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Abstract. We prove that the mapping class group of the one-holed Cantor tree surface is
acyclic. This in turn determines the homology of the mapping class group of the once-punctured
Cantor tree surface (i.e. the plane minus a Cantor set), in particular answering a recent ques-
tion of Calegari and Chen. We in fact prove these results for a general class of infinite-type
surfaces called binary tree surfaces. To prove our results we use two main ingredients: one is a
modification of an argument of Mather related to the notion of dissipated groups; the other is
a general homological stability result for mapping class groups of infinite-type surfaces.

Introduction

There is a long tradition of calculating the homology of mapping class groups of surfaces. Most
notably, Arnold [Arn69] calculated the homology of the pure braid groups; Harer [Har85] proved
that the mapping class groups of compact, connected, orientable surfaces satisfy homological
stability under various surface operations; Madsen and Weiss [MW07] calculated the stable
homology of the mapping class groups of compact, connected, orientable surfaces, in particular
confirming the Mumford conjecture [Mum83].

More recently, there has been a wave of interest in studying big mapping class groups (map-
ping class groups of infinite-type surfaces); see [AV20] for a recent survey. However, there are
so far relatively few studies of the homology of big mapping class groups, and almost none in
degrees above one. The first cohomology of big pure mapping class groups PMap(S) has been
calculated (and is countable) when the genus of S is positive and has been shown to be uncount-
able when the genus of S is zero; see [APV20, DP20]. On the other hand, the first homology
group of PMap(S) is uncountable whenever S has at most one non-planar end; see [Dom22].
The first homology of the full mapping class group Map(S) has been calculated in certain cases:
if C is a Cantor set in a finite type surface S, then H1(Map(S ∖ C)) ∼= H1(Map(S)) [CC22] (see
also [Vla21] for three special cases). On the other hand, the first homology of Map(R2∖N) has
been shown to be uncountable; see [MT]. Finally, one earlier calculation of higher homology
groups of big mapping class groups of which we are aware is H2(Map(S2 ∖ C)) ∼= Z/2 [CC21].

The purpose of the present paper is to initiate a systematic study of the homology of big
mapping class groups Map(S).1 Surprisingly, we are able to completely determine the homology
of Map(S) in all degrees for many infinite-type surfaces S, including for example the once-
punctured Cantor tree surface S = R2 ∖ C. In contrast, we prove in parallel work [PW24] that
the integral homology of many big mapping class groups is uncountable in all (positive) degrees.

Results. Our first result completely calculates the homology of the mapping class group of the
plane minus a Cantor set R2∖C. For degrees 1 and 2, it was previously known by [Vla21, CC22]
that H1(Map(R2 ∖ C)) = 0 and that H2(Map(R2 ∖ C)) contains an element of infinite order.

Theorem A. For each integer i ≥ 0, we have

Hi(Map(R2 ∖ C)) ∼=

{
Z for i even,

0 for i odd.
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1Recall that, by definition, Map(S) = π0(Homeo∂(S)), where Homeo∂(S) denotes the topological group of

self-homeomorphisms of S restricting to the identity on ∂S, equipped with the compact-open topology.
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Remark 0.1. Thus H2(Map(R2 ∖ C)) ∼= Z, answering positively Question A.15 of [CC21].

Theorem A is a consequence of the following vanishing result, together with the fact that the
mapping class group Map(D2 ∖ C) of the closed disc minus a Cantor set is a central extension
of Map(R2 ∖ C) by the infinite cyclic group generated by a Dehn twist around the boundary.

Theorem B. The mapping class group Map(D2 ∖ C) is acyclic, i.e., H̃∗(Map(D2 ∖ C)) = 0.

The Cantor tree surface is the 2-sphere minus a Cantor set, S2 ∖ C, and gets its name from
its alternative realisation as the boundary of a closed regular neighbourhood of an infinite
binary tree properly embedded in R3. Theorem B may therefore be stated as saying that the
mapping class group of the one-holed Cantor tree surface is acyclic and Theorem A calculates the
homology of the mapping class group of the once-punctured Cantor tree surface. The one-holed
Cantor tree surface D2 ∖ C is also denoted by DC and is illustrated in Figure 1.

Tree surfaces. Theorems A and B both hold more generally for a class of surfaces that we
call binary tree surfaces. To define this, we first introduce a notion of graph surfaces:

Definition 0.2 (Graph surfaces). Let Γ be a graph of finite valence with no self-loops and let
Σ be a connected surface without boundary. For i ≥ 0, denote by Σi the result of removing
the interiors of i pairwise disjoint closed discs from Σ. For each vertex v of Γ, let Σv = Σ|v|
equipped with a labelling of its boundary circles by the edges of Γ incident to v. Consider the
disjoint union

⊔
v Σv. If e is an edge of Γ incident to v and w, glue the boundary circle of Σv

labelled by e by an orientation-preserving diffeomorphism to the boundary circle of Σw labelled
by e. The corresponding surface

GrΓ(Σ) :=
⊔
v

Σv/∼

is the graph surface associated to Γ and Σ.

As a special case of this, we have the following.

Definition 0.3 (Linear and binary tree surfaces). Denote by B the infinite rooted binary tree
and by L the infinite rooted unary tree (i.e., the tree with vertices N and edges between pairs
of consecutive natural numbers). Then we may take Γ = B or Γ = L in the previous definition.
We call GrB(Σ) and GrL(Σ) the binary tree surface and the linear surface associated to Σ.

See Figures 1 and 2 for examples. The effects of the operations GrB(−) and GrL(−) on the
spaces of ends of surfaces are discussed in §1.2.

Notation 0.4. If Σ is a surface without boundary, we denote by Σ◦ the surface with circle
boundary obtained by deleting the interior of a closed subdisc of Σ. We refer to this surface as
the “one-holed Σ”. Since we will mostly work with one-holed binary tree surfaces and one-holed
linear surfaces, we introduce a shorter notation for these:

B(Σ) := GrB(Σ)◦ and L(Σ) := GrL(Σ)◦.

Key examples of graph surfaces, binary tree surfaces and linear surfaces are the following.

Example 0.5. If Σ = S2, then GrΓ(S2) is homeomorphic to the boundary of a regular neigh-
bourhood of an embedding of Γ into R3. In particular, if Γ is finite, then GrΓ(S2) is a closed,
connected, orientable surface of genus equal to the first Betti number of Γ.

On the other hand, we have GrL(S2) ∼= R2 and the binary tree surface GrB(S2) is the Cantor
tree surface, which is homeomorphic to S2 ∖ C, where C is the Cantor set, as mentioned above.
The binary tree surface GrB(T

2) is often called the blooming Cantor tree surface and the linear
surface GrL(T

2) is often called the Loch Ness monster surface; see Figure 2.

Notation 0.6. As a shorthand, we denote the one-holed Cantor tree surface by DC := B(S2) =
GrB(S2)◦ and similarly we denote the one-holed blooming Cantor tree surface by BC := B(T 2) =
GrB(T

2)◦. These are illustrated in Figure 1.
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Figure 1. The surfaces DC and BC , whose mapping class groups are acyclic by
Theorem C. Capping off the boundary (the top circle) with a disc results in the
Cantor tree surface GrB(S2) and the blooming Cantor tree surface GrB(T

2).

Results for tree surfaces. Our general vanishing theorem is the following.

Theorem C. Let Σ be a connected surface without boundary. Then the mapping class group

Map(B(Σ)) is acyclic, i.e., H̃∗(Map(B(Σ))) = 0.

In particular, taking Σ = S2, we recover Theorem B. As an immediate corollary, we obtain
the following generalisation of Theorem A.

Corollary D. Let Σ be a connected surface without boundary. Then we have:

Hi(Map(GrB(Σ)∖ pt)) ∼=

{
Z for i even

0 for i odd.

Proof. This follows from Theorem C and an argument using the Lyndon-Hochschild-Serre spec-
tral sequence associated to the central extension

1→ Z −→ Map(B(Σ)) = Map(GrB(Σ)∖ D̊2) −→ Map(GrB(Σ)∖ pt)→ 1.
□

Remark 0.7. There are uncountably many different surfaces to which Theorem C applies, since
there are uncountably many different surfaces of the form B(Σ). For example, when Σ is the
(unique) connected planar surface with end space E, thenB(Σ) is homeomorphic to D2∖ΥC(E),
whose end space ΥC(E) is the Cantor compactification of Eω (see §1.2). The spaces ΥC([0, ωα])
are pairwise non-homeomorphic for different countable ordinals α (as explained in Remark 1.7),
so B(S2 ∖ [0, ωα]), varying α, is an uncountable family of pairwise non-homeomorphic surfaces
to which Theorem C applies.
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Figure 2. The Loch Ness monster surface L = GrL(T
2).

Remark 0.8 (Uncountable homology). To contrast Theorem C, we prove in [PW24] that the
integral homology of many big mapping class groups is uncountable in all positive degrees.

Homological stability. A key ingredient in the proof of Theorem C is a homological stability
result for big mapping class groups (Theorem E). To state this result fully, we need the notion
of a topologically distinguished end of a surface.

Definition 0.9. Let E be a topological space. Two points x, y ∈ E are called similar if there
are open neighbourhoods U and V of x and y respectively and a homeomorphism U ∼= V taking
x to y. This is an equivalence relation on E. A point x ∈ E is called topologically distinguished
if its equivalence class under this relation is {x}, in other words it is similar only to itself.

To apply this notion to the space of ends of a linear surface, we first observe:

Remark 0.10. If E denotes the space of ends of Σ, then the space of ends of the linear surface
L(Σ) is homeomorphic to (Eω)+, the one-point compactification of the disjoint union Eω of
countably infinitely many copies of E.

Definition 0.11. If E denotes the space of ends of Σ and the point at infinity of (Eω)+ is
topologically distinguished, then the linear surface GrL(Σ) is called a telescope. (This is not to
be confused with the notion of a telescoping surface from [MR23, §3.2], which is quite different.)

We note that not all linear surfaces are telescopes:

Example 0.12. The flute surface GrL(R2) ∼= R2∖N is a telescope. In contrast, the Cantor tree
surface GrB(S2) ∼= GrL(GrB(S2)) is a linear surface that is not a telescope, since (Cω)+ ∼= C,
which is homogeneous, so the point at infinity of (Cω)+ is not topologically distinguished.

Now let A and X be connected surfaces with circle boundary and consider the sequence

(0.1) · · · → Map(A♮X♮n) −→ Map(A♮X♮n+1)→ · · ·
of mapping class groups and stabilisation maps given by taking boundary connected sum withX
and extending homeomorphisms by the identity. We say that (0.1) is homologically stable if the
nth map in the sequence induces isomorphisms on homology up to degree f(n) and surjections
on homology up to degree f(n) + 1, for some diverging function f : N→ N.

Theorem E. Let A be any decorated surface. The sequence (0.1) is homologically stable for

(1) X equal to the punctured disc and f(n) = n−2
2 ;

(2) X equal to the one-holed torus and f(n) = n−3
2 ;

(3) X equal to any telescope L(Σ) and f(n) = n−3
2 ;

(4) X equal to any binary tree surface B(Σ) and f(n) ≡ ∞.

Remark 0.13. Case (4) of Theorem E is an ingredient in the proof of Theorem C.

Proof of Theorem E. By Theorems 3.5 and 3.24, it suffices to prove that the simplicial complex
TCn(A,X) is highly-connected. This connectivity result is then proved in Theorem 4.1, Corol-
lary 4.10 and Theorem 4.20. Note that in case (2) one cannot directly apply Theorem 3.5 to
get our stable range when A has genus zero; in this case, we instead replace A with A′ = A♮T0
where T0 is the one-holed torus. In cases (3) and (4) we similarly replace A with A♮L(Σ) or
A♮B(Σ) respectively and then Theorem 3.5 implies that the n-th map in the sequence induces
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isomorphisms on homology up to degree n−3
2 . One then notices that, for any surface Σ without

boundary, the binary tree surface B(Σ) is homeomorphic to B(Σ)♮B(Σ). In particular, the
groups Map(A♮B(Σ)♮n) are all isomorphic for n ≥ 1 and the maps in the sequence (0.1) are all
identified in case (4); it then follows that the stable range is infinite in this case, as claimed. □

Strategy. We prove Theorem C using an adaptation of the concept of “dissipated groups”,
which we call homologically dissipated groups, together with homological stability. The idea for
the notion of homologically dissipated groups is inspired by an argument of Mather [Mat71]
and gives a criterion for the mapping class group of a space to be acyclic, the criterion being
a certain kind of self-similarity and homological (auto-)stability (see also Remark 2.11). We
then apply the machinery of [RWW17] and adapt techniques of [SW19] and [SW] to prove the
homological auto-stability hypothesis, which is item (4) of Theorem E with A = D2. We use
a number of different arguments to prove the other cases of Theorem E, in each case applying
the machinery of [RWW17] and studying the action of the mapping class group on appropriate
tethered curve complexes on the surface. We expect that our methods can also be used to prove
acyclicity of groups in other settings.

Outline. We begin in §1 with background on the classification of (second countable) surfaces,
together with some homological stability tools recalled from [RWW17, HV17, HW10] that we
will need later. In §2 we adapt an argument of Mather to give a sufficient criterion for acyclicity
of mapping class groups whose key hypothesis is a homological auto-stability property. We apply
this to Map(B(Σ)) in §2.2, completing the proof of Theorem C modulo case (4) of Theorem E.
In §3 we set up the appropriate pre-braided homogeneous category to apply the machinery of
[RWW17] to mapping class groups of infinite-type surfaces. The main theorem of [RWW17] thus
reduces Theorem E to proving high-connectivity for certain sequences of simplicial complexes,
which we prove for each case of Theorem E in §4 (see Figure 5 for the outline of the proof).
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discussions. He also thanks Javier Aramayona, Lvzhou Chen and Jonas Fleisig for discussions
related to this project. After informing Lvzhou Chen of our results, he informed us recently of
his on-going joint work with Danny Calegari and Nathalie Wahl on closely related topics.

