in other words, it is not a monoidal structure, since there is no natural way of identifyingM\Bd1
with M for all M (although they are of course non-naturally diffeomorphic). This non-naturality
is essentially because decorated manifolds come equipped with germs of boundary-cylinders (and
morphisms preserve germs of boundary-cylinders), rather than actual boundary-cylinders.
One possible way to fix this issue would be to redefine decorated manifolds to be equipped with
boundary-cylinders (not just germs of such) and morphisms of decorated manifolds to preserve
these boundary-cylinders. Then, one would be able to define the boundary connected sum M\M ′

of two decorated manifolds M and M ′ by identifying e2(Bd1) with e′1(Bd1) via the homeomorphism
e2(x, t) 7→ e′1(x, 1−t) – in other words, by gluing together whole boundary-cylinders, instead of just
their bases. Under this definition, there are obvious natural isomorphismsM\Bd1 ∼= M ∼= Bd1\M , so
the topological category defined in this way would be monoidal, not just semi-monoidal. However,
the proof of Proposition 3.24 below, which tells us that the Serre fibration hypothesis of Lemma 3.8
is satisfied for subgroupoids of Dd (cf. Lemma 4.4), depends crucially on the fact that morphisms
of decorated manifolds are only required to preserve germs of boundary-cylinders, rather than
boundary-cylinders themselves. Thus, this alternative definition would fix the lack of units in the
monoidal structure at the expense of breaking a key property that we will need.
Another possible fix would be simply to formally adjoin a unit object to Decd by taking the disjoint
union with the trivial category on one object 1 and extending \ by defining c\1 = 1\c = c for any
object c and id1\id1 = id1. However, this is not a very natural thing to do, since the discrete
semi-monoidal category π0(Decd) does have a unit object (see Lemma 3.20 below). Adjoining a
formal unit object to Decd would correspond, on π0, to forgetting this “natural” unit object and
adjoining a new, formal unit object instead.
Instead of trying to force Decd to have a unit object, we will simply work with it as a topological
semi-monoidal category. As explained in §3.4 below, the end result of this lack of units will be
that the output of our general construction will be a semi-functor from whichever category C we
are interested in to the category •Mod•. In each example where we apply this, one may trivially
check that this semi-functor does in fact preserve identities, and is therefore a functor.
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Finally we can analogously define a topological groupoid of oriented decorated manifolds:

Definition 3.19 Let D+
d denote the topological groupoid whose objects are decorated d-manifolds

(M,A, e1, e2) together with an orientation of A ⊂ int(M), and whose morphisms are diffeomor-
phisms ϕ as in Definition 3.16 such that the restriction ϕ|A : A → A′ is an orientation-preserving
diffeomorphism. The boundary connected sum for such decorated d-manifolds is defined as in
Definition 3.14, with the orientation for A t B being induced from those of A and B. This then
extends, just as in Definition 3.17, to a structure of a topological semi-monoidal groupoid on D+

d .

One may of course similarly define Dθd for any type of tangential structure θ : X → BO, equipping
A ⊂ int(M) with a θ-structure and requiring this to be preserved by morphisms ϕ. Applying π0 to
all morphism spaces, we may consider the discrete groupoids π0(Dd) and π0(D+

d ). The following
lemma may be easily checked from the definitions.

Lemma 3.20 The discrete groupoids π0(Dd) and π0(D+
d ) inherit well-defined semi-monoidal struc-

tures from those on Dd and D+
d . Moreover, these semi-monoidal structures are monoidal, with

unit object given in each case by the solid cylinder (Bd1, ∅, id, r), where r : Bd1 → Bd1 is the reflection
(x, t) 7→ (x, 1− t).
More generally, if G ⊆ Dd is any subgroupoid closed under the semi-monoidal structure and contain-
ing the solid cylinder (Bd1, ∅, id, r), then the semi-monoidal structure inherited by π0(G) is monoidal.
Similarly for subgroupoids G ⊆ D+

d .

3.3. The Serre fibration condition

We now prove a technical result that will imply that the condition (3.1) is true in a very general
setting, covering all of our examples.

Definition 3.21 (Decorated diffeomorphisms.) A diffeomorphism of decorated manifolds (or a
decorated diffeomorphism) is a morphism of decorated manifolds (cf. Definition 3.12) that admits
an inverse. Write Diffdec(M,N) for the space of decorated diffeomorphismsM → N and abbreviate
Diffdec(M) = Diffdec(M,M). This is topologised as a subspace of C∞dec(M,N), which is topologised
as a colimit of Whitney topologies (cf. Definition 3.13).

Definition 3.22 (Decorated embeddings.) Let M = (M,A) and N = (N,B) be decorated mani-
folds. Define Embdec(M,N) to be the space of smooth, proper embeddings ϕ : M ↪→ N , equipped
with a germ of an extension ϕ′ to an embedding Bd1\M ↪→ N , such that
• ϕ(A) ⊆ B;
• for some ε > 0 we have ϕ(e2(Bdε )) = e′2(Bdε ) and (e′2)−1 ◦ ϕ ◦ e2 is the identity map Bdε → Bdε ,
where e1, e2 are the boundary-cylinder germs of (M,A) and e′1, e′2 are those of (N,B). This
is similar to Definition 3.12, except that we only require the condition on e2, not on e1;

• there is a decorated manifold M ′ and diffeomorphism of decorated manifolds ϕ̄ : M ′\M → N
such that ϕ = ϕ̄ ◦ ιM,M ′ , where ιM,M ′ denotes the canonical embedding of M into M ′\M .
This extension of ϕ to ϕ̄ should be compatible with the given germ of an extension ϕ′ of ϕ.

This space is topologised as a colimit of Whitney topologies, analogously to Definition 3.13.

Definition 3.23 For decorated manifolds L,M,N , denote by Embdec(M,N)L the subspace of
Embdec(M,N) of those embeddings for which we may take M ′ = L in the third point of Definition
3.22. Note that Embdec(M,N) decomposes as a topological disjoint union:

Embdec(M,N) ∼=
⊔
L

Embdec(M,N)L, (3.4)

where the disjoint union runs over representatives of isomorphism classes of decorated manifolds.

Let L andM be decorated manifolds. There is a continuous right action of Diffdec(L) on Diffdec(L\M)
given by ϕ · ψ = ϕ ◦ (ψ\idM ), and hence a quotient map

Ψ: Diffdec(L\M) −→ Diffdec(L\M)/Diffdec(L). (3.5)
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Figure 3.3 The boundary connected sum L\M from the proof of Proposition 3.24.

Proposition 3.24 The quotient map (3.5) is a Serre fibration. There is a homeomorphism between
its codomain and Embdec(M,L\M)L, induced by the restriction map.

Remark 3.25 This is related to results of Cerf [Cer61, Corollaire 2, §II.2.2.2, page 294], Palais
[Pal60b, Theorem B] and Lima [Lim63], but we were not able to find an instance of their results
that covers exactly the setting that we need here. We therefore give a complete proof of Proposition
3.24 below, using as an input two key results of Cerf and Palais, namely Lemme II.2.1.2 (page 291)
of [Cer61] and [Pal60b, Theorem A].

Proof of Proposition 3.24. The decorated manifolds L = (L,A, e1, e2) and M = (M,B, e′1, e
′
2)

come equipped with germs e1, e2, e
′
1, e
′
2 of boundary cylinders; let us once and for all choose repre-

sentative boundary cylinders for these germs, and denote them by the same symbols, by abuse of
notation.
For ε ∈ (0, 1), let Diffdec,ε(L\M) denote the group of self-diffeomorphisms of L\M sending A t B
onto itself and restricting to the identity on e1(Bdε ) and on e′2(Bdε ). If we give this the Whitney
topology, then

Diffdec(L\M) ∼= colim
ε→0

(Diffdec,ε(L\M)), (3.6)

by our definition of morphisms of decorated manifolds (cf. Definition 3.12) and the topology on
morphism spaces (cf. Definition 3.13). Similarly, for each ε, t ∈ (0, 1), let Diffdec,ε,t(L) denote
the subgroup of Diffdec,ε(L\M) consisting of diffeomorphisms that restrict to the identity on the
submanifold Mt = M ∪ e2(Bdt ) of L\M pictured in Figure 3.3. We have a quotient map

Ψε,t : Diffdec,ε(L\M) −→ Diffdec,ε(L\M)/Diffdec,ε,t(L).

For any ε, ε′, t, t′ ∈ (0, 1) with ε′ 6 ε and t′ 6 t there are natural maps

Diffdec,ε(L\M)/Diffdec,ε,t(L) −→ Diffdec,ε′(L\M)/Diffdec,ε′,t′(L),

so we may take the directed colimit of the maps Ψε,t to obtain

colim
ε,t→0

(Ψε,t) : Diffdec(L\M) −→ colim
ε,t→0

(Diffdec,ε(L\M)/Diffdec,ε,t(L)),

where we have used the identification (3.6) in the domain. Since each Ψε,t is a quotient map, it
follows from general facts about colimits in the category of topological spaces that colim

ε,t→0
(Ψε,t) is

also a quotient map. The map

Ψ: Diffdec(L\M) −→ Diffdec(L\M)/Diffdec(L),

i.e., the map (3.5) that we would like to show is a Serre fibration, is also a quotient map, with the
same domain. Since Mt is a cofinal family of neighbourhoods of M in L\M , two diffeomorphisms
of Diffdec(L\M) have the same image under Ψ if and only if they have the same image under
colim
ε,t→0

(Ψε,t). As they are quotient maps of the same space, it follows that Ψ ∼= colim
ε,t→0

(Ψε,t).

We will prove below that each Ψε,t is a fibre bundle (and hence a Serre fibration), and then deduce
that Ψ is a Serre fibration using the following general fact.
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(∗) Any filtered colimit of based Serre fibrations between compactly-generated weak-Hausdorff
spaces is again a Serre fibration.

For a reference for this fact, see Proposition 1.2.3.5(1) of [TV08], which states that a filtered
colimit of fibrations is a fibration in any compactly generated model category. The classical model
category of based compactly-generated weak-Hausdorff spaces, with its Quillen model structure in
which the fibrations are the Serre fibrations, is compactly generated; see for example Proposition
6.3 of [MMSS01].
To apply (∗) in our situation, first note that we are taking a directed colimit, which is in particular
a filtered colimit. We then need to check that the diffeomorphism groups Diffdec,ε(L\M) and their
quotients are compactly-generated weak-Hausdorff spaces. Diffeomorphism groups of manifolds, in
the Whitney topology, are always first-countable and Hausdorff, and thus compactly-generated and
weak-Hausdorff. Moreover, the property of being compactly-generated is preserved when taking
quotients. The property of being weak Hausdorff is not preserved when taking quotients; however,
in the process of proving that each Ψε,t is a fibre bundle below, we will also show that its target
space Diffdec,ε(L\M)/Diffdec,ε,t(L) is Hausdorff.
It therefore remains to show that each Ψε,t is a fibre bundle (and its target space is Hausdorff).
Write

Embdec,ε(Mt, L\M)L
for the space of smooth, proper embeddings ϕ : Mt → L\M such that ϕ(B) ⊆ AtB, the restriction
of ϕ to e′2(Bdε ) is the identity and there exists ϕ̄ ∈ Diffdec,ε(L\M) such that ϕ = ϕ̄ ◦ ι, where ι is
the inclusion of Mt into L\M . Then

Embdec(M,L\M)L ∼= colim
ε,t→0

(Embdec,ε(Mt, L\M)L), (3.7)

see Definitions 3.22 and 3.23. There is a restriction map

Φε,t : Diffdec,ε(L\M) −→ Embdec,ε(Mt, L\M)L,

which is equivariant with respect to the left-action of Diffdec,ε(L\M) by post-composition. This
factors through the quotient map Ψε,t, so we have an induced map

Diffdec,ε(L\M)/Diffdec,ε,t(L)

Diffdec,ε(L\M) Embdec,ε(Mt, L\M)L.

Ψε,t

Φε,t

Φ̂ε,t

By definition of the right-hand embedding space, the map Φε,t is surjective, and hence so is the
induced map Φ̂ε,t. Moreover, if two diffeomorphisms of Diffdec,ε(L\M) have the same image under
Φε,t, their difference lies in Diffdec,ε,t(L), so the induced map Φ̂ε,t is also injective. We will prove
in the next paragraphs that:
(∗∗) The map Φε,t is a fibre bundle.
In particular, it is a quotient map, since surjective fibre bundles are always quotient maps. Thus
the induced map Φ̂ε,t must be a homeomorphism. This implies:
◦ The map Ψε,t is also a fibre bundle, hence a Serre fibration.
◦ Its target space is homeomorphic to the embedding space Embdec,ε(Mt, L\M)L, which we
have given the Whitney topology, so it is Hausdorff.

◦ We also obtain the second statement of the proposition:

Diffdec(L\M)/Diffdec(L) ∼= colim
ε,t→0

(Diffdec,ε(L\M)/Diffdec,ε,t(L))

∼= colim
ε,t→0

(Embdec,ε(Mt, L\M)L)

∼= Embdec(M,L\M)L.
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Here we combine the identification Ψ ∼= colim
ε,t→0

(Ψε,t) with the colimit of Φ̂ε,t and (3.7).

It therefore remains just to prove statement (∗∗), that Φε,t is a fibre bundle. Since it is equivariant
with respect to the left-action of Diffdec,ε(L\M), it suffices to prove that the action of Diffdec,ε(L\M)
on Embdec,ε(Mt, L\M)L is locally retractile (≡ admits local cross-sections). This is because, by
[Pal60b, Theorem A], any G-equivariant map into a G-locally retractile space is a fibre bundle.
Thus, we have to prove the following statement: given an embedding e ∈ Embdec,ε(Mt, L\M)L, we
may find an open neighbourhood U of e and a continuous map γ : U → Diffdec,ε(L\M) such that
γ(e) = id and γ(f) ◦ e = f for any f ∈ U . Note that, since Diffdec,ε(L\M) acts transitively on
Embdec,ε(Mt, L\M)L (because Φε,t is both equivariant and surjective), it suffices to prove this for
just one such e, which we take to be the inclusion Mt ↪→ L\M .
To prove this, we apply a result of Cerf [Cer61, Lemme II.2.1.2, page 291], which we first recall.
Let X be a manifold-with-corners. This means in particular that X has a stratification into faces
(for example, if X is a connected manifold with boundary, but no higher-codimension corners, then
its set of faces is π0(∂X) t {X}). Each point x ∈ X may lie in many faces, but it has a unique
smallest face (according to inclusion) in which it lies, which we denote by FX(x). Now if Y is any
submanifold-with-corners of X, we define

C∞face(Y,X) = {smooth maps ϕ : Y → X such that FX(ϕ(x)) = FX(x) for each x ∈ Y },

equipped with the Whitney topology. The Extension Lemma II.2.1.2 of [Cer61] says that, if Y is
closed in X and V is any neighbourhood of Y in X, then the restriction map

C∞face(X,X) −→ C∞face(Y,X)

admits a section s defined on an open neighbourhood V of the inclusion in C∞face(Y,X), such that
s(incl) = id and s(f)(x) = x for all f ∈ V and x ∈ X r V .
Step 1. Let us write ∂•L for the union of all boundary components of L except for the one that
intersects the image of e2; see Figure 3.3. Note that ∂•L may or may not intersect the image of
e1. Then there is a canonical identification:

π0(∂(L\M)) ∼= π0(∂•L) t π0(∂M). (3.8)

This is necessarily asymmetric in L and M . Each embedding f ∈ Embdec,ε(Mt, L\M)L extends to
a diffeomorphism of L\M , so it induces an injection f∂ : π0(∂M)→ π0(∂(L\M)). In particular, if
f is the inclusion, then f∂ is also the inclusion, under the identification (3.8). In addition, we know
that f sends B into AtB, so it also induces a map f] : π0(B)→ π0(A)tπ0(B), which must be an
injection since A and B are closed manifolds and f is an embedding. The function f 7→ (f∂ , f]) is
locally constant, so its fibres are open. Let U ′ be the open subset of Embdec,ε(Mt, L\M)L consisting
of all f such that f∂ is the inclusion and f](π0(B)) = π0(B). Note that the second condition implies
that f(B) = B, since f is an embedding and B is a closed manifold.
Step 2. Write Mε,t = e1(Bdε ) tMt (pictured in Figure 3.4). Let

γ′ : Embdec,ε(Mt, L\M)L −→ C∞(Mε,t, L\M)

be the continuous map that extends a given embeddingMt ↪→ L\M to a smooth mapMε,t → L\M
by defining it to be the identity on e1(Bdε ). Note that this may fail to be injective, so it is just a
smooth map, not necessarily an embedding. Also observe that, if f lies in the open subset U ′ from
Step 1, then γ′(f) lies in the subspace C∞face(Mε,t, L\M), since it takes points of int(L\M) ∩Mε,t

into int(L\M) and, for any boundary-component P of L\M , it takes P ∩Mε,t into P (this uses the
fact that f∂ = id). Restricting γ′ to U ′, we therefore have a continuous map

γ′ : U ′ −→ C∞face(Mε,t, L\M)

such that γ′(incl) = incl and γ′(f)|Mt
= f for all f ∈ U ′.

Step 3. Now set X = L\M and Y = Mε,t in the Extension Lemma of Cerf above, and choose V
to be any open neighbourhood of Mε,t in L\M that is disjoint from the submanifold A ⊂ int(L).
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L\M = B
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1 t 0 1

e2 e′1

Figure 3.4 The submanifold Mε,t (shaded in green) of L\M from the proof of Proposition 3.24.

Composing the local section s obtained from the Extension Lemma with γ′, we have a continuous
map

γ′′ = s ◦ γ′ : U ′′ = (γ′)−1(V) −→ C∞face(L\M,L\M)

such that γ′′(incl) = id and for any f ∈ U ′′ we have γ′′(f)|Mt
= f and γ′′(f)(A) = A. Moreover,

by construction, we also know that γ′′(f)(B) = B and γ′′(f)(x) = x for all x ∈ e1(Bdε ) t e′2(Bdε ).
Step 4. Finally, note that Diff(L\M) is open in C∞(L\M,L\M), so

U = (γ′′)−1(C∞face(L\M,L\M) ∩Diff(L\M))

is an open neighbourhood of the inclusion in Embdec,ε(Mt, L\M)L. For each f ∈ U , the diffeomor-
phism γ′′(f) of L\M fixes each point of e1(Bdε ) t e′2(Bdε ) and sends A t B onto itself, so it is an
element of Diffdec,ε(L\M). So we have a continuous map

γ = γ′′|U : U −→ Diffdec,ε(L\M)

such that γ(incl) = id and, for all f ∈ U , we have γ(f) ◦ incl = γ(f)|Mt = f .
Summary. The 4-step construction above may be summarised in the following diagram:

Embdec,ε(Mt, L\M) C∞(Mε,t, L\M)

U ′ C∞face(Mε,t, L\M) C∞face(L\M,L\M)

U ′′ V

U C∞face(L\M,L\M) ∩Diff(L\M) Diff(L\M),

γ′

s

γ
⊆

⊆
⊆

⊆

⊆
⊆

where the construction of γ ensures that its image lies in Diffdec,ε(L\M) ⊆ Diff(L\M).

Remark 3.26 We note that all of the above may be adapted to the setting where the closed
submanifolds A ⊂ int(L) and B ⊂ int(M) are equipped with orientations, and all morphisms
of decorated manifolds are required to preserve these orientations. Proposition 3.24 generalises
immediately to this setting.

3.4. Semi-monoidal categories and semicategories

All of the examples of categories C◦ for which we would like topologically to construct representa-
tions will be of the form 〈G◦,M◦〉, where G◦ is a braided monoidal groupoid andM◦ is a groupoid
with a left-action of G◦. We would therefore like to find a topological monoidal groupoid G and a
topological groupoidM with a left-action of G, satisfying condition (3.1) of Lemma 3.8 and such
that π0(G) ∼= G◦ and π0(M) ∼= M◦. Given this, a continuous functor C := 〈G,M〉 → •Cov• will
induce a functor

C◦ = 〈G◦,M◦〉 ∼= π0(〈G,M〉) = π0(C) −→ •Mod•,

via the construction summarised in the diagram (2.10). Note that there is no need for G to
be braided, since this structure is not needed in order to form the topological Quillen bracket
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construction, or for Lemma 3.8. In fact, it will be convenient for our examples to drop even more
structure from G, and assume only that it is a semi-monoidal category. We recall that this is defined
analogously to a monoidal category, but without any of the structure or conditions involving left
or right units. This is because we will be able to lift the monoidal structure of G◦ to an associative
binary operation on G (more precisely, a binary operation admitting an associator that satisfies the
pentagon condition), but we will not be able to ensure that this lifted operation is unital, without
losing condition (3.1) of Lemma 3.8; cf. Remark 3.18.

Definition 3.27 If G is a topological semi-monoidal groupoid and M is a topological category
with a continuous left-action of G, then Definition 3.1 generalises directly to this setting, and
produces a semicategory 〈G,M〉. The associator of G is used to define composition in 〈G,M〉 and
the pentagon condition for the associator implies associativity of this composition.

Lemma 3.28 Let G be a topological semi-monoidal groupoid andM is a topological category with
a continuous left-action of G, satisfying the condition of Lemma 3.8. Then there is a canonical
isomorphism of semicategories

π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉.

Using this definition and lemma it will therefore suffice, in our examples, to find a topological
semi-monoidal groupoid G, such that π0(G) ∼= G◦ as semi-monoidal groupoids and which satisfies
condition (3.1) of Lemma 3.8. Then 〈G,M〉 is a topological semicategory, and we will construct,
geometrically in §5.1, continuous semifunctors 〈G,M〉 → •Cov•. Via Lemma 3.28 and the con-
struction of §2.6 summarised in diagram (2.10), we then obtain a semifunctor

〈G◦,M◦〉 −→ •Mod•.

The source and target of this semifunctor are both categories (since G◦ is a monoidal groupoid, not
just a semi-monoidal groupoid), and so one may ask whether this semifunctor is in fact a functor,
and in all of our examples it will be trivial to verify that it does in fact preserve identities, and is
therefore a functor.

Caveat 3.29 In practice, in the remainder of this paper, we will omit mention of this subtlety
about a lack of units and identities at the topological level, to avoid unnecessary extra complica-
tions. Formally, however, one should modify the construction as described above.

4. Topological categories for families of groups
In this section, we discuss in more detail the topological groupoids Dd of “decorated manifolds”
introduced in the previous section. In §4.1, we discuss their properties with respect to braidings
and symmetries. In §4.2, we give an explicit description of the morphism spaces of “Quillen
bracket categories of manifolds” in terms of embedding spaces. In §4.3, we establish several split
homotopy fibration sequences, and hence split short exact sequences on π1 and π0 of embedding
spaces and diffeomorphism groups, and use these to identify motion groups with “braided mapping
class groups”. In sections 4.4–4.6, we then describe, and recall the key properties of, the relevant
subgroupoids of D2 and D3 that we will be especially interested in.

4.1. Braidings and symmetries

If we restrict attention to those decorated manifolds whose two boundary-cylinder germs lie on the
same boundary-component, which is a sphere, then there is a natural braiding at the level of π0,
which is symmetric if d > 3.

