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ON HOMOLOGICAL STABILITY FOR CONFIGURATION
SPACES ON CLOSED BACKGROUND MANIFOLDS

FEDERICO CANTERO AND MARTIN PALMER

ABSTRACT. We introduce new maps between configuration spaces of points in
a background manifold, the extrinsic and intrinsic replication maps, and prove
that they are homology isomorphisms in a range with certain coefficients. The
other natural map between configuration spaces is the classical stabilisation
map, which is an integral homology isomorphism in a stable range. The fact
that the latter map exists only for open manifolds leaves unanswered the ques-
tion of homological stability in the closed case. In fact the 2-sphere provides a
counterexample to homological stability for many coefficients. However, some
partial stability results are known. We improve upon stability results of Ben-
dersky and Miller on the torsion in the homology of configuration spaces on
closed manifolds, and using the replication maps we also improve results of
Randal-Williams on their homology with field coefficients.

1. INTRODUCTION

Let M be a smooth, connected manifold without boundary and denote by
Ci (M) the unordered configuration space of k points in M:

Cp(M):={qC M ||q] =k},

which is topologised as a quotient space of a subspace of M™. After removing a
point * from M one can define a map

Ce(M N A{x}) — Crga (M N {+}),

called the stabilisation map, which expands the configuration away from * and
adds a new point near to it. More generally, one can define such a stabilisation
map Cy(M) — Ci11(M) using any properly embedded ray in M to bring in a point
from infinity (such a ray exists if and only if M is non-compact).

Definition 1.1 Given a smooth, connected, non-compact manifold M, a properly
embedded ray in M and an abelian group A, the function srgia,: N — N is defined
to be the (pointwise) maximum f: N — N such that the stabilisation map Cj (M) —
Ci+1(M) induces isomorphisms on H,(—; A) in the range * < f(k). This is called
the stable range of the stabilisation map.

Homological stability is the phenomenon that srg,, diverges. More precisely,
we have the following known lower bounds for srgiap:

o srstan(k) = & if A =7 and dim(M) > 2, by [McD75,Seg79, RW13].

o srstab(k) = k if A = Q and either dim(M) > 3 or M is non-orientable, by
[RW13,Knul4].

o srstab(k) 2k —11if A= Q and M is orientable, by [Chul2, Knul4].

o srstab(k) =k if A=Z[1] and dim(M) > 3, by [KM14b)].

Both authors were funded by Michael Weiss’ Humboldt professor grant. The first author
was partially supported by the Spanish Ministry of Economy and Competitiveness under grant
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See also Propositions A.2 and A.9. Further improvements to the lower
bound are possible under extra hypotheses [KM14b, Remark 4.4].

For closed manifolds (i.e. if M is closed and we do not remove a point) such
stabilisation maps do not exist. Nevertheless, it is possible to prove that the rank of
the homology groups with field coefficients stabilises in many cases [BCT89,Chul2,
RW13] (if the dimension of M is odd it stabilises with all field coefficients, otherwise
it stabilises with Fy and Q coefficients).

Let us assume from now on that the manifold is endowed with a Riemannian
metric with injectivity radius bounded below by ¢ > 0. Define CJ(M) C Ci(M) x
(0,0) to be the space of pairs (g, €), where q is a configuration whose points are
pairwise at distance at least 2e. The projection to Cy(M) is a fibre bundle with
contractible fibres, hence a homotopy equivalence. The main theorem in [McD75]
concerns the scanning map

S CH(M) — T (T M)y,

which takes values in the space of degree-k compactly-supported sections of the
fibrewise one-point compactification of T'M.

Definition 1.2 Given a smooth, connected, Riemannian manifold M with in-
jectivity radius bounded below by § > 0 and an abelian group A, the function
STscan: N — N is defined to be the (pointwise) maximum f: N — N such that the
scanning map . : C9(M) — I‘C(TM);c induces isomorphisms on H,.(—; A) in the
range * < f(k). This is called the stable range of the scanning map, or simply the
stable range.

McDuff’s theorem states that the scanning map is an isomorphism in a certain
range, precisely:

STscan|M] (k) = gg(srstab [M N {x}(7))-

Stability for p-torsion. By the main result in [Mgl87], the localisation FC(TM)(p)
at a prime p is homotopy equivalent to the space of sections FC(TM(p)) of the

fibrewise localisation of 7M. In [BM13] Bendersky and Miller proved the existence
of homotopy equivalences

Te(TMp))k — Te(T M),

whenever p > "T% and either M is odd-dimensional or 3’;:)’2 is a unit in Z,),

where y is the Euler characteristic of M. If TM is trivial, then the result holds
for all primes. Using McDuff’s theorem one obtains a zig-zag of Z,)-homology
isomorphisms in the stable range

Cr(M) — To(TM)), — To(TM); «— C;(M).