1. Background

1.1. Infinite-type surfaces. All surfaces in this paper are assumed to be second countable,
connected, orientable and to have compact (possibly empty) boundary. If the fundamental group
of S is finitely generated, we say that S is of finite type; otherwise, we say that S is of infinite
type. Surfaces of finite type are classified by their genus, number of boundary components and
number of punctures. For infinite-type surfaces, the corresponding classification was proven by
von Kerékjártó [vK23] and Richards [Ric63]. To describe their classification, we first introduce
some terminology. An end of S is an element of the set

(1.1) Ends(S) = lim←−π0(S ∖K),

where the inverse limit is taken over all compact sets K ⊂ S, directed with respect to inclusion.
The Freudenthal compactification of S is the space

S = S ⊔ Ends(S)

equipped with the topology generated by the subsets U ⊔ {e ∈ Ends(S) | e < U} for all open
U ⊆ S, where e < U means that there is a compact K ⊂ S such that U contains the component
of S∖K hit by e under the natural map Ends(S)→ π0(S∖K). In particular, taking the subspace

5



topology, this equips Ends(S) with a topology, which coincides with the limit topology arising
from the discrete topology on each of the terms defining the inverse limit (1.1). With this
topology, Ends(S) is homeomorphic to a closed subset of the Cantor set. An end e ∈ Ends(S)
is called planar if it has a neighbourhood (in the topology of S) that embeds into the plane;
otherwise it is non-planar. Denote the subspace of non-planar ends by Endsnp(S) ⊆ Ends(S).
This is a closed subset of Ends(S).

Theorem 1.1 ([Ric63, §4.5]). Let S1, S2 be two surfaces with genera g1, g2 ∈ N∪{∞} and with
b1, b2 ∈ N boundary components. Then S1 is homeomorphic to S2 if and only if g1 = g2, b1 = b2
and there is a homeomorphism of pairs

(Ends(S1),Endsnp(S1)) ∼= (Ends(S2),Endsnp(S2)).

Conversely, given any g ∈ N ∪ {∞}, b ∈ N and nested closed subsets of the Cantor set X ⊆ Y ,
where we assume that g =∞ if and only if X ̸= ∅, there is a surface S of genus g and with b
boundary components such that (Ends(S),Endsnp(S)) ∼= (Y,X).

1.2. End spaces of linear and binary tree surfaces. Let E be a compact topological space
and denote by Eω the disjoint union of countably infinitely many copies of E. We will consider
two compactifications of Eω, its one-point compactification (Eω)+ and its Cantor compactifi-
cation (Eω)C , which we introduce below. These are part of a larger family of compactifications
of Eω, one for every non-empty compact metrisable space X. To describe these, we first recall
the classification of metrisable compactifications of the natural numbers N with the discrete
topology.

Proposition 1.2 (cf. [Lor82] or [Tsa06, Propositions 2.1 and 2.3]). Every non-empty compact
metrisable space can be realised uniquely as the boundary of a metrisable compactification of the
natural numbers N with the discrete topology. Precisely, sending a metrisable compactification of
N to its boundary defines a one-to-one correspondence between metrisable compactifications of N
up to homeomorphism of pairs and non-empty compact metrisable spaces up to homeomorphism.

Definition 1.3. Let E be a compact space and let X be a non-empty compact metrisable space.

Denote by X̃ the unique metrisable compactification of N with boundary X (Proposition 1.2).

The X-compactification (Eω)X of Eω is defined to be the quotient of the product E× X̃ by the
equivalence relation that partitions it into {e} × {n} and E × {x} for n ∈ N, x ∈ X and e ∈ E;
in other words, each E ×{x} is collapsed to a point. Its underlying set is therefore naturally in
bijection with Eω ⊔X = (E × N) ⊔X.

Example 1.4. WhenX is a single point, X̃ is the one-point compactification of N and (Eω)X =
(Eω)+ is the one-point compactification of Eω.

Definition 1.5. In the special case when X = C is the Cantor set, we call (Eω)C the Cantor
compactification of Eω.

Remark 1.6. The Cantor compactification may be made more concrete by giving a concrete

description of C̃, the unique metrisable compactification of N with boundary C. This may be
realised as the subspace of [0, 1] given by the union of the middle-thirds Cantor set C ⊂ [0, 1] and
the set of midpoints of the intervals forming the components of [0, 1]∖C. Even more concretely,
this consists of all real numbers whose ternary expansion is of the form 0.w or 0.xy, where w is
an infinite sequence of 0s and 2s, x is a finite sequence of 0s and 2s and y is an infinite sequence
of 1s.

Let E denote the collection of topological spaces that are compact, separable and totally dis-
connected. The one-point and Cantor compactifications of Eω for E ∈ E give us two operations

Υ+ and ΥC : E −→ E ,
where Υ+(E) = (Eω)+ and ΥC(E) = (Eω)C . These correspond to the operations GrL(−) and
GrB(−) on surfaces, taking a connected surface Σ to its associated linear surface and binary

6



tree surface respectively:

Surfaces Surfaces Surfaces Surfaces

E E E E
Ends

GrL(−)

Ends Ends

GrB(−)

Ends

Υ+ ΥC

Remark 1.7. The spaces ΥC([0, ωα]) are non-homeomorphic for distinct countable ordinals α.
To see this, we extract the ordinal α as a topological invariant of ΥC([0, ωα]). First, removing the
condensation points (those points all of whose neighbourhoods are uncountable) of ΥC([0, ωα])
results in the disjoint union of countably infinitely many copies of [0, ωα]. The Cantor-Bendixson
filtration of this disjoint union is simply the disjoint union of countably infinitely many copies of
the Cantor-Bendixson filtration of [0, ωα], which has precisely α+1 steps. Thus α is a topological
invariant of the collection of spaces of the form ΥC([0, ωα]), so they are non-homeomorphic for
distinct α.

Since the homeomorphism type of Ends(S) is an invariant of a surface S, this implies that
there are uncountably many different surfaces of the form B(Σ), as pointed out in Remark 0.7.
Namely, the surfaceB(S2∖[0, ωα]) has end space ΥC([0, ωα]) and thus the surfacesB(S2∖[0, ωα])
are pairwise non-homeomorphic as α ranges over the (uncountably many) countable ordinals.

Remark 1.8. The operations Υ+ and ΥC are clearly functorial and send embeddings to em-
beddings. Using the topological characterisation of the Cantor set C, one may see that

Υ+(C) ∼= C and ΥC(C) ∼= C.
Thus, fixing a choice of such homeomorphisms, an embedding E ↪→ C determines embeddings
Υ+(E) ↪→ C and ΥC(E) ↪→ C.

1.3. Homogeneous categories and homological stability. In this subsection, we review
the basic definitions and results of homogeneous categories and refer the reader to [RWW17]
for more details.

Definition 1.9 ([RWW17, Definition 1.3]). A monoidal category (C,⊕, 0) is called homogeneous
if 0 is initial in C and if the following two properties hold.

H1 Hom(A,B) is a transitive Aut(B)-set under post-composition.

H2 The map Aut(A)→ Aut(A⊕B) taking f to f ⊕ idB is injective with image

Fix(B) := {ϕ ∈ Aut(A⊕B) | ϕ ◦ (ıA ⊕ idB) = ıA ⊕ idB}
where ıA : 0→ A is the unique map.

Definition 1.10 ([RWW17, Definition 1.5]). Let (C,⊕, 0) be a monoidal category with 0 initial.
We say that C is prebraided if its underlying groupoid is braided and for each pair of objects A
and B in C, the groupoid braiding bA,B : A⊕B → B ⊕A satisfies

bA,B ◦ (idA ⊕ ıB) = ıB ⊕ idA : A −→ B ⊕A.

The homogeneous category we work with later will arise from a braided monoidal groupoid
using Quillen’s bracket construction [Gra76, p. 219]. Let (G,⊕, 0) be a monoidal groupoid. One
defines a new category UG as follows: UG has the same objects as G and a morphism in UG
from A to B is an equivalence class of pairs (X, f) where X is an object of G and f : X⊕A→ B
is a morphism in G, and where (X, f) ∼ (X ′, f ′) if there exists an isomorphism g : X → X ′ in
G making the diagram

X ⊕A B

X ′ ⊕A

f

g⊕idA
f ′

commute. We write [X, f ] for such an equivalence class.
7



Definition 1.11. For a pair of objects (A,X) in a monoidcal category (G,⊕, 0) we say that G
satisfies cancellation if, for all objects A,B,C ∈ G, A⊕ C ∼= B ⊕ C implies A ∼= B.

Theorem 1.12 ([RWW17, Proposition 1.8 and Theorem 1.10]). Let (G,⊕, 0) be a braided
monoidal groupoid with no zero divisors. Then UG is a pre-braided monoidal category. If in
addition

(1) G satisfies cancellation,
(2) AutG(A)→ AutG(A⊕B), f 7→ f ⊕ idB is injective for all A,B in G,

then UG is a homogeneous category.

Definition 1.13 ([RWW17, Definition 2.1]). Let (C,⊕, 0) be a monoidal category with 0 initial
and let (A,X) be a pair of objects of C. Define Wn(A,X)• to be the semi-simplicial set with
set of p-simplices

Wn(A,X)p := HomC(X
⊕p+1, A⊕X⊕n)

and with face maps

di : HomC(X
⊕p+1, A⊕X⊕n) −→ HomC(X

⊕p, A⊕X⊕n)

defined by precomposing with idX⊕i ⊕ ıX ⊕ idX⊕p−i .

For connectivity questions, one can often replace this semi-simplicial set by its associated
simplicial complex. (This will be the case in our setting; see Proposition 3.11.)

Definition 1.14 ([RWW17, Definition 2.8]). Let (A,X) be a pair of objects of a homogeneous
category (C,⊕, 0) and n ≥ 1. Define Sn(A,X) to be the simplicial complex whose vertices
are morphisms f : X → A ⊕X⊕n and whose p-simplices are (p + 1)-tuples (f0, . . . , fp) of such
morphisms such that there exists a morphism f : X⊕p+1 → A⊕X⊕n with {f ◦ i0, . . . , f ◦ ip} =
{f0, . . . , fp} as unordered sets, where

ij = ıX⊕j ⊕ idX ⊕ ıX⊕p−j : X = 0⊕X ⊕ 0 −→ X⊕p+1.

1.4. High-connectivity. We now review some of the tools that we will use to prove our con-
nectivity results. More details may be found in [HV17, §2] and [HW10, §3].

1.4.1. Bad simplices arguments. Let X be a simplicial complex and Y ⊆ X a subcomplex. We
want to relate the n-connectedness of Y to the n-connectedness of X via an argument known
as a “bad simplices argument”; see for example [HV17, §2.1] for more details. One first chooses
a set of simplices in X ∖ Y , called bad simplices, satisfying the following two conditions:

(1) Any simplex with no bad faces lies in Y . Here a “face” of a simplex σ means the simplex
spanned by any non-empty subset of its vertices, including σ itself.

(2) If two faces of a simplex of X are bad, then their join (which is also a simplex of X) is
also bad.

Simplices that have no bad faces are called good simplices. In this terminology, condition (1)
says that all good simplices lie in Y . The faces of a bad simplex may be good, bad or neither.
There is also a relative notion for simplices in the link of a bad simplex σ, as follows: a simplex
τ in Lk(σ) is called good for σ if any bad face of τ ∗ σ is contained in σ. The simplices that are
good for σ form a subcomplex of Lk(σ) denoted by Gσ; this is called the good link of σ.

Proposition 1.15 ([HV17, Proposition 2.1]). Let Y be a subcomplex of a simplicial complex
X, and suppose that we have chosen a collection of bad simplices satisfiying conditions (1) and
(2) above. Fix n ≥ 0 and suppose that Gσ is (n− dim(σ)− 1)-connected for each bad simplex σ.
Then the pair (X,Y ) is n-connected, i.e., πi(X,Y ) = 0 for all i ≤ n.

An immediate consequence is:

Theorem 1.16 ([HV17, Corollary 2.2]). Let Y be a subcomplex of a simplicial complex X,
and suppose that we have chosen a collection of bad simplices satisfiying conditions (1) and (2)
above. Then:

8



(1) If X is n-connected and Gσ is (n − dim(σ))-connected for each bad simplex σ, then Y
is n-connected.

(2) If Y is n-connected and Gσ is (n− dim(σ)− 1)-connected for each bad simplex σ, then
X is n-connected.

1.4.2. Complete joins. The notion of a complete join is another useful tool, introduced by
Hatcher and Wahl in [HW10, §3], for proving high-connectivity results. We recall the key
definitions and results here.

Definition 1.17. A surjective map of simplicial complexes π : Y → X is called a complete join
if it satisfies the following properties:

(1) π is injective on individual simplices.
(2) For each p-simplex σ = ⟨v0, . . . , vp⟩ of X, the subcomplex Y (σ) of Y consisting of all

p-simplices that project under π to σ is equal to the join π−1(v0)∗π−1(v1)∗· · ·∗π−1(vp),
where each π−1(vi) is considered as a 0-dimensional subcomplex of Y .