Definition 4.1 We say that a decorated manifold (M,A, e1, e2) has spherical preferred boundary
if the embedded (d − 1)-discs e1(bBd1) and e2(bBd1) lie on the same boundary-component ∂0M of
M , and moreover ∂0M ∼= Sd−1. Write Dsph

d for the full subgroupoid of Dd on decorated manifolds
with spherical preferred boundary. Define D+,sph

d ⊆ D+
d similarly.
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Definition 4.2 An inclusion of topologically-enriched categories C ⊆ D is called 0-full if, for each
pair of objects c, c′ of C, the subspace C(c, c′) ⊆ D(c, c′) is a union of path-components. Note
that a 0-full inclusion C ⊆ D induces an inclusion π0(C) ⊆ π0(D). In fact, subcategories of π0(D)
correspond bijectively to 0-full subcategories of D.

Lemma 4.3 The subgroupoid π0(Dsph
d ) of π0(Dd) is closed under \, so it is a monoidal groupoid.

Moreover, π0(Dsph
d ) is braided if d = 2 and symmetric if d > 3.

It follows that, if G ⊆ Dsph
d is a 0-full subgroupoid that is closed under \ and contains the braiding

morphisms – described in the proof below – then π0(G) is braided monoidal, and symmetric monoidal
if d > 3. The same statements hold when Dsph

d is replaced by Dsph,+
d .

Proof. The first statement is clear, since the connected sum of two spheres is again a sphere. The
construction of the braiding morphisms is exactly analogous to Figure 2 on page 609 of [RW17],
with the minor difference that they use two intervals, embedded in a circle boundary-component,
intersecting at a point, whereas we use two disjoint discs in a spherical boundary-component. If
the dimension d is at least 3, one may use the extra dimension to isotope the square of this braiding
morphism to the identity, so it is a symmetry for π0(Dsph

d ).

4.2. Quillen bracket categories of manifolds

Fix d > 2. Let G ⊆ Dd be a full subgroupoid that is closed under \ and let M ⊆ Dd be a 0-full
subgroupoid that is closed under the action of G through \. Alternatively, we allow D+

d in place of
Dd. This implies that G is a semi-monoidal groupoid with an action onM, and we may form the
Quillen bracket construction 〈G,M〉, which is a topological semicategory; cf. §3.1 and §3.4. It is
called a Quillen bracket category of manifolds.

Lemma 4.4 The Serre fibration condition (3.1) of Lemma 3.8 is satisfied for this G andM, and
hence we have

π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉.

Proof. IfM is a full subgroupoid of Dd, this follows directly from Proposition 3.24 (and Remark
3.26 for D+

d ) together with Lemma 3.8. If M only satisfies the weaker property of being a 0-full
subgroupoid of Dd, it follows from these results together with Lemma 4.5 below.

Lemma 4.5 Let X be a space with a continuous right-action of a topological group G such that
the projection X → X/G is a Serre fibration. Let X0 ⊆ X be a union of path-components such
that the G-action sends X0 into itself. Then the projection X0 → X0/G is also a Serre fibration.

Proof. More generally, by considering lifting diagrams, one may prove that, in the following square:

A B

C D

a

b

g f

if f is a Serre fibration, a is an inclusion of a union of path-components, and b is injective, then
g is also a Serre fibration. In our setting, a is the inclusion X0 ↪→ X, which is assumed to be a
union of path-components, and b is the induced map X0/G→ X/G, which is injective.

Definition 4.6 (Decorated diffeomorphisms, revisited.) For a decorated manifold M = (M,A),
recall from Definition 3.21 that the topological group Diffdec(M) of decorated diffeomorphisms of
M is simply the automorphism group of M in the topologically-enriched groupoid Dd. If M lies
in a subgroupoid H ⊆ Dd, write DiffH(M) ⊆ Diffdec(M) for the subgroup of automorphisms of M
in H. Note that this is an equality if H ⊆ Dd is full.
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Definition 4.7 (Decorated embeddings, revisited.) For decorated manifolds M = (M,A) and N =
(N,B), recall from Definition 3.22 the space Embdec(M,N) of decorated embeddings. If M and N
lie in M ⊆ Dd, define Emb〈G,M〉(M,N) ⊆ Embdec(M,N) to be the subspace where, in the third
condition of Definition 3.22, the decorated manifoldM ′ lies in G and the decorated diffeomorphism
ϕ̄ lies inM. Note that this second condition is automatic ifM⊆ Dd is full. For an object L of G,
we also write Emb〈G,M〉(M,N)L for the subspace of Emb〈G,M〉(M,N) where we may take M ′ = L
in Definition 3.22 (and ϕ̄ lies in M). Similarly to (3.4), the space Emb〈G,M〉(M,N) decomposes
as a topological disjoint union:

Emb〈G,M〉(M,N) ∼=
⊔
L

Emb〈G,M〉(M,N)L, (4.1)

where the disjoint union runs over representatives of isomorphism classes of objects L of G.

Proposition 4.8 For any Quillen bracket category of manifolds 〈G,M〉, its morphism spaces may
be identified as follows:

〈G,M〉(M,N) ∼= Emb〈G,M〉(M,N).

Remark 4.9 When M ⊆ Dd is full, this says that morphisms in 〈G,M〉 are embeddings of
decorated manifolds such that the complement of the image of the embedding is an object of G. In
particular the space of morphisms is non-empty if and only if there exists an object M ′ of G such
that M ′\M is diffeomorphic to N as decorated manifolds.

Proof of Proposition 4.8. The space 〈G,M〉(M,N) is described in Definition 3.1. In the notation
of the proof of Lemma 3.8 (setting X = M and Y = N), this is the quotient space Φ/∼t. In
that proof, it is shown that this splits as the topological disjoint union of certain spaces denoted
q(HomM(Z\X, Y )), as Z runs over representatives of isomorphism classes of objects of G. It is
also proved that this space is homeomorphic to the quotient space HomM(Z\X, Y )/AutG(Z). We
therefore have the following homeomorphism, where the disjoint union runs over representatives Z
of isomorphism classes of objects of G:

〈G,M〉(M,N) ∼=
⊔
Z

HomM(Z\X, Y )/AutG(Z).

Since M is a groupoid, the space HomM(Z\X, Y )/AutG(Z) is empty unless Z\X is isomorphic
to Y inM, in which case we may rewrite it as AutM(Z\X)/AutG(Z) = DiffM(L\M)/Diffdec(L),
using the notation of Definition 4.7 and setting L = Z (recall that G ⊆ Dd is full). The second
part of Proposition 3.24 says that the restriction map induces a homeomorphism

Diffdec(L\M)/Diffdec(L) ∼= Embdec(M,L\M)L,

and one may easily see that this sends the subspace DiffM(L\M)/Diffdec(L) homeomorphically
onto the subspace Emb〈G,M〉(M,L\M)L. Putting this all together, we have a homeomorphism

〈G,M〉(M,N) ∼=
⊔
L

Emb〈G,M〉(M,L\M)L, (4.2)

where the disjoint union runs over representatives L of isomorphism classes of objects of G such
that L\M is isomorphic to N inM.
Finally, consider the topological decomposition (4.1), where the disjoint union is indexed by rep-
resentatives L of isomorphism classes of all objects of G. If L\M 6∼= N in M, the corresponding
term is empty, whereas if L\M ∼= N in M, we may rewrite the corresponding term by replacing
N with L\M , to obtain:

Emb〈G,M〉(M,N) ∼=
⊔
L

Emb〈G,M〉(M,L\M)L, (4.3)

where the disjoint union now runs over representatives L of isomorphism classes of objects of G such
that L\M is isomorphic to N inM. Combining (4.2) and (4.3), we obtain the desired result.
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Remark 4.10 Suppose that cancellation holds for our chosen subgroupoids G andM— meaning
that L\M ∼= L′\M inM implies L ∼= L′ in G for objects L,L′ of G and M ofM. Then the disjoint
union (4.2) is taken either over the empty set or a set of size one, so we have:

〈G,M〉(M,N) ∼=

{
Emb〈G,M〉(M,L\M)L if ∃L ∈ G such that L\M ∼= N inM;
∅ otherwise.

All of our examples of G andM in §4.4–§4.6 satisfy cancellation. This follows from the classification
of compact surfaces in all of our examples in dimension 2. In the examples of §4.6, it follows from
the fact that the groupoid of finite sets and bijections under disjoint union satisfies cancellation,
since the objects of the groupoids in the examples of §4.6 are determined up to isomorphism by
the number of copies of S1 in the submanifold A ⊂M .

4.3. Split short exact sequences

We now establish several split homotopy fibration sequences whose associated split short exact
sequences will be used in our construction. In particular, the split short exact sequences (4.6) and
(4.9) below will be used in the two versions of our general construction of global homological rep-
resentations in §5.1 and §5.3 respectively. In addition, the split short exact sequence (4.9) implies
that any motion group is a braided mapping class group – see Proposition 4.23 – in particular, a
normal subgroup of a mapping class group.
Fix a closed submanifold Z ⊂ Rd and an open subgroup G 6 Diff(Z). Note that, since Diff(Z) is
locally path-connected, this corresponds to a choice of subgroup of π0(Diff(Z)).

4.3.1. The first short exact sequence.

Definition 4.11 For smooth manifolds X and Y , let us write E(X,Y ) = Emb(X,Y )/Diff(X).
For a subgroup G 6 Diff(X), we also write EG(X,Y ) = Emb(X,Y )/G.

Lemma 4.12 For any decorated manifold (M,A) ∈ Dd there is a homotopy fibration sequence

EG(Z, M̊ rA) EDiff(A)×G(A t Z, M̊) E(A, M̊), (4.4)

in which the second map admits a section up to homotopy, as pictured.

Proof. The map EDiff(A)×G(A tZ, M̊)→ E(A, M̊) that forgets the embedding (modulo G) of Z is
equivariant with respect to the left action of the topological group Diffc(M̊) of compactly-supported
diffeomorphisms of M̊ . By [Pal18a, Proposition 4.15], the action of Diffc(M̊) on E(A, M̊) is locally
retractile, i.e., it admits local sections. Thus, by [Pal60b, Theorem A], the map

EDiff(A)×G(A t Z, M̊) −→ E(A, M̊) (4.5)

is a fibre bundle, in particular a Serre fibration. Write incl. for the inclusion of A into M̊ and
[incl.] for its Diff(A)-orbit; this is a natural basepoint for E(A, M̊). The point-set fibre of (4.5)
over [incl.] ∈ E(A, M̊) is clearly equal to EG(Z, M̊ rA), so (4.4) is a fibration sequence.
We construct a section-up-to-homotopy as follows. Let [ϕ] ∈ E(A, M̊). This determines an em-
bedding A t Z ↪→ M̊ t Rd modulo the action of Diff(A), since Z is given as a submanifold of
Rd. We recall from Definition 3.11 that a decorated manifold comes equipped with two germs of
boundary-cylinders; we choose one of these and then choose a boundary-cylinder representing the
given germ. Using this boundary-cylinders of M , we construct an embedding M̊ tRd ↪→ M̊ whose
restriction to M̊ is isotopic to the identity. Composing this with the embedding above gives us an
embedding ϕ′ : A t Z ↪→ M̊ modulo the action of Diff(A). The desired splitting is then given by
[ϕ] 7→ [ϕ′]. This is a section up to homotopy because, forgetting Z, ϕ′ is isotopic to ϕ.
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Corollary 4.13 For any decorated manifold (M,A) ∈ Dd there is a split short exact sequence

1 π1(EG(Z, M̊ rA)) π1(EDiff(A)×G(A t Z, M̊)) π1(E(A, M̊)) 1, (4.6)

where the basepoint of each space of embeddings modulo diffeomorphisms is given by the inclusion.

We may, alternatively, consider spaces of embeddings whose image is allowed to lie either in the
interior of M or in its boundary (but it must lie wholly in one or the other).

Definition 4.14 For (M,A) ∈ Dd and Z ⊂ Rd andG 6 Diff(Z) as above, we write Emb′(Z,MrA)
for the subspace of smooth maps Z →M rA that are either smooth embeddings of Z into M̊ rA
or smooth embeddings of Z into ∂M . Write E ′G(Z,M rA) = Emb′(Z,M rA)/G. Similarly, write
Emb′(AtZ,M) for the subspace of smooth maps AtZ →M that are either embeddings of AtZ
into M̊ or disjoint unions of an embedding of A into M̊ together with an embedding of Z into ∂M .
Write E ′Diff(A)×G(A t Z,M) = Emb′(A t Z,M)/(Diff(A)×G).

Lemma 4.15 The natural inclusions

EG(Z, M̊ rA) ↪−→ E ′G(Z,M rA) and EDiff(A)×G(A t Z, M̊) ↪−→ E ′Diff(A)×G(A t Z,M)

are homotopy equivalences. Hence we may rewrite the split short exact sequence (4.6) above as

1 π1(E ′G(Z,M rA)) π1(E ′Diff(A)×G(A t Z,M)) π1(E(A, M̊)) 1. (4.7)

Proof. In each case, a deformation retraction may be defined by post-composing embeddings with
an isotopy of self-embeddings of M starting from the identity and “shrinking” a collar neighbour-
hood of its boundary.

4.3.2. The second short exact sequence.

We now construct the second key split short exact sequence (sequence (4.9) below). We first need
some notation.

Definition 4.16 For a decorated manifold (M,A) = (M,A, e1, e2) ∈ Dd, recall that we write
Diffdec(M,A) for its automorphism group in Dd, in other words, the self-diffeomorphisms of M
that send A onto itself and that are compatible with the boundary-cylinder germs e1 and e2. If
we have a decomposition A = A1 t A2, we now also write Diffdec(M,A1, A2) for the subgroup of
Diffdec(M,A) of those diffeomorphisms that preserve this decomposition, in other words, that send
A1 onto itself and A2 onto itself. Note that this is a finite covering of Diffdec(M,A).

Notation 4.17 We identify Rd with the interior of the solid cylinder Bd1 in a standard way, so
the choice of closed submanifold Z ⊂ Rd determines a decorated manifold (Bd1, Z) = (Bd1, Z, id, r),
where r is the reflection of the solid cylinder Bd1 = Dd−1 × [0, 1] in its second coordinate. For any
other decorated manifold (M,A) ∈ Dd, we may therefore consider the boundary connected sum
(M,A)\(Bd1, Z), which we denote by an abuse of notation by (M,A t Z).

Lemma 4.18 For any decorated manifold (M,A) ∈ Dd there is a homotopy fibration sequence

Diffdec(M,A,Z) Diffdec(M,A) E(Z, M̊ rA), (4.8)

in which the first map admits a section up to homotopy, as pictured.

Proof. The right-hand map above is equivariant with respect to the left action of Diffc(M̊rA). By
[Pal18a, Proposition 4.15], its action on E(Z, M̊ rA) is locally retractile, so by [Pal60b, Theorem
A], the right-hand map above is a fibre bundle. Its point-set fibre over the basepoint [incl.] is
clearly equal to Diffdec(M,A,Z). The section up to homotopy is constructed similarly to the proof
of Lemma 4.12, using a self-embeddingM ↪→M that restricts to the identity on A ⊂M , is isotopic
to the identity and whose image is disjoint from Z (when considered as a submanifold of M via a
chosen boundary-cylinder).
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Corollary 4.19 For any decorated manifold (M,A) ∈ Dd there is a split short exact sequence

1 π1(E(Z, M̊ rA)) π0(Diffdec(M,A,Z)) π0(Diffdec(M,A)) 1, (4.9)

where the basepoint of the space E(Z, M̊ rA) is given by the inclusion.

The split homotopy fibration sequence (4.8) may be generalised as follows.

Lemma 4.20 For any decorated manifold (M,A) ∈ Dd and any open subgroup H 6 Diffdec(M,A),
the split homotopy fibration sequence (4.8) restricts to a split homotopy fibration sequence

Diffdec(M,A,Z) ∩H H E(Z, M̊ rA), (4.10)

and hence a corresponding split short exact sequence.

Proof. Since H is an open subgroup of a topological group, it is also closed and thus a union of
path-components. The restriction map Diffdec(M,A) → E(Z, M̊ r A) is a fibre bundle, hence a
Serre fibration, by the proof of Lemma 4.18. In general, if E → B is a Serre fibration and E0 ⊆ E is
a union of path-components, then the restriction E0 → B is also a Serre fibration. This establishes
the homotopy fibration sequence. To see that the section up to homotopy of (4.8) restricts to
give a section up to homotopy of (4.10), one again just has to use the fact that H is a union of
path-components of Diffdec(M,A).

4.3.3. Motion groups are braided mapping class groups.

Definition 4.21 The braided diffeomorphism group Diffbr
dec(M,A) of a decorated manifold (M,A)

is the kernel of the natural homomorphism

Diffdec(M,A) −→ π0(Diffdec(M, ∅)),

in other words, the subgroup of diffeomorphisms of (M,A) that become isotopic to the identity
after forgetting A.

Definition 4.22 Given a closed manifold Z and an embedding Z ↪→ M̊ , the corresponding motion
group MotZ(M) is the fundamental group π1(E(Z, M̊)).

Corollary 4.19 implies the following identification of motion groups with π0 of braided diffeomor-
phism groups, in other words, motion groups are braided mapping class groups.

Proposition 4.23 For any closed submanifold Z ⊂ Rd, we have a canonical isomorphism

MotZ(M) = π1(E(Z, M̊)) ∼= π0(Diffbr
dec(M,Z)).

Proof. This follows immediately from Corollary 4.19 in the special case where A = ∅.

Remark 4.24 (Globality) In particular, Proposition 4.23 tells us that all motion groups are normal
subgroups of the appropriate π0(Diff(−))’s of decorated manifolds. Also, more obviously, mapping
class groups of d-manifolds are clearly examples of π0(Diff(−))’s of decorated manifolds, where we
take A to be the empty submanifold. Thus the discrete groupoid π0(Dd) contains all motion groups
and all mapping class groups of d-dimensional manifolds.
The homological representations that we construct in §5.1 and §5.3 below are functors of the form
UDd → •Mod•. Since the target category is discrete, they factor through π0(UDd) ∼= U(π0(Dd)),
whose underlying groupoid is π0(Dd). Each such homological representation therefore restricts to
homological representations of all motion groups and mapping class groups in dimension d. This
is why we refer to these as global homological representations.
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4.3.4. Actions of (braided) mapping class groups.

The following lemma will be important for the proof of the “Q-stability lemma” in §5.1.

Lemma 4.25 There is a natural action of Diffdec(M,A) on E(Z, M̊rA) given by post-composition,
which induces an action of π0(Diffdec(M,A)) on π1(E(Z, M̊ rA)). This action agrees with the one
coming from the splitting in the short exact sequence (4.9).
Similarly, there is a natural action of Diffdec(M,A) on EG(Z, M̊ r A) given by post-composition,
which induces an action of

π1(E(A, M̊)) = π0(Diffbr
dec(M,A)) 6 π0(Diffdec(M,A)) (4.11)

on π1(EG(Z, M̊ rA)). This action agrees with the one coming from the splitting in the short exact
sequence (4.6).

Proof. We first of all note that there is a slight generalisation of the split short exact sequence
(4.9), as follows. Lemma 4.18 generalises (with the same proof) to the setting where, for an open
subgroup G 6 Diff(Z), the base space of the fibration is replaced with EG(Z, M̊ rA) and the fibre
is replaced with Diffdec(M,A,Z|G), the subgroup of ϕ ∈ Diffdec(M,A,Z) such that ϕ|Z ∈ G. The
corresponding split short exact sequence is the middle row of the following diagram.

π1(EG(Z, M̊ rA)) π1(EDiff(A)×G(A t Z, M̊)) π1(E(A, M̊))

π1(EG(Z, M̊ rA)) π0(Diffdec(M,A,Z|G)) π0(Diffdec(M,A))

1 π0(Diffdec(M)) π0(Diffdec(M))

1 1 1

1 1

1 1

1 1

1 1 1

id

id

(4.12)

Moreover, in this diagram:
• the top row is the split short exact sequence (4.6),
• the right-hand column is an instance of (4.9) (with A = ∅ and replacing Z 7→ A),
• the middle column is an instance of the middle row (with A = ∅ and replacing Z 7→ A t Z
and G 7→ Diff(A)×G)

In particular, the top-right vertical map is the inclusion (4.11). The top-right square of (4.12) also
commutes when the horizontal arrows are replaced by the given splittings. Thus both parts of the
lemma (for (4.6) and for (4.9)) will follow once we prove the analogue for the middle row of (4.12).
To see this, let us describe geometrically the action of ϕ ∈ π0(Diffdec(M,A)) on π1(EG(Z, M̊ rA))
that arises from the split short exact sequence forming the middle row of (4.12). By definition, ϕ is
an isotopy class of diffeomorphisms of M fixing (pointwise) a neighbourhood of its two boundary-
cylinders and fixing A setwise. First choose an identification of M with M\Bd1 so that A ⊆M and
Z ⊆ Bd1. The section sends ϕ to the diffeomorphism ϕ′ of M\Bd1 that acts by ϕ on M and by the
identity on Bd1. The diffeomorphism ϕ′ then acts on π1(EG(Z, M̊ rA)) by conjugation, where the
latter group is viewed as a subgroup of π0(Diffdec(M,A,Z|G)) via the connecting homomorphism
of the long exact sequence, which may be viewed geometrically as sending a loop of embeddings
of Z to the corresponding submanifold-pushing diffeomorphism of M (named by analogy with the
well-known point-pushing diffeomorphism when Z is zero-dimensional). But using the submanifold-
pushing construction to view π1(EG(Z, M̊ rA)) as a subgroup of π0(Diffdec(M,A,Z|G)) and then
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acting by conjugation is equivalent to acting directly on π1(EG(Z, M̊ r A) through the obvious
action of Diffdec(M,A,Z|G) on EG(Z, M̊ rA).

4.4. Mapping class groups of surfaces

DefineMt
2 to be the full subgroupoid of Dsph

2 on decorated surfaces (S, ∅, e1, e2) where S is a com-
pact, connected, smooth surface with boundary. This collection of objects is clearly closed under
the operation \, so it is a semi-monoidal subgroupoid, so the category Mt

2 inherits a topological
semi-monoidal structure from D2 by Lemma 3.20. In the general notation of this section, this first
example isM = G =Mt

2.
We denote by M2 the groupoid π0(Mt

2). We recall that for diffeomorphisms of surfaces, the
condition of fixing (a neighbourhood of) an interval in a boundary-component is equivalent to
fixing two (neighbourhoods of) intervals in that boundary-component. Therefore M2 can be
described as the groupoid of decorated surfaces (S, I) where S is a surface as above, equipped with
a parametrised interval I : [−1, 1] ↪→ ∂0S in the boundary decorating one boundary component
denoted by ∂0S. The decorated surfaces groupoid M2 is already introduced in [RW17, §5.6].
When there is no ambiguity, we omit the parametrised interval I from the notation.
The morphisms inM2 are the isotopy classes of diffeomorphisms of surfaces which restrict to the
identity on a neighbourhood of their parametrised intervals I (or equivalently diffeomorphisms
which fixes pointwise the boundary component ∂0S). The non-distinguished boundary compo-
nents may be freely moved by the mapping classes. The automorphism group of S forms the
mapping class group of S, which we denote by π0DiffI(S). When the surface S is orientable, the
diffeomorphisms then automatically preserve that orientation as they restrict to the identity on a
neighbourhood of I (the orientation on S being induced by that of I). By Lemma 4.3, the groupoid
M2 has a braided monoidal structure induced by gluing, which is already considered in [RW17,
§5.6.1]. Hence we may apply Quillen’s bracket construction: by Lemma 4.4, we deduce that as
semicategories π0(UMt

2) ∼= UM2.

Notation 4.26 We denote by D2 the unit 2-disc. Let Σ1
0,1 denote the cylinder S1 × [0, 1] (which

can be thought of as the disc D2 with a smaller disc is the interior which is removed), Σ1,1 denote
the torus with one boundary component (S1 × S1 r Int(D2)) and N1,1 denote a Möbius band. For
S an object of the groupoidM2, by the classification of surfaces, there exist g, s, h ∈ N such that
there is a diffeomorphism S ' (\sΣ1

0,1)\(\gΣ1,1)\(\hN1,1).