We will show that pairs of linearly independent sections of T'M & € give rise to
families of fibrewise homotopy equivalences of T'M after localisation, from which we
are able to extend the results of Bendersky and Miller to all odd primes and under
certain conditions to the prime 2. For a number k € Z, we denote by (k), the p-adic
valuation of k, and observe that % is a unit in Z,) if and only if (k), = (j),. If £ is
a collection of primes, the f-adic valuation is the sequence of all p-adic valuations
with p € £.
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Theorem A Let M be a closed, connected, smooth manifold. If M is odd-dimensional
there are zig-zags of maps inducing isomorphisms

H.(Co(M); Zgy) = Ho(Ci(M); Zyy)  if2¢ L ork —j is even (1.1)
in the stable range. In particular, there are isomorphisms in the stable range

H.(Cy(M); Z) = H.(Cyy2(M); Z)
H,(Cy(M); Z[3]) = Hu(Cria (M) Z[5)).

If M is even-dimensional and its Euler characteristic x is even (resp. odd), then
for each set £ of primes (resp. odd primes) there are zig-zags of maps inducing
isomorphisms

H.(Cp(M); Zgy) = Ho(C5(M); Zgy) if (2k — X)e = (2 — X)e (1.2)

in the stable range. In particular, when j = x — k we have 2j — x = —(2k — x) and
may take £ = Spec(Z), so we have integral homology isomorphisms between Cy,(M)
and Cy_,(M).

Observe that since these isomorphisms are induced by zig-zags of maps, they
also give isomorphisms between the cohomology rings of configuration spaces.

Replication maps. Our next result gives a map between configuration spaces
inducing some of the homology isomorphisms of Theorem A. This provides a new
map between configuration spaces, different from the stabilisation map. This is
especially interesting when M is closed, in which case the stabilisation map is not
defined. However, the map is also useful when M is open; it will be used later to
prove Theorem D below.

Let v be a non-vanishing vector field on M of norm 1. Define the r-replication
map p, = py[v]: Cf(M) — C%,.(M) by adding r — 1 points near each point in the
configuration, in the direction of the vector field v:

j i=1,....k
pelolla={ar, - ac} o) = ({exp(Fo(a) | ;5000 1 %)
Theorem B If M admits a non-vanishing vector field v and p is a prime not
dividing 7, then the homomorphism induced by p,[v]:

H. (CUM); Zp)) — Ho(CR(M); Zp))

is an isomorphism in the stable range. If M is not closed, then it is always injective.
This gives a zig-zag of (at most two) maps of configuration spaces realising the
isomorphisms (1.1) for a set of primes £ whenever k and j have the same £-adic
valuation.

In general, however, the isomorphisms (1.1) and (1.2) are only realised by
zig-zags of maps of section spaces, together with the scanning maps.

Remark 1.3 Observe that the map p, does not induce isomorphisms on r-torsion
in general. For example take M to be simply-connected and of dimension at least
3. Then 71 (Cx(M)) = Zy and H1(Ci(M)) = Z/2, given by the sign of the per-
mutation. The map ¥ — Yo induced by ps on 7 sends a permutation o to the
concatenation (o, o), whose sign is the square of the sign of o, therefore zero. Hence
the map induced on first homology by ps is zero. In particular this shows that po
cannot be homotopic to a composition of stabilisation maps.
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Configurations with labels and the intrinsic replication map. Given a fibre
bundle 6: E — M with path-connected fibres, one can define a configuration space
Cr(M;0) with labels in 6 by

Crp(M;0) ={{q1,...,qx} C E|0(q;) # 6(q;) for i # j}.

The stabilisation map in this case may be defined similarly to the case of unlabelled
configuration spaces; see Definition A.8 for a precise definition. To define the
replication map it is more convenient to use the following alternative model:

C,‘z(M;Q) ={(a,¢,3) | (q,¢) € C’,‘z(M), s: Bej2(q) — E a section of 6},

where B./5(q) means the (disjoint) union of the (¢/2)-balls around ¢ for each ¢ € q.
So a point in this space consists of a configuration q with prescribed pairwise
separation, together with a choice of label on a small contractible neighbourhood of
each configuration point. On the other hand, the pullback C{ (M; 6) of C9 (M) along
the map Cy(M;0) — Ci(M) which forgets the labels consists of a configuration
with prescribed pairwise separation, together with a choice of label just over each
configuration point. Since CP(M) — Cx(M) is a fibre bundle with contractible
fibres, so is its pullback C’,‘E(M;H) — Ci(M;0), which is therefore a homotopy
equivalence. There is a map C9(M;6) — CJ(M;0) which just remembers the label
at the centre of each ball, which is also a fibre bundle with contractible fibres,
so a homotopy equivalence. Hence the composition C(M;8) — Cj(M;6) which
completely forgets the labels is a weak equivalence (homotopy equivalence if E' is
paracompact).