Condition (2) in particular asserts the existence of the join π−1(v0)∗π−1(v1)∗· · ·∗π−1(vp) in Y .
Another way of rephrasing condition (2) is the statement that lifts of σ to p-simplices of Y are
in one-to-one correspondence with (p + 1)-tuples consisting of a choice of lift of vi to a vertex
of Y for each 0 ≤ i ≤ p. More succinctly: simplices of X may be lifted to Y by arbitrarily and
independently choosing lifts of each vertex.

Definition 1.18. A simplicial complex X is called weakly Cohen-Macaulay (sometimes short-
ened to wCM ) of dimension n if X is (n− 1)-connected and the link of each p-simplex of X is
(n− p− 2)-connected.

The key result that we shall use for complete joins is the following.

Proposition 1.19 ([HW10, Proposition 3.5]). If Y is a complete join over a wCM complex X
of dimension n, then Y is also wCM of dimension n.

Remark 1.20. If π : Y → X is a complete join, then X is a retract of Y . In fact, we may define
a simplicial map s : X → Y such that π ◦ s = idX by sending a vertex v ∈ X to any vertex
in π−1(v) and then extending it to simplices. The fact that s can be extended to simplices is
guaranteed by the condition that π is a complete join. In particular we may also conclude that
if Y is n-connected, so is X. Proposition 1.19 is a kind of converse to this.

2. Abstracting Mather’s infinite iteration argument

The core of our argument, reducing the proof of acyclicity of a given mapping class group to
proving a kind of homological auto-stability for it, is an adaptation of an infinite iteration (or
“suspension”) argument due to Mather [Mat71]. We abstract and axiomatise the version that
we will need in §2.1 (Proposition 2.7) and apply it to our setting in §2.2.

2.1. The general argument.

Definition 2.1. Let T be a topological space and S ⊆ T a closed subspace. Write ∂T (S) for
the topological boundary of S in T , that is, ∂T (S) = S ∩ (T ∖ S).

We reserve the simpler notation ∂ to denote the boundary of a topological manifold. In our
situation, S will be a topological manifold but ∂T (S) will not necessarily coincide with ∂S. To
illustrate the difference between topological boundary and boundaries of manifolds, we mention
the following examples.
Example 2.2.

(1) Let T = Rn and S ⊂ Rn be a compact n-dimensional submanifold. Then ∂T (S) = ∂S.
(2) Let T = Rn and S ⊂ Rn a closed submanifold of positive codimension. Then ∂T (S) = S.
(3) Let S = [0, 1]× [0, 1] ⊂ [0, 2]× [0, 1] = T . Then ∂T (S) = {1} × [0, 1] ⊊ ∂S.

Notation 2.3. For a pair of spaces A ⊆ X, write HomeoA(X) for the topological group of
homeomorphisms of X that restrict to the identity on A ⊆ X, with the compact-open topology.
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Let B,S ⊆ T be closed subspaces with B ∩ S = ∅. There is a continuous group homomor-
phism

(2.1) Homeo∂T (S)(S) −→ HomeoB(T )

given by extending homeomorphisms by the identity on T ∖ S. Precisely, given a homeomor-
phism φ of S that restricts to the identity on ∂T (S), let φ̂ be the homeomorphism of T defined
by φ on S and by the identity on T ∖ S. The fact that φ̂ is continuous uses the assumption
that φ restricts to the identity on ∂T (S).

The first step towards our version of Mather’s “suspension” argument is the following lemma,
which constructs self-homeomorphisms of T by infinite iteration.

Lemma 2.4 (Infinite iteration lemma.). Suppose that we are given φ ∈ HomeoB(T ) such that
• φk(S) is disjoint from S for all k ≥ 1 and
• the union

⋃
k≥i φ

k(S) is a closed subset of T for each i ≥ 0.

Let h ∈ Homeo∂T (S)(S). Then the assignment

(2.2) t 7−→

{
φk(h(φ−k(t))) t ∈ φk(S) for k ≥ 0

t otherwise

gives a well-defined element of HomeoB(T ).

Notation 2.5. Under the conditions of the above lemma, we will denote the element (2.2) of
HomeoB(T ) by

hφ
∞
: T −→ T.

Remark 2.6. The second hypothesis on φ in the statement of Lemma 2.4 is equivalent to
the a priori stronger-looking statement that

⋃
k∈N φk(S) is a closed subset of T for any subset

N ⊆ {0, 1, 2, . . .}. Intuitively, this may be thought of as saying that the sequence of closed
subsets φk(S) “converges to an end” of the space T .

Proof of Lemma 2.4. The first hypothesis on φ ensures that the subsets φk(S) ⊆ T for k ≥ 0
are pairwise disjoint. Thus (2.2) gives a well-defined bijection T → T . We next check that it is
continuous. To do this, it will suffice to check that it is continuous when restricted to each piece
of a finite covering of T by closed subsets. We will use the covering of T by the two subsets⋃

k≥0 φ
k(S) and T ∖

(⋃
k≥0 φ

k(int(S))
)
.

These clearly cover T , the first one is closed by the second hypothesis on φ (with i = 0) and the
second is the complement of a union of open subsets, hence closed. The map (2.2) is constant
when restricted to the second closed subset (this uses the fact that h restricts to the identity on
∂T (S)); in particular, its restriction to the second closed subset is continuous. It thus suffices to
show that (2.2) is continuous when restricted to

⋃
k≥0 φ

k(S). The second hypothesis on φ (for

all i ≥ 0) implies that each φk(S) is an open subset of the union
⋃

k≥0 φ
k(S) in the subspace

topology induced from T . Thus, to show that (2.2) is continuous when restricted to
⋃

k≥0 φ
k(S),

it will suffice to show that it is continuous when restricted to φk(S) for each fixed k ≥ 0. But
this is true by construction. Thus we have shown that (2.2) is a continuous bijection T → T .

To see that the inverse of (2.2) is continuous, we simply replace h with h−1 in the formula
(2.2): this clearly gives the inverse of (2.2), and it is continuous by the above reasoning with
h−1 in place of h. Thus we have shown that (2.2) ∈ Homeo(T ).

Finally, we must show that (2.2) restricts to the identity on B. For this, it will suffice to
show that B is disjoint from φk(S) for all k ≥ 0. This follows by induction on k: the base case
that B ∩ S = ∅ is true by assumption, and the inductive step follows from the fact that the
self-homeomorphism φ : T → T fixes B. □

The continuous group homomorphism (2.1) induces a group homomorphism of the corre-
sponding mapping class groups:

ι : π0
(
Homeo∂T (S)(S)

)
−→ π0

(
HomeoB(T )

)
10



Let us choose subgroups

H ⊆ π0
(
Homeo∂T (S)(S)

)
and G ⊆ π0

(
HomeoB(T )

)
such that ι(H) ⊆ G, so that we have a restricted homomorphism

ι|H : H −→ G.

Proposition 2.7 (The infinite iteration argument for mapping class groups.). In the above
setup, suppose that

• the homomorphism ι|H induces isomorphisms on homology in all degrees;
• there is an element φ ∈ HomeoB(T ) satisfying the two hypotheses of Lemma 2.4, such
that [φ] ∈ G and, for each h ∈ Homeo∂T (S)(S) with [h] ∈ H, we have [hφ

∞
] ∈ G.

Then G is acyclic.

Remark 2.8. The first condition in the hypotheses of Proposition 2.7 is to be thought of as a
homological auto-stability property of the group G.

Remark 2.9. In practice, we will always apply this proposition in the special case where we
have H = π0(Homeo∂T (S)(S)) and G = π0(HomeoB(T )), so the second hypothesis simplifies to
the statement that there exists an element φ ∈ HomeoB(T ) satisfying the two hypotheses of
Lemma 2.4.

Definition 2.10. If a group G admits the structure described above, then we say that it is
homologically dissipated and that [φ] ∈ G is a homological dissipator for G. In this terminology,
Proposition 2.7 is the statement that homologically dissipated groups are acyclic. This should
be compared to binate groups [Ber89] and dissipated groups [Ber02]; see Remark 2.11 below.

Proof of Proposition 2.7. This is an almost verbatim adaptation of [Mat71]. However, we give
a complete proof, since this technical result is central to our arguments in this paper.

We first note that the construction of Lemma 2.4 gives a well-defined function

h 7→ hφ
∞
: Homeo∂T (S)(S) −→ HomeoB(T ).

It is not hard to check that this is continuous in the compact-open topology, and it is clearly a
homomorphism. It thus induces a homomorphism

π0
(
Homeo∂T (S)(S)

)
−→ π0

(
HomeoB(T )

)
,

which restricts, by our hypotheses, to a homomorphism

j : H −→ G.

We have also assumed that [φ] ∈ G, so we have an inner automorphism [φ] · − · [φ]−1 : G→ G.
Define

l : H −→ G

to be the composition ([φ] ·−· [φ]−1)◦j. Notice that l([h]) is represented by the homeomorphism
of T given by the formula

t 7−→

{
φk(h(φ−k(t))) t ∈ φk(S) for k ≥ 1

t otherwise

(notice that this differs from ι|H only on S ⊆ T ). Finally, we also consider the homomorphism

i = ι|H : H −→ G;

recall that this extends a homeomorphism of S by the identity on T ∖S. Since i([h]) and l([h])
admit representatives with disjoint support (contained in S and in

⋃
k≥1 φ

k(S) respectively), we

see that any element of i(H) commutes with any element of l(H). This means that the function

η : H ×H −→ G

defined by η(h0, h1) = i(h0)l(h1) is a homomorphism. If we denote by ∆: H → H × H the
diagonal homomorphism, then by comparing the formulas for j and for l we see that η ◦∆ = j.

11



We now prove by induction on r ≥ 0 that H̃s(G) = 0 for all s ≤ r. This is trivial for r = 0.

For the inductive step, we assume that H̃s(G) = 0 for all s ≤ r − 1. By the first hypothesis,

this implies that H̃s(H) = 0 for all s ≤ r − 1. By the Künneth formula, this implies that we
have Hr(H ×H) ∼= Hr(H)⊕Hr(H) and that for any α ∈ Hr(H), the class ∆∗(α) corresponds
to α⊕ α under this isomorphism. We thus have

j∗(α) = η∗(∆∗(α)) = η∗(α⊕ α) = i∗(α) + l∗(α).

But j and l differ by an inner automorphism of G, which acts trivially on homology, so we also
have j∗(α) = l∗(α). Putting this together with the above formula, we deduce that i∗(α) = 0.
By the first hypothesis, i∗ is injective, so α = 0. Thus we have shown that Hr(H) = 0. By the
first hypothesis again, this means that also Hr(G) = 0, which finishes the inductive step. □

Remark 2.11. Our notion of homologically dissipated groups is inspired by the classical notion
of dissipated groups [Ber02]. Roughly, a group G acting on a set X is dissipated if it admits an
exhaustion by subgroups Gi defined by restricting the support of the action, and each Gi admits
a “dissipator” ρi ∈ G (an element satisfying similar properties to the element (2.2) provided
by Lemma 2.4). Dissipated groups are binate (≡ pseudo-mitotic) by [Ber02], which in turn are
acyclic by [Ber89] or [Var85].

This notion cannot directly be applied to mapping class groups, since they do not naturally
act on any set; instead, they act up to homotopy on the underlying surface. However, one may
adapt the notion of dissipated groups to an analogous notion of “homotopy-dissipated groups”
that applies to mapping class groups and still implies acyclicity. One could then try to prove
Theorem C using the notion of homotopy-dissipated groups together with a “fragmentation”
argument introduced by Segal [Seg78] and used in [dlHM83, ST94, ST96, CC21]. However, such
a strategy cannot work: the first step of this fragmentation argument in the case of S = D2 ∖ C
would be to prove that the subgroup Map(D2 ∖ C){0} of mapping classes that are the identity
in a neighbourhood of 0 ∈ C is homotopy-dissipated. But this group surjects onto the mapping
class group of the cylinder, which is Z (this surjection is similar to the one described in [CC21,
paragraph before Lemma A.6]), so it is not acyclic and therefore cannot be homotopy-dissipated.

Thus we instead work with the notion of homologically dissipated groups introduced above –
which in turn leads to the use of homological stability arguments. The key difference between
the notions of (homotopy-)dissipated groups and homologically dissipated groups is the following.
In the former, G admits an exhaustion by subgroups Gi defined by restricting the support of
homeomorphisms, and each Gi admits a dissipator [ρi] ∈ G. In the latter, G has just a single
subgroup H defined by restricting the support of homeomorphisms, which admits a dissipator
[φ] ∈ G and whose inclusion into G induces isomorphisms on homology.2 In other words, the
condition that H ⊂ G is a homology isomorphism replaces the requirement that we have a
whole family of subgroups (equipped with dissipators) limiting to G.

2.2. Application to binary tree surfaces. We now apply Proposition 2.7 to reduce the
proof of acyclicity of Map(B(Σ)) to a homological auto-stability result, which will be part of
the results of the next section. Consider the boundary connected sum B(Σ)♮B(Σ) of two copies
of B(Σ). Extending homeomorphisms of one copy of B(Σ) by the identity on the other copy,
we have a homomorphism

(2.3) e : Map(B(Σ)) −→ Map(B(Σ)♮B(Σ)).

Proposition 2.12. Suppose that e is a homology isomorphism. Then the group Map(B(Σ)) is
acyclic.

This reduces the proof of Theorem C to proving that e is a homology isomorphism, which we
will do in the following two sections using the tools of homological stability.

Proof. We give full details for the surface DC = B(S2) and then indicate how to modify the
argument for B(Σ) for an arbitrary Σ.

2In fact H does not have to be a subgroup; we just require a homomorphism H → G.
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Figure 3. The surface DC , which is the disc minus the Cantor set (drawn in
blue here). The subsurface S is drawn in darker grey and the boundary is green.