If h = 0, then g and s are unique, we denote by Σsg,1 the boundary connected sum (Σ1
0,1)\s\Σ\g1,1

and by Γsg,1 the mapping class group π0DiffI(Σsg,1). If g = 0, we denote by Ns
h,1 the boundary

connected sum (Σ1
0,1)\s\N\h

1,1 and by N s
h,1 the mapping class group π0DiffI(Ns

h,1). In both cases,
when s = 0, we omit it most of the time from the notation.

4.5. Surface braid groups

Let S be a compact, connected, smooth surface with a chosen boundary-component ∂0S. For
each non-negative integer k, we denote by k a closed submanifold of S consisting in k distinct
points of the interior of S. Let BrS be the subgroupoid of Dsph

2 with objects all decorated surfaces
(S′, n, e1, e2) such that n is any non-negative integer and there is a diffeomorphism S ∼= S′ taking
∂0S onto ∂0S

′; the morphisms of BrS are given by the subgroups of the braided diffeomorphisms
of Definition 4.21 and denoted by Diffbr

dec(S, n). If S = D2, this collection of objects is closed under
the operation \, so BrD2 is a monoidal subgroupoid of D2 by Lemma 3.20. Also, the groupoid BrS
is closed under the left-action of BrD2 via \. Hence, in the general notation of this section, we take
G = BrD2 andM = BrS .
In general, BrS is not a full subgroupoid of Dsph

2 , since there may be diffeomorphisms of S which
restrict to the identity on the set n that are not isotopic to the identity. However, the special case
of BrD2 is a full subgroupoid, since all diffeomorphisms of D2 fixing a pair of disjoint intervals in
the boundary are isotopic to the identity. In other words, the diffeomorphism group DiffItI(D2)
is path-connected, as we show in the following lemma.
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Lemma 4.27 Let I t I be a pair of disjoint closed intervals in the boundary of the disc D2 and
write DiffItI(D2) for the group of diffeomorphisms of D2 that fix ItI pointwise. Then DiffItI(D2)
is weakly contractible, in particular path-connected.

Proof. By [Cer61, §II.2.2.2, Corollaire 2] (see also [Pal60b; Lim63]), the map

DiffItI(D2) −→ Diff∂(I t I) ∼= (Diff∂(I))2

that remembers just the action of a diffeomorphism restricted to the complementary pair of intervals
∂D2 r (I t I) ∼= I t I is a fibre bundle. Its fibre over the identity is Diff∂(D2), the group of
diffeomorphisms of D2 fixing all of ∂D2 pointwise. The diffeomorphism group Diff∂(I) is easily
seen to be contractible, and the diffeomorphism group Diff∂(D2) was shown to be contractible by
Smale [Sma59]. The long exact sequence of the fibre bundle above then implies that DiffItI(D2)
is weakly contractible.

Notation 4.28 For simplicity, we denote the decorated surface (D2, n) for each non-negative
integer n by Dn and called the n-th marked 2-disc, and the decorated surface (S, n) by S(n). If
n = 0 i.e. n = ∅, then we simply denote (S, 0) by S.

The groupoid π0(BrD2) is clearly isomorphic to the braid groupoid β which objects are non-negative
integers and automorphism groups are the classical braid groups {Bn}n∈N;cf. [Mac98, Chapter XI,
§4] for instance. Let βS be the groupoid π0(BrS). For all non-negative integers n, its automorphism
groups is the surface braid group π0(Diffbr

dec(S(n))) of S, that we denote by Bn(S).
By Lemma 4.3, the groupoid β inherits the braided monoidal structure ofM2 which also induces
a left β-module structure on π0(BrS). Hence we define Quillen’s bracket constructions UBrD2 ,
〈BrD2

,BrS〉, Uβ and 〈β,βS〉. By Lemma 4.4, we deduce that as semicategories π0(UBrD2) ∼= Uβ

and π0(〈BrD2
,BrS〉) ∼= 〈β,βS〉.

Alternatively, braid groups on surfaces may be defined as the fundamental groups of some config-
uration spaces. We fix non-negative integers n and k, and a surface S(n) as above. The embedding
space E(k, S̊rn) is the ordered configuration space of k points in S, and denoted by Fk(S(n)) (and
Fk(Dn) if S = D2). Moreover, the embedding space Fk(S(n))/Sk, induced by the natural action
by permutation of coordinates of the symmetric group on the coordinates, is the unordered config-
uration space of k points in S, and denoted by Ck(S(n)). Corollary 4.19 with M = S, A = ∅ and
Z = n proves that Bn(S) is isomorphic to the fundamental group of the unordered configuration
space Cn(S). The group π0(Diffbr

dec(S, k, n)) is called the partitioned (k, n)-braid group Bk,n(S).

4.6. Loop braid groups

We now focus on the families of extended and non-extended loop braid groups. Their definitions
are recalled here and we refer to [Dam17] for a complete and unified introduction to these groups.
Loop braid groups may be defined in terms of motion groups of circles in a 3-disc. This is the
setting that we shall use to construct suitable topological categories for the loop braid groups.

Notation 4.29 We denote by D3 the unit 3-disc. For each non-negative integer n, we denote by
nS1 a closed submanifold of D3 consisting in a collection of n disjoint, unknotted, oriented circles,
that form a trivial link of n components in the interior of D3. Whenever a map acts on nS1, the
notation nS1

+ indicates that of the orientation of the circles is preserved by the map. For simplicity,
we denote the decorated manifold (D3, nS1) by D3

n and (D3, 0S1) by D3.

Let Diff∂(D3
n) be the group of self-diffeomorphisms of D3 that fix ∂D3 pointwise and fix nS1 as a

subset. The extended loop braid group LB′n is the group of isotopy classes of Diff∂(D3, nS1). Let
Diff∂

(
D3, nS1

+
)
be the subgroup of Diff∂(D3, nS1) of elements that also preserve the orientation of

nS1. The (non-extended) loop braid group LBn is the group of isotopy classes of Diff∂
(
D3, nS1

+
)
.

Finally, let Diff∂
(
D3, nS1

∗
)
be the subgroup of Diff∂

(
D3, nS1

+
)
of elements that send each connected

component of nS1 to itself. The pure loop braid group LPn is the group of isotopy classes of
Diff∂

(
D3, nS1

∗
)
.
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We now set a categorical framework for handling these families of groups. Let LB′ be the full
subgroupoid of D3 on those decorated manifolds (M,A, e1, e2) such that M is diffeomorphic to
the 3-disc and A is diffeomorphic to a disjoint union of finitely many circles, embedded into the
interior of M as an unlink. This is clearly closed under the operation \, so it inherits a topological
semi-monoidal structure from D3 by Lemma 3.20. In the general notation of this section, we set
G =M = LB′.
Let LB be the full subgroupoid of D+

3 on those decorated manifolds (M,A, e1, e2) such that M
is diffeomorphic to the 3-disc and A is diffeomorphic to a disjoint union of finitely many circles,
embedded into the interior ofM as an unlink. Again, since LB is clearly closed under the operation
\, it inherits a topological semi-monoidal structure fromD+

3 by Lemma 3.20. In the general notation
of this section, we consider G =M = LB. Note that both LB and LB′ are subcategories of Dsph

3 .
We respectively denote by Lβ′ and Lβ their discrete versions π0(LB′) and π0(LB). Let us show
that there are isomorphisms AutLβ′(D3

n) ∼= LB′n and AutLβ(D3
n) ∼= LBn. We focus on the extended

loop braid groups case, the other one following mutatis mutandis. The automorphism group of
D3
n in Lβ′ is π0(Diffdec(D3

n)) where Diffdec(D3
n) is the topological group of diffeomorphisms of D3

that send the embedded the n-components unlink onto itself and that restrict to the identity on a
neighbourhood of two disjoint 2-discs in ∂D3. The condition of fixing a neighbourhood of two discs
in the boundary is clearly homotopy equivalent to fixing just the two discs. It therefore suffices to
show that:

Lemma 4.30 LetM be a 3-manifold with a spherical boundary-component ∂0M . Then, for isotopy
classes of diffeomorphisms, fixing two disjoint 2-discs in ∂0M is equivalent to fixing all of ∂0M .

Proof. Let Diff(M,∂0M) be the group of diffeomorphisms of M that send ∂0M to itself. The
restriction map Diff(M,∂0M) → Diff(∂0M) = Diff(S2) is a fibre bundle, by [Cer61, Corollaire 2,
§II.2.2.2, page 294]. Hence its restriction DiffD2tD2(M) −→ DiffD2tD2(S2) = Diff∂C(C) is also a
fibre bundle, where the subscript D2tD2 means that diffeomorphisms must restrict to the identity
on a given pair of disjoint discs in ∂0M = S2, and C is the 2-dimensional cylinder S1 × [0, 1]. The
fibre is Diff∂0M (M) and we obtain an exact sequence

· · · → π1(Diff∂C(C)) −→ π0(Diff∂0M (M)) (∗)−−−→ π0(DiffD2tD2(M)) −→ π0(Diff∂C(C)).

By [Gra73, Théorème 1], Diff∂C(C) is contractible. We deduce that (∗) is a bijection.

Therefore Lβ′ and Lβ are respectively called the extended loop braid groupoid and the (non-
extended) loop braid groupoid. By Lemma 4.3, the groupoids Lβ′ and Lβ inherit a symmetric
monoidal structure from the semi-monoidal structure of D3. Hence we define Quillen’s bracket
constructions ULβ′ and ULβ. By Lemma 4.4, we see that π0(ULB′) ∼= ULβ′ and π0(ULB) ∼= ULβ.

Properties of loop braid groups. There are alternative ways to introduce braid groups on
surfaces which we recollect here for further use. We fix non-negative integers n and k. Analogously
to surface braid groups of §4.5, the group π0(Diffdec(D3, kS1, nS1)) is called the partitioned (k, n)-
extended loop braid group and denoted by LB′k,n and the group π0(Diffdec(D3, kS1

+, nS1
+)) is called

the partitioned (k, n)-loop braid group and denoted by LBk,n. The embedding spaces E(k, D̊3rnS1)
and E(kS1, D̊3rnS1) are the ordered configuration space of k points and k unlinks in D3

n respectively,
and denoted by Fk(D3

n) and Ûk(D3
n) respectively. Also, the embedding spaces E(k, D̊3 r nS1)/Sk

and E(kS1, D̊3rnS1)/Sk are the unordered configuration spaces of k points and k unlinks in D3
n, and

denoted by Ck(D3
n) and Uk(D3

n) respectively. Let Diff+(kS1) be the subgroup of Diff(kS1) of those
diffeomorphisms that preserve the orientation of each circle. We denote the ordered configuration
spaces EDiff+(kS1)(kS1, D̊3 r nS1) by Û+

k (D3
n). Also, we denote the unordered configuration spaces

EDiff+(kS1)(kS1, D̊3 r nS1)/Sk by U+
k (D3

n).
Finally, we have explicit presentations of extended and non-extended loop braid groups by gen-
erators and relations. The loop braid group LBn admits a presentation given by generators
{σi, τi | 1 6 i 6 n − 1}, where {σ1, . . . , σn−1} satisfy the relations of the classical braid group
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Bn and {τ1, . . . , τn−1} those of the symmetric group Sn and we have three additional mixed rela-
tions; see [Dam17, Proposition 3.14]. Each τi corresponds to a loop in U+

n (D3) that interchanges
two unknots without either of them passing through the other; each σi corresponds to a loop in
U+
n (D3) that interchanges two unknots, while one passes through the other. The pure version

LPn admits a presentation given by generators {χij | 1 6 i 6= j 6 n} and three relations; see
[Dam17, Proposition 3.18]. Finally the extended loop braid group LB′n admits a presentation with
generators and relations of LBn plus additional generators {ρ1, . . . , ρn−1} satisfying the relations
of the abelian group (Z/2Z)n and we have five extra mixed relations; see [Dam17, Proposition
3.16]. Each ρi corresponds to a loop in Un(D3) that rotates a single circle by 180 degrees.

5. Global homological representations
In this section, we apply the general construction of §2 to the categories of decorated manifolds
UDd introduced and studied in §3.2 and §4. This is the more geometric or topological part of our
construction of representations, whereas §2 is the more algebraic and formal part.
In more detail, in §5.1, we construct continuous functors UDd → Cov•, which lead, via the general
construction of §2, to “global homological representations” π0(UDd)→ Mod•. In §5.2.2–§5.2.3, we
study in more detail certain particular cases of these global homological representations, restricted
to the subcategories of UD2 and UD3 that are relevant for surface braid groups, mapping class
groups of surfaces and loop braid groups. The key point is that, in many cases, these restrictions of
global homological representations have image contained in a subcategory ModR ⊂ Mod•, for some
ring R. In §5.3, we vary this construction in such a way that it is better adapted to mapping class
groups of manifolds (rather than motion groups), and we study corresponding particular cases of
this construction in §5.4.
Although we do not discuss it in more detail in this section, one may equally well consider examples
of these global homological representations restricted to subcategories of UD2 and UD3 (or UDd for
higher d) relevant for automorphism groups of free groups, Torelli groups, handlebody mapping
class groups, pure braid groups and mapping class groups of non-orientable surfaces, as well as
higher-dimensional motion groups.
The automorphism groups of the category UDd contain all mapping class groups and all motion
groups of d-dimensional (decorated) manifolds M with non-empty boundary. Representations of
UDd therefore give a “global” way to describe representations of all of these groups simultaneously.
Our construction below does not, on the other hand, apply directly to give representations of map-
ping class groups or motion groups of closed manifolds M . However, the idea of the construction
may also be carried over to this setting, to produce representations of these groups too.

5.1. Global functors for motion groups

Fix an integer d > 2, a closed submanifold Z ⊂ Rd and an open subgroup G 6 Diff(Z). Also fix
another integer ` > 0. From this data, we construct two functors

F̊(Z,G,`) and F(Z,G,`) : UDd −→ Cov•. (5.1)

The construction of these functors occupies §5.1.1–§5.1.3, and their key basic properties are estab-
lished in §5.1.4–§5.1.5. In §5.1.6 we discuss possible variations and in §5.1.7 we explain how, fixing
(Z,G) and allowing ` to vary, these functors fit together into a tower that may be thought of as a
single “pro-nilpotent” representation of the category UDd; see diagram (5.15).
Before we begin the construction of these functors, we make a few remarks about their place in our
general construction. We recall that, roughly, our general construction consists in concatenating:

1. one of the functors (5.1),
2. a functor that passes from covering spaces to bundles of modules,
3. an optional fibrewise tensor product with a functor V : UDd → •Mod•,
4. twisted homology.
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See §2.3–§2.5 for more details of steps (2)–(4). The resulting functor takes values in the category
Mod•, which is a discrete category, and so it factors through π0(UDd), which is identified canonically
with Uπ0(Dd), by Lemma 3.8 and Proposition 3.24, yielding a functor:

Li(F(Z,G,`);V ) : Uπ0(Dd) −→ Mod•. (5.2)

See §2.6, and in particular Lemma 2.20, for the precise construction.

Semi-functors and functors. As discussed in §3.4, the left-hand side of (5.1) is only a (topo-
logical) semi-category, since it is constructed from the (topological) semi-monoidal groupoid Dd.
So (5.1) is, necessarily, just a (continuous) semi-functor. However, it induces a functor on π0; see
Lemma 5.10 below. All of the other steps (2)–(4) in our general construction are functors, so the
final output (5.2) of the construction is a functor (not just a semi-functor). We will not emphasise
this small subtlety in the rest of this section, however, and in particular we will henceforth write
“functor” instead of “semi-functor”.

Borel-Moore homology and functoriality. We will show (cf. Lemma 5.11) that the functor
F(Z,G,`) takes values in the subcategory Covpr

• of Cov• with the same objects and whose morphisms
are those which are proper as maps between spaces. This functor therefore works equally well as
an input for our general construction when step (4) is twisted Borel-Moore homology, which is
functorial only with respect to proper maps of spaces.
On the other hand, the functor F̊(Z,G,`) does not take values in Covpr

• , although its restriction to the
underlying groupoid Dd of UDd does. Thus, if we wish to use Borel-Moore homology together with
the functor F̊(Z,G,`) in our general construction, it will not be fully functorial, but only functorial for
automorphisms: π0(Dd)→ Mod•. In other words, we just obtain representations of the individual
groups in this case.

A natural homotopy equivalence. There is (cf. Lemma 5.13) a natural homotopy equivalence
F̊(Z,G,`) ⇒ F(Z,G,`). Thus, in the case where step (4) consists of ordinary twisted homology (or
any other homotopy invariant flavour of twisted homology), it will not matter which of these two
functors (F(Z,G,`) or F̊(Z,G,`)) we use in step (1).

On the other hand, the natural homotopy equivalence F̊(Z,G,`) ⇒ F(Z,G,`) is not a proper natural
homotopy equivalence. Hence, in the case where step (4) consists of Borel-Moore twisted homology
– which is invariant only under proper homotopy equivalences – the two choices F(Z,G,`) and
F̊(Z,G,`) in step (1) will lead to a priori different homological representations. As noted above, the
homological representations obtained using Borel-Moore homology in step (4) are defined on all of
UDd when using F(Z,G,`) in step (1), but only on Dd when using F̊(Z,G,`) in step (1). Hence we can
only compare them on Dd ⊂ UDd.
In certain specific cases, such as the classical Lawrence-Bigelow representations of the braid groups
in Borel-Moore homology, if the coefficients are “generic” – a certain condition on the fibrewise
tensor product taken in step (3) – the two choices of F(Z,G,`) and F̊(Z,G,`) in step (1) do in fact
lead to the same homological representations, due to the fact that they actually agree with the
corresponding representations using ordinary homology instead of Borel-Moore homology. This is
due to [Koh17, Theorem 3.1] when the ground ring is C; see also [AP20, Proposition D] for more
general ground rings.

Cohomology. One can of course replace step (4) of the general construction with twisted coho-
mology or twisted compactly-supported cohomology, to obtain functors of the form Uπ0(Dd)op →
Mod•. The same considerations apply to compactly-supported cohomology as for Borel-Moore
homology, so choosing the version F̊(Z,G,`) in step (1) together with twisted compactly-supported
cohomology in step (4) leads only to functors π0(Dd)op → Mod•.
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5.1.1. The construction of the functor on objects.

In this section and the next, we describe the construction of the functor (5.1) (on objects and on
morphisms respectively) in its F̊(Z,G,`) (“open”) variant. The modifications involved in defining
the F(Z,G,`) (“closed”) variant of (5.1) are summarised in §5.1.3.
Let (M,A) ∈ Dd be a decorated d-dimensional manifold. We show how to associate to this
(i) a based, path-connected space X(Z,G,`)(M,A) that admits a universal cover,
(ii) a surjective homomorphism φ(Z,G,`)(M,A) : π1(X(Z,G,`)(M,A))→ Q(Z,G,`)(M,A).

Together, these data determine an object of Cov•. To simplify the notation, since the choice of
(Z,G, `) is fixed throughout this construction, we will drop the subscripts, denoting the space by
X(M,A) and the surjective homomorphism by φ(M,A) : π1(X(M,A))→ Q(M,A).

The space. We denote by M̆ the interior of Bd1\M , where \ denotes the boundary connected
sum along boundary-cylinder-germs (the semi-monoidal structure of Dd). Note that the interior of
Bd1 may be identified canonically with Rd, so there is a canonical embedding Rd ↪→ M̆ . Its image
is disjoint from M , hence in particular disjoint from A ⊂M . Thus, restricting this to Z ⊂ Rd, we
obtain a canonical embedding Z ↪→ M̆rA, which determines a basepoint of the relative embedding
space

EG(Z, M̆ rA) = Emb(Z, M̆ rA)/G.

Definition 5.1 We define X(M,A) to be the path-component of this space containing the base-
point.

To complete step (i) of the construction, we will show that EG(Z, M̆ rA) is locally path-connected
and semi-locally simply-connected (it will then follow that X(M,A) also has these properties, and
hence admits a universal cover). There is a quotient map

Emb(Z, M̆ rA) −→ EG(Z, M̆ rA). (5.3)

Embedding spaces, equipped with the Whitney topology, are locally path-connected. Hence it
follows that EG(Z, M̆ r A) is also locally path-connected (since this property is preserved under
taking quotients).
For semi-local simply-connectedness we need to use a stronger property of (5.3) than just the fact
that it is a quotient map. The space EG(Z, M̆rA) is locally retractile with respect to the action of
Diffc(M̆rA), by [Pal18a, Proposition 4.15] (here we use the assumption that G is an open subgroup
of Diff(Z)). Now, the map (5.3) is equivariant with respect to the action of Diffc(M̆ r A), so by
[Pal60b, Theorem A], the map (5.3) is a fibre bundle.
In general, we have the following point-set topological lemma:

Lemma 5.2 Let f : X → Y be a surjective fibre bundle, and suppose that X is semi-locally simply-
connected. Then Y is also semi-locally simply-connected.

Proof. Let y ∈ Y and let U be an open neighbourhood of y in Y . We need to find a smaller open
neighbourhood V ⊆ U of y such that any loop in V based at y is nullhomotopic in U . First, choose a
smaller open neighbourhood U ′ ⊆ U such that f is trivialisable over U ′, and choose a trivialisation
ϕ : f−1(U ′) ∼= U ′ × F . Also choose a point z ∈ F (this is possible since we have assumed that
f is surjective). Since X is semi-locally simply-connected, we may find an open neighbourhood
W ⊆ f−1(U ′) of ỹ = ϕ−1(y, z) such that any loop in W based at ỹ is nullhomotopic in f−1(U ′).
By the definition of the product topology, we may then find open subsets V ⊆ U ′ and F ′ ⊆ F
such that y ∈ V , z ∈ F ′ and ϕ−1(V × F ′) ⊆ W . Now let γ be any loop in V based at y. Then
γ̃ = ϕ−1 ◦ (γ × {z}) is a loop in W based at ỹ. By above, we may find a nullhomotopy of γ̃ in
f−1(U ′). Composing this nullhomotopy with f , it becomes a nullhomotopy of γ in U ′ ⊆ U .

Corollary 5.3 The space X(M,A) admits a universal cover.

45



Proof. As remarked above, it will suffice to show that the space EG(Z, M̆ r A) is locally path-
connected and semi-locally simply-connected, since X(M,A) is one path-component of this space.
We have already explained why EG(Z, M̆ rA) is locally path-connected. For the second property,
note that the embedding space Emb(Z, M̆ r A) is locally contractible, thus in particular semi-
locally simply-connected. The quotient map (5.3) is a fibre bundle, so Lemma 5.2 implies that its
target EG(Z, M̆ rA) is also semi-locally simply-connected.

The surjective homomorphism. To complete the definition of the functor (5.1) on objects,
we need to choose a quotient φ(M,A) of π1(X(M,A)) = π1(EG(Z, M̆ rA)).
First note that there is a canonical isomorphism π1(EG(Z, M̆ rA)) ∼= π1(EG(Z, M̊ rA)), where M̊
denotes the interior of M , given by identifying Bd1\M with M using one of the boundary-cylinders
of the decorated manifold (M,A);1 see the proof of Lemma 4.12. We therefore need to choose a
quotient of π1(EG(Z, M̊ r A)). To do this, we use the split homotopy fibration sequence (4.4) of
Lemma 4.12, which induces the split short exact sequence (4.6); this is the top row of diagram (5.4)
below. We then apply the functor G 7→ G/Γ`(G) that quotients a group by the `-th term in its lower
central series to the middle and right-hand terms. Finally, we factor the composition of the top-left
horizontal map and the middle vertical map in the unique possible way as a surjection followed
by an injection, and use these to define the left-hand vertical map φ(M,A) and the bottom-left
horizontal map in the 6-term diagram below.