The replication map p,.: Cf(M;6) — C°,(M;0) for a non-vanishing vector field
v is defined similarly to the unlabelled version; the labels of the new configuration
of rk points are simply a restriction of the labels of the original configuration of k
points.

Just as for configuration spaces without labels, one can define the stable range
of the stabilisation map as follows: srgian(k) is the largest d such that the stabilisa-
tion map Cy(M;0) — Cir41(M;6) induces isomorphisms on H,(—; A) for all * < d.
This now additionally depends on the bundle 6. See Proposition A.9 and Remark
A .10 for some known lower bounds on sr4,, — these are either the same or one de-
gree less than the lower bounds given on page 1 for unlabelled configuration spaces.
The stable range (of the scanning map) is also defined analogously to the unlabelled
version, and by the version of McDuff’s theorem with labels in a bundle (Theorem
B.7), we again have srgcan[M](k) = minj>g(srsan[M ~ {*}](j)). In Section 4 we
show that Theorem B extends to the configuration spaces C3(M;6) and the more
general replication map (see Theorem B').

If : S(TM) — M is the unit sphere bundle of T'M it is possible to define a
new map which we call the intrinsic replication map »,: C3(M;0) — C%, (M;0).
It sends the labelled configuration (q = {q1,...,qx},€,5: Beja(q) — E) to the
labelled configuration

({exp(£s(q:)) | ;255 7%, ), &, restriction of s).
In contrast with the (extrinsic) replication map of Theorem B, this map is defined
for every manifold M.

Theorem C The map »,: Co(M;0) — C2, (M;0) induces isomorphisms on ho-
mology with Z[%]-coeﬁcicients in the stable range. Hence if (k)p, = (j)p the groups
H.(C(M;0); Zy)) and H, (C9(M;0); L) are isomorphic in the stable range.
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This theorem can be generalised (Theorem C’) to any fibre bundle with path-
connected fibres §: E — M which factors through the unit sphere bundle S(T'M),
for instance the (oriented) frame bundle of TM.

An extension for field coefficients. The last part (§5) does not involve section
spaces, but rather uses the result of Theorem B in the case of open manifolds M to
push our results a bit further. If M is a closed, connected manifold one can choose
a vector field on M which is non-vanishing away from a point * € M. This vector
field (suitably normalised) therefore induces an r-replication map for configuration
spaces on M \ {x}, which induces isomorphisms on homology with Z[%] coefficients
in the stable range by Theorem B.

We then use a technique similar to that of [RW13, §9]. First, we can fit
Ci(M) into a cofibre sequence in which the other two spaces are suspensions of
configuration spaces on M \ {*}. We can then define stabilisation maps on the
other two spaces using the r-replication map and the ordinary stabilisation map,
which are isomorphisms in the stable range away from r. We will therefore have
homological stability for C,, (M), with field coefficients of characteristic coprime to
r, as long as the square formed by this pair of stabilisation maps commutes. In fact
it does not commute in general, but the obstruction to commutativity on homology
is a single homology class whose divisibility we can calculate. Thus we obtain the
following, where

Ar(k) = min{srscan(k), s7scan(k — 1) +n — 1, srsean(rk —4) | i = 2,..., 7}

Theorem D Let M be a closed, connected, smooth manifold with Euler charac-
teristic x. Choose a field F of positive characteristic p and let r > 2 be an integer
coprime to p such that p divides (x — 1)(r — 1). Alternatively choose a field F of
characteristic p = 0, let r > 2 be any positive integer and assume that x = 1. Then
there are isomorphisms

H. (Cx(M);F) = H.(Cpi(M);F)
in the range x < \.(k). In particular when x € 1 + pZ there are isomorphisms
H.(Cp(M);F) = H.(C;(M);F)

in the range * < A.(k) whenever (k), = (j)p (which is a vacuous condition when
p=0).

See Remark 5.5 for an explanation of how the function A, arises, and the remark
that if srgtap is linear with slope < dim(M)—1 and r, k > 2, then A.(k) = srstan (k).