Figure 4. Another viewpoint of DC and the subsurface S ⊆ DC . The outer
dashed rectangle denotes the plane and the small green circle is ∂DC ; the inside
of this circle is the outside of DC ; we have turned the surface “inside out” com-
pared to Figure 3 above and have also decomposed the Cantor set as the 1-point
compactification of a disjoint union of countably infinitely many copies of the
Cantor set. Although the bi-infinite sequence of copies of C appears to converge
to two points at infinity in the picture, we emphasise that there is just a single
end at infinity, corresponding to the unique end of the plane.

Figures 3 and 4 show two depictions of the surface DC , where the removed Cantor set is
drawn in blue. Figure 4 should be read as follows: the outer dashed rectangle represents the
plane and we remove the interior of a small disc (in the top middle of the figure) to obtain a
closed 2-disc; we then remove the bi-infinite sequence of copies of the Cantor set C depicted in
the figure in blue. The space of ends is thus the 1-point compactification (Cω)+ of a countably
infinite disjoint union Cω =

⊔
ω C of copies of C, which is again homeomorphic to the Cantor set.

In each of the two figures we have also drawn a subsurface S, contained in the interior of DC ,
which is again homeomorphic to DC . We emphasise that Figures 3 and 4 are two illustrations
of the same pair of surfaces (DC , S).

The inclusion DC ↪→ DC♮DC is isotopy equivalent to the inclusion S ↪→ DC depicted in Figure
3, so the assumption of the proposition says that this inclusion is a homology isomorphism.
Setting T = DC , B = ∂DC and S to be the subsurface depicted in grey, Proposition 2.7 implies
that it suffices to find a homeomorphism φ ∈ Homeo∂(DC) satisfying the two conditions of that
proposition.

To construct φ we consider Figure 4. Define φ to be the identity outside of the horizontal
strip. On a slightly smaller horizontal strip that contains S, define φ by translation one unit to
the right, and extend this continuously in the remaining small neighbourhood of the top and
bottom boundaries of the strip. The iterated images of S under φ are clearly disjoint, so the
first condition is satisfied. Moreover, the union of any collection of the iterated images of S
under φ is a closed subset of DC (an essential point here is that the point at infinity is not part
of the surface), so the second condition is satisfied. Thus Proposition 2.7 implies that Map(DC)
is acyclic.

Finally, to generalise the argument to B(Σ) for any surface Σ in place of Σ = S2, we modify
Figures 3 and 4 appropriately, by taking infinitely many connected sums with copies of Σ along
a collection of pairwise disjoint discs converging to all ends of the surface; all of the arguments
above go through identically with this modification. □
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3. Homological stability

In this section, we reduce the proof of Theorem C to Theorem E (using the results of §2) and
then reduce the proof of Theorem E to the high-connectivity of certain simplicial complexes,
which will be proven in §4.

First, in §3.1, we construct a homogeneous category for big mapping class groups; precisely,
the goal of this subsection is to construct a pre-braided homogeneous category whose objects
are (words on the alphabet of) decorated surfaces of finite or infinite type: see Proposition 3.3.
Using this setup and [RWW17, Thm. A], together with Proposition 2.12, we next show in §3.2
that both Theorem C (acyclicity) and Theorem E (homological stability) reduce to proving
that a certain family of semi-simplicial sets Wn(A,X)• is highly-connected. In §3.3 we show
that one may pass to the associated simplicial complexes Sn(A,X) and in §3.4 we reduce this
further to the statement that a certain (simpler) family of simplicial complexes TCn(A,X) is
highly-connected, which will be proven in §4.

3.1. The homogeneous category for infinite-type surfaces. In this subsection, we build
the homogeneous categories needed for the proof of homological stability of infinite-type sur-
faces. We work essentially with the construction of [RWW17, §5.6], but allow also non-compact
surfaces. In the infinite-type setting we face new technical difficulties: for example, the bound-
ary sum operation no longer satisfies the cancellation property; this will be resolved following
[RWW17, Remark 1.11].

Recall that, in this paper, surfaces are assumed to be second countable, connected and
orientable, and their boundaries are assumed to be compact (thus a disjoint union of finitely
many circles). LetM be the groupoid whose objects are decorated surfaces (S, I), where S is a
surface with at least one boundary component and I : [−1, 1] ↪→ ∂S is a parametrised interval
in its boundary. The boundary component of S containing I is called the based boundary of S
and denoted by ∂0S. The morphisms ofM are isotopy classes of homeomorphisms restricting
to the identity on I. (Note that, by definition, the mapping class group of a surface is the group
of isotopy classes of homeomorphisms of S that restrict to the identity on ∂S.) The following
well-known fact allows us to switch freely between the smooth and topological categories. We
include a sketch of a proof of this fact in Appendix A to emphasise that it does not depend on
assuming that surfaces are of finite type.

Lemma 3.1. For any smooth surface S, the forgetful map Diff(S, ∂S) → Homeo(S, ∂S) is a
weak homotopy equivalence of topological groups.

Just as in [RWW17, §5.6], the boundary connected sum ♮ gives a braided monoidal struc-
ture onM. Given two decorated surfaces (S1, I1) and (S2, I2), their boundary connected sum
(S1♮S2, I1♮I2) is defined to be the surface obtained by gluing S1 and S2 along the right half-
interval I+1 ⊂ ∂S1 and the left half-interval I−2 ⊂ ∂S2, together with the embedded interval
I1♮I2 ⊂ ∂(S1♮S2) given by the union I−1 ∪ I

+
2 of the other two half-intervals. For an illustration,

see [RWW17, Fig. 2(b), p. 609]. Extending this in the obvious way to morphisms, we obtain an
operation ♮ :M×M→M that is associative up to obvious “bracket-shuffling” isomorphisms.
Although there are isomorphisms D2♮S ∼= S ∼= S♮D2 given by “absorbing” the disc into a collar
neighbourhood of S, these do not satisfy the unit constraints for a monoidal category. Instead,
we formally adjoin an additional object I toM with EndM(I) = {idI} and with no morphisms
to or from the other objects of M. We then extend ♮ in the unique way so that I is a strict
unit. Finally, by [Sch01, Theorem 4.3], we may also force strict associativity (without changing
the underlying category or the unit object) by making careful choices of concrete (set-theoretic)
realisations of S1♮S2 for each S1 and S2. Thus M is a strict monidal groupoid. It may be
equipped with a braiding given by a half Dehn twist in a neighbourhood of the union of based
boundaries ∂0S1 ∪ ∂0S2 ⊂ S1♮S2, as pictured in [RWW17, Fig. 2(c), p. 609].

We now consider the Quillen bracket category UM associated to the braided monoidal
groupoidM (the construction U(−) is recalled in §1.3). SinceM has no zero divisors, UM is
a pre-braided monoidal category by [RWW17, Proposition 1.8]. Next, one would like to apply
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[RWW17, Theorem 1.10] (recalled as Theorem 1.12 in §1.3) to show that UM is also a homo-
geneous category. However, this is impossible since condition (1) (cancellation for the monoid
of objects ofM) fails, due to the self-similarity of certain infinite-type surfaces. On the other
hand, condition (2) does hold:

Lemma 3.2. Let (S1, I1), (S2, I2) be two objects inM. Then the natural map

(3.1) ι∗ : AutM(S1, I1) −→ AutM(S1♮S2, I1♮I2)

is injective.

We give a different proof than that of [RWW17, Proposition 5.18].

Proof. Let f ∈ AutM(S1, I1) and suppose ι∗(f) = 1 ∈ AutM(S1♮S2, I1♮I2). Our goal is to
prove that f is also isotopic to the identity. By the Alexander method (see for example [FM11,
Proposition 2.8] for the finite-type case and see [HHMV19] for the infinite-type case), it will
suffice to show that f preserves the isotopy classes of all simple closed curves and all simple arcs
in S1. Let C be a simple closed curve or a simple arc in S1. Since ι∗(f) = 1, we know that f(C)
and C are isotopic, thus in particular homotopic, in S1♮S2. There is a retraction S1♮S2 → S1, so
it follows that f(C) and C are homotopic in S1. It then follows from [Eps66, Theorem 2.1] (if C
is a curve) or [Eps66, Theorem 3.1] (if C is an arc) that f(C) and C are ambient isotopic in S1
by an ambient isotopy fixing the boundary of S1. (Epstein requires surfaces to be triangulated;
our surfaces are second countable, which implies triangulability by [Rad25]. For arcs, see also
[Feu66].) Thus f is isotopic to the identity by the Alexander method. □

Thus the only property preventing UM from being a homogeneous category is the failure
of cancellation in M. We therefore force M to satisfy cancellation using the trick explained
in [RWW17, Remark 1.11]: we replace M with the groupoid M̄ whose set of objects is the
free monoid on the set of objects ofM, with no morphisms between distinct objects, and with
automorphism groups given by

AutM̄(w) = AutM(A1♮A2♮ · · · ♮Ar)

for any word w = A1A2 · · ·Ar on the objects A1, A2, . . . , Ar of M. The monoidal structure
on M̄ is given by juxtaposition of words, and the unit is the empty word ∅. In particular,
although we may have an isomorphism A♮B ∼= A in M for some non-unit object B, in M̄ we
instead have HomM̄(A⊕B,A) = HomM̄(AB,A) = ∅ since the words AB and A are not equal.
Having fixed the problem of cancellation, we now have:

Proposition 3.3. Let M̄ be the braided monoidal groupoid decribed above. Then the Quillen
bracket category UM̄ is pre-braided and homogeneous.

Proof. By Theorem 1.12 (Proposition 1.8 and Theorem 1.10 of [RWW17]), it suffices to check
that M̄ has no zero divisors and satisfies cancellation, and that the natural morphism

(3.2) AutM̄(w1) −→ AutM̄(w1w2)

is injective for any two words w1, w2 in the objects ofM. No zero divisors and cancellation are
automatic from the fact that (by definition) the monoid of objects of M̄ is free. If we write
w1 = A1A2 · · ·Ar and w2 = B1B2 · · ·Bs, the morphism (3.2) may be written as

AutM(A1♮A2♮ · · · ♮Ar) −→ AutM(A1♮A2♮ · · · ♮Ar♮B1♮B2♮ · · · ♮Bs).

This is a composition of s morphisms of the form (3.1), so it is injective by Lemma 3.2. □

We note that we have not changed the isomorphisms of the category by passing from M̄ to
its Quillen bracket construction UM̄.

Lemma 3.4. There is a canonical isomorphism of groupoids

M̄ ∼= Iso(UM̄),

where Iso(C) denotes the underlying groupoid of C. In particular, automorphism groups in UM̄
are the same as automorphism groups in M̄.
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Proof. By [RWW17, Proposition 1.7], it suffices to check that the automorphism group AutM̄(∅)
is trivial and that the monoid of (isomorphism classes of) objects of M̄ has no zero-divisors.
The first statement follows from the fact that AutM̄(∅) = AutM(I) = {idI} by definition of M̄
and by definition of the (formally adjoined) unit ofM. The second statement follows from the
fact that the monoid of (isomorphism classes of) objects of M̄ is free. □

3.2. Reduction to high-connectivity. Applied to the pre-braided homogeneous category
UM̄ (see Proposition 3.3), Theorem A of [RWW17], applied to the constant coefficient system
Z, says the following. Let A and X be two decorated surfaces (possibly of infinite type), each
with exactly one boundary component.

Theorem 3.5 ([RWW17, Theorem A applied to UM̄]). Suppose that the semi-simplicial set
Wn(A,X)• from Definition 1.13 is (n−2

2 )-connected for each n ≥ 1. Then the stabilisation map

(3.3) Map(A♮X♮n) −→ Map(A♮X♮n+1)

induces isomorphisms (surjections) on Hi(−;Z) for each n ≥ 1 and for i ≤ n−2
2 (for i ≤ n

2 ).

Remark 3.6. We note that the statement in [RWW17] has a stabilisation map of the form
AutUM̄(A♮X♮n)→ AutUM̄(A♮X♮n+1) in place of (3.3); we have applied the identifications

AutUM̄(A♮X♮n) = AutM̄(A♮X♮n)

= AutM(A♮X♮n)

= Map(A♮X♮n),

which follow by Lemma 3.4 and the definitions of M̄ andM respectively. Notice that (3.3) is
the map (0.1) from the statement of Theorem E.

Corollary 3.7. Let Σ be a connected surface without boundary. Suppose that the semi-simplicial
set Wn(D2,B(Σ))• from Definition 1.13 is (n−2

2 )-connected for each n ≥ 1. Then the mapping
class group Map(B(Σ)) is acyclic.

Proof. Consider the homomorphism

en : Map(B(Σ)♮n) −→ Map(B(Σ)♮n+1)

induced by including B(Σ)♮n into B(Σ)♮n+1 and extending diffeomorphisms by the identity on
the new B(Σ) summand. By Theorem 3.5, this map induces isomorphisms on Hi(−;Z) for all
n ≥ 2i+2. Via the self-similarity of the binary tree B, there is a homeomorphism B(Σ)♮B(Σ) ∼=
B(Σ), which, by iteration, induces a homeomorphism B(Σ)♮n ∼= B(Σ) for all n ≥ 1. Using this,
we may identify the homomorphism en with the homomorphism e1 = e = (2.3) for all n ≥ 1 and
deduce that this map is a homology isomorphism in all degrees. Proposition 2.12 then implies
that Map(B(Σ)) is acyclic. □

Proving Theorems C and E has therefore been reduced to proving that the semi-simplicial set
Wn(A,X)• is (n−2

2 )-connected for any A and for each X in the list in the statement of Theorem

E. (Theorem C just requires the case of A = D2 and X = B(Σ).)

3.3. From semi-simplicial sets to simplicial complexes. As a first step towards studying
the connectivity of Wn(A,X)•, we will replace it by its associated simplicial complex Sn(A,X)
(Proposition 3.11).