π1(X(M,A))∼=

1 π1(EG(Z, M̊ rA)) π1(EDiff(A)×G(A t Z, M̊)) π1(E(A, M̊)) 1

1 Q(M,A)
π1(EDiff(A)×G(A t Z, M̊))

Γ`(π1(EDiff(A)×G(A t Z, M̊)))
π1(E(A, M̊))

Γ`(π1(E(A, M̊)))
1

φ(M,A) γ(M,A) γ̄(M,A) (5.4)

This completes the construction ofX(M,A) and φ(M,A), and hence of the functor (5.1) on objects.
An immediate key observation about this diagram is that the bottom row is again a split short
exact sequence; the only property of the quotient G/Γ`(G) that this uses is that it is functorial.
We recall that Grp denotes the category of groups.

Lemma 5.4 Let Q : Grp → Grp be a functorial quotient of groups, i.e., it is equipped with a
natural transformation q : id⇒ Q such that q(G) : G→ Q(G) is a quotient map for each group G.
Then for any split short exact sequence

1 A B C 1
f

g

we have im(q(B) ◦ f : A → B � Q(B)) = ker(Q(g) : Q(B) → Q(C)). Denoting this group by
Q∗(A), this means that we have an induced 6-term diagram

1 A B C 1

1 Q∗(A) Q(B) Q(C) 1

f

g

1 We recall that (M,A) comes equipped with an ordered pair of germs of boundary-cylinders. We choose the first
of this ordered pair, and then choose a boundary cylinder representing this germ. The identification of Bd1\M with
M depends on this choice of representative, but the induced isomorphism π1(EG(Z, M̊ r A)) ∼= π1(EG(Z, M̆ r A))
does not.
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in which both rows are split short exact sequences and the middle and right-hand vertical maps are
given by the natural transformation q.

Proof. The second statement is clear, given the first one: we define the right-hand square by ap-
plying the functor Q to the map g and its given section and by applying the natural transformation
q to the groups B and C. We then fill in the left-hand square by factoring q(B) ◦ f uniquely as
a surjection followed by an injection. The final thing to check is exactness in the middle of the
bottom row, which is precisely the first statement of the lemma.
To prove the first statement, first note that the inclusion im(q(B) ◦ f) ⊆ ker(Q(g)) follows im-
mediately from exactness of the top row. To prove the opposite inclusion, let x ∈ Q(B) with
Q(g)(x) = 1; we need to find a lift y ∈ B of x such that y ∈ f(A). To do this, first pick any lift
y′ ∈ B of x and set z = g(y′) ∈ C. Denoting the given section of g by s, note that s(z) projects to
1 ∈ Q(B), since z projects to 1 ∈ Q(C). Thus y = y′.s(z)−1 ∈ B is another lift of x, and moreover
g(y) = g(y′).z−1 = z.z−1 = 1, so y ∈ f(A) by exactness of the top row.

Notation 5.5 Two notational points concerning the above diagram:
• To be fully rigorous, the vertical morphisms in (5.4) should have subscripts with the data

(Z,G, `), which have been elided above to avoid cluttering the diagram. For example, the
middle vertical morphism is called γ(Z,G,`)(M,A) in general.

• As convention, we take Γ0(G) to be the trivial subgroup of G (of course, when ` > 1, Γ`(G)
is the `-th term in the lower central series of G).

Remark 5.6 Note that when ` = 1 we have Q(M,A) = {id}, corresponding to the trivial cover of
X(M,A), and when ` = 0 we have φ(M,A) = id, corresponding to the universal cover of X(M,A).

5.1.2. The construction of the functor on morphisms.

Given a morphism ϕ : (M,A)→ (N,B) in UDd, we use the identification of Proposition 4.8, which
describes it as an embedding of manifolds satisfying the three properties of Definition 3.22. From
this description, we see that it induces a map of split homotopy fibration sequences of the form
(4.4)(M,A) → (4.4)(N,B), in particular a map

fϕ : EG(Z, M̊ rA) −→ EG(Z, N̊ rB).

Notation of the form (4.4)(N,B) means the diagram (4.4) with each instance of (M,A) replaced by
(N,B). If we first use the semi-monoidal structure of UDd to multiply ϕ with the identity map of
(Bd1, ∅), then we also obtain a map

f`ϕ : EG(Z, M̆ rA) −→ EG(Z, N̆ rB),

which preserves basepoints and therefore restricts to a based map

fXϕ : X(M,A) −→ X(N,B).

As explained in §5.1.1 above, π1(X(M,A)) is naturally identified with π1(EG(Z, M̊ r A)) (and
similarly for (N,B)); under these identifications the homomorphisms π1(fϕ) and π1(fXϕ ) agree.
The map of split homotopy fibration sequences (4.4)(M,A) → (4.4)(N,B) induces a map of split short
exact sequences (4.6)(M,A) → (4.6)(N,B), and hence (since the construction of (5.4) from (4.6) is
functorial) a map of diagrams of the form (5.4)(M,A) → (5.4)(N,B), in particular a homomorphism

θϕ : Q(M,A) −→ Q(N,B).

That this is a map of diagrams says, in particular, that

θϕ ◦ φ(M,A) = φ(N,B) ◦ π1(fϕ) = φ(N,B) ◦ π1(fXϕ ),

and hence π1(fXϕ ) sends ker(φ(M,A)) into ker(φ(N,B)). Thus (fXϕ , θϕ) is a morphism in Cov•
from (X(M,A), φ(M,A)) to (X(N,B), φ(N,B)); cf. Definition 2.2. This completes the definition
of the functor (5.1) on morphisms.
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Two actions agree. The entire diagram (5.4) is functorial in the input (M,A) as an object of
UDd. If we restrict to the automorphism group Diffdec(M,A) of a single object (M,A) and look
just at the bottom-left group Q(M,A) of (5.4), we obtain an action of Diffdec(M,A) on Q(M,A).
Since Q(M,A) is discrete, this factors through an action of π0(Diffdec(M,A)) on Q(M,A). If we
restrict this further to the subgroup π0(Diffbr

dec(M,A)) ⊆ π0(Diffdec(M,A)), we obtain an action
of π0(Diffbr

dec(M,A)) on Q(M,A).
We also have an action of the top-right group of (5.4) on the bottom-left group Q(M,A) of
(5.4), given either by lifting elements of Q(M,A) along the vertical map φ(M,A) and using the
conjugation action of the semi-direct product on the top row, or equivalently by projecting along
the vertical map γ̄(M,A) to the bottom-right group of (5.4) and then using the conjugation action
of the semi-direct product on the bottom row. By Proposition 4.23, the top-right group of (5.4)
is naturally identified with π0(Diffbr

dec(M,A)), so this gives us another action of π0(Diffbr
dec(M,A))

on Q(M,A).

Proposition 5.7 The two actions of π0(Diffbr
dec(M,A)) on Q(M,A) described above are equal.

Proof. This follows immediately from the second part of Lemma 4.25.

5.1.3. A closed variant.

The construction of the “closed” variant F(Z,G,`) of the functor (5.1) is a very slight modification
of the constructions in §5.1.1 and §5.1.2, in which we constructed the “open” variant F̊(Z,G,`).

To do this, we simply replace M̊ with M (and similarly M̆ with Bd1\M) everywhere, and we
consider the embedding space E ′G(Z,M rA) of Definition 4.14 instead of EG(Z, M̊ rA). In other
words, we consider embeddings of Z whose image is either contained entirely in the interior or
entirely in the boundary of M . This has the effect of replacing X(M,A) with another space that
is homotopy equivalent (cf. Lemma 4.15),2 so it does not change π1(X(M,A)).3 The construction
of the quotient φ(M,A) : π1(X(M,A)) � Q(M,A) is identical. On morphisms, the construction
is exactly analogous, viewing the split short exact sequence (4.6) as (4.7).

5.1.4. Elementary properties.

By Lemma 3.7, if we have subgroupoids M and G of Dd such that G is closed under \ and M is
closed under the action of G via \, and if G is moreover a full subgroupoid of Dd, then there is a
natural inclusion of categories

〈G,M〉 ↪−→ UDd. (5.5)
On objects, this is just the inclusion of the objects of M into the objects of Dd. On morphisms,
under the identification of morphism spaces of Proposition 4.8, this is an inclusion of embedding
spaces (roughly – see Definition 4.7 for precise details – morphisms in UDd are given by embeddings
whose complement is another decorated manifold, whereas morphisms in 〈G,M〉 are given by
embeddings whose complement is a decorated manifold in the set ob(G)).
Summarising the constructions in §5.1.1–§5.1.3, we have:

Proposition 5.8 For any integers d > 2 and ` > 0, closed submanifold Z ⊂ Rd and open subgroup
G 6 Diff(Z), the recipe described above gives well-defined functors

F̊(Z,G,`) and F(Z,G,`) : UDd −→ Cov•, (5.6)

and hence, by restriction, well-defined functors F̊(Z,G,`) and F(Z,G,`) : 〈G,M〉 → Cov•, for any
subcategory 〈G,M〉 ⊆ UDd as in (5.5).

2 Although not proper homotopy equivalent, which is why the open and closed variants of (5.1) give rise to
different homological representations when using Borel-Moore homology.

3 The only small technicality comes when checking that the closed version of X(M,A) has good local properties,
so it admits a universal cover (Corollary 5.3): the argument is exactly analogous, except that one has to use a variant
of [Pal18a, Proposition 4.15] where the target manifold is allowed to have non-empty boundary. This may be proved
by a small adaptation of the proof of Proposition 4.15 of [Pal18a], using ideas of [Cer61] (where all manifolds are
allowed to have corners of any codimension).
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Remark 5.9 Note that the construction, up to homotopy, depends only on the isotopy class (mod
G) of the embedded submanifold Z ⊆ Rd. More precisely, if we choose two embeddings of the
closed manifold Z in Rd such that the corresponding points of Emb(Z,Rd)/G lie in the same
path-component, then the two resulting continuous functors UDd → Cov• will be homotopic.

We now record a few immediate observations about the the topological functors (5.6). First, recall
that these are in fact only semifunctors, since UDd is only a semi-category (cf. §3.4). The first
observation says that this technical issue does not matter once we pass to π0.

Lemma 5.10 The topological semifunctors (5.6) induce functors on π0.

Proof. Let (M,A) be an object of π0(UDd) (i.e., an object of Dd, a decorated manifold). We have
to show that π0(5.6) sends id(M,A) to an identity morphism of π0(Cov•). To do this, we first have
to find the identity morphism of (M,A) in π0(UDd).
Let e1 : Dd−1× [0, 1] = Bd1 ↪→M denote one of the boundary cylinders that (M,A) is equipped with
(more precisely, a representative of one of the germs of boundary cylinders that (M,A) is equipped
with). The boundary connected sum (Bd1, ∅)\(M,A) may be viewed as the union of Dd−1 × [−1, 1]
with M along Dd−1× [0, 1] via the embedding e1. Choose a diffeomorphism [−1, 1]→ [0, 1] that is
given by t 7→ t + 1 on [−1,−1 + ε] and by t 7→ t on [1 − ε, 1] for some ε > 0. Multiplying this by
Dd−1 and extending by the identity over M r im(e1), this determines an isomorphism of decorated
manifolds

υ(M,A) : (Bd1, ∅)\(M,A) −→ (M,A). (5.7)

Consider the endomorphism of (M,A) in UDd given by

Υ(M,A) = ((Bd1, ∅), υ(M,A)). (5.8)

One may check that, for any endomorphism ϕ of (M,A) in UDd, the compositions Υ(M,A) ◦ ϕ and
ϕ ◦ Υ(M,A) are both isotopic to ϕ. Hence Υ(M,A) is the identity of (M,A) in the category π0(UDd).
Under the identification of Proposition 4.8, this corresponds to the self-embedding of (M,A) given
by restricting the diffeomorphism (5.7) to the submanifold (M,A) ⊂ (Bd1, ∅)\(M,A). Since this
self-embedding is isotopic to the identity, the induced self-map of embedding spaces X(M,A) →
X(M,A) is homotopic to the identity, and hence is an identity morphism in π0(Cov•).

Lemma 5.11 The topological semifunctor F(Z,G,`) of (5.6) takes values in the subcategory Covpr
•

of Cov•.

Proof. We have to show that, for any morphism ϕ : (M,A) → (N,B) of decorated manifolds, the
induced map of spaces X(M,A)→ X(N,B) (in the closed variant of the construction in §5.1.1) is
a proper map (preimages of compact subspaces are compact). We recall that this is (a restriction
to particular path-components of) an inclusion of embedding spaces

E ′G(Z,Bd1\M rA) −→ E ′G(Z,Bd1\N rB)

induced by an embedding of pairs of manifolds (M,A) ↪→ (N,B) satisfying the three properties of
Definition 3.22 (cf. Proposition 4.8). In particular, the third property implies that the inclusion
M r A ↪→ N r B has closed image, so the inclusion of embedding spaces above also has closed
image; any closed inclusion is a proper map.

Remark 5.12 On the other hand, the topological semifunctor F̊(Z,G,`) of (5.6) does not take
values in the subcategory Covpr

• of Cov•. The above proof breaks down in this setting because the
inclusion of the interior of M rA into the interior of N rB does not have closed image.

Lemma 5.13 There is a natural homotopy equivalence F̊ ⇒ F between the two functors (5.6).

Proof. The natural transformation may easily be constructed from the inclusions of spaces of
embeddings into the interior of M r A into spaces of embeddings with image contained either
in the interior or the boundary of M r A. The fact that this is a natural homotopy equivalence
(although not a natural proper homotopy equivalence) follows from Lemma 4.15.
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5.1.5. The image of the functor.

Under certain conditions, the functor (5.6), restricted to a subcategory of the form 〈G,M〉 from
(5.5), takes values in a subcategory of Cov• of the form CovQ or Covtw

Q for a fixed group Q.

Definition 5.14 (Q-stability.) LetM and G be subgroupoids as in (5.5). Suppose that there is a
group Q and there are identifications Q(M,A) ∼= Q for each object (M,A) of 〈G,M〉 (recall that
these are exactly the objects ofM), such that, for each object (M ′, A′) of G, the homomorphism
of groups

Q(M,A) −→ Q((M ′, A′)\(M,A)),

induced by the canonical morphism ((M ′, A′), id) of 〈G,M〉, is equal to the identity under these
identifications. In this case, we say that the functor F(Z,G,`) is Q-stable on 〈G,M〉.

We recall that Covtw
Q ⊂ Cov• is the full subcategory on objects (X,φ : π1(X)� Q′) where Q′ = Q.

As an immediate observation, we note:

Lemma 5.15 Suppose that F(Z,G,`) is Q-stable on 〈G,M〉. Then F(Z,G,`) is equivalent to a functor
with image contained in Covtw

Q ⊂ Cov•.

Proof. The hypothesis implies that the image of F(Z,G,`) is contained in the slightly larger full
subcategory Covtw

∼=Q ⊂ Cov• on objects (X,φ : π1(X)� Q′) where Q′ is isomorphic to Q, and the
inclusion Covtw

Q ↪→ Covtw
∼=Q is an equivalence of categories.

Under certain additional conditions, when ` = 2, we may restrict the image further to CovQ, after
passing to π0. Write |G| for the set of isomorphism classes of objects of π0(G), which is naturally
a monoid, and similarly write |M| for the set of isomorphism classes of objects of π0(M), which
is naturally a |G|-set.

Proposition 5.16 Let M and G be subgroupoids of Dd such that G is closed under \ and M is
closed under the action of G via \. Set ` = 2, suppose that F(Z,G,2) is Q-stable on 〈G,M〉, and
• G is full in Dd andM is 0-full in Dd,
• for each object (M,A) ofM, the subgroup AutM(M,A) ⊆ Diffdec(M,A) lies in Diffbr

dec(M,A),
• |G| is free as a monoid and |M| is free as a |G|-set.

Under these assumptions, the functor

π0(F(Z,G,2)|〈G,M〉) : π0(〈G,M〉) −→ π0(Cov•)

is equivalent to a functor with image contained in π0(CovQ) ⊂ π0(Cov•).

Proof. To prove this, we will go step by step through the following diagram, where F = F(Z,G,2)|〈G,M〉.

〈G,M〉 Cov•

π0(〈G,M〉)) 〈π0(G), π0(M)〉 π0(Cov•)

π0(CovQ)〈G0,M0〉

F ∼= F̂

∼=
π0(F̂ )

π0(F̂ )

(5.9)

The functor F̂ is defined just like F , except that, on objects, the surjection φ(M,A) : π1(X(M,A))�
Q(M,A) is composed with the given identification Q(M,A) ∼= Q from the definition of Q-stability.
It is easy to see that this is again a well-defined functor, and the isomorphisms Q(M,A) ∼= Q induce
an isomorphism of functors F ∼= F̂ . Clearly, F̂ has image contained in Covtw

Q : this is a slightly
different alternative proof of Lemma 5.15, with the slightly stronger conclusion that F(Z,G,`) is
isomorphic to a functor with image contained in Covtw

Q . Moreover, the definition of Q-stability
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immediately tells us that each canonical morphism (M ′, id) : M → M ′\M in 〈G,M〉 is sent by F̂
to the subcategory CovQ.
We now pass to the middle row of diagram (5.9). Using the first assumption of the proposition,
Lemma 4.4 gives us a canonical isomorphism of categories π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉, so we
may view π0(F̂ ) as defined on the category 〈π0(G), π0(M)〉. Since π0(G) has a monoidal unit 1, we
may consider, for each automorphism ϕ of (M,A) in π0(M), the automorphism (1, ϕ) of (M,A)
in 〈π0(G), π0(M)〉. More precisely, since the unit 1 = (Bd1, ∅) of 〈π0(G), π0(M)〉 is not strict, the
corresponding automorphism of (M,A) in 〈π0(G), π0(M)〉 is given by (1, ϕ◦λ(M,A)), where λ is the
left unitor for the monoidal structure. Under the functor π0(F̂ ), this is sent to an automorphism of
the object (X(M,A), π1(X(M,A))� Q(M,A) ∼= Q), so in particular it induces an automorphism
of Q. We now show that this is the identity automorphism; in other words, this says that π0(F̂ )
sends (1, ϕ) into the subcategory CovQ. Since the induced automorphism of Q is pulled back along
the given identification Q(M,A) ∼= Q from the induced automorphism of Q(M,A), it is equivalent
to show that the induced automorphism of Q(M,A) is the identity. To see this, note that, by the
second assumption of the proposition and by Proposition 5.7, the action of (1, ϕ) on Q(M,A) is
given by viewing ϕ as an element of the top-right group of diagram (5.4) (via the identification of
Proposition 4.23), projecting it to the bottom-right group and then letting it act on Q(M,A) via
the semi-direct product structure of the bottom row of (5.4). But we have assumed that ` = 2, so
all groups on the bottom row of (5.4) are abelian, so the semi-direct product is a direct product,
and the action on Q(M,A) is trivial.
Putting together the two paragraphs above, we see that the functor π0(F̂ ) has image contained
in π0(Covtw

Q ), and moreover it takes all canonical morphisms (M ′, id) and all automorphisms of
the form (1, ϕ) (for ϕ an automorphism of π0(M)) into the subcategory π0(CovQ). However, we
cannot yet conclude: although each morphism of 〈π0(G), π0(M)〉 decomposes into a composition
of a canonical morphism (M ′, id) followed by (1, ϕ) for an isomorphism ϕ of π0(M), it is not
necessarily the case that ϕ is an automorphism of π0(M).
To deal with this, we now choose skeleta G0 ⊆ π0(G) andM0 ⊆ π0(M) such that:
• G0 is a monoidal subcategory of π0(G), and
• M0 is a G0-module subcategory of π0(M).

It is possible to construct skeleta with these properties due to the third assumption of the propo-
sition. Since the set |G| of isomorphism classes of objects of π0(G) is a free monoid, we may choose
a free generating set for |G|, then choose arbitrarily one object of π0(G) in each isomorphism class
corresponding to a generator, and then use the monoidal structure of π0(G) to choose all other
representatives of isomorphism classes of objects. This procedure is well-defined since we used a
free generating set for the monoid |G|. We then define G0 to be the full subcategory of π0(G) on the
objects that we have chosen in this way. Exactly the same idea allows us to construct a skeleton
M0 of π0(M) that is closed under the action of G0 ⊆ π0(G), using a free generating set for |M| as
a |G|-set.
It is then routine to verify that there is a canonical functor 〈G0,M0〉 → 〈π0(G), π0(M)〉 that is full,
faithful and essentially surjective on objects. In other words, it is an inclusion of a subcategory that
is also an equivalence of categories. It therefore suffices to show that π0(F̂ ), restricted to 〈G0,M0〉,
takes values in π0(CovQ). But this now follows from what we have already shown above. We
recall that we have shown that π0(F̂ ) sends any morphism of the form (M ′, id) or (1, ϕ) for ϕ an
automorphism of π0(M) into π0(CovQ). Any morphism in 〈G0,M0〉 decomposes as (1, ϕ)◦(M ′, id)
for an isomorphism ϕ ofM0. ButM0 is a skeletal category, so ϕ must be an automorphism.

In several of our examples, Q-stability does not hold on 〈G,M〉 ⊆ UDd (for certain G and M),
but does hold on the full subcategory 〈G,M′〉 ⊆ 〈G,M〉 for a certain full sub-G-moduleM′ ⊂M.
Typically, the isomorphism classes of objects of G will form the monoid N, the isomorphism classes
of objects ofM will form the N-module N (acting on itself by addition), andM′ will correspond
to the sub-N-module {n, n+ 1, n+ 2, . . .} for some n > 1.
The functor F(Z,G,2) restricted to π0(〈G,M′〉) will therefore factor (up to equivalence) through
π0(CovQ), and hence the general construction will result in a functor of the form π0(〈G,M′〉) →
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ModR for some ring R. It will sometimes be convenient to extend this functor “trivially” to the
larger category π0(〈G,M〉) with the help of the following observation.

Lemma 5.17 Let D be a category and C ⊆ D the full subcategory on a subset ob(C) ⊆ ob(D).
Assume that there are no morphisms in D from ob(C) to ob(D)r ob(C). Then any functor C → A
to a category A with initial object I may be extended to D by sending each object of ob(D)r ob(C)
to I.

5.1.6. Choosing quotients.

The construction of quotients of π1(X(M,A)) in diagram (5.4) admits several natural generalisa-
tions.

Functorial descending normal series. We recall that a functorial descending normal series is
a sequence of endofunctors si : Grp→ Grp with s1 = id, such that si+1(G) ⊆ si(G) for each i and
these inclusions assemble to a natural transformation si+1 ⇒ si, and each subgroup si(G) ⊆ G
is normal in G. Examples are the lower central series and derived series. In the construction
of (5.1), we have used the lower central series to define certain quotients of fundamental groups.
However, exactly the same construction goes through if one replaces the lower central series by
any other functorial descending normal series. We have chosen to focus on constructions based
on the lower central series due to the fact that there are many results in the literature about the
lower central quotients of surface braid groups (and hence one may also deduce results about lower
central quotients of partitioned surface braid groups, cf. [DPS21]) – see the later subsections of
this section – which are useful for understanding specific examples of homological representations
fitting into this framework.