This theorem also generalises to configuration spaces with labels in a fibre
bundle over M with path-connected fibres. See §5.4 for the proof for configuration
spaces without labels and §5.6 for a sketch of the generalisation to configuration
spaces with labels (Theorem D).

For odd-dimensional manifolds Theorem D follows from Theorem A: when
p # 2 these isomorphisms exist more generally with Z[%] coefficients; when p = 2
the conditions imply that r is odd so that rk — k is even so these isomorphisms exist
with Z coefficients. Also, Theorem C’ implies Theorem D’ if the bundle §: E — M
factors through the unit sphere bundle S(TM) of the tangent bundle of M.

Note that the last sentence of Theorem D is in contrast with the even-dimensional
part of Theorem A where the corresponding condition is instead that (2k — x), =

(25 — x)p- Also note that the requirement that k > 2 is essential: for example
H1(01(52);F3) =0 $§ Fg = H1(04(52);F3).
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Combining Theorems A and D. Theorem A says that in odd dimensions there
are at most two stable homologies, depending on the parity of the number of points
k. On the other hand, in even dimensions — even when taking homology with Z,)
coefficients — there may be infinitely many different stable homologies: one for each
possible p-adic valuation of 2k — x. In fact this is sharp, as the calculation of
H1(Cy(S?);Z) 2 Z/(2k — 2) shows.

However, the situation is simpler when taking F, coefficients: H;(Cx(S?);F,)
is either one- or zero-dimensional depending on whether or not p divides 2k — 2,
so there are at most two stable homologies in this special case. One can combine
Theorems A and D to prove that this phenomenon holds more generally: when p is
odd and does not divide x there are at most two stable homologies, one for those k
such that p divides 2k — x and one for those k such that p does not divide 2k — .
The following corollary summarises what can be deduced from Theorems A and D.

Corollary E Let M be a closed, connected, smooth manifold with Euler character-
istic x and let F be a field of characteristic p. Then Table 1 shows how the homology
group H,.(Cr(M);F) depends on k in the stable range (resp. the range * < A.(k)
for lines 5-9).

dimension conditions H.(Cy(M);F) depends only on i
odd p#*2 — — 1 A
p=2 — parity of k 2 A
even p=0 — whether 2k = x 1 A
podd — (2k = X)p 00 A
x Z 0 mod p whether p divides 2k — x 2 AD
X=1modp — 1 A.D
p=2 — (k)2 00 D
(x)2 21 min{(k)z, (x)2} (xX)2+1 AD
(x)2=1 parity of k 2 AD

TABLE 1. Lines 4-6 and 7-9 are written in order of decreasing
generality. The second-from-right column is the number of possi-
ble stable homologies and the rightmost column indicates which
theorem each line follows from.

When p = 2 this only recovers part of the story. In fact homological stability
holds with no extra conditions when taking coefficients in a field of charactersitic 2,
by Theorem C of [RW13], so there is only one stable homology in this case. Together
with the sixth line of the table, this tells us that if x = 1 then homological stability
holds with coefficients in any field. Also, when p = 0 and dim(M) and x are both
even, Corollary E leaves unresolved whether H,(Cx (M);F) is an exception in the
stable range. In fact it is not, also by Theorem C of [RW13].

Acknowledgements. We thank Oscar Randal-Williams for careful reading of an
earlier draft of the paper and enlightening discussions. The paper has also benefited
from conversations with Fabian Hebestreit, Alexander Kupers and Jeremy Miller.

2. HOMOLOGICAL STABILITY VIA THE SCANNING MAP

2.1. Scanning maps. Let T'M denote the open unit disc bundle of the tangent
bundle of a connected Riemannian manifold M, and let 7'M and TM denote the
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fibrewise one point compactifications of 7'M and T M. We denote by oo the point
at infinity in each fibre. We denote by ¢ the section with value co and by z the zero
section. Let § > 0 be smaller than the injectivity radius of M. Define the linear
scanning map

S O (M) — T (T M)y,
to the space of degree k compactly supported sections of T'M as

00 if ¢ Be(q) Vq € q,
(g, €)(x) = expl(q) -
Le lfCIJEBE(q),qu,
The degree of a section s is the fibrewise intersection, counted with multiplicity, of
s and the zero section (see also §2.3).

Theorem 2.1 ([McD75]) The scanning map induces an isomorphism on homology
groups in the stable range.

We refer the reader to the introduction for the definition of the stable range.
The strategy to prove Theorem A will be to construct Z,)-equivalences ¢,

Crp(M) —ZL—=T(T' M),

lm (2.1)
L
Clo, (k) (M) —==Te(T M) (g,1(k).

where [¢,.] = mo(¢,), which, together with McDuff’s theorem, prove Theorem A.