Definition 3.8. For any semi-simplicial set Y•, the simplicial complex K(Y•) is defined to have
objects Y0 and a collection {y0, . . . , yp} ⊆ Y0 spans a p-simplex if and only if there exists σ ∈ Yp
such that

{f0(σ), . . . , fp(σ)} = {y0, . . . , yp},
where f0, . . . , fp : Yp → Y0 are the p+ 1 distinct compositions of face maps of Y•.

The following lemma is immediate from the definitions of geometric realisations of semi-
simplicial sets and simplicial complexes respectively.
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Lemma 3.9. Suppose that the semi-simplicial set Y• has the property that, for every simplex
σ ∈ Yp, the vertices f0(σ), . . . , fp(σ) ∈ Y0 are distinct. Moreover, suppose that each σ ∈ Yp is
determined by the unordered set {f0(σ), . . . , fp(σ)} ⊆ Y0. Then there is a homeomorphism

|Y•| ∼= |K(Y•)|.

In our setting, we will denote the associated simplicial complex as follows (this agrees with
Definition 1.14 in §1.3, which in turn is [RWW17, Definition 2.8]).

Definition 3.10. For any pair of decorated surfaces (A,X), let Sn(A,X) = K(Wn(A,X)•).

Proposition 3.11. For a pair of decorated surfaces (A,X) with X ̸= D2, the associated semi-
simplicial set Wn(A,X)• satisfies the conditions of Lemma 3.9. Thus we have homeomorphisms

|Wn(A,X)•| ∼= |Sn(A,X)|.

Proof. First of all, we recall from [RWW17, Definition 2.5] that a homogeneous category C is
locally standard at a pair of objects (A,X) if the two canonical morphisms X → A ⊕ X ⊕ X
are distinct and the map

(3.4) HomC(X,A⊕X⊕n−1) −→ HomC(X,A⊕X⊕n)

sending f to f ⊕ ιX is injective. By [RWW17, Proposition 2.6], this condition implies that any
simplex σ ∈ Wn(A,X)p has distinct vertices f0(σ), . . . , fp(σ) in Wn(A,X)0 and also that each

σ ∈ Wn(A,X)p is determined by its ordered list of vertices (f0(σ), . . . , fp(σ)) ∈ Wn(A,X)p+1
0 .

Since UM̄ is homogeneous (Proposition 3.3), it will thus suffice to show that:

(1) the map (3.4) is injective;
(2) the two canonical morphisms X → A⊕X ⊕X are distinct;

(3) for (v0, . . . , vp) ∈Wn(A,X)p+1
0 , there is at most one permutation τ of {0, 1, . . . , p} such

that (vτ(0), . . . , vτ(p)) is the ordered list of the vertices of a p-simplex in Wn(A,X)p.

We will begin by proving property (1). Unwinding the definitions, we first observe that the set

HomUM̄(X,A⊕X⊕n) is in natural bijection with the quotient set Map(A♮X♮n)/Map(A♮X♮(n−1)),
where we write Map(−) = π0(HomeoI(−)) = AutM(−) and where the map (3.4) is induced by
taking quotients vertically in the square of group homomorphisms

(3.5)

Map(A♮X♮(n−2)) Map(A♮X♮(n−1))

Map(A♮X♮(n−1)) Map(A♮X♮n) Map(A♮X♮n),b

where the map marked “b” is the braiding on the last two copies of X in A♮X♮n and the other
maps (induced by extending homeomorphisms by the identity) are injective by Lemma 3.2. The
map (3.4) is injective if and only if the square (3.5) is a pullback square, which is equivalent to

the following claim, where we write A♮X♮n = Ā♮X1♮X2 with Ā = A♮X♮(n−2) and X1 = X2 = X.
Claim. Suppose that an element g ∈ Map(A♮X♮n) admits representatives g = [φ1] = [φ2], where

φ1 restricts to the identity on X1 and φ2 restricts to the identity on X2. Then g admits
a representative [φ12], where φ12 restricts to the identity on X1♮X2.

To prove this claim, first notice that the subsurface X1 of Ā♮X1♮X2 disconnects the surface into
the two pieces Ā and X2. Because of this, since φ1 restricts to the identity on X1, it must be
equal to φ′

1♮idX1♮ψ for some homeomorphisms φ′
1 and ψ of Ā and X2 respectively. It will suffice

to show that the homeomorphism φ′′
1 = idX1♮ψ of X1♮X2 is isotopic to the identity (fixing the

boundary of X1♮X2). Now let A be a stable Alexander system of essential arcs and curves
on X1♮X2 having the property that each arc or curve in A is contained either in X1 or in X2.
(For infinite-type surfaces this may be ensured by following the construction of stable Alexander
systems in [HHMV19]: they are built from the boundaries of a stable exhaustion, a “dual” curve
for each boundary of the exhaustion and a finite stable Alexander system for each stratum of
the exhaustion. As long as we ensure that the stable exhaustion respects the decomposition of
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X1♮X2 into X1 and X2, we may arrange that the stable Alexander system does too.) Let C be
an arc or curve in A. If C lies in X1, then φ

′′
1(C) = C. If C lies in X2, then φ

′′
1(C) = φ1(C) and

φ2(C) = C are arcs or curves in X2 that are isotopic in A♮X♮n. Via a retraction A♮X♮n → X2,
they are homotopic in X2 and thus isotopic in X2 by [Eps66, Theorem 2.1 or 3.1]. Hence, by the
Alexander trick, the homeomorphism φ′′

1 of X1♮X2 is isotopic to the identity. This completes
the proof of the Claim and therefore also of property (1).

We next prove property (2). As noted above, morphisms X → A⊕X⊕X in UM̄ correspond
to elements of Map(A♮X1♮X2)/Map(A♮X1), where we write X1 = X2 = X as a notational
device to distinguish the two copies of X in the boundary connected sum. The two canonical
morphisms correspond, under this identification, to the cosets [id] and [idA♮b], where b denotes
the braiding ofX1♮X2. Property (2) is then equivalent to the claim that idA♮b is not isotopic to a
homeomorphism of the form φ♮idX2 . To see this, consider the induced actions on H1(A♮X1♮X2).
Any homeomorphism isotopic to one of the form φ♮idX2 must act trivially on all homology
classes supported on X2. On the other hand, since X2 = X is not the disc, it supports non-
trivial homology classes, which are acted on non-trivially by the braiding idA♮b. This establishes
property (2).

Property (3) is most easily seen using the alternative description of the simplices ofWn(A,X)•
that we explain in the next subsection, as ambient isotopy classes of collections of pairwise
disjointly embedded copies of X in the interior of A♮X♮n equipped with arcs to the basepoint of
A♮X♮n, where the arcs are also pairwise disjoint except at the basepoint. In this description, the
ordering of the list of vertices of a simplex corresponds to the intrinsic ordering of the arcs in a
small neighbourhood of the basepoint. Changing the ordering of the vertices without changing
the unordered set of vertices would therefore entail isotoping these arcs (fixing their endpoints)
so that at the end of the isotopy, we have: (i) they are again pairwise disjoint and disjoint from
the embedded copies of X; (ii) their ordering near the basepoint is different. This is impossible
whenever X has non-trivial fundamental group, which is the case since we have assumed that
X is not the disc. □

3.4. Simplifying the simplicial complexes. We now discuss in more detail the morphisms
X⊕i → A⊕X⊕n in UM̄ in order to simplify the simplicial complex Sn(A,X). We first give an
explicit topological description of this set of morphisms (Proposition 3.15) in terms of admissible
embeddings (Definition 3.13). This will allow us to replace Sn(A,X) with another simplicial
complex where we remember only boundaries of admissible embeddings.

Construction 3.12. Let Y and Z be two decorated surfaces. Let us consider a smooth em-
bedding

(3.6) f : (Y, [0, 1]) ↪−→ (Z, [0, 1]),

where the notation (−, [0, 1]) means that
• f acts by the identity on [0, 1] ⊂ ∂Y ;
• f sends [−1, 0) ⊂ Y into the interior of Z.

Let us consider the subsurface

(3.7) f⊥ := Z ∖ f(Y ),

the closure in Z of the complement of f(Y ). This has the structure of a decorated surface, with
decoration I : [−1, 1] → ∂(f⊥) given by the decoration of Z on [−1, 0] and by the composition
f ◦ (−1) : [0, 1]→ [−1, 0]→ Y → Z on [0, 1], where the middle arrow is the negative part of the
decoration of Y .

Definition 3.13. An embedding f of the form (3.6) is called pre-admissible if:
• it is a proper embedding, i.e., its image is a closed subset of Z,
• the intersection f(Y ) ∩ f⊥ is equal to f([−1, 0]).

These conditions imply that Z = f⊥♮f(Y ). When Y = X♮i and Z = A♮X♮n, a pre-admissible
embedding f is called admissible if, in addition:

• the subsurface f⊥ is diffeomorphic – as a decorated surface – to A♮X♮(n−i).
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The space of admissible embeddings of X♮i into A♮X♮n is denoted by

Embadm[0,1](X
♮i, A♮X♮n) ⊂ Emb(X♮i, A♮X♮n)

and is equipped with the topology induced by the smoothWhitney topology on Emb(X♮i, A♮X♮n).
Unwinding this definition, one sees that an embedding X♮i ↪→ A♮X♮n is admissible if and only
if it extends (along the canonical inclusion) to a diffeomorphism of A♮X♮n; this is the charac-
terisation that will be needed in the proof of Proposition 3.15 below.

We will also need the following elementary lemma, whose proof is immediate.

Lemma 3.14. Let H ⊂ G be an inclusion of topological groups and suppose that the quotient
map G↠ G/H admits path lifting. Then there is a natural bijection

π0(G)/π0(H) ∼= π0(G/H).

Proposition 3.15. For decorated surfaces A ̸= X there is a natural bijection

HomUM̄(X⊕i, A⊕X⊕n) ∼=

{
π0

(
Embadm[0,1](X

♮i, A♮X♮n)
)

for i ≤ n
∅ for i > n.

Proof. By definition, HomUM̄(X⊕i, A ⊕ X⊕n) is the set of pairs (Y, f) where f : Y ⊕ X⊕i →
A⊕X⊕n is a morphism in HomM̄(Y ⊕X⊕i, A⊕X⊕n) up to a certain equivalence relation. By
definition, M̄ has no morphisms between distinct objects, so this forces Y ⊕X⊕i = A⊕X⊕n.
Moreover, objects of M̄ are words of decorated surfaces and ⊕ is concatenation of words, so by
cancellation this implies:

• that Y = A⊕X⊕(n−i), if i ≤ n;
• a contradiction, if i > n.

Hence there are no morphisms if i > n and we may assume from now on that i ≤ n. Thus we
have no choice about Y and f is an automorphism of A⊕X⊕n in M̄, which is an automorphism
of A♮X♮n inM, which is an isotopy class of self-homeomorphisms of A♮X♮n fixing I pointwise.
Two such pairs (A⊕X⊕(n−i), f1) and (A⊕X⊕(n−i), f2) are equivalent if and only if there exists a

self-homeomorphism g of A♮X♮(n−i) fixing I pointwise making the following diagram commute:

A♮X♮(n−i)♮X A♮X♮n

A♮X♮(n−i)♮X

f

g♮idX
f ′

Thus we have a bijection

(3.8) HomUM̄(X⊕i, A⊕X⊕n)←→ π0(HomeoI(Ā♮X
♮i))/π0(HomeoI(Ā)),

where we abbreviate Ā = A♮X♮n−i. From the commutative diagram

π0(DiffI(Ā)) π0(DiffI(Ā♮X
♮i))

π0(HomeoI(Ā)) π0(HomeoI(Ā♮X
♮i))

and Lemma 3.1, which tells us that the vertical maps are bijections, we have a natural bijection

(3.9) π0(HomeoI(Ā♮X
♮i))/π0(HomeoI(Ā))←→ π0(DiffI(Ā♮X

♮i))/π0(DiffI(Ā)).

Next, we use the fact that the restriction map

(3.10) DiffI(Ā♮X
♮i) −→ Emb[0,1](X

♮i, Ā♮X♮i),

given by pre-composition with the inclusion X♮i ↪→ Ā♮X♮i, is a fibre bundle. (This is the Isotopy
Extension Theorem.) It therefore remains a fibre bundle when we replace its codomain with its

image, which is, by definition, the subspace Embadm[0,1](X
♮i, Ā♮X♮i) of admissible embeddings. The
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(non-empty) fibres of (3.10) are precisely the orbits of the action of DiffI(Ā), so the restriction
map factors as

(3.11)

DiffI(Ā♮X
♮i)

DiffI(Ā♮X
♮i)/DiffI(Ā) Embadm[0,1](X

♮i, A♮X♮n)

where the bottom horizontal map is a continuous bijection. The left diagonal map in (3.11)
is a quotient map (by definition) and the right diagonal map in (3.11) is also a quotient map
(because it is a fibre bundle); thus the bottom horizontal map is in fact a homeomorphism. In
particular, it induces a bijection

(3.12) π0
(
DiffI(Ā♮X

♮i)/DiffI(Ā)
)
←→ π0

(
Embadm[0,1](X

♮i, A♮X♮n)
)
.

Finally, since the right diagonal map in (3.11) is a fibre bundle and the bottom horizontal map
in (3.11) is a homeomorphism, the left diagonal map in (3.11) is also a fibre bundle; in particular
it admits path lifting. Thus Lemma 3.14 implies that there is a natural bijection

(3.13) π0(DiffI(Ā♮X
♮i))/π0(DiffI(Ā))←→ π0

(
DiffI(Ā♮X

♮i)/DiffI(Ā)
)
.