Functorial quotients of groups. More generally, it would suffice to fix any functorial choice
of normal subgroup (rather than an entire functorial descending normal series), in other words, a
functor s : Grp → Grp with the property that s(G) / G for all groups G and s(φ) = φ|G for any
homomorphism φ : G→ H (so that the inclusions assemble into a natural transformation s⇒ id).
We may then define γ(M,A) and γ̄(M,A) in (5.4) by the natural transformation G 7→ G/s(G).

Transfinite series. The lower central series (and derived series) may be extended to transfinite
series, indexed by arbitrary ordinals, and indeed one may take ` to be any (possibly infinite)
ordinal in the construction. Infinite values of ` may be relevant for constructing homological
representations of motion groups (for example loop-braid groups in 3-manifolds), since there exist
3-manifolds whose fundamental groups have lower central series that stop only at ordinals greater
than ω [CO98].

Invariant non-functorial quotients. The diagram (5.4) is functorial in UDd, so in particular
there is an action of AutDd(M,A) on Q(M,A). If we focus on the single object (M,A) and its
automorphisms, we may wish to modify the construction so that the quotient of π1(X(M,A)) has
the trivial action of AutDd(M,A). There are two options:
• Restrict the automorphism group AutDd(M,A) to the kernel of its action on Q(M,A); see

§5.4.1.2 for a specific example of this.
• Replace Q(M,A) by a further quotient that is invariant under the action of AutDd(M,A);
see [PS21, §3] for a specific example of this.

5.1.7. Pro-nilpotent representations.

If we fix the inputs Z ⊆ Rd and G 6 Diff(Z) in our construction and allow the integer ` to
vary, one may package together the homological representations arising from the general construc-
tion for each value of ` into a kind of “pro-nilpotent” homological representation, which may be
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truncated to recover the representation corresponding to each level `. Namely, the resulting homo-
logical representations fit together into a tower, which one may think of as a single pro-nilpotent
representation. In this section we explain how this may be done.

Remark 5.18 More generally, one may do this for any functorial descending normal series in place
of the lower central series; in particular one may easily adapt this section to describe “pro-solvable”
homological representations. In addition, one may also do this for any limit ordinal λ in place of
ω, to obtain “pro-λ-nilpotent” homological representations, etc.

Definition 5.19 For an integer ` > 0, let Cov(`)
• be the full subcategory of Cov• on those objects

(X,π1(X)� Q) where the group Q has nilpotency class at most `. If ` = 0 this means Q must be
the trivial group, corresponding to the trivial covering of X. If ` = 1, this means that Q must be
abelian, so Cov(1)

• is the category of spaces equipped with abelian coverings.

Definition 5.20 Fix a unital ring A and an integer ` > 0, and let Mod(`)
• be the full subcategory

of Mod• on those objects (R, V ) where R = A[Q] for a group Q of nilpotency class at most `.
Similarly, Top(`)

• is the full subcategory of Top• on those objects (X,R, ξ) where R = A[Q] for a
group Q of nilpotency class at most ` (and ξ is a bundle of right R-modules over the space X).

Construction 5.21 For k > 0, there is a functor

$k : Cov• −→ Cov(k)
• ,

which is a section for the inclusion Cov(k)
• ⊆ Cov•, defined as follows. On objects, it is given by

(X,π1(X)� Q) 7−→ (X,π1(X)� Q� Q/Γk(Q)).

We recall that a morphism (X,π1(X)� Q)→ (X ′, π1(X ′)� Q′) is a based map f : X → X ′ with
the property that π1(f) descends to a map Q → Q′. Clearly this implies that it also descends to
a map Q/Γk(Q)→ Q′/Γk(Q′). Hence we may define the functor on morphisms simply by f 7→ f .

Construction 5.22 Similarly, for k > 0 there are functors

$k : Mod• −→ Mod(k)
• and $k : Top• −→ Top(k)

•

which are sections for the inclusions Mod(k)
• ⊆ Mod• and Top(k)

• ⊆ Top•, defined as follows. The
first is defined on objects by

(A[Q], V ) 7−→ (A[Q/Γk(Q)], V ⊗A[Q] A[Q/Γk(Q)])

and the second is defined on objects by

(X,A[Q], ξ : π61(X)→ ModA[Q]) 7−→ (X,A[Q/Γk(Q)], π61(X)→ ModA[Q] → ModA[Q/Γk(Q)]),

where the functor ModA[Q] → ModA[Q/Γk(Q)] is given by−⊗A[Q]A[Q/Γk(Q)]. As in the construction
above, it is easy to see how to extend these constructions to morphisms.

The functors Lift : Cov• → Top• and Hi : Top• → Mod• respect the filtrations of these categories
given by nilpotency class. With respect to the functors $k, they fit together as follows:

Cov• Top• Mod•

Cov(k)
• Top(k)

• Mod(k)
•

Lift Hi

Lift Hi

$k $k $k= ⇐ (5.10)

The left-hand square commutes on the nose, but the second one does not. However, for any space
X, local system L on X defined over a ring R and ring homomorphism θ : R→ S, there is a natural
homomorphism of S-modules

Hi(X;L)⊗R S −→ Hi(X;L ⊗R S),
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where S is viewed as an (R,S)-bimodule via θ. This homomorphism is the subject of the universal
coefficient theorem (although we will not need more than its existence). This natural homomor-
phism provides the natural transformation filling the right-hand square as indicated.

Lemma 5.23 The homological functor F(Z,G,`) : UDd → Cov• has image contained in Cov(`)
• .

Proof. This follows from the fact that, in diagram (5.4), the middle group on the bottom row has
nilpotency class at most ` by construction. The property of having nilpotency class at most `
passes to subgroups, so Q(M,A) also has nilpotency class at most `.

This means that we may consider the following triangle, where ` > k.

UDd

Cov(`)
•

Cov(k)
•

F(Z,G,`)

F(Z,G,k)

$k (5.11)

Lemma 5.24 There is a natural transformation τ : $k ◦ F(Z,G,`) ⇒ F(Z,G,k) filling the triangle
(5.11).

Proof. The functor going clockwise around (5.11) sends the object (M,A) of UDd to the space
X(M,A) together with the quotient

$k ◦ φ`(M,A) : π1(X(M,A)) −→ Q`(M,A) −→ Q`(M,A)/Γk(Q`(M,A)), (5.12)

where φ`(M,A) is defined in diagram (5.4). The functor going anticlockwise around (5.11) sends
the object (M,A) to the same space X(M,A) together with the quotient

φk(M,A) : π1(X(M,A)) −→ Qk(M,A). (5.13)

We recall that a morphism in Cov(k)
• is a based map of spaces f having the property that π1(f)

descends to a homomorphism between the respective quotients. We define the natural transforma-
tion τ(M,A) to be the identity map X(M,A) → X(M,A). To see that this really is a morphism,
we have to check that the quotient (5.13) factors through the quotient (5.12). Naturality will then
be clear. First, note that the quotient of π1(X(M,A)) onto Qk(M,A) factors through its quotient
onto Q`(M,A), by the construction of these quotients in the diagram (5.4), so we have a quotient

Q`(M,A) −→ Qk(M,A).

But its target is nilpotent of class at most k, so the subgroup Γk(Q`(M,A)) must be sent to zero
under this quotient. Hence it factors further through the quotient onto Q`(M,A)/Γk(Q`(M,A)),
as required.

Putting together the diagrams (5.11) and (5.10) (with its top row restricted to the subcategories
(−)(`)), we obtain:

UDd

Cov(`)
• Top(`)

• Mod(`)
•

Cov(k)
• Top(k)

• Mod(k)
•

F(Z,G,`)

F(Z,G,k)

Lift Hi

Lift Hi

$k $k $k⇐τ = ⇐ (5.14)

Composing these functors and pasting together the natural transformations, this gives us a tower
of homological representations Li(F(Z,G,`)) of the category UDd:
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UDd Mod(0)
•

Mod(1)
•

Mod(2)
•

Mod(`)
•

$`

$`−1

$2

$1

$0

··
·

(5.15)

We emphasise that this diagram does not commute. Instead, the natural transformations of (5.14)
paste together to give a natural transformation going “downwards” filling each of the triangles in
(5.15).

Definition 5.25 The tower (5.15) of homological representations of UDd is called the pro-nilpotent
homological representation of UDd associated to the input data (Z,G).

To justify this name, note that, if we restrict to a single object (M,A) of UDd, we obtain a
tower of (possibly twisted) representations of the mapping class group π0(Diffdec(M,A)) defined
over the tower of groups Q•(M,A). Since the group Q`(M,A) has nilpotency class at most ` by
construction, the inverse limit of this tower of groups is a pro-nilpotent group.
Recall from §5.1.5 above that if the functor F(Z,G,`) is Q-stable on a subcategory 〈G,M〉 ⊆ UDd (in
the sense of Definition 5.14), then the homological representation Li(F(Z,G,`)) restricted to 〈G,M〉
takes values in a subcategory of Mod• of the form Modtw

Q`
for some fixed group Q`. Hence also in

this case we have a tower of (possibly twisted) representations over a tower of groups Q• whose
inverse limit is a pro-nilpotent group.
In many specific examples, the tower of groups Q• actually stops at a finite stage, so we only
have finitely many different representations in the corresponding tower. However, there are also
many examples in which the tower of groups Q• does not stop, and hence we have a tower of
representations that becomes richer at every stage. The question of whether and when the tower
Q• stops is investigated in many important examples related to (surface) braid groups, mapping
class groups and loop braid groups in the article [DPS21] by Darné and the authors.

Remark 5.26 In all of the discussion of this section, we may replace the ordinary twisted homology
functor Hi with Borel-Moore twisted homology HBM

i , and everything goes through in exactly the
same way. In this case, of course, we also have to restrict the category Top• to its subcategory of
proper maps.

5.2. Applications for motion groups

We apply the general construction of §5.1 to families of motion groups (cf. Definition 4.22) of
type {MotYn(M) | n ∈ N} where M is a manifold of dimension d = 2 or d = 3 and Yn is a
closed submanifold of M . For that purpose, we consider the restriction of the continuous functor
F̊(Z,G,`) : UDd → Cov• of Proposition 5.8 to the appropriate full subcategory of the form 〈G,M〉
which automorphism groups correspond to the family of motion groups: these are given by Lemma
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3.7 applied to the examples of subgroupoids G and M described in §4. Moreover we will make
some particular choices for the type of submanifold Z and the group G:
• Z = k is either a finite set of points of size k > 1 in Rd or Z is an unlink kS1 with k
components in R3;

• G = Sk (when Z = k) or G = Diff(kS1) or Diff+(kS1) (when Z = kS1).
Furthermore, the possibilities on the parameter ` on the lower central series degree will generally
be restricted to ` 6 3, because the lower central series of the considered motion groups generally
stop at Γ2 or Γ3. Using the framework and tools of §2, we take Z as ground ring A and V to be
the trivial fibrewise tensor product functor VF̊(Z,G,`)

: 〈G,M〉 −→ Mod•. Then, by Lemma 2.20,
we define the homological functors for all i > 1:

Li(F̊(Z,G,`)) : π0〈G,M〉 −→ Mod•. (5.16)
For ` = 0, we obtain the representations corresponding to the action on the homology groups of the
universal covers of the spaces X(M,Yn), and we recover the natural action of the motion groups
on the homology groups of the spaces X(M,Yn) for ` = 1; cf. Remark 5.6. For ` = 2 or ` = 3, as a
consequence of some abelianisation computations, we will typically prove that Q(Z,G,`)(X(M,An))
does not depend on n for n > µ(Z,G,`), and denote this quotient of by Q(Z,G,`). In this case we
deduce that:
Proposition 5.27 For all i > 0, trivialising the assignment for n 6 µ(Z,G,`), the functor (5.16)
defines homological functors

Li(F̊(Z,G,2)) : π0〈G,M〉 → ModZ[Q(Z,G,2)] and Li(F̊(Z,G,3)) : π0〈G,M〉 → Modtw
Z[Q(Z,G,3)].

Proof. Let 〈G,M〉>µ(Z,G,`) be the full subcategory of 〈G,M〉 on all objects except those indexed
by non-negative integers strictly less than µ(Z,G,`). By Proposition 5.16, the functor (5.16) induces
functors Li(F̊(Z,G,2)) : π0〈G,M〉>µ(Z,G,2) → ModZ[Q(Z,G,2)] and Li(F̊(Z,G,3)) : π0〈G,M〉>µ(Z,G,3) →
Modtw

Z[Q(Z,G,3)]. By Lemma 5.17, we extend them to functors over 〈G,M〉 by sending the first
objects to the trivial group.

General alternatives. For all the constructions presented in §§5.2.1–5.2.3, we could define
interesting alternatives by takingG = 0Grp the trivial group and define Li(F̊(Z,0Grp,2)) : π0〈G,M〉 →
Mod• and Li(F̊(Z,0Grp,k)) : π0〈G,M〉 → Mod• for each i > 0 and k > 1. This corresponds to taking
ordered configuration spaces for the parameterX(M,A) of §5.1.1 instead of unordered configuration
spaces as done in §§5.2.1–5.2.3. More generally, interpolating the parameter G between 0Grp
and Diff(Z), one may in particular take it such that we consider any partitioned configurations.
The associated lower central series of the corresponding fundamental group is more complicated
generally speaking and does not necessarily stop and therefore more sophisticated representations
may arise from these alternatives.

5.2.1. Classical braid groups.

We consider the restriction of the continuous functor F̊(Z,G,`) : UD2 → Cov• of Proposition 5.8 to
the full subcategory UBrD2 . In particular, we only have M = D2 the unit 2-disc and Yn = n a set
of n > 0 distinct points in the interior. Moreover, we restrict to Z = k a set of k > 1 distinct points
seen as a closed submanifold of R2 and take G = Sk. Hence we define the homological functor

Li(F̊(k,Sk,`)) : Uβ −→ Mod•, (5.17)
associated with non-negative integers i > 1, k > 1, ` > 0 and with groups Q(k,Sk,`)(Dn). We recall
from [DPS21, §4] that:
• Γ2(Bk,n) = Γ3(Bk,n) for k ∈ Nr {2} and n > 3;
• Γi(B2,n) 6= Γi+1(B2,n) and Γi(B2,n) 6= Γi+1(B2,n) for all i > 1.

Therefore, if k 6= 2, the construction produced for each ` > 2 is equivalent to the one for ` = 2,
which is detailed in §5.2.1.1 below. In contrast, if k = 2 each ` > 2 provides a brand new
construction; cf. §5.2.1.2.
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5.2.1.1. Standard situation of the abelianisation.

As a direct consequence of the computation for the abelianisations of partitioned braid groups of
[DPS21, §4], we have that for all n > 2, Q(k,Sk,2)(Dn) = Z if k = 1 and Z2 if k > 2. We denote
these quotients of by Qk and deduce from Proposition 5.27:

Proposition 5.28 For each i > 0 and k > 1, the functor (5.17) for ` = 2 defines a homological
functor Li(F̊(k,Sk,2)) : Uβ → ModZ[Qk] trivialising the assignment for n 6 1.

Alternative topological interpretation. The representations encoded by the functor of Propo-
sition 5.28 may alternatively be introduced with a more geometrical point of view. We fix a non-
negative integer n > 1 and recall that γ2 generically denotes the abelianisation map of a group.
For k = 1, we consider the composite χ ◦ γ2 : B1(Dn)� Zn � Z, where χ denotes the sum map.
For k > 2, first we consider the inclusion map i : Ck(Dn) ↪→ Ck(D2) induced by forgetting the
marked points of Dn, and denote by i∗ the induced surjective homomorphism on π1. Let T be
the composite γ2 ◦ i∗ : Bk(Dn)� Bk � Z. We may have the following geometrical interpretation
of this morphism: for λ ∈ π1(Ck(Dn)) and cλ a simple closed curve in Ck(Dn) representative of
λ, one can think of T (λ) as counting the total number of half-twists (i.e. half a Dehn twist in a
tubular neighbourhood along the path cλ) that occur in the path cλ of the k configurations points
in D2. Furthermore, let j be the composite Ck(Dn) ↪→ Ck,n(D2) ↪→ Ck+n(D2) where the first
map is the canonical fiber inclusion of (4.4) and the second map is induced by the inclusion of
symmetric groups Sk×Sn ↪→ Sk+n, and denote by j∗ the induced injective homomorphism on π1.
For λ ∈ π1(Ck(Dn)) and cλ as above, the composite γ2 ◦ j∗(λ) can geometrically be interpreted as
counting the total number of half-twists that occur in the path cλ, and also between configuration
points and the n marked points. Hence γ2 ◦ j∗(λ)− T (λ) is twice the total number of times that
the configuration points wind around the marked points: it thus corresponds to twice the total
winding number of cλ. Hence we defineW : Bk(Dn)� Z to be the surjective morphism defined by
the total winding number, i.e. 1

2 (γ2 ◦ j∗ − T ). These descriptions come from [Bud05, §2]. Finally,
denoting by ∆ the diagonal morphism, we consider the product (W × T ) ◦ ∆: Bk(Dn) � Z2,
defined by λ 7→ (W(λ), T (λ)), for the choice of the quotient of the fundamental group.
It is straightforward computation to show that the morphisms (W×T )◦∆ and φ(k,Sk,2)(Dn) : Bk(Dn)�
Z2 (defining the functor F̊(k,Sk,2) : UBrD2

>1 → CovQk) are equal. Since Ck(Dn) is a path-connected,
locally path-connected and semi-locally simply-connected space, it follows from covering space
theory (see, for example, [Hat02, Theorem 1.38]) that

Proposition 5.29 The representation of Bn encoded by the functor Li(F̊(k,Sk,2)) of Proposition
5.28 is equivalent to the action on the homology groups of associated with the quotient χ ◦ γ2 if
k = 1 and (W × T ) ◦∆ if k > 2.

Bigelow’s construction and Lawrence-Bigelow representations. Bigelow [Big04] intro-
duced a general method to construct a representation of the braid group Bn from a representation
of the braid group Bk for two integers k and n. It builds the well-known families of Lawrence-
Bigelow representations, originally introduced by Lawrence [Law90] as representations of Hecke
algebras. The most famous families among them are the Burau representations, originally intro-
duced in [Bur35], and the Lawrence-Krammer-Bigelow representations that Bigelow [Big01] and
Krammer [Kra02] independently proved to be faithful. We will prove that the Lawrence-Bigelow
representations are actually recovered by the constructions of §5.2.1.1 (see Theorem 5.32).
We first reformulate Bigelow’s construction with the framework and tools of §2. We fix an asso-
ciative, unital ring R and k > 1 a non-negative integer. We consider the following ingredients.
• Let Big : UBrD2 → •Cov• be the functor that sends n to the k-th unordered configuration
space Ck(Dn) together with the jointly surjective pair of quotientsW : Bk(Dn)→ Z the total
winding number and T : Bk(Dn)→ Bk the homomorphism that forgets the marked points. A
morphism of BrD2 is the embedding space UBrD2(Dm,Dn) ∼= EmbDiff

dec (Dm,Dn) for m 6 n by
Proposition 4.8, which induces a map of configuration spaces: one straightforwardly checks
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from the definitions that this embedding commutes with the quotients of W and T , so it
preserves their kernels, making F a valid functor into •Cov•.

• Let V be a left R[Bk]-module and V : UBrD2 → •Mod• be the constant functor at the object
(R[Bk], R, V ).

Using Definition 2.21, we recover Bigelow’s construction [Big04, §2]:

Definition 5.30 The functor Lk(Big; V) : Uβ → •Mod• encodes the construction of [Big04, §2]:
for each n > 1, the n-th Bigelow construction is the representation of Bn on the R[Z]-module
Lk(Big; V)(n).
Assigning R = Z and V = Z[Z] the Bk-representation where Bk acts on Z through the abelian-
isation and left-multiplication, the functor Lk(Big;Z[Z]) encodes the k-th Lawrence-Bigelow rep-
resentations. In particular, the representations encoded in L1(Big;Z[Z]) are the reduced Burau
representations, and those encoded in L2(Big;Z[Z]) are the Lawrence-Krammer-Bigelow represen-
tations; see [Big03; Big01]. In addition, by [PP02, Theorem 1.2], the tensor product with the
field of fractions L2(Big;Z[Z])⊗Z[Z2]Q(Z2) is isomorphic to the Lawrence-Krammer representation
[Kra02] tensored by the field of fractions Q(Z2).

Remark 5.31 In Bigelow’s setting [Big04, §2], the ground ring R is C and a choice of non-
zero complex number q is fixed. Then C ⊗C[Z] Lm(Big;M)(n) is exactly the result of Bigelow’s
construction, with C viewed as a right C[Z]-module by letting 1 ∈ Z act by multiplication by q.

Theorem 5.32 For each k > 1, the functor Lk(F̊(k,Sk,2)) of §5.2.1.1 is isomorphic to the func-
tor Lk(Big;Z[Z]). Hence we denote this functor by LBk : Uβ → ModZ[Qk] and call it the k-th
Lawrence-Bigelow functor.

Proof. Recalling the result from Proposition 5.29, we then deduce from Shapiro’s lemma an abelian
group isomorphism for each n

Hk(Ck(Dn)W ;Z[Z]) ∼= Hk(Ck(Dn)φ(k,Sk,2)(Dn);Z).

It follows from the definitions of both and Lk(Big;Z[Z]) and Lk(F̊(k,Sk,2)) that the effect of a
morphism σ of Uβ proceeds from the unique lift of an embedding of a marked disc into another
marked disc for the associated covering space. The above isomorphism thus provides an isomor-
phism between the functors Lk(Big;Z[Z]) and Lk(F̊(k,Sk,2)).

5.2.1.2. Exceptional situation for k = 2.

Recall from [DPS21, §4] that Γi(B2,n) 6= Γi+1(B2,n) for all i > 1. Applying the procedure of §5.1
thus provides a specific global homological representation for each ` > 2. In particular, additional
properties may be deduced from the study of §5.1.7.
We fix some ` > 3 and n > 2. We consider the variant of the global homological representation
construction using Borel-Moore homology and we restrict to taking the second homology group.
The adaptation of the diagram (5.14) using Borel-Moore homology (cf. Remark 5.26) defines a
natural transformation η`,n : LBM2 (F(2,S2,`))(n)→ LBM2 (F(2,S2,2))(n).
A general property of [Big04, Lemma 3.1] describes the Borel-Moore homology of a configuration
space of points in the punctured disc and thus provides the isomorphisms

LBM2 (F(2,S2,`))(n) ∼= Z[Q`,n]⊕n(n−1)/2 and LBM2 (F(2,S2,2))(n) ∼= Z[Z2]⊕n(n−1)/2.

Therefore, the natural transformation η`,n is thus a Bn-equivariant surjection LBM2 (F(2,S2,`))(n)�
LBM2 (F(2,S2,2))(n) induced by the canonical group ring surjection Z[Q`,n]� Z[Z2].

Faithfulness results. Note the following general result on the quotient of a representation.

Lemma 5.33 Let R be a ring and V be a R-module. We consider (ρ, V ) a representation of a
group G. If any quotient (µ,W ) of (ρ, V ) is a faithful representation of G, then (ρ, V ) is also
faithful.
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Proof. We denote by α : (ρ, V )→ (µ,W ) the quotient G-equivariant map. Let g be an element of
G such that ρ(g) = idV . Then µ(g) ◦ α = α and therefore µ(g) = idW since α is an epimorphism.
We deduce from the faithfulness of (µ,W ) that g = idG, which ends the proof.

Recall from [Big02, §4] that for each n the Bn-representation LBM2 (F(2,S2,2))(n) is faithful.

Corollary 5.34 For each ` > 3, the functor LBM2 (F(2,S2,`)) encodes a faithful linear representation
of Bn for each n.