The claim now follows by composing the bijections (3.8), (3.9), (3.13) and (3.12). □

Remark 3.16. This identification of morphisms in a Quillen bracket category of manifolds as
embeddings satisfying a certain admissibility condition is similar to [PS, Proposition 4.8], which
considers topologically-enriched Quillen bracket categories of manifolds.

By Proposition 3.15 and the definition of Wn(A,X)•, we deduce:

Corollary 3.17. For each p ≥ 0, there is a natural bijection

Wn(A,X)p ∼=

{
π0

(
Embadm[0,1](X

♮(p+1), A♮X♮n)
)

for p ≤ n− 1

∅ for p ≥ n.

Moreover, under these identifications, the face maps ofWn(A,X)• correspond to pre-composition

with embeddings X♮(i−1) ↪→ X♮i given by the standard inclusion composed with appropriate braid-
ings of X♮i.

This also gives a topological description of the vertices and simplices of the associated sim-
plicial complex Sn(A,X) in terms of admissible embeddings. We now use this description to
observe that Sn(A,X) is a complete join over the simplicial complex where we forget most in-
formation about the admissible embeddings and only remember their restrictions to the based
boundary. This will allow us to progressively simplify Sn(A,X) to a more manageable sim-
plicial complex TCn(A,X) of “tethered X-curves”, whose high-connectivity will imply high-
connectivity of Sn(A,X); see Theorem 3.24. We do this simplification in the remainder of this
section, and then in §4 we prove high-connectivity of TCn(A,X) in each of the three settings
listed in the statement of Theorem E.

Definition 3.18. A based, embedded loop

α : (S1, {∗}) −→ (A♮X♮n, {0})

is called X-admissible if there exists an admissible embedding f : (X, [0, 1]) ↪→ (A♮X♮n, [0, 1])
(see Definition 3.13) such that f |∂0X = α. Similarly, a loop α is called X♮i-admissible if there
exists an admissible embedding f : (X♮i, [0, 1]) ↪→ (A♮X♮n, [0, 1]) such that f |∂0X♮i = α.

Definition 3.19. Let Un(A,X) be the following simplicial complex:

(1) a vertex of Un(A,X) is an isotopy class of X-admissible loops;
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(2) a (p + 1)-tuple [α0], . . . , [αp] of vertices spans a p-simplex of Un(A,X) if there exist
representatives α0, . . . , αp of the isotopy classes that are pairwise disjoint except at the

basepoint 0 ∈ A♮X♮n and moreover their concatenation α0 · · ·αp is X♮(p+1)-admissible
up to isotopy.

By Corollary 3.17, the vertices of Sn(A,X), which are by definition also the vertices of
Wn(A,X)•, are isotopy classes of admissible embeddings f : (X, [0, 1]) ↪→ (A♮X♮n, [0, 1]). There
is therefore a map of simplicial complexes

(3.14) F : Sn(A,X) −→ Un(A,X)

given by sending [f ] to [f |∂0X ]. Let us verify that it does indeed send simplices to simplices. A
simplex of Sn(A,X) is a collection of admissible embeddings of X that arises from an admissible

embedding ofX♮(p+1) by restricting to the last copy ofX in the boundary connected sumX♮(p+1)

and then applying the braiding of M (i times, for each 0 ≤ i ≤ p). The based boundaries of
these admissible embeddings are not disjoint on the nose, but they may easily be made pairwise
disjoint (except at the basepoint) by shrinking them slightly in a collar neighbourhood of the
based boundary of X. We record the following key observation.

Observation 3.20. When X ̸= D2, the forgetful map (3.14) is a complete join.

Proof. The map (3.14) is surjective by definition of the vertices of Un(A,X), so we must check
conditions (1) and (2) of Definition 1.17. Failure of condition (1) (injectivity on each simplex)

would imply, writing Ā = A♮X♮(n−2) and X1 = X2 = X, that the based boundaries ∂0X1 and
∂0X2 are isotopic in Ā♮X1♮X2. But since X is not a disc, the homology classes [∂0X1], [∂0X2] ∈
H1(Ā♮X1♮X2) must be distinct. Thus condition (1) holds. Condition (2) is the statement that
a simplex of Un(A,X) may be lifted to a simplex of Sn(A,X) by simply choosing lifts of each
of its vertices, without requiring any compatibility between the lifts of vertices. This holds in
our case because a collection of pairwise disjoint X-admissible loops representing a p-simplex
in Un(A,X) cuts out p+1 pieces from the surface A♮X♮n, which are each homeomorphic to X,
and lifting to a p-simplex of Sn(A,X) consists in choosing a homeomorphism with X for each
of these pieces; this may be done independently for each piece. Thus condition (2) also holds,
so (3.14) is a complete join. □

By Proposition 1.19 it will suffice, for high-connectivity of Sn(A,X), to show that the complex
Un(A,X) is weakly Cohen-Macaulay (wCM ). We now give another, isomorphic description of
the simplicial complex Un(A,X) in terms of tethered curves (cf. [HV17]), which are embeddings
of the “lasso” L = [0, 2]/(1 ∼ 2) into the surface A♮X♮n.

Definition 3.21. A tethered curve α : L ↪→ A♮X♮n is called a tethered X-curve if:

(1) the arc of α starts from the basepoint, i.e. L(0) = 0 ∈ I ⊂ A♮X♮n;
(2) the curve α([1, 2]) bounds a subsurface of A♮X♮n that is homeomorphic to X;
(3) the surface obtained from A♮X♮n by cutting along the arc α([0, 1]) and removing the

interior of the subsurface bounded by α([1, 2]) is homeomorphic to A♮X♮(n−1).

Definition 3.22. For a decorated surface A♮X♮n, its tethered X-curve complex TCn(A,X) is
defined to be the following simplicial complex:

(1) a vertex of TCn(A,X) is an isotopy class of tethered X-curves;
(2) a (p + 1)-tuple [α0], . . . , [αp] of vertices spans a p-simplex of TCn(A,X) if there exist

representatives α0, . . . , αp of the isotopy classes that are pairwise disjoint except at the

basepoint 0 ∈ A♮X♮n and moreover the complementary surface obtained by cutting out
the p+ 1 subsurfaces bounded by α0, . . . , αp is homeomorphic to A♮X♮(n−p−1).

Unwinding the definitions, we see that isotopy classes of X-admissible loops in A♮X♮n are in
one-to-one correspondence with isotopy classes of tethered X-curves in A♮X♮n and this corre-
spondence respects the property of being representable disjointly with complementary subsur-
face homeomorphic to A♮X♮(n−p−1). We therefore have:
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Wn(A,X)•

Sn(A,X)

Un(A,X) ∼= TCn(A,X)

homeomorphic
realisations

complete
join

TCn(A,L(Σ))

X = L(Σ)

TLCn(A,Σ) TLCn(A,Σ)

LCn(A,Σ)

[n− 2]

(n− 2)-connected

(∗)

(∗)

homotopy
equiv.

TCn(A,B(Σ))

X = B(Σ)

bTLCn(A,Σ) bTLC∞
n (A,Σ)

TC∞
n (A,B(Σ))

contractible

(∗)

same (n− 2)-skeleton

same (n− 2)-skeleton

Figure 5. The strategy of the high-connectivity proofs for X = L(Σ) and for
X = B(Σ). The symbol (∗) on an inclusion indicates a bad simplex argument.
The label [n−2] on one of the inclusions indicates that only the (n−2)-skeleton
includes into the larger complex.

Lemma 3.23. The simplicial complexes TCn(A,X) and Un(A,X) are isomorphic.

To finish this section, we show that high-connectivity of TCn(A,X) implies high-connectivity
of Wn(A,X)•.

Theorem 3.24. Let A and X be two decorated surfaces with X ̸= D2 and fix an integer k ≥ 1.
If TCn(A,X) is (n−2

k )-connected for all n ≥ 1, then Wn(A,X)• is (n−2
k )-connected for all n ≥ 1.

Proof. First notice that the link of any p-simplex in TCn(A,X) is isomorphic to TCn−p−1(A,X),

whose connectivity is at least n−p−3
k ≥ (n−2

k )− p− 1 since k ≥ 1. Hence TCn(A,X) is wCM of

dimension (n−2
k )+1. By Lemma 3.23, this means that Un(A,X) is wCM of dimension (n−2

k )+1.
Observation 3.20 and [HW10, Proposition 3.5] (recalled as Proposition 1.19) then imply that
Sn(A,X) is wCM of dimension (n−2

k ) + 1, in particular it is (n−2
k )-connected. Proposition 3.11

then implies that Wn(A,X)• is also (n−2
k )-connected. □

4. Proof of high-connectivity

In this section, we study the connectivity of the tethered X-curve complex TCn(A,X) for an
arbitrary decorated surface A and many interesting decorated surfaces X, namely for:

• any X of finite type in §4.1;
• any telescope X = L(Σ) in §4.2;
• any binary tree surface X = B(Σ) in §4.3.

The results in §4.1 are essentially classical, the only difference being that we allow the starting
surface A to be of infinite type, which does not essentially change the arguments. An overview
of the strategy of the proofs in §4.2 and §4.3 is given in Figure 5.

4.1. Stabilisation by finite-type surfaces. The results in this subsection are well-known
when A is of finite type. We indicate how this can be generalised to the infinite-type setting.

Theorem 4.1. Let A be a decorated surface. Then:

(1) If X is the once-punctured disc, then TCn(A,X) is (n− 2)-connected.
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(2) If X is the one-holed torus, then TCn(A,X) is (gA+n−3
2 )-connected, where gA is the

genus of A.

Proof. We consider each part in turn.

(1) Consider the surface A♮X♮n, which has n special punctures coming from X♮n. According
to Definition 3.22, the vertices of TCn(A,X) are isotopy classes of tethered X-curves.
Since X is a punctured disc, just as in the proof of [RWW17, Lemma 5.21], we may
identify the complex TCn(A,X) with the arc complex An(A,X) with:
• vertices: isotopy classes of embedded arcs connecting the basepoint to an isolated
end, which could lie in X♮n or in A;
• p-simplices: a (p+1)-tuple of isotopy classes of arcs spans a p-simplex if there exist
representative arcs that are pairwise disjoint outside the basepoint.

When A has k isolated ends with k <∞, this simplicial complex is shown to be Cohen-
Macaulay of dimension k+n− 1, in particular (k+n− 2)-connected, in [HW10, Propo-
sition 7.2]. (See also [Tra, Theorem 2.3] and [Tie, Theorem 3.2] for generalisations.
When A is the 2-disc, this complex is actually contractible, by [Dam13, Theorem 2.48].)
When A has infinitely many isolated ends, we may choose an increasing family {Ai}i∈N
of finite-type subsurfaces whose union is A, each Ai contains the based boundary of A
and the inclusion maps induce injections on fundamental groups. Thus each TCn(Ai, X)
is at least (n− 2)-connected by the previous case. Consider a map f : Sk → TCn(A,X)
for k ≤ n−2. Since Sk is compact, its image must lie in the subcomplex TCn(Ai, X) for
some i. So f is nullhomotopic in TCn(Ai, X). Thus we have [f ] = 0 ∈ πk(TCn(A,X)).
Hence we have shown that TCn(A,X) is (n− 2)-connected when A has infinitely many
isolated ends. This proves part (1) of the theorem.

(2) For part (2), it is more convenient to use the loop model, i.e. the complex Un(A,X)
(see Definition 3.19). To show that Un(A,X) is highly-connected, we will consider the
tethered chain complex TCh(A♮X♮n, P ) from [HV17, §5.3]. Here P is an open interval
in the based boundary containing the basepoint. To simplify, we may in fact assume
that P is the basepoint and denote the complex by TCh(A♮X♮n). Recall that a chain
is a pair (a, b) of curves intersecting transversely at a single point, together with an
orientation of b; a tethered chain is the union of a chain and a tether, where the tether
is an arc connecting the basepoint with the positive side of the (oriented) b-curve of the
chain; the interior of the tether is required to be disjoint from the chain. The complex
TCh(A♮X♮n) is then defined as follows:
• vertices: isotopy classes of tethered chains in A♮X♮n;
• p-simplices: a (p+ 1)-tuple of isotopy classes of tethered chains spans a p-simplex
if there exist representatives that are pairwise disjoint outside the basepoint.

We claim that TCh(A♮X♮n) is (gA+n−3
2 )-connected. This holds if A is of finite type by

[HV17, Proposition 5.5]. If A is of infinite type, we may do a similar trick as in part
(1). Let us choose an increasing family {Ai}i∈N of finite-type subsurfaces whose union
is A, each Ai contains the based boundary of A, the inclusion maps induce injections
on fundamental groups and:
• the genus gA1 of A1 equals gA if A has finite genus;
• limi→∞(gAi) =∞ if gA =∞.

Each TCh(Ai♮X
♮n) is

(gAi
+n−3

2

)
-connected by [HV17, Proposition 5.5]. Consider a map

f : Sk → TCh(A♮X♮n) for k ≤ gA+n−3
2 . Since Sk is compact, its image must lie in the

subcomplex TCh(Ai♮X
♮n) for some i. By increasing i if necessary, we may ensure that

k ≤ gAi
+n−3

2 so that f is nullhomotopic in TCh(Ai♮X
♮n). It thus follows that we also

have [f ] = 0 ∈ πk(TCh(A♮X♮n)). Hence TCh(A♮X♮n) is (gA+n−3
2 )-connected.

Given any tethered chain, one may take a small tubular neighbourhood of it; the
boundary of this tubular neighbourhood is a based loop cutting off a torus from A♮X♮n,
so its isotopy class is a vertex in Un(A,X). One may check that this construction
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describes a simplicial map TCh(A♮X♮n)→ Un(A,X) that is a complete join (a simplex
of Un(A,X) is represented by a collection of based loops that cut off disjoint tori; lifting
this to a simplex of TCh(A♮X♮n) consists in choosing a “core” tethered chain for each
torus, which may be chosen independently for each vertex of the simplex). By Remark

1.20, the complex Un(A,X) is a retract of TCh(A♮X♮n) and hence it is also (gA+n−3
2 )-

connected. By Lemma 3.23 it then follows that TCn(A,X) is (gA+n−3
2 )-connected. □

4.2. Stabilisation by telescopes. In this section, we prove that the tetheredX-curve complex
TCn(A,X) is highly-connected for 1-holed linear surfaces X = L(Σ) that are telescopes, i.e. that
have the property that the special end of L(Σ) (corresponding to the unique end of the linear
tree L) is topologically distinguished in the end space of L(Σ); see Definition 0.11.

Definition 4.2. Let Σ be a connected surface with empty boundary, possibly of infinite type.
Recall from Definition 0.3 the linear surface GrL(Σ); we will consider its 1-holed version L(Σ) =
GrL(Σ)◦ (see Notation 0.4). We note that the surface L(Σ) may be realised as the union of a
family of subsurfaces {Ln}n≥0 constructed as follows:

• L0 is a cylinder with a basepoint in one boundary component. We refer to this boundary
as its based boundary ;
• Ln is obtained from Ln−1 by attaching a 2-holed copy of Σ along the non-based boundary
of Ln−1; the basepoint and based boundary of Ln are inherited from Ln−1.

We refer to the non-based boundary components of the Ln as the level curves of L(Σ). The
end of L(Σ) accumulated by the level curves is called the level end of L(Σ). If E denotes the
space of ends of Σ, then the space of ends of L(Σ) is the one-point compactification (Eω)+ of
the disjoint union Eω of countably infinitely many copies of E; the level end corresponds to the
point at infinity.

Example 4.3.

(1) If Σ = T 2 is the torus, then GrL(T
2) is the Loch Ness monster surface, which is illus-

trated in Figure 2. Removing the interior of the disc on the left-hand side of the figure,
we obtain L(T 2). The level curves are also illustrated in the figure.

(2) If Σ = R2 is the plane (once-punctured sphere), then L(R2) is the (1-holed) flute surface.

Now for any decorated surface A and n ≥ 1, the surface A♮L(Σ)♮n inherits a level structure
from the n copies of L(Σ); see Figure 6 for an example. Recall that a tethered curve in a based
surface is the union of a tether and a simple closed curve, where a tether is an embedded arc
connecting the basepoint of the surface to the curve and whose interior is disjoint from the
curve. A tethered level curve in a based surface with a level structure is a tethered curve where
the curve is one of the level curves of the surface: it therefore consists in a (discrete) choice of
one of the level curves together with an arc attaching it to the basepoint.

Definition 4.4. The tethered level curve complex TLCn(A,Σ) is the simplicial complex with:

(1) vertices: isotopy classes of tethered level curves in A♮L(Σ)♮n;
(2) p-simplices: a (p+ 1)-tuple of isotopy classes of tethered level curves spans a p-simplex

if there exist representatives that are pairwise disjoint outside the basepoint.

More generally, we shall need to consider tethered level curve complexes defined on certain
(“tame”) subsurfaces of A♮L(Σ)♮n.

Definition 4.5. A subsurface S ⊆ A♮L(Σ)♮n is called tame if it is connected, closed (as a
subset), contains the basepoint of A♮L(Σ)♮n and each level end of A♮L(Σ)♮n has a neighbourhood
that is either contained in S or disjoint from S.

If S is a tame subsurface of A♮L(Σ)♮n, then a level end of S means a level end of A♮L(Σ)♮n

that is also an end of S. If a level curve of A♮L(Σ)♮n lies in S and cuts off a level end of S —
i.e. if the corresponding level end of A♮L(Σ)♮n is also a (level) end of S — then we call it a level
curve of S. In this way, S inherits a level structure from A♮L(Σ)♮n.
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Figure 6. The level structure of D2♮L(T 2)♮n, inherited from that of L(T 2).

We may therefore generalise Definition 4.4 to tame subsurfaces S of A♮L(Σ)♮n. A tethered
level curve of S is a tethered curve in S where the curve is one of the level curves of S. If S
has k ∈ {0, . . . , n} level ends, we denote by TLCk(S) the simplicial complex whose vertices are
isotopy classes of tethered level curves in S and where a tuple of vertices spans a simplex if
there exist representatives that are pairwise disjoint outside of the basepoint.

Proposition 4.6. The simplicial complex TLCn(A,Σ) is (n− 2)-connected.

Remark 4.7. Clearly two vertices whose level curves lie in the same copy of L(Σ) cannot
be joined by an edge. The simplicial complex TLCn(A,Σ) therefore has dimension n − 1, so
Proposition 4.6 implies that it is homotopy equivalent to a wedge of (n− 1)-spheres.

Proof of Proposition 4.6. We will prove the following stronger statement: for any n, k ≥ 0 and
any tame subsurface S of A♮L(Σ)♮n with k level ends, the simplicial complex TLCk(S) is (k−2)-
connected. To prove this statement, we will include TLCk(S) into a larger complex TLCk(S),
then project this complex onto the level curve complex LCk(S). This is the complex with level
curves of S as vertices and p + 1 of them span a p-simplex if the level ends that they cut off
are pairwise distinct. We first observe that LCk(S) is (k − 2)-connected, then show that the
projection TLCk(S)→ LCk(S) is a homotopy equivalence using a fibering argument of Hatcher
and Vogtmann [HV17, Corollary 2.7] and then apply a bad simplices argument to show that
TLCk(S) is also (k − 2)-connected by induction on k.

The level curve complex: The complex LCk(S) is the join of the k (zero-dimensional) sub-
complexes given by the level curves that cut off a fixed level end. Since connectivity plus 2 is
additive under joins, it follows that LCk(S) is (k − 2)-connected.

The larger complex: The complex TLCk(S) has the same vertices as TLCk(S) but simplices
are allowed to share level curves, in other words, p + 1 isotopy classes of tethered level curves
span a p-simplex if they admit representatives where each pair satisfies one of the following two
conditions:

• they are pairwise disjoint except at the basepoint and (hence) their level curves cut off
different level ends of S;
• the interiors of their tethers are disjoint and their level curves are equal.
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The projection: The projection π : TLCk(S) → LCk(S) forgets the tethers and maps a
tethered level curve to its level curve. This is a simplicial map but it is not a complete join,
since it fails to be injective on individual simplices in general. We instead want to apply [HV17,
Corollary 2.7] here. The fibre π−1(y) of this projection over the barycentre y of a simplex σ of
LCk(S) consists of all tether systems for σ, i.e. tethers that are only attached to level curves in
σ. Let us fix one system σ0 ∈ π−1(y) that has one tether attached to each level curve in σ (so
it lies in the subcomplex TLCk(S), although we will not use this fact). We will deformation
retract the fibre π−1(y) into the star of σ0 using a Hatcher flow [Hat91], see also [HV17, §2.4].
Denote the tethers of σ0 by t0, . . . , tp. Given any other tether system lying in this fibre, we get
rid of the intersections of its tethers with the ti by putting it into minimal position with respect
to the ti, then pushing the intersection points with t0 towards the basepoint and discarding the
closed curve part. In this way, step by step, we get rid of all intersection points of the tethers
with t0 and then t1, . . . , tp. At the end, we have a tether system that is disjoint from each ti, so
it lies in the star of σ0. Thus we have deformation retracted π−1(y) onto the star of σ0, which is
contractible, so π−1(y) is contractible for the barycentre y of each simplex σ of LCk(S). Hence
the projection π is a homotopy equivalence by [HV17, Corollary 2.7]. Thus TLCk(S) is also
(k − 2)-connected.

The inclusion: Finally, we analyse the connectivity of the inclusion map TLCk(S) ↪→ TLCk(S)

using a bad simplices argument. We call a simplex in TLCk(S) bad if each of its level curves
has at least two tethers attached to it. Notice that this definition clearly satisfies conditions
(1) and (2) of §1.4.1; also notice that vertices cannot be bad. Given a bad p-simplex σ, the
surface obtained by cutting S open along a system of tethered level curves representing σ has
several components. Some components (more precisely, one component for each level curve that
we have cut along) do not contain the basepoint, so they will not contribute to the good link
Gσ. Some components do contain the basepoint but do not contain any level ends, so they
will also not contribute to Gσ. In any case, if we denote by S1, . . . , Sd the components that
contain the basepoint, then each Si is a tame subsurface of A♮L(Σ)♮n and Gσ may be identified
with the join complex ∗di=1TLCki(Si), where ki is the number of level ends of Si. As noted
above, the components that are cut off by the level curves of σ do not contain the basepoint
and each removes one level end from S when it is cut off. Each level curve of σ corresponds to
at least two vertices, since σ is bad, so the number of level ends that are removed is at most
p+1
2 . Thus we have

∑d
i=1 ki ≥ k − p+1

2 . We also have ki < k for each i, since at least one level
end has been removed when passing from S to Si. By induction, we know that TLCki(Si) is at
least (ki − 2)-connected. Since connectivity plus 2 is additive under joins, we deduce that the
connectivity of Gσ is at least

d∑
i=1

ki − 2 ≥ k − p+1
2 − 2 ≥ k − p− 2,

where the last inequality holds since p ≥ 1 by our earlier observation that vertices cannot be
bad. Therefore, by Theorem 1.16 and the fact that TLCk(S) is (k− 2)-connected, we conclude
that TLCk(S) is also (k − 2)-connected. □

We have not so far needed to assume that the level end of the linear surface L(Σ) is topolog-
ically distinguished (see Definition 0.9) in the end space of L(Σ). This assumption will now be
used to deduce high-connectivity of the complex TCn(A,L(Σ)).

Remark 4.8. A key observation about topologically distinguished ends is the following. If a
surface X has a topologically distinguished end, then X♮X cannot be homeomorphic to X. We
also mention the following alternative characterisation of topologically distinguished points. A
point x ∈ E is topologically distinguished if and only if the following holds: if a neighbourhood
U of a different point y ̸= x in E contains a homeomorphic copy of a neighbourhood of x, then
U contains x.
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Corollary 4.9. Let L(Σ) be a telescope, i.e. a linear surface whose level end is topologically
distinguished. Assume that Σ ̸= S2. Then the complex TCn(A,L(Σ)) is (n− 3)-connected.

Proof. Assume that n ≥ 2 (otherwise the claim is trivial). A vertex of TLCn(A,Σ) is a tethered
level curve in A♮L(Σ)♮n. This cuts off from A♮L(Σ)♮n a subsurface homeomorphic to L(Σ) and

the complementary surface is homeomorphic to A♮L(Σ)♮(n−1); to prove this latter fact we use
the fact that n ≥ 2 to ensure that we may “absorb” a finite connected sum Σ♯ · · · ♯Σ into one
of the remaining copies of L(Σ). The isotopy class of this tethered curve is therefore a vertex
of TCn(A,L(Σ)). This gives us a map of vertex sets

(4.1) TLCn(A,Σ)0 −→ TCn(A,L(Σ))0,

which is injective since distinct level curves are not isotopic (because we have assumed that
Σ ̸= S2). For any p-simplex of TLCn(A,Σ) with p ≤ n − 2, the images of its vertices in
TCn(A,L(Σ))0 span a p-simplex by the same argument as above for vertices, using the fact
that n− p− 1 ≥ 1 in order to be able to “absorb” a finite connected sum Σ♯ · · · ♯Σ into one of
the remaining copies of L(Σ). Thus we have an embedding of simplicial complexes

(4.2) TLCn(A,Σ)
(n−2) ↪−→ TCn(A,L(Σ)),

where on the left we have the (n−2)-skeleton of TLCn(A,Σ). Note that the (n−1)-simplices of
TLCn(A,Σ) are not all sent to simplices of TCn(A,L(Σ)) under (4.1), so the embedding (4.2)
does not extend to the whole complex TLCn(A,Σ). Nevertheless, the fact that TLCn(A,Σ) is
(n − 2)-connected (Proposition 4.6) implies that its (n − 2)-skeleton is (n − 3)-connected. We
will now use a bad simplices argument for the inclusion

(4.3) TLCn(A,Σ)
(n−2) ↪−→ TCn(A,L(Σ))

(n−2),

where we have restricted the right-hand side of (4.2) to its (n − 2)-skeleton, to deduce that
TCn(A,L(Σ)) is also (n− 3)-connected.