5.2.2. Surface braid groups.

Let S be a compact, connected, smooth surface with boundary different from the 2-disc: it is
therefore isomorphic either to Σg,1 or else to Nh,1 for some fixed non-negative integers g > 1 and
h > 1. We consider the restriction of the continuous functor F̊(Z,G,`) : UD2 → Cov• of Proposition
5.8 to the full subcategory 〈BrD2

,BrS〉. In particular, we only have M = S and Yn = n a set of
n distinct points in the interior. Moreover, we take Z = k a set of k > 1 distinct points seen as a
closed submanifold of R2 and set G = Sk. Hence we consider an homological functor

Li(F̊(k,Sk,`)) : 〈β,βS〉 −→ Mod• (5.18)

associated with non-negative integers i > 1, ` > 0 and k > 1, and with groups Q(k,Sk,`)(S(n)). We
recall from [DPS21, §6] that for any g > 1, h > 1 and n > 3, for S = Σg,1 or Nh,1:
• Γ2(Bk,n(S)) 6= Γ3(Bk,n(S)) = Γ4(Bk,n(S)) if k > 3;
• Γ`(B1,n(S) 6= Γ`+1(B1,n(S) and Γ`(B2,n(S) 6= Γ`+1(B2,n(S) for all ` > 1.

Hence we study the construction for ` = 2 in §5.2.2.1 in all the situations and then we consider
the further situation of ` = 3 for orientable surfaces in §5.2.2.2. As in §5.2.1.2, the procedure for
the particular parameter k = 1 and 2 of §5.1 provides a specific representation for each ` > 3, but
will not be addressed in details here.

5.2.2.1. Standard situation of the abelianisation.

We deduce from the computation for the abelianisations of partitioned surface braid groups of
[DPS21, §6] that for all k > 1, if n > 2 then Q(k,Sk,2)(S(n)) ∼= ZpS ⊕ (Z/2Z)dk where

pS =
{

2g if S = Σg,1,
h if S = Nh,1,

and dk =
{

0 if k = 1,
1 if k > 2.

We denote this quotient by Q(k,2)(S) and deduce from Proposition 5.27 that:

Proposition 5.35 For each i > 0 and k > 1, the functor (5.18) for ` = 2 defines a homological
functor Li(F̊(k,Sk,2)) : 〈β,βS〉 → ModZ[Q(k,2)(S)] trivialising the assignment for n 6 1.

5.2.2.2. Situation of ` = 3.

First of all, we note the following result for the orientable surfaces Σg,1 for g > 1.

Lemma 5.36 For all k > 1, if n > 3 then Q(k,Sk,3)(Σ
(n)
g,1 ) = Q(k,Sk,3)(Σ

(n+1)
g,1 ). For each k, we

denote the common quotient by Q(k,3)(Σg,1).

Proof. We fix k > 0 and n > 3. The full presentation of the group Bk,n(Σg,1) ∼= Bk(Σ(n)
g,1 ) o

Bn(Σg,1) is detailed in [BGG17, Proposition 3.2] and is used for this proof. Note that the elements
that depend on n in its presentations are the set of braid generators {σ1, . . . , σn−1} of Bn(Σg,1)
and the set of the generators {ξ1, . . . , ξn} of Bk(Σ(n)

g,1 ). Because the commutativity of (5.4), we
abuse the notation γ3 to denote the projections on the metabelian quotients.

59



First, since γ3([σi, [σi+1, σi]]) = 1, the braid relation σiσi+1σi = σi+1σiσi+1 implies that γ3(σi) =
γ3(σi+1) for all i ∈ {1, . . . , n − 2}. Moreover, from the relations in the presentation of [BGG17,
Proposition 3.2, relations (c.3)], we have the following relations: σiξiσ−1

i = ξ−1
i ξi+1ξi, σiξi+1σ

−1
i =

ξi and σiξjσ
−1
i = ξj if j 6= i, i + 1. Then, since γ3(σi) = γ3(σi+1) = γ3(σi+2), we deduce that

γ3(ξi+1) = γ3(σ−1
i ξiσi) = γ3(σ−1

i+2ξiσi+2) = γ3(ξi) for all i ∈ {1, . . . , n−2}. Hence the presentation
of Bk,n(Σg,1)/Γ3(Bk,n(Σg,1)) is independent of n. In addition, the above proof for k = 0 shows that
Bn(Σg,1)/Γ3(Bn(Σg,1)) is also independent of n. Hence, for each k > 1, the canonical morphism
Bk,n(Σg,1)/Γ3(Bk,n(Σg,1)) � Bn(Σg,1)/Γ3(Bn(Σg,1)) is independent of n, hence so is the kernel
Q(k,Sk3)(Σ

(n)
g,1 ).

For k, n > 3, explicit calculations of Bk,n(Σg,1)/Γ3(Bk,n(Σg,1)) and Bn(Σg,1)/Γ3(Bn(Σg,1)) are
provided by [BGG17, Corollaries 3.9(i) and 3.14(i)]. In particular we deduce that Q(k,3)(Σg,1) is
equal to Z× (Zg+1 o Zg) for any k > 3. Finally, it follows from Proposition 5.27 that:

Proposition 5.37 For each i > 0 and k > 1, the functor (5.18) for ` = 3 provides the homological
functors (trivialising the assignment for n 6 2)
• Li(F̊(k,Sk,3)) : 〈β,βΣg,1〉 → Modtw

Z[Q(k,3)(Σg,1)] for each g > 1.
• Li(F̊(k,Sk,3)) : 〈β,βNh,1〉 → Mod• for each h > 1.

Conjecture 5.38 For each g > 1, we conjecture that B1,n(Σg,1)/Γ3(B1,n(Σg,1)) ∼= (Z2×Z2g)oZ2g

and B2,n(Σg,1)/Γ3(B2,n(Σg,1)) ∼= (Z3 × Z2g) o Z2g for all n > 3. Therefore Q(1,3)(Σg,1) would be
equal to Z2g+1 and Q(2,3)(Σg,1) would be equal to Z× (Zg+1 o Zg).

For each h > 1, we conjecture that Bk,n(Nh,1)/Γ3(Bk,n(Nh,1)) ∼= Z/2Z × (Z × Zh) o Zh if k = 1
and (Z/2Z)2 × (Z×Zh)oZh if k > 2 for all n > 3. Then the analogue of Lemma 5.36 would hold
and therefore the target category of the associated homological functor would be Modtw

Z[Q(k,3)(Nh,1)]

where Q(k,3)(Nh,1) ∼= Z1+h if k = 1 and Z1+h ⊕ Z/2Z if k > 2.

Remark 5.39 In the orientable case for k > 3 (and conjecturally in both cases for all k > 1), there
is a Z summand in the quotient group Q(k,3)(S), generated by (the image of) the surface braid ξ
where one of the first k strands winds once around one of the last n strands. In order to obtain
untwisted representations, in other words a homological functor taking values in a category of the
form ModZ[Q] rather than Modtw

Z[Q], we need to take a quotient of Q(k,3)(S) on which the natural
action of each Bn(S) (for n > 3) is trivial. For n > 3, the coinvariants of the action of Bn(S) on
Q(k,3)(S) are given by killing the Z summand generated by ξ. Thus, if we define Q′(k,3)(S) to be
this quotient of Q(k,3)(S), we obtain homological functors

• 〈β,βS〉 −→ ModZ[Q′(k,3)(S)] for S = Σg,1 or S = Nh,1 for each g, h > 1,

where
• Q′(k,3)(Σg,1) is Z2g for k = 1 and Zg+1 o Zg for k > 2,
• Q′(k,3)(Nh,1) is Zh for k = 1 and Zh ⊕ Z/2Z for k > 2.

In the orientable case with k > 3, this statement is unqualified; in the other cases it depends on
Conjecture 5.38. These quotients and the corresponding untwisted homological functors will be
explained and studied in more detail in the sequel paper [PS21].

The An-Ko representations. The procedure described here is in a sense a reinterpretation
following [BGG17] of the work [AK10] to extend some homological representations from the classical
braid groups to the surface braid groups. Namely, the functor Lk(F̊(k,Sk,3)) induces representation
of Bn(Σg,1) for any k > 1 and n > 3. Furthermore, let Bk,n(Σg,1)/Γ3(Bk,n(Σg,1)) � Q be an
epimorphism: it automatically induces a Bn(Σg,1)-Q(k,Sk,3)-bimodule structure on Q. We denote
by ψQn the induced action of Bn(Σg,1) on Z[Q].
The k-th An-Ko representation of Bn(Σg,1) [AK10, Theorem 3.2] is the tensor product ψQn ⊗Z[Q(k,Sk,3)]
Lk() for Q = Bk,n(Σg,1)/Γ3(Bk,n(Σg,1)). The groups Q(k,Sk,3) and Q are abstractly defined in
[AK10] in terms of group presentation to satisfy certain technical homological constraints: [BGG17,
§4] gives all the connections to the third lower central quotient. The general method applied in
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§5.2.2 underlines the mainspring of these groups, proving moreover that the use of the third lower
central quotient is a key tool to define the homological representations and giving an alternative to
the technical result [AK10, Lemma 3.1]. Finally, we refer the reader to [AK10, §3.B, pp. 273-274]
for explicit computations for k = 1, 2, 3 of the matrices of the representation of Bn(Σ1,1).

5.2.3. Loop braid groups.

To apply the construction of §5.1 to extended loop braid groups, we consider restrictions of the
continuous functor F̊(Z,G,`) : UD3 → Cov• of Proposition 5.8 to the full subcategory ULB′ of UD3
(cf. §4.6), thus assigning M = D3 and A = Yn = nS1 a set of n disjoint, unlinked circles in the
interior. For non-extended loop braid groups, we instead consider restrictions to ULB ⊆ UD+

3 of
the analogous continuous functor

F̊(Z,G,`) : UD+
3 −→ Cov•

given by the analogue of Proposition 5.8 for D+
d instead of Dd. This general construction is exactly

parallel to the construction of the non-oriented version, the only difference being that, in diagram
(5.4), embeddings of the manifold A are always considered modulo Diff+(A), rather than the full
diffeomorphism group Diff(A). The space X(M,A) is therefore the same in this construction, but
the quotient Q(M,A) of its fundamental group is generally different (in particular, it will be in
our setting of loop braid groups).
Two choices for the submanifold Z naturally arise as relevant parameters to construct homological
representations: either we consider a set of points (studied in §5.2.3.1 below), or we take Z to be
an unlink (detailed in §5.2.3.2).

5.2.3.1. Using configurations of points.

We take Z = k a set of k > 1 distinct points seen as a closed submanifold of R3 and take G = Sk.
We therefore consider the functors F̊ ′(k,Sk,`) : ULB′ → Cov• and F̊(k,Sk,`) : ULB → Cov• associated
with a pair of non-negative integers (k, `) where k > 1 and ` > 0. By Lemma 2.20, we have the
following homological functors for all i > 1:

Li(F̊ ′(k,Sk,`)) : ULB′ −→ Mod• and Li(F̊(k,Sk,`)) : ULB −→ Mod•. (5.19)

We denote by Q(k,Sk,`)(D3
n) the quotient group Q(M,A) in diagram (5.4) for (Z,G, `) = (k,Sk, `)

and recall from [DPS21, §5] that for any n > 4,
• Γ2(π1(Ck(D3

n)) o LBn) = Γ3(π1(Ck(D3
n)) o LBn) if k = 1 or k > 3;

• for all ` > 1, Γ`(π1(C2(D3
n))oLBn) 6= Γ`+1(π1(C2(D3

n))oLBn) and Γ`(π1(C2(D3
n))oLBn) 6=

Γ`+1(π1(C2(D3
n)) o LB′n).

Hence we just focus on the construction for ` = 2 here. Again, the procedure for the particular
parameters k = 2 of §5.1 provides a specific representation for each ` > 2, but will not be addressed
in details here.
We deduce from the computation for the abelianisations of partitioned loop braid groups of [DPS21,
§5] that for all n > 2, Q(k,Sk,2)(D3

n) = Z if k = 1 and Z⊕ Z/2Z if k > 2, whereas Q′(k,Sk,2)(D3
n) =

Z/2Z if k = 1 and (Z/2Z)2 if k > 2. We deduce from Proposition 5.27 that:

Proposition 5.40 For each i > 0 and k > 1, trivialising the assignment for n 6 1, the functors
(5.19) determine homological representations:
(for k = 1) ULB′ −→ ModZ[Z/2Z] and ULB −→ ModZ[Z];
(for k > 2) ULB′ −→ ModZ[Z/2Z⊕Z/2Z] and ULB −→ ModZ[Z⊕Z/2Z].

Notation 5.41 We denote these homological representations by Li(LB′k,2) and Li(LBk,2) respec-
tively. When i = k we will also write them as Lk(k,Lβ′) and Lk(k,Lβ) respectively.
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Among the families of representations constructed by Proposition 5.40, the easiest to understand
are those corresponding to i = k = 1. For instance, we explicitly compute that the matrices of the
representations L1(LB1,2)(n) : LBn → AutZ[Z](Z[Z]⊕n−1) are those of:
• the reduced Burau representation of the braid group Bn for the generators {σ1, . . . , σn−1};
• the standard representation of the symmetric group Sn for the generators {τ1, . . . , τn−1}.

We also explicitly compute (see §7) matrices for the representations L1(LB′1,2)(n) of the extended
loop-braid groups LB′n over R = Z[Z/2Z] = Z[t±1]/(t2 − 1). These are more subtle, since the
underlying R-module of the representation is not free: it is Rn−1 ⊕R/(t− 1). On the other hand,
the variants of L1(LB1,2)(n) and L1(LB′1,2)(n) using reduced homology are representations of LBn

on Z[Z]n (respectively of LB′n on Rn), which extend the unreduced Burau representations of the
classical braid groups. In the case of non-extended loop-braid groups, this extension has already
been introduced in [Ver01, §4] and [BS20, §1.3.1]. See §7 for full details.

5.2.3.2. Using configurations of unlinks.

We now consider Z = kS1 a set of k > 1 distinct unlinks seen as a closed submanifold of R3.
However, we essentially have two choices for the groups G: fixing an orientation on each unlink,
we can assume that the considered maps preserve or not these orientations.

5.2.3.3. For configurations of oriented unlinks. We take G = Diff+(kS1). We consider the
homological functors

Li(F̊ ′(kS1,Diff+(kS1),`)) : ULβ′ −→ Mod• and Li(F̊(kS1,Diff+(kS1),`)) : ULβ −→ Mod• (5.20)

associated with non-negative integers i > 1, ` > 0 and k > 1. We recall from [DPS21, §5] that for
any n > 4,
• for k ∈ N \ {2, 3}: Γ2(LBk,n) = Γ3(LBk,n) and Γ2(π1(U+

k (D3
n))oLB′n) = Γ3(π1(U+

k (D3
n))o

LB′n);
• for k ∈ {2, 3}: Γ`(LBk,n) 6= Γ`+1(LBk,n) and Γ`(π1(U+

k (D3
n))oLB′n) 6= Γ`+1(π1(U+

k (D3
n))o

LB′n) for all ` > 1.
Γ2(LBk,n) = Γ3(LBk,n) and Γ2(π1(U+

k (D3
n)) o LB′n) = Γ3(π1(U+

k (D3
n)) o LB′n). Therefore, we

detail below the construction produced for ` = 2. Similarly to §5.2.1.2, the procedure for the
particular parameters k = 2 or 3 of §5.1 may provide a specific representation for each ` > 2, but
will not be addressed in details here.
It follows from the abelianisations computations of [DPS21, §5] that for n > 2:
• Q′(kS1,Diff+(kS1),2)(D

3
n) = Z⊕ Z/2Z if k = 1 and Z2 ⊕ (Z/2Z)2 if k > 2;

• Q(kS1,Diff+(kS1),2)(D3
n) = Z2 if k = 1 and Z3 ⊕ Z/2Z if k > 2.

Then it follows from Proposition 5.27 that:

Proposition 5.42 For each i > 0 and k > 1, trivialising the assignment for n 6 1, the functors
(5.20) for ` = 2 define homological functors:
(for k = 1) ULB′ −→ ModZ[Z⊕Z/2Z] and ULB −→ ModZ[Z2];
(for k > 2) ULB′ −→ ModZ[Z2⊕(Z/2Z)2] and ULB −→ ModZ[Z3⊕Z/2Z].

For configurations of unoriented unlinks. We take G = Diff(kS1). We consider the homo-
logical functor

Li(F̊ ′(kS1,Diff+(kS1),`)) : ULβ′ −→ Mod• and Li(F̊(kS1,Diff+(kS1),`)) : ULβ −→ Mod• (5.21)

Li(F̊ ′(kS1,Diff(kS1),`)) : ULβ′ −→ Mod•.

associated with non-negative integers i > 1, ` > 0 and k > 1 and groups Q(kS1,Diff(kS1),`)(D3
n). We

recall from [DPS21, §5] that for any n > 4,

62



• for k ∈ N \ {2, 3}: Γ2(LB′k,n) = Γ3(LB′k,n) and Γ2(π1(Uk(D3
n)) o LBn) = Γ3(π1(Uk(D3

n)) o
LBn);

• for k ∈ {2, 3}: Γ`(LB′k,n) 6= Γ`+1(LB′k,n) and Γ`(π1(Uk(D3
n)) o LBn) 6= Γ`+1(π1(Uk(D3

n)) o
LBn) for all ` > 1.

Therefore, the construction produced for ` = 2 is detailed below. Again, the procedure for the
particular parameters k = 2 or 3 provides a specific representation for each ` > 2, but will not be
addressed in details here.
It follows from the computations of [DPS21, §5] that for n > 2:
• Q′(kS1,Diff(kS1),2)(D3

n) = (Z/2Z)3 if k = 1 and (Z/2Z)5 if k > 2;
• Q(kS1,Diff(kS1),2)(D3

n) = Z⊕ (Z/2Z)2 if k = 1 and Z⊕ (Z/2Z)4 if k > 2.
We deduce from Proposition 5.27 that:
Proposition 5.43 For each i > 0 and k > 1, trivialising the assignment for n 6 1, the functor
(5.21) for ` = 2 define homological functors:
(for k = 1) ULB′ −→ ModZ[(Z/2Z)3] and ULB −→ ModZ[Z⊕(Z/2Z)2];
(for k > 2) ULB′ −→ ModZ[(Z/2Z)5] and ULB −→ ModZ[Z⊕(Z/2Z)4].

5.3. Global functors for mapping class groups

The construction in §5.1 of functors UDd → Mod• is well-adapted for motion groups (a.k.a. braided
mapping class groups, cf. Proposition 4.23). This is reflected in the fact that, if one restricts to a
subcategory of UDd of the form 〈G,M〉, where the automorphism groups of M are contained in
the corresponding braided diffeomorphism groups, then Proposition 5.16 implies (under additional
conditions) that the functor takes values in CovQ ⊂ Cov• (after passing to π0), for a fixed group
Q. Hence, applying the general construction of §2, we obtain a functor into ModR for some fixed
ring R, rather than just Mod•. Thus the construction of §5.1 is adequate for constructing families
of untwisted representations of motion groups (braided mapping class groups). However, for (full)
mapping class groups, this construction typically only gives twisted representations, and one must
restrict to smaller subgroups in order to obtain genuine, untwisted representations.
In this subsection, we describe a variant of the construction of §5.1, based on the split short exact
sequence (4.9) instead of (4.6), which has good properties for the full mapping class groups. More
precisely, this variant satisfies an analogue of Proposition 5.16 where one does not have to assume
that the automorphism groups of M are contained in the corresponding braided diffeomorphism
groups (see Proposition 5.48 below).
Since the construction is very similar, we just sketch an outline and point out the differences from
the construction of §5.1. The following is the analogue of Proposition 5.8.
Proposition 5.44 For any integers d > 2 and ` > 0, closed submanifold Z ⊂ Rd and open
subgroup G 6 Diff(Z), there are well-defined functors

F̊(Z,G,`) and F(Z,G,`) : UDd −→ Cov•, (5.22)

constructed as described below.

The construction of the functor F̊(Z,G,`) on objects is similar to that of §5.1. The space X(M,A)
is defined in exactly the same way, but the quotient φ(M,A) : π1(X(M,A))� Q(M,A) is defined
using the following 6-term diagram instead of (5.4).

π1(X(M,A))∼=

1 π1(EG(Z, M̊ rA)) π0(Diffdec(M,A,Z|G)) π0(Diffdec(M,A)) 1

1 Q(M,A) π0(Diffdec(M,A,Z|G))
Γ`(π0(Diffdec(M,A,Z|G)))

π0(Diffdec(M,A))
Γ`(π0(Diffdec(M,A))) 1

φ(M,A) γ(M,A) γ̄(M,A) (5.23)
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The top row is the split short exact sequence (4.9) of Corollary 4.19 when G = Diff(Z); more
generally it is the middle row of diagram (4.12) for open subgroups G 6 Diff(Z). The rest of the
diagram is constructed from this just as in §5.1, using Lemma 5.4. The construction of the functor
on morphisms is then exactly as in §5.1.2, using the fact that the diagram (5.23) is functorial in
the object (M,A).
The closed variant F(Z,G,`) of the functor (5.22) is constructed similarly, using the embedding space
E ′G(Z,M rA) instead of EG(Z, M̊ rA) (cf. §5.1.3).
The observations in §5.1.4 hold also for the functors (5.22): they induce functors (not just semi-
functors) on π0, the closed version F(Z,G,`) takes values in Covpr

• and there is a natural homotopy
equivalence F̊(Z,G,`) ⇒ F(Z,G,`) between the two versions of (5.22).
The possible variants of the construction mentioned in §5.1.6, replacing the functorial quotient G 7→
G/Γ`(G) by other quotients, apply similarly to the functors (5.22). Moreover, the constructions
of §5.1.7 also carry over to these functors, and show that if we fix (Z,G) and allow ` to vary, the
functors (5.22) form a “pro-nilpotent” tower of representations of UDd.

Remark 5.45 There is a natural morphism of diagrams (5.4) → (5.23) induced by the map of
split short exact sequences from the top row to the middle row of diagram (4.12). This induces a
natural transformation of functors

(5.6)⇒ (5.22). (5.24)

Two actions agree. The diagram (5.23) is functorial in (M,A) as an object of UDd, so there is
an action of Diffdec(M,A) = AutDd((M,A)) on the bottom-left group Q(M,A). Since Q(M,A) is
discrete, this factors through an action of π0(Diffdec(M,A)) on Q(M,A).
On the other hand, π0(Diffdec(M,A)) is also the top-left group of (5.23), so it has another action
on Q(M,A) given either by lifting elements of Q(M,A) along φ(M,A) and using the conjugation
action of the semi-direct product on the top row, or equivalently by projecting along γ̄(M,A) to
the bottom-right group of (5.23) and then using the conjugation action of the semi-direct product
on the bottom row. The following is the analogue of Proposition 5.7.

Proposition 5.46 The two actions of π0(Diffdec(M,A)) on Q(M,A) described above are equal.

Proof. This follows immediately from the first part of Lemma 4.25.

The definition of Q-stability in the setting of this section is exactly analogous to Definition 5.14.

Definition 5.47 LetM and G be subgroupoids as in (5.5). Suppose that there is a group Q and
there are identifications Q(M,A) ∼= Q for each object (M,A) of 〈G,M〉, such that, for each object
(M ′, A′) of G, the homomorphism of groups

Q(M,A) −→ Q((M ′, A′)\(M,A)),

induced by the canonical morphism ((M ′, A′), id) of 〈G,M〉, is equal to the identity under these
identifications. In this case, we say that the functor F(Z,G,`) is Q-stable on 〈G,M〉.