We say a simplex in TCn(A,L(Σ))
(n−2) is bad if none of its vertices lie in TLCn(A,Σ)

(n−2).
This means, equivalently, that none of its vertices, which are (isotopy classes of) tethered curves,
is isotopic to a tethered level curve. Let σ be a bad p-simplex and Gσ its good link. We need
to show that Gσ is at least (n− p− 4)-connected. Each of the p+ 1 tethered curves of σ cuts
off from A♮L(Σ)♮n one homeomorphic copy of L(Σ). Since the level end of L(Σ) is topologically
distinguished, each homeomorphic copy of L(Σ) that is cut off contains at most one level end of
A♮L(Σ)♮n (it may contain zero, if A also contains homeomorphic copies of L(Σ)). Denote by Sσ
the complementary surface obtained after cutting off all subsurfaces bounded by the tethered
curves of σ and denote by n′ the number of level ends of A♮L(Σ)♮n contained in Sσ. By the

preceding argument we know that n′ ≥ n − p − 1. There is a decomposition Sσ ∼= A′♮L(Σ)♮n
′

of based surfaces equipped with level structures, where the right-hand side has the standard
level structure inherited from L(Σ) and the level structure of Sσ consists of all level curves of
A♮L(Σ)♮n that are contained in Sσ. Note that A′ may be different from A (part of A may have
been cut off and we may have absorbed some copies of Σ into A′). Under this identification,

the good link Gσ identifies with the complex TLCn′(A′,Σ)(n
′−2). This has connectivity at least

n′ − 3 ≥ n− p− 4 as it is the (n′ − 2)-skeleton of TLCn′(A′,Σ), which is (n′ − 2)-connected by

Proposition 4.6. Theorem 1.16 therefore implies that TCn(A,L(Σ))
(n−2) is (n − 3)-connected,

thus the whole complex TCn(A,L(Σ)) is also (n− 3)-connected. □

Corollary 4.10. Let L(Σ) be a telescope, i.e. a linear surface whose level end is topologically
distinguished. Assume that Σ ̸= S2. Then the complex TCn(A♮L(Σ),L(Σ)) is (n−2)-connected.

Proof. This follows immediately from Corollary 4.9 and the observation that TCn(A♮L(Σ),L(Σ))
is isomorphic to the (n− 1)-skeleton of TCn+1(A,L(Σ)). □

4.3. Stabilisation by binary tree surfaces. In this subsection, we prove that the tethered
X-curve complex TCn(A,X) is highly-connected for 1-holed binary tree surfaces X = B(Σ).
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Figure 7. The level structure of D2♮B(T 2)♮n, inherited from that of B(T 2).

Definition 4.11. Let Σ be a connected surface with empty boundary, possibly of infinite type.
Recall from Definition 0.3 the binary tree surface GrB(Σ); we will consider its 1-holed version
B(Σ) = GrB(Σ)◦ (see Notation 0.4). We note that the surface B(Σ) may be realised as the
union of a family of subsurfaces {Cn}n≥0 constructed as follows:

• C0 is a cylinder with a basepoint in one boundary component. We refer to this boundary
as its based boundary ;
• Cn is obtained from Cn−1 by attaching a 3-holed copy of Σ along each non-based bound-
ary component of Cn−1. The basepoint and based boundary of Cn are inherited from
Cn−1. Note that Cn has 2n non-based boundary components.

We refer to the non-based boundary components of the Cn as the level curves of B(Σ). The
ends of B(Σ) accumulated by the level curves form a Cantor set in the end space of B(Σ). We
refer to these ends as the level ends of B(Σ). If E denotes the space of ends of Σ, then the
space of ends of B(Σ) is the Cantor compactification (Eω)C (see Definition 1.5) of the disjoint
union Eω of countably infinitely many copies of E; the level ends correspond to the Cantor set
at infinity in (Eω)C .

Now for any decorated surface A and n ≥ 1, the surface A♮B(Σ)♮n inherits a level structure
from the n copies of B(Σ); see Figure 7 for an example. We define a binary-tree analogue of
the tethered level curve complex of §4.2 (Definition 4.4).

Definition 4.12. The binary tethered level curve complex bTLCn(A,Σ) is the simplicial com-
plex with:

(1) vertices: isotopy classes of tethered level curves in A♮B(Σ)♮n;
(2) p-simplices: a (p+ 1)-tuple of isotopy classes of tethered level curves spans a p-simplex

if there exist representatives that are pairwise disjoint outside the basepoint and:
• (if p < n− 1): some level ends of A♮B(Σ)♮n lie outside of the subsurfaces bounded
by the p+ 1 tethered level curves;
• (if p = n− 1): all level ends of A♮B(Σ)♮n lie inside the subsurfaces bounded by the
p+ 1 tethered level curves;

(3) there are no p-simplices for p ≥ n.

As in [SW19, §2] and [SW, §4], we define an intermediate complex which helps us to determine
the connectivity of bTLCn(A,Σ).

Definition 4.13. The simplicial complex bTLC∞
n (A,Σ) has:

(1) vertices: isotopy classes of tethered level curves in A♮B(Σ)♮n;
(2) p-simplices: a (p+ 1)-tuple of isotopy classes of tethered level curves spans a p-simplex

if there exist representatives that are pairwise disjoint outside the basepoint and some
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level ends of A♮B(Σ)♮n lie outside of the subsurfaces bounded by the p+1 tethered level
curves.

Remark 4.14. The definitions of bTLC∞
n (A,Σ) and bTLCn(A,Σ) are identical for p-simplices

with p ≤ n − 2, so they have the same (n − 2)-skeleton. On the other hand bTLCn(A,Σ) is
(n− 1)-dimensional whereas bTLC∞

n (A,Σ) is infinite-dimensional. The complex bTLC∞
n (A,Σ)

is therefore obtained from bTLCn(A,Σ) by throwing away its top-dimensional simplices and
adding new p-simplices for all p ≥ n− 1.

Proposition 4.15. Let Σ be any connected surface without boundary and let A be any decorated
surface. Then the simplicial complex bTLC∞

n (A,Σ) is contractible for any n ≥ 1.

Proof. The proof is a verbatim adaptation of the proof of [SW, Proposition 4.26], which in
turn follows a similar strategy to the proof of [SW19, Proposition 3.1]. In fact, the special case
(A = D2,Σ = S2) coincides precisely with the d = 2 case of [SW, Proposition 4.26] (allowing
d ≥ 2 would correspond to replacing the infinite binary tree B with the infinite d-ary tree).
The proof carries over identically for the general case of (A,Σ). □

It follows by Remark 4.14 that bTLCn(A,Σ) is (n− 3)-connected. However, instead of using
this fact, we will go the other way (anticlockwise) around the square in the bottom-right of
Figure 5 outlining the strategy of proof. To do this, we will pass via the following complex,
which builds a bridge between bTLC∞

n (A,Σ) and TCn(A,B(Σ)).

Definition 4.16. We define the simplicial complex TC∞
n (A,B(Σ)) by:

(1) vertices: isotopy classes of tethered curves α : L ↪→ A♮B(Σ)♮n such that α([1, 2]) bounds
a subsurface homeomorphic to B(Σ) and some of the level ends of A♮B(Σ)♮n lie outside
of this subsurface.

(2) p-simplices: a (p + 1)-tuple of vertices spans a p-simplex if there exist representatives
that are pairwise disjoint except at the basepoint and some of the level ends of A♮B(Σ)♮n

lie outside of the subsurfaces bounded by the p+ 1 curves.

Lemma 4.17. The (n− 2)-skeletons of TCn(A,B(Σ)) and of TC∞
n (A,B(Σ)) are isomorphic.

Proof. Suppose that n ≥ 2 (otherwise the statement is vacuous). Vertices of TCn(A,B(Σ)) are
tetheredB(Σ)-curves, meaning tethered curves that cut off a subsurface homeomorphic toB(Σ)

and where the complementary surface is homeomorphic to A♮B(Σ)♮(n−1). SinceB(Σ)♮m ∼= B(Σ)
for all m ≥ 1, the last part of this condition is equivalent to saying that the complementary
surface is homeomorphic to A♮B(Σ). This, in turn, is equivalent to saying that the space of
level ends of A♮B(Σ)♮n that are not bounded by the tethered curve is homeomorphic to the
Cantor set. Now the space of level ends of A♮B(Σ)♮n that are not bounded by the tethered
curve is always a clopen subspace of the space of all level ends, which is a Cantor set. All
clopen subspaces of the Cantor set are either empty or homeomorphic to the Cantor set itself.
Thus the condition is equivalent to saying that the space of level ends of A♮B(Σ)♮n that are
not bounded by the tethered curve is non-empty. This is precisely the condition for a tethered
curve that cuts off a subsurface homeomorphic to B(Σ) to be a vertex of TC∞

n (A,B(Σ)). Hence
TCn(A,B(Σ)) and TC∞

n (A,B(Σ)) have the same set of vertices.
An identical argument shows that the p-simplices of TCn(A,B(Σ)) and of TC∞

n (A,B(Σ))

are the same for p ≤ n− 2, since B(Σ)♮(n−p−1) ∼= B(Σ). □

Proposition 4.18. Let Σ be any connected surface without boundary and let A be any decorated
surface. Then the simplicial complex TC∞

n (A,B(Σ)) is contractible for any n ≥ 1.

Proof. Since the complex bTLC∞
n (A,Σ) is isomorphic to the full subcomplex of TC∞

n (A,B(Σ))
spanned by all vertices (tethered curves) that are isotopic to tethered level curves, we may use
a bad simplices argument to deduce contractibility of TC∞

n (A,B(Σ)) from the contractibility
of bTLC∞

n (A,Σ) (Proposition 4.15).
Let us call a vertex of TC∞

n (A,B(Σ)) bad if it does not lie in bTLC∞
n (A,Σ), i.e. its curve is

not isotopic to a level curve, and we call a simplex bad if all of its vertices are bad. Let σ be
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a bad p-simplex and consider its good link Gσ. It will suffice to show that Gσ is contractible,
since Proposition 1.15 will then imply that the inclusion is a weak equivalence. Denote by Cσ

the complementary surface obtained from A♮B(Σ)♮n by cutting off all subsurfaces bounded by
the tethered curves of σ. By definition of the simplices of TC∞

n (A,B(Σ)), some of the level
ends of A♮B(Σ)♮n lie in Cσ. As in the previous proof, the collection of level ends lying in Cσ

is homeomorphic to a clopen subset of the Cantor set, hence homeomorphic to the Cantor set.
Thus we may identify Cσ

∼= A′♮B(Σ) as based surfaces equipped with level curves (the level
curves in Cσ being those inherited from A♮B(Σ)♮n). The good link Gσ then identifies with the
complex bTLC∞

1 (A′,Σ), which is contractible by Proposition 4.15. □

Combining Proposition 4.18 and Lemma 4.17, we immediately deduce:

Theorem 4.19. Let Σ be any connected surface without boundary and let A be any decorated
surface. Then the simplicial complex TCn(A,B(Σ)) is (n− 3)-connected.

However, the statement that we will need is the following shifted version:

Theorem 4.20. Let Σ be any connected surface without boundary and let A be any decorated
surface. Then the simplicial complex TCn(A♮B(Σ),B(Σ)) is (n− 2)-connected.

Proof. This will follow immediately from Proposition 4.18 if we show that TCn(A♮B(Σ),B(Σ))
is isomorphic to the (n−1)-skeleton of TC∞

n+1(A,B(Σ)). This claim may be proven by the same
argument as in the proof of Lemma 4.17, which now works up to one dimension higher since the
condition for a (p+ 1)-tuple of vertices to span a p-simplex in TCn(A♮B(Σ),B(Σ)) is pairwise
disjoint outside of the basepoint and that the complementary surface must be homeomorphic
to A♮B(Σ)♮B(Σ)♮(n−p−1), which is homeomorphic to A♮B(Σ) whenever p ≤ n− 1. □

A. Appendix: homeomorphisms vs. diffeomorphisms

In this appendix, we include a sketch of proof of the following classical fact (used in §3 to
pass freely between topological and smooth mapping class groups), to emphasise that it holds
for non-compact as well as compact surfaces.

Lemma A.1 (Lemma 3.1). For any smooth surface S, the forgetful map

(A.1) Diff(S, ∂S) −→ Homeo(S, ∂S)

is a weak homotopy equivalence of topological groups.

Sketch of proof. Let us first assume that ∂S = ∅. It will suffice to show that the quotient space
Homeo(S)/Diff(S), which is the homotopy fibre of the induced map BDiff(S) → BHomeo(S)
of classifying spaces, is weakly contractible. By smoothing theory [KS77, Essay V], it is weakly
homotopy equivalent to the union of some path-components of the space of sections of a fibre
bundle over S with fibre Homeo(R2)/Diff(R2) ≃ Homeo(R2)/O(2). By obstruction theory, this
section space will be weakly contractible as long as Homeo(R2)/O(2) is weakly contractible,
equivalently the inclusion O(2) ↪→ Homeo(R2) induces isomorphisms on πi for all i ≥ 0. For
i = 0 it is clearly injective and surjectivity follows from the fact that every orientation-preserving
homeomorphism of R2 is stable (this is the stable homeomorphism theorem in dimension 2, which
follows by [BG64] from the annulus theorem in dimension 2, due to Radó) and thus isotopic to
the identity. For i ≥ 1 this is proven in [Yag00, Theorem 1.1].

We have thus proven that the inclusion Diff(S) ↪→ Homeo(S) is a weak homotopy equivalence
for any surface S without boundary. A similar (but easier) argument implies the corresponding
statement for 1-manifolds, using the basic fact that Homeo+(R) is contractible. From these
two facts, the restriction fibrations Diff(S) → Diff(∂S) and Homeo(S) → Homeo(∂S) and the
five-lemma, we deduce that (A.1) is a weak homotopy equivalence also when ∂S ̸= ∅. □

Remark A.2. An alternative reference for smoothing theory, which allows manifolds to have
non-empty boundary, is [BL74]. However, it assumes that the underlying manifold is compact,
so it does not apply to infinite-type surfaces.
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Remark A.3. One could try to prove that Homeo(R2)/O(2) is weakly contractible by applying
Morlet’s weak equivalence Ω3(Homeo(R2)/O(2)) ≃ Diff(D2, ∂D2) (which is smoothing theory
applied to the 2-disc) together with Smale’s theorem [Sma59] that Diff(D2, ∂D2) is contractible.
However, this only implies that πi(Homeo(R2)/O(2)) = 0 for i ≥ 3.
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