The only difference between Definition 5.14 and Definition 5.47 is that, in the former, the group
Q(M,A) and the induced homomorphism Q(M,A)→ Q((M ′, A′)\(M,A)) are those obtained from
the 6-term diagram (5.4) (and its functoriality), whereas in the latter, they are obtained from the
6-term diagram (5.23) (and its functoriality).
The analogue of Lemma 5.15 is again immediate: Q-stability implies that F(Z,G,`) is equivalent
to a functor taking values in Covtw

Q ⊂ Cov•. Moreover, we have an analogue of Proposition 5.16,
except that we drop the second assumption of Proposition 5.16 in the following.

Proposition 5.48 Let M and G be subgroupoids of Dd such that G is closed under \ and M is
closed under the action of G via \. Set ` = 2, suppose that F(Z,G,2) is Q-stable on 〈G,M〉, and
• G is full in Dd andM is 0-full in Dd,
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• |G| is free as a monoid and |M| is free as a |G|-set.
Under these assumptions, the functor

π0(F(Z,G,2)|〈G,M〉) : π0(〈G,M〉) −→ π0(Cov•)

is equivalent to a functor with image contained in π0(CovQ) ⊂ π0(Cov•).

Proof. The proof is exactly analogous to the proof of Proposition 5.16, except that we use Proposi-
tion 5.46, instead of Proposition 5.7, to understand the action of automorphisms ofM on Q. Since
Proposition 5.46 applies to the whole mapping class group π0(Diffdec(M,A)) (whereas Proposition
5.7 applies only to the subgroup π0(Diffbr

dec(M,A)), the braided mapping class group), we do not
need to assume that the automorphisms ofM are contained in the braided diffeomorphism groups
Diffbr

dec(M,A), as we had to for Proposition 5.16.

5.4. Applications for mapping class groups of surfaces

Although it is best adapted to motion groups, the general construction of §5.1 may also be used
to construct representations of mapping class groups, and recovers several classical constructions.
This is detailed in §5.4.1. We then apply in §5.4.2 the adapted method for mapping class groups
of §5.3 to define other representations of these groups.
We take this opportunity to recall and introduce some useful categories to handle mapping class
groups of surfaces. We recall from §4.4 thatMt

2 = D∅2 . LetM
t,+
2 (respectivelyMt,−

2 ) be the full
subcategories of Mt

2 with objects the orientable (respectively non-orientable) surfaces such that
∂S = ∂0S. We denote byM+

2 (respectivelyM−2 ) the connected component π0Mt,+
2 (respectively

π0Mt,−
2 ).

5.4.1. Homological representations from motion group functors.

A first idea to construct representations of the mapping class group of a d-manifold M is to use
its action on covering spaces constructed in the spirit of §5.1. Let UD∅d be the full category of
the category UDd on the objects (M, ∅). We consider the restriction of the continuous functor
F̊(Z,G,`) : UDd → Cov• of Proposition 5.8 to UD∅d. Note that this has the effect that the short exact
sequences of the diagram (5.4) degenerates in the sense that its right-hand side is the trivial group.
We restrict our further study to the representations for mapping class groups of surfaces. Let
Z = k a set of k > 1 distinct points seen as a closed submanifold of R2. Under these restrictions,
we thus consider the functors

F̊+
(k,Sk,`) : UM+

2 −→ Cov• and F̊−(k,Sk,`) : UM−2 −→ Cov•, (5.25)

associated with a pair of non-negative integers (k, `) where ` > 0 and k > 1, with the lower
central quotients of motion groups π1(EG(k, S̊))/Γ`π1(EG(k, S̊)) (where S respectively belongs to
Mt,−

2 andMt,−
2 ) and with an open subgroup G 6 Diff(k). Two choices for the group G naturally

arise as relevant parameters to construct homological representations: either we consider unordered
configurations spaces (see §5.4.1.1 below) or we take ordered configurations spaces; cf. §5.4.1.2.

5.4.1.1. Using unordered configuration spaces.

Similarly to the constructions of representations for motion groups in §5.2, we take G = Sk. Using
the framework and tools of §2, we take Z as ground ring and V to be the appropriate trivial
fibrewise tensor product functor VF̊+

(k,Sk,`)
: UM+

2 → Mod• and VF̊−(k,Sk,`)
: UM−2 → Mod•. By

Lemma 2.20, we define the homological functors for all i > 1:

Li(F̊+
(k,Sk,`)) : UM+

2 −→ Mod• and Li(F̊−(k,Sk,`)) : UM−2 −→ Mod•. (5.26)

For ` = 0, we obtain the representations corresponding to the action on the homology groups of
the universal covers of the spaces X(M, ∅), and we recover the natural action of the motion groups
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on the homology groups of the spaces X(M, ∅) for ` = 1; cf. Remark 5.6. We give more details of
some representations encoded in the functor Li(F̊+

(k,Sk,`)) depending on k.

If k6 2 : For k = 1, we recall from [MKS04] that Γ`(π1(Σg,1)) 6= Γ`+1(π1(Σg+1,1)) for all ` > 1
and g > 1: the procedure of §5.1 thus provides a specific representation for each ` > 0.
For ` = 0, since a universal cover is simply connected, L1(F̊+

(1,S1,0)) is the trivial functor. However,
considering the variant using reduced homology, Lr1(F̊+

(1,S1,0)) encodes the (universal) Magnus
representations of the mapping class groups. These were originally defined using the Fox free
differential calculus (see [Bir74; Sak12] for further details) and Suzuki [Suz05] introduced the
equivalent topological definition.
For ` = 1, the functor L1(F̊+

(1,S1,1)) encodes the natural actions on the first homology groups of
the surfaces, that will be denoted for each g by ag : Γg,1 → AutZ(H1(Σg,1,Z)) for convenience.

For ` > 2, considering the variant with reduced homology, Lr1(F̊+
(1,S1,`)) defines the level-` Magnus

representations of the mapping class groups (see [Suz05, §3]). Note that the hypothesis (Q-stability)
of Proposition 5.16 is satisfied if and only if we restrict to the kernels of the induced representations
Γg,1 → AutZ(π1(Σg,1,Z)/Γ`π1(Σg,1,Z)) (for instance, it is the Torelli group for ` = 2). Then, it
simply follows from the 4-term exact sequence of the homology of a free group that the represen-
tations encoded by L1(F̊+

(1,S1,`)) are proper submodules of the level-` Magnus representations.

The case of k = 2 represents a more difficult situation. In particular, for the torus with one
boundary component Σ1,1, [BGG08, §4] proves that Γ`(B2(Σ1,1)) 6= Γ`+1(B2(Σ1,1)) for all ` > 1.
As far as the authors know, the representations defined by the functors Li(F̊+

(2,S2,`)) have not been
addressed in the literature yet.
If k> 3 : We recall from [BGG08, Theorem 2] that for any g > 1 and k > 3, Γ2(Bk(Σg,1)) 6=
Γ3(Bk(Σg,1)) = Γ4(Bk(Σg,1)). Hence, for each i > 0, the homological functors Li(F̊+

(k,Sk,2)) and
Li(F̊+

(k,Sk,3)) are the only relevant ones to study. We determine the best subgroup of the mapping
class groups which acts on the representation spaces as Bk(Σg,1)/Γ`(Bk(Σg,1))-modules.
We fix a symplectic basis {A1, B1, . . . , Ag, Bg} for the first homology group of the surface Hg :=
H1(Σg,1;Z) with respect to the algebraic intersection form ωg : Hg × Hg → Z. Moreover, the
operation (z, c) · (z, c) = (z+ z′+ωg(λ, λ′), λ+ λ′) for all z, z′ ∈ Z and λ, λ′ ∈ Hg defines a central
extension denoted by Z×ωg Hg. Then:

Lemma 5.49 The abelianisation Bk(Σg,1)/Γ2(Bk(Σg,1)) is isomorphic to the product Z/2Z×Hg.
The third lower central quotient Bk(Σg,1)/Γ3(Bk(Σg,1)) is isomorphic to the central extension
Z×ωg Hg. In both situations, the action of the mapping class group Γg,1 on the quotient Hg is the
natural action ag.

Proof. For ` = 2, the result directly follows from the presentation of Bk(Σg,1) of [Bel04, Theorem
1]: the factor Z/2Z is the image of the braid generators {σ1, . . . , σk−1} and the factor Hg is the
image of the generators {a1, b1, . . . , ag, bg}. For ` = 3, by [BGG17, Corollary 3.14] the third lower
central quotient Bk(Σg,1)/Γ3(Bk(Σg,1)) is isomorphic to the semi-direct product (Z × Zg) o Zg,
the first factor Z is central and is generated by σ := γ3(σi) for all i ∈ {1, . . . , k − 1}, the second
factor Zg is generated by {ai := γ3(ai) | i ∈ {1, . . . , g}}, and the third factor Zg is generated
by {bi := γ3(bi) | i ∈ {1, . . . , g}}; for all j ∈ {1, . . . , g}, the generator bj acts trivially on ai for
i ∈ {1, . . . , g}r {j} and ajbj = σ2bjaj . The isomorphism is given by sending σ to the generator of
Z in the central extension, ai to Ai and bi to Bi for all i ∈ {1, . . . , g}. The relation ajbj = σ2bjaj
is preserved through this morphism by the definition of the intersection form.

By Lemma 5.49, we must restrict to a subgroup of the Torelli group to obtain a trivial actions both
on the abelianisation and on the third lower central quotient. In particular the Z/2Z summand
is generated by the image σ of the braid generators of Bn(Σg,1). We recall from Corollary 4.19
that the splitting Γg,1 ↪→ Γng,1 is induced by the embedding of surfaces Σg,1 ↪→ Σn0,1\Σg,1 ∼= Σng,1:
this implies that Γg,1 acts trivially on σ, since σ is supported in the subsurface Σn0,1. Also the
action of Γg,1 on Hg is induced by ag. Hence the result of Lemma 5.49 on Bk(Σg,1)/Γ2(Bk(Σg,1))
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is a Γg,1-module isomorphism, not just of abelian groups. Therefore, for ` = 2, the homological
representations defined by Li(F̊+

(k,Sk,2)) acts as (Z/2Z ×Hg)-modules if we restrict to the Torelli
groups.
For ` = 3, we deduce that there exists a map κ : Γg,1 → Hom(Hg,Z) so that the action of the
mapping class group on the central extension Z×ωg Hg is described by the matrix[

IdZ κ
0 ag

]
.

We denote by Chill the Chillingworth homomorphism [Chi72] which describes the action of Ig,1
on the winding numbers of the curves of Σg,1. Its kernel is called the Chillingworth subgroup and
denoted by Cg,1. By [Chi12, Corollary 4.8], it is the subgroup generated by the union of the simply
intersecting pair maps and the Johnson subgroup [Joh83], which is the kernel of the natural map
Γg,1 → AutZ(π1(Σg,1, p0)/Γ3(π1(Σg,1, p0))). Then:

Lemma 5.50 The map κ is a crossed homomorphism and its kernel coincides with Cg,1.

Proof. Since the action of the mapping class group on the central extension is a morphism, we
deduce that κ(ϕ ◦ ψ) = κ(ψ) + κ(ϕ)ag(ψ) for all ϕ,ψ ∈ Γg,1: this proves that κ is a crossed
homomorphism. Moreover [Mor89] proves that H1(Γg,1, Hg) ∼= Z. Hence κ = λ · Chill + c where
λ ∈ Z and c is a principal crossed homomorphism: restricting to the Torelli group, we deduce that
ker(κ) = ker(Chill).

Hence the homological representations defined by Li(F̊+
(k,Sk,3)) acts as (Z ×ωg Hg)-modules if we

restrict to the Chillingworth subgroups.

5.4.1.2. Using ordered configuration spaces.

Alternatively, we consider ordered configuration spaces of points on the surfaces: we take the same
assignments as in §5.4.1.1 except that G = 0Grp the trivial group. Hence we define the homological
functors Li(F̊+

(k,0Grp,`)) : UM+
2 → Mod• and Li(F̊−(k,0Grp,`)) : UM−2 → Mod• for all i > 1.

An interesting modification of this construction consists in removing the basepoint p0 from the
configuration space and allowing the configuration points to be in the boundary of the surface.
Namely, we use the closed variant F of §5.1.3 instead of the functor F̊ and consider the configu-
rations in the surface S r {p0} for each object S. By Lemma 5.11, Borel-Moore homology may be
applied for this alternative and has the advantage to be endowed with a natural free generating
set; cf. [Big04, Lemma 3.1], [AK10, Lemma 3.3], [AP20, Theorem 6.6] or [PS21, §5].

The Moriyama functors. For each k > 1 and g > 0, Moriyama [Mor07] studies the natural
action of the mapping class group Γg,1 on the relative homology groupHk(Fk(Σg,1), Υk(Σg,1, p0);Z)
where Υk(Σg,1, p0) denotes the set {(x1, . . . , xk) ∈ Σ×kg,1 | xi = p0 for some i} for each k > 0. Its
kernel coincides with the kernel of the natural action on the k-th lower central quotient group of
the fundamental group of Σg,1.

Theorem 5.51 For each k > 1, the representations encoded by the functor LBMk (F+
(k,0Grp,1)) : UM+

2 →
Mod• are equivalent to those studied in [Mor07]. We thus denote this functor by Mork and call it
the k-th Moriyama functor.

Proof. For each g > 0, it follows from the basic properties of Borel-Moore homology (see [Bre97,
Corollary V.5.10] for instance) that we have the following abelian group isomorphism between
HBM
k (Fk(Σg,1 r{p0});Z) and Hk(Fk(Σg,1), Υk(Σg,1, p0);Z). It defines a Γg,1-module isomorphism

since this structure is induced by the diagonal action in both situations.
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5.4.2. Homological representations from mapping class group functors.

The quotient groups Q defining the representations constructed in §5.4.1 for the mapping class
groups of the surfaces are typically not independent of the surface (i.e. we do not have Q-stability
in the sense of Definition 5.14). The advantage of the method of §5.3 applied here is that it is
much more adequate for this property to be satisfied. We consider the restriction of the continuous
functor F̊(Z,G,`) : UD2 → Cov• of Proposition 5.44 to the appropriate full subcategory of the form
UG given by Lemma 3.7 applied to the examples of subgroupoids G of §4.4 (whose automorphism
groups correspond to the family of mapping class groups). Moreover we take Z = k a set of k > 1
distinct points seen as a closed submanifold of R2 and set G = Sk.
Using the framework and tools of §2, we take Z as ground ring A and V to be the trivial fibrewise
tensor product functor VF̊(Z,G,`)

: UG → Mod•. Then, by Lemma 2.20, we define the homological
functors for all i > 1:

Li(F̊(k,Sk,`)) : π0UG −→ Mod•. (5.27)

associated with non-negative integers i > 1, ` > 0 and k > 1. For ` = 0, we obtain the rep-
resentations corresponding to the action on the homology groups of the universal cover of the
configuration spaces of points in the surface, and we recover the natural action of the motion
groups on the homology groups on these configuration spaces for ` = 1; cf. Remark 5.6. For ` = 2,
we will typically prove that the Q-stability property (cf. Definition 5.14) is satisfied. In this case,
denoting by Q(k,Sk,2) the associated stable quotient, we deduce that:

Proposition 5.52 We define a homological functor Li(F̊(k,Sk,2)) : π0(UG)→ ModZ[Q(k,Sk,2)] from
the functor (5.27) for all i > 0.

Proof. Let UGstab be the full subcategory of UG on all objects except those for which the obtained
quotient is not isomorphic to Q(k,Sk,2). By Proposition 5.16, the functor (5.27) induces functors
Li(F̊(k,Sk,2)) : UGstab → ModZ[Q(k,Sk,2)]. By Lemma 5.17, we extend them to functors over UG by
sending the other objects to the trivial group.

As far as the authors know, the representations encoded by the functors based on the above
procedure and described in the following Propositions 5.54 and 5.55 do not appear in the literature
and therefore appear to be new.

General alternatives. For all the constructions presented here, we could define interesting
alternatives by taking the parameter G between the trivial group 0Grp and Diff(Z): this amounts to
considering partitioned configurations. The associated lower central series being more complicated
generally speaking (see [DPS21]), the representations that arise from these alternatives may be
more sophisticated and would deserve more study.

5.4.2.1. For orientable surfaces.

We consider the restriction of the continuous functor F̊(k,Sk,`) : UD2 → Cov• of Proposition 5.8 to
the full subcategory UMt,+

2 . Hence we obtain the homological functor

Li(F̊(k,Sk,`)) : UM+
2 −→ Mod•, (5.28)

associated with non-negative integers i > 1, k > 1, ` > 0. To obtain some restrictions on the
possibilities for the parameter `, we study the lower central series of the mapping class group Γkg,1.
We compute its abelianisation:

Lemma 5.53 For each g > 3, then (Γkg,1)ab is trivial if k 6 1 and isomorphic to Z/2Z if k > 2.

Proof. We recall from Corollary 4.19 that Γkg,1 is the semi-direct product Bk(Σg,1) o Γg,1. By
abelianisation of a semi-direct product (see [GG09, Proposition 3.3] for instance), we deduce that
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(Γkg,1)ab is isomorphic to (Bk(Σg,1)ab)Γg,1 ⊕ (Γg,1)ab, where (Bk(Σg,1)ab)Γg,1 denotes the coinvari-
ants of Bk(Σg,1)ab under the natural action of Γg,1 on Σg,1. We recall from [Kor02, Theorem 5.1]
that the abelianisation of (Γg,1)ab is trivial for any g > 3. It therefore just remains to show that
the left-hand summand is isomorphic to Z/2Z. By [BGG17, Proposition 3.4], we know that

Bk(Σg,1)ab ∼= H1(Σg,1)⊕ Z/2Z, (5.29)

where the generator σ of the Z/2Z summand is the image of all the braid generators of Bk(Σg,1).
The splitting Γg,1 ↪→ Γkg,1 of the exact sequence is induced by the embedding of surfaces Σg,1 ↪→
Σk0,b\Σg,1 ∼= Σkg,1, so Γg,1 acts trivially on σ, since σ is supported in the subsurface Σk0,b.
The action of Γg,1 on the left-hand summand of (5.29) is induced by the natural action of Γg,1
on the homology of the surface. Together with the fact that its action on σ is trivial, this in
particular implies that (5.29) is a splitting of representations of Γg,1, not just of abelian groups.
The action of the Dehn twists τAi , τBi ∈ Γg,1 on H1(Σg,1) = 〈A1, . . . , Ag, B1, . . . , Bg〉 satisfies
τAi(Bi)−Bi = Ai and τBi(Ai)−Ai = Bi, so we have H1(Σg,1)Γg,1 = 0. Putting this all together,
we end the proof.

Hence, since (Γkg,1)ab is a cyclic group, it follows from [DPS21, Corollary 2.2] that Γ2(Γkg,1) =
Γ3(Γkg,1) for all k > 1 and g > 3: hence we can restrict our study to the case of ` = 2. Moreover,
we deduce from the computation of Lemma 5.53 that for all k > 1, if g > 2 then

Q(k,Sk,2)(Σg,1) = Q(k,Sk,2)(Σg+1,1) ∼=

{
0 if k = 1,
Z/2Z if k > 2.

We denote this quotient by Qk(Σ) and deduce from Proposition 5.52 that:

Proposition 5.54 For each i > 0 and k > 1, the functor (5.28) for ` = 2 defines a homological
functor Li(F̊(k,Sk,2)) : UM+

2 → ModZ[Qk(Σ)].

5.4.2.2. For non-orientable surfaces.

We consider the restriction of the continuous functor F̊(k,Sk,`) : UD2 → Cov• of Proposition 5.8 to
the full subcategory UMt,−

2 . Hence we define the homological functor

Li(F̊(k,Sk,`)) : UM−2 −→ Mod•, (5.30)

associated with non-negative integers i > 1, k > 1, ` > 0. Again, we study the lower central series
of the mapping class group N k

h,1 to obtain some restrictions on the possibilities for the parameter
`. We consider the following elements of N k

h,1, for k > 3 and h > 7 introduced in [Stu10, §2]
• A braid-type element σ that interchanges two marked points.
• A marked point slide c that sends a marked point through the core of a cross-cap.
• A cross-cap slide y supported in a genus-2 subsurface of the surface.

We recall from [Stu10, Theorems 6.21 and 6.22] that for all h > 7 and k > 3, (N k
h,1)ab ∼= (Z/2Z)3

– generated by the elements σ, c and y – and that (N h,1)ab ∼= Z/2Z – generated by the element
y. Using the same type of disjoint support arguments as [DPS21], we deduce that Γ2(N k

h,1) =
Γ3(N k

h,1) for k > 1 and h an even number such that h > 7. We thus restrict our study to the case
of ` = 2. We also deduce from the above abelianisation results that for all k > 3, if h > 7 then

Q(k,Sk,2)(Nh,1) = Q(k,Sk,2)(Nh+1,1) ∼= (Z/2Z)2.

We deduce from Proposition 5.52 that:

Proposition 5.55 For each i > 0 and k > 3, the functor (5.30) for ` = 2 defines a homological
functor Li(F̊(k,Sk,2)) : UM−2 → ModZ[(Z/2Z)2].
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6. Iterative constructions
We illustrate in this section the applications of the iterative construction of §2.7. We fix an associa-
tive unital ring A and write A-Alg for the category of associative, unital A-algebras. Throughout
this section, we fix a monoidal groupoid (G, \, 0) and a left-module (M, \) over G. For sake of sim-
plicity, we directly take the categories G andM to be discrete (i.e. π0(G) = G and π0(M) =M):
typically we consider the skeletons of the path-components of the categories and modules intro-
duced in §4. Moreover, forgetting all morphisms and viewing G as a monoid acting on the setM,
we assume that these are both isomorphic to the non-negative integers N and the action is equiv-
alent to N acting on itself by addition. Therefore, there exist two objects 1 ∈ ob(G) and 0̂ ∈ ob(G)
so that any object X ofM is isomorphic to the monoidal product n := 1\n\0̂ for some n ∈ N. The
monoidal structure thus defines an endofunctor k\− : 〈G,M〉 → 〈G,M〉 for each k > 1. We denote
by Gn the isomorphism group Iso〈G,M〉(n).
Let F : 〈G,M〉 → π0(Cov•) be a functor that sends each n ∈ ob(〈G,M〉) to a path-connected,
locally path-connected and semi-locally simply-connected based space F (n), together with the
quotient φ = idπ1(F (n)) : π1(F (n)) → π1(F (n)). In particular, the functor F thus encodes the
universal cover of the space F (n). Let 〈G,M〉F be the category with the objects of M and the
product of morphisms Im(r ◦ F ([n′ − n, φ]))× [n′ − n, φ] for all [n′ − n, φ] ∈ 〈G,M〉(n, n′), where
Im(r ◦ F ([n′ − n, φ])) is the induced group morphism r ◦ F (n)→ r ◦ F (n′).
In the notation of Definition 2.21, one may easily check that the assignmentW 7→ Lri (F ;W ) defines
a functor on the functor categories

Lri (F ;−) : Fct(〈G,M〉F ,Mod•) −→ Fct(〈G,M〉,Mod•). (6.1)

We recall that Grp denotes the category of groups and from Definition 2.28 that the functor
r ◦ F : 〈G,M〉 → Grp defines a category (r ◦ F ) o 〈G,M〉 by using the Grothendieck construction.
The key to make the construction (6.1) iterative is to consider a functor χr◦F : (r ◦F )o 〈G,M〉 →
〈G,M〉 such that the composite 〈G,M〉 sr◦F−→ (r◦F )o〈G,M〉 χr◦F−→ 〈G,M〉 is equal to the endofunctor
k\− for some k > 1. The interpretation of this condition at the level of automorphisms is that
the functor χr◦F induces an homomorphism (r ◦ F )(n) o Gn → Gk+n. Using reduced homology,
Proposition 2.31 then defines the iterative construction

Λri (F ;χr◦F ) : Fct(〈G,M〉,Mod•) −→ Fct(〈G,M〉,Mod•). (6.2)

6.1. Connection to the Long-Moody functors

Long and Moody [Lon94] introduced a recipe to construct representations of braid groups. This
method and its variants have been studied with a functorial point of view in [Sou19b] for braid
groups and then generalised in [Sou19a] for general families of groups. We give their connections
to the above iterative construction of homological functors.
First of all, we consider a functor A : 〈G,M〉 → Grp. We recall that the group rings and the
augmentation ideals respectively define the group algebra functor A[−] : Grp → A-Alg and
the augmentation ideal functor IA[−] : Grp → A-Alg respectively. We respectively denote by
A[A] and IA the composite functors A[−] ◦ A and IA[−] ◦ A. Then A[A] is a monoid object in
Fct(〈G,M〉,Mod•). Hence pointwise tensor product of functors induces the tensor product functor
over A[A] (cf. [Sou19a, Definition 2.1])

−⊗A[A] − : ModA[A] × A[A]Mod→ Fct(〈G,M〉,Mod•)

where A[A]Mod and ModA[A] respectively denote the categories of left and right modules over the
monoid object A[A]. Moreover IA is a right A[A]-module and thus defines a functor IA ⊗A[A] − :
A[A]Mod→ Fct(〈G,M〉,Mod•).
Finally we consider a functor χA : A o 〈G,M〉 → 〈G,M〉 such that χA ◦ sA = 1\−. The appro-
priate data A and χA naturally arise for many families of groups in connection with topology. In
particular, we refer the reader to [Sou19a, §3] for the introduction of non-trivial and natural such
functors for the families surface braid groups and mapping class groups of surfaces.
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Definition 6.1 The Long-Moody functor LMA,χA
associated with the functors A and χA is the

composite

Fct(〈G,M〉,Mod•)
s∗A◦χ

∗
A // A[A]Mod

IA⊗A[A]− // Fct(〈G,M〉,Mod•),

where s∗A and χ∗A respectively denote the precomposition functors sA and χA.

Let FGrp be the full subcategory of Grp on the finitely-generated free groups.

Theorem 6.2 If the functor A factors through the category of FGrp, then there exists a functor
F : 〈G,M〉 → π0(Cov•) such that r ◦ F = A and LMA,χA

∼= Λr1(F ;χr◦F ).

Proof. The forgetful functor U : Cov• → Top∗ admits a section given by sending a based spaceX to
the pair (X, X̃), where X̃ denotes the universal covering of X. Also, the fundamental group functor
π1 : π0(Top∗)→ Grp admits a section defined by sending a group G to an Eilenberg–MacLane space
of type K(G, 1), which is unique up to homotopy (see [Hat02, Proposition 1.B.8] for instance).
Hence the functor A : 〈G,M〉 → Grp automatically admits a lift F : 〈G,M〉 → π0(Cov•) such that
A = r ◦ F .
We fix n ∈ ob(〈G,M〉) and V ∈ ob(Fct(〈G,M〉,Mod•)). Note that π1(F (n)) = A(n) is a finitely
generated free group and therefore F (n) is is homotopy equivalent to a bouquet of circles of the
rank of F (n) as a free group. From the cell structure, we deduce the following isomorphism for
the reduced homology group with local coefficient:

H1(F (n), p0;V (n+ 1)) ∼= IA(n) ⊗
A[A(n)]

V (n+ 1).

It directly follows from the definitions that this abelian group isomorphism defines an isomorphism
LMA,χA

(V ) ∼= Λr1(F ;χr◦F )(V ) of Fct(〈G,M〉,Mod•), which is easily proved to be natural in
V .

Remark 6.3 In most examples of [Sou19a], the various functors A factor across FGrp and are
actually induced by geometrical constructions: the associated Long-Moody functors are thus par-
ticular cases of the iterative construction (6.2). However, since the first homology of a group is not
necessarily related to its augmentation ideal generally speaking, the general framework of [Sou19a]
which considers a functor A : 〈G,M〉 → Grp cannot be fully recovered by the iterative homological
constructions. On the other hand, the construction (6.2) offers others possibilities, in particular
on the degree of the homology groups that are considered.

6.2. Recovering the Tong-Yang-Ma representations

Tong, Yang and Ma [TYM96] introduce a family of irreducible representations of braid groups, of
same dimension as the unreduced Burau representations but not equivalent to them, and which
can be extended to the loop braid groups (see [BS20]). Namely, the Tong-Yang-Ma representation
TYMn : Bn → GLn(Z[t±1]) is defined by:

σi 7→ Idi−1 ⊕
[

0 t
1 0

]
⊕ Idn−i−1

for all non-negative integers i ∈ {1, . . . , n − 1}. We prove below that it is possible to reconstruct
reconstruct TYMn using the slight generalisation of the iterative homological construction (6.1).
First of all, fixing Fn = 〈x1, . . . , xn〉, we consider the group morphism an,2 : Bn → Aut(Fn)
defined for all i ∈ {1, . . . , n − 1} by an,2(σi)(xi) = xi+1, an,2(σi)(xi+1) = x−1

i , an,2(σi)(xj) = xj
for j /∈ {i, i + 1}. It belongs to the family of local representations of Bn in Aut(Fn) classified in
[Wad92; Ito13]: more precisely, it corresponds to the Type 2 Wada representation.
For simplicity, for each non-negative integer n, we denote by Dn the n-th punctured 2-disc (i.e.
we remove the marked points of of the decorated surface of Notation 4.28) with the basepoint
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p0 ∈ ∂D2. Note that Dn is an Eilenberg–MacLane space of typeK(π1(Dn), 1). Let hAut(Dn) be the
grouplike topological monoid of based homotopy self-equivalences of Dn. In particular, Aut(π1(Dn))
is naturally isomorphic to π0(hAut(Dn)): an,2 thus defines a morphism Bn → π0(hAut(Dn)). Hence
we define a functor A2 : β → π0(Cov•) that sends each n ∈ ob(β) to Dn together with its universal
cover D̃n for objects, and by an,2 for the automorphisms of β.
Using the generalisation (6.1) of the iterative construction, we consider the functor Lr1(A2;−).
Let ρ : βA2 → Mod• be the functor defined by sending each n to the group ring Z[t±1], the
multiplication by −t−1 for each generator of π1(Dn) and the trivial action of the braid group Bn.
Then a straightforward computation shows that:

Proposition 6.4 The functor Lr1(A2; ρ) encodes the Tong-Yang-Ma representations.

Remark 6.5 Taking the tensor product C⊗ Z[t±1] ∼= C[t±1] and specializing t to complex values
in the Burau and Tong-Yang-Ma representations, we obtain complex representations of Bn. The
classification of the irreducible complex representations of Bn is well researched for various degrees.
For n > 7, [For96] proves that the irreducible complex representations of Bn of degree 6 n− 1 are
either one-dimensional representation or a tensor product of a one-dimensional representation and
a composition factor of the specialization of the Burau representation, and [Sys01] shows that those
of degree n are equivalent to a tensor product of one-dimensional representation and specialization
of the Tong-Yang-Ma representation if n > 9. Finally, it is shown in [Sys20] that there are no
irreducible complex representations of degree n + 1 for n > 10. Hence all the low-dimensional
complex irreducible representations of braid groups are homological.

7. Reduced Burau representations for loop braid groups
We consider the homological representations of Proposition 5.40 for i = k = 1, namely

L1(1,Lβ) : ULβ −→ ModZ[Z] and L1(1,Lβ′) : ULβ′ −→ ModZ[Z/2Z].

Our goal is to give explicit formulas for the matrices of these representations, restricted to the
non-extended loop braid groups LBn and the extended loop braid groups LB′n respectively. In
the case of LBn, the representation is a free Z[Z]-module, and we will give formulas with respect
to a particular basis of this free module. In the case of LB′n, the representation is not a free
Z[Z/2Z]-module, although it is not far from being free: it is the direct sum of a free module with
the trivial Z[Z/2Z]-module Z. In this case, we will give formulas with respect to a generating set
given by a basis for the free summand together with a chosen generator of the (non-free) trivial Z
summand.
We first give a more concrete description of the homological representations. Fix once and for all
an n-component unlink in the interior of the closed 3-disc and write D3

n for its complement. The
extended loop braid group LB′n (and hence also its subgroup LBn) acts up to homotopy on D3

n

by homeomorphisms. The homological representations of LBn and LB′n that we are considering
are their induced actions on the first homology of D3

n with coefficients in a certain local system
over the ring Z[Z] respectively Z[Z/2Z]. These local systems arise from regular covering spaces of
D3
n with deck transformation group Z respectively Z/2Z. By Shapiro’s lemma, we may therefore

equivalently view the homological representations as the induced action on the first (untwisted,
integral) homology of the respective covering spaces.
Let us make these two covering spaces of D3

n more precise. First, recall that the fundamental group
of D3

n is the free group Fn on n generators. This is easy to see: the unlink-complement D3
n ⊆ D3

deformation retracts onto a wedge of n circles and n copies of the 2-sphere. The n circles a1, . . . , an
are shown in Figure 7.1. Now let

φ : π1(D3
n) −→ Z

be the surjective homomorphism defined by φ(ai) = 1 for all i = 1, . . . , n. Let

φ′ : π1(D3
n) −→ Z/2Z
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Figure 7.1 The unlink-complement D3
n with generators a1, . . . , an for π1(D3

n) ∼= Fn.

be the composition of φ with the unique surjection Z → Z/2Z. We denote by D̃3
n the regular

covering space corresponding to ker(φ) and denote by D̂3
n the regular covering space corresponding

to ker(φ′). We therefore have coverings

D̃3
n −→ D̂3

n −→ D3
n

and we are considering the action of LBn on H1(D̃3
n) and the action of LB′n on H1(D̂3

n).
We can make these covering spaces even more precise by building explicit models for each of them.
We embed n pairwise disjoint closed 3-discs into the interior of the unit 3-disc D3 as pictured in
Figure 7.2, so that each little 3-disc looks like a “lens shape” and the union of their equators is
precisely the n-component unlink that we fixed earlier. Let D̊3

n denote D3
n minus the interiors of

these n little 3-discs, equivalently, D3 minus the interiors and equators of the n little 3-discs. Also,
write Ni for the open northern hemisphere of the boundary of the i-th little 3-disc, and write Si
for the open southern hemisphere of the boundary of the i-th little 3-disc. Now consider

Z× D̊3
n

and glue {j}×Ni to {j− 1}×Si via the homeomorphism Ni ∼= Si given by reflection in the plane
passing through the equator. This is an explicit model for D̃3

n. Similarly, we may consider

Z/2Z× D̊3
n

and glue as before, where j is now considered mod 2. This is an explicit model for D̂3
n.

Matrices for non-extended loop braid groups. We first consider the action of the non-
extended loop braid group LBn on H1(D̃3

n). As noted above, the unlink-complement D3
n defor-

mation retracts onto a wedge of n circles and n copies of the 2-sphere. This deformation retrac-
tion lifts to a deformation retraction of the covering space D̃3

n onto the space pictured in Figure
7.3. This is an infinite 2-dimensional cell complex with vertices indexed by Z, with exactly n
edges between consecutive vertices (and none between non-consecutive vertices) and with exactly
n copies of the 2-sphere wedged onto each vertex. Its fundamental group is freely generated by
tk.(a2ā1), . . . . . . , tk.(anān−1) for all k ∈ Z, where ā denotes the reverse of a path a. Abelianising
and writing Z[Z] = Z[t±1], we see that its first homology is freely generated, as a Z[t±1]-module, by
x1 := a2ā1, . . . . . . , xn−1 := anān−1. This choice of free generating set determines an isomorphism
of modules H1(D̃3

n) ∼= Z[t±1]⊕n−1, so we may write the action of LBn on H1(D̃3
n) as

LBn −→ GLn−1(Z[t±1]).

Figure 7.4 describes, geometrically, the action of the generators σi and τi of LBn on the elements
x1, . . . , xn−1, projected to the base space D3

n. Ignore for the moment the bottom row corresponding
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Figure 7.2 The complement D̊3
n of the interiors and equators of n closed little 3-discs (“lens shapes”)

in the interior of the closed unit 3-disc D3. The boundary of D̊3
n decomposes as the disjoint union of

2n+ 1 components: ∂D̊3
n = ∂D3 tN1 t . . . tNn t S1 t . . . t Sn.

...

...

...... ...

... ... ......

Figure 7.3 A deformation retract of the Z-covering D̃3
n. The edges are all oriented from left to right.

to ρi. Writing the loops on the right-hand side in terms of the generators x1, . . . , xn−1 and the
action of t, we see that σi acts on the generators (xi−1, xi, xi+1) by the matrix 1 0 0

1 −1 1
0 0 1


and trivially on all other generators, and τi acts on the generators (xi−1, xi, xi+1) by the matrix 1 0 0

t −t 1
0 0 1


and trivially on all other generators. When i = 1 or i = n − 1 we pass to the appropriate 2 × 2
submatrices. These matrices give a purely algebraic description of the homological representation
L1(1,Lβ)(n) of LBn.

Matrices for extended loop braid groups. Similarly to above, the deformation retraction of
the unlink-complement D3

n onto a wedge of circles and 2-spheres lifts to a deformation retraction
of its covering D̂3

n onto the space pictured in Figure 7.5. This is a finite 2-dimensional cell complex
with two vertices {v, tv}, exactly 2n edges between them and with exactly n copies of the 2-sphere
wedged onto each vertex. Its fundamental group is freely generated by the 2n− 1 loops

a2ā1 , . . . . . . , anān−1 , t.(a2ā1) , . . . . . . , t.(anān−1) , an(t.an),

where ā denotes the reverse of a path a. Hence its first homologyH1(D̂3
n) is generated, as an abelian

group, by the same 2n − 1 loops, viewed as homology classes. The first 2n − 2 of these classes
generate a summand isomorphic to Z[Z/2Z]⊕n−1 as a Z[Z/2Z]-module. Here we are identifying
Z[Z/2Z] with R := Z[t±1]/(t2 − 1). The last element generates a summand isomorphic to Z
viewed as a trivial Z[Z/2Z]-module. Note that this is torsion as an R-module (although it is of
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Figure 7.4 The action of LB′n on the loops x1, . . . , xn−1.

...

...

...

...

Figure 7.5 A deformation retract of the double covering D̂3
n. The top n edges are oriented from left

to right; the bottom n edges are oriented from right to left.

course free as an abelian group), since it is isomorphic to R/(t − 1). Let us write xi := ai+1āi
for i = 1, . . . , n − 1 and y := an(t.an). These elements determine an isomorphism of modules
H1(D̂3

n) ∼= R⊕n−1 ⊕R/(t− 1), so we may write the action of LB′n on H1(D̂3
n) as

LB′n −→ AutR(R⊕n−1 ⊕R/(t− 1)).

To give a purely algebraic description of the homological representation L1(1,Lβ′)(n), we therefore
just have to calculate the n × n matrices that describe the action of each generator σi, τi and ρi
of LB′n on the generators x1, . . . , xn−1, y.
In order to do this, we first consider a variant of L1(1,Lβ′)(n), which contains it as a subrepresenta-
tion and is easier to calculate. The action of LB′n on the unlink-complement D3

n fixes its boundary
∂D3 pointwise, so in particular it fixes any given basepoint in the boundary. We may arrange
that the embedded wedge of circles and 2-spheres (S1 ∨ S2)∨n ↪→ D3

n onto which D3
n deformation

retracts has its unique vertex v on the boundary. The lifted action of LB′n on the corresponding
deformation retract (see Figure 7.5) of the covering D̂3

n therefore fixes the set of vertices {v, tv}
setwise, so we may consider its induced action on relative first homology H1(D̂3

n, {v, tv}). Note
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that there is a natural map of LB′n-representations

H1(D̂3
n) −→ H1(D̂3

n, {v, tv}) (7.1)

induced by the inclusion of pairs (D̂3
n, ∅) ↪→ (D̂3

n, {v, tv}).

The relative first homology H1(D̂3
n, {v, tv}) is the same as the (reduced) first homology of the space

obtained from D̂3
n by identifying its two vertices v and tv. The fundamental group of this space is

clearly freely generated by the 2n loops a1, . . . , an, t.a1, . . . , t.an. Hence, abelianising, we see that
H1(D̂3

n, {v, tv}) is freely generated, as a module over R = Z[t±1]/(t2−1), by the relative homology
classes a1, . . . , an. With respect to these generating sets, the map (7.1) is the map

R⊕n−1 ⊕R/(t− 1) = 〈x1, . . . , xn−1, y | ty = y〉 −→ 〈a1, . . . , an〉 = R⊕n

given by the matrix 
−1 0 0
1 −1 0
0 1 −1 . . .

−1 0
1 1 + t

 .

Note that this is injective, so H1(D̂3
n) is a subrepresentation of H1(D̂3

n, {v, tv}) via (7.1). This
matrix, viewed as an endomorphism of R⊕n, is of course not injective, since 1 + t is a zero-divisor.
But its kernel is precisely the submodule 0⊕n−1 ⊕ (t − 1) of R⊕n so once we replace the domain
with R⊕n−1 ⊕R/(t− 1) it becomes injective.

We will calculate explicit formulas for the action of σi, τi and ρi on H1(D̂3
n, {v, tv}) in terms of the

ordered basis (a1, . . . , an), and then deduce the (more complicated) formulas for their actions on
the subrepresentation H1(D̂3

n) in terms of the ordered generating set (x1, . . . , xn−1, y).
We may describe the action of σi, τi and ρi on the loops a1, . . . , an geometrically. This is similar to
Figure 7.4, except that the loops aj each pass through a single component of the unlink, whereas
the loops xj pictured in Figure 7.4 each pass through two components. From this geometrical
description, it is easy to deduce that

σi acts by
[

0 1
1 0

]
on (ai, ai+1) and trivially on the other aj ,

τi acts by
[

0 t
1 1− t

]
on (ai, ai+1) and trivially on the other aj ,

ρi acts by
[
−t

]
on (ai) and trivially on the other aj .

This gives us a purely algebraic description of the LB′n-representation H1(D̂3
n, {v, tv}).

As explained above, the LB′n-representation L1(1,Lβ′)(n) is the subrepresentation H1(D̂3
n), gener-

ated by x1, . . . , xn−1, y. We therefore deduce (purely algebraically) that the matrices of L1(1,Lβ′)(n)
with respect to the ordered generating set (x1, . . . , xn−1, y) are given as follows. On the non-
extended generators σi and τi:

i = 1 2 6 i 6 n− 2 i = n− 1

σi

[
−1 1
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
1 −1 1
0 0 1

⊕ In−i−1 In−3 ⊕

 1 0 0
1 −1 1 + t
0 0 1


τi

[
−t t
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
1 −t t
0 0 1

⊕ In−i−1 In−3 ⊕

 1 0 0
1 −t −1− t
0 0 1


On the extended generators ρ1, . . . , ρn the matrices are more complicated and “non-local”. The

76



matrix for ρ1 is 
−t 0 · · · 0
−1− t

In−1
...

−1− t
1

 ,
the matrix for ρi with 2 6 i 6 n− 1 is

Ii−2 ⊕



1 0 0 · · · 0
1 + t −t 0 · · · 0
1 + t −1− t

In−i
...

...
1 + t −1− t
−1 1


and the matrix for ρn is In−2 ⊕

[
1 0
−1 −1

]
. Note that, since these matrices describe automor-

phisms of R⊕n−1⊕R/(t−1), each entry above the bottom row should be considered as an element
of R, whereas each element of the bottom row should be considered as an element of R/(t−1) ∼= Z.

How these are related to each other. The action of LBn on H1(D̃3
n) ∼= Z[t±1]⊕n−1 that we

described earlier has been defined before, via assigning explicit matrices to the generators σi and τi,
by Vershinin [Ver01, §4]. More precisely, it is the reduced version of the representation described
there via explicit matrices. In particular, its restriction to the classical braid group, which embeds
into LBn as the subgroup generated by the τi generators, is exactly the classical reduced Burau
representation. We may therefore call the representation

LBn −→ AutZ[t±1](H1(D̃3
n)) = GLn−1(Z[t±1])

the reduced Burau representation of non-extended loop braid groups. The map of covering spaces
D̃3
n −→ D̂3

n induces a map of LBn-representations

H1(D̃3
n) = Z[t±1]⊕n−1 −→ R⊕n−1 ⊕R/(t− 1) = H1(D̂3

n),

where R = Z[t±1]/(t2− 1). Checking generators, we see that it is the direct sum of n− 1 copies of
the obvious projection Z[t±1] � R followed by the inclusion of the left-hand summand R⊕n−1 of
the codomain. This means that if we consider the reduced Burau representation of LBn mod t2
(in other words, we tensor it over Z[t±1] with R), it is isomorphic to the direct summand R⊕n−1 of
the representation H1(D̂3

n) of LB′n. Another, more concrete way of verifying this statement is to
notice that, if we forget the generator y from the matrices above for σi and τi acting on H1(D̂3

n),
they agree with the ones that we found for H1(D̃3

n) earlier. Note, however, that the action of
ρi does not send the summand R⊕n−1 to itself, so this is only a sub-LBn-representation, not a
sub-LB′n-representation. To see that ρi does not send R⊕n−1 to itself, one may either read this off
from the explicit matrices that we obtained for ρi above, or one may see this geometrically from
Figure 7.4, where we note that the loops ρj(xi) cannot in general be expressed purely in terms of
the generators x1, . . . , xn−1; the generator y is also needed.
We conclude from this that, in order to extend the reduced Burau representation from LBn to LB′n,
we have to first consider it mod t2 (tensor with R), then enlarge it from R⊕n−1 to R⊕n−1⊕R/(t−1)
(extending the matrices for σi and τi as shown above) and finally define the action of ρi using the
matrices pictured above. Notice that it is not trivial to extend the action of the σi and τi generators
to the new R/(t−1) summand: σn−1 sends the new generator y to y+(1+ t).xn−1 and τn−1 sends
y to y − (1 + t).xn−1. We call the representation

LB′n −→ AutR(H1(D̂3
n)) = AutR(R⊕n−1 ⊕R/(t− 1))

the reduced Burau representation of extended loop-braid groups.
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Summary. The above representations may be summarised as follows:

x1, . . . , xn−1 x1, . . . , xn−1 x1, . . . , xn−1, y a1, . . . , an

Z[Z]⊕n−1 R⊕n−1 R⊕n−1 ⊕R/(t− 1) R⊕n

H1(D̃3
n) H1(D̃3

n)⊗Z[Z] R H1(D̂3
n) H1(D̂3

n, {v, tv})

= = = = (7.2)

where:
• a generating set corresponding to the given direct sum decomposition is written in blue above
each module,

• the left two modules are LBn-representations and the right two modules are LB′n-representations,
• all maps are LBn-equivariant and the right-hand map is moreover LB′n-equivariant,
• the ground ring on the left is Z[Z] = Z[t±1] and the ground ring for the other three modules
is R = Z[Z/2Z] = Z[t±1]/(t2 − 1).

These representations are named, respectively (from left to right):
• the reduced Burau representation of LBn,
• the reduction mod t2 of the above,
• the reduced Burau representation of LB′n,
• the unreduced Burau representation of LB′n.
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