Let D be the unit n-dimensional open disc, let D be its one point compactifi-
cation and define ¢°(D) to be the quotient of |J, Cf (R"), where two configurations
(q,€) and (q',€') are identified if qN D = q' N D and either e = ¢ or qN D = 0.
We write 1° (T M) for the result of applying this construction fibrewise to 7' M.

Let v be a number smaller than the injectivity radius of M. The radius -y
non-linear scanning map

57 CR(M) = T (v (T M))
sends a configuration q to % exp, 1 (q) — which may consist of more than one point.

There is an inclusion i: D < ¢°(D) given by i(q) = (g,/2) as the subspace
of configurations with at most one point. This inclusion has a homotopy inverse

h(a,€) = g2

Qsecond

where qgst 1S the norm of a closest point in q to the origin, and qgecond is defined
to be 1if |q| =1 and (q')arst otherwise, where g’ is the result of removing a single
closest point of q to the origin. The composite hi is the identity and Hy(q,¢) =

(W, t6/2+ (1 — t)e) gives a homotopy between the identity and ¢h.

Each of ¢, h and H; is O(n)-equivariant, so they can be defined on the vector
bundle T'M, obtaining homotopy equivalences

i: TYM «— (T M): h
which induce by composition homotopy equivalences

i: Do(TPM) > T (¥°(TTM)): h
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that commute with the linear and non-linear scanning maps:

CI(M) ——= T (T M)
(T M).

2.2. Sphere bundles, localisation and fibrewise homotopy equivalences.
Let M be a connected manifold and F — M a rank n inner product vector bundle.
Let E be the fibrewise one point compactification of E. The topological bundle E
is isomorphic to the unit sphere bundle S(E @ €) of the Whitney sum of E and a
trivial line bundle.

Since the fibre of E — M is nilpotent and the base is homotopy equivalent
to a finite complex, then by [Mgl87, Theorem 4.1], each connected component of
the space of sections is also nilpotent. We may therefore consider the localisation
I‘(E)(p). We may also consider the fibrewise localisation £ — E(p), and [Mgl87,
Theorem 5.3] implies that the induced map F(E)(p) — F(E(p)) is a localisation in
each component. Let {K};cn be a nested covering of M by compact subsets. The
restriction maps I'(E) — F(E‘Kj) define a map T'(E) — colim, F(E|Kj) whose
fibre is FC(E). Since localisation commutes with colimits, by Mgller’s theorem, all
vertical maps but the leftmost in the following diagram

I'.(E) ——I'(E) —— colim; T'(E|g,)

L |

L (Eg)) —T(Eg,)) — colim; I'(E,) k)

are Zy-equivalences, and therefore the leftmost is a Z,)-equivalence too.

A bundle endomorphism f of E(p) is compactly supported if f or =1 outside a
compact subset of M. We denote by End., (E"(p)) the space of compactly supported
endomorphisms which induce on fibres maps of degree r. By Theorem 3.3 in [Dol63],
if 7 is a unit in Z,), then any endomorphism in EndZ(E(p)) admits a fibrewise ho-
motopy inverse. Postcomposition with it induces a homotopy equivalence between
path-components

Le(Ep))k — Te(Ep))iol ),
where [¢] denotes the map induced by ¢ on .

2.3. The degree of a section. Let 8 be a compactly supported section of 7: TM —
M, and let Th(S) be the Thom class in H"(TM;7*©O), where O is the orientation
sheaf of M. The S-degree of a compactly supported section « is

degg(a) = a”(Th(B))" € Ho(M;Z),

the Poincare dual in M of o*Th(8) € H(M;O). If M is orientable, then Th(g)
is the Poincare dual of §,[M] € H,(TM;Z), and degg(a) is also equal to the
intersection product of a.[M] and B.[M]. We will write deg for deg,, where z is
the zero section of TM. Observe that this definition also applies to the bundle
TM(p), and the degree of a section is then an element in Ho(M;Z()).
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Assume now that M is closed and orientable. The Gysin sequence for the
sphere bundle S™ % T™ 5 M splits an exact sequence

0 —> Ho(S™ Z) —== H,(TM;Z) —== H,(M;Z) — 0.

The zero section z: M — T'M is an inverse of 7, so the group H,(TM) = Z @ Z
is generated by i.[S™] and z.[M]. The fibres over two different points give two
disjoint representatives of i.[S™], therefore i.[S™] N4,[S™] = 0. On the other hand,
the intersection of the zero section with itself is the Euler characteristic y of M.
And it is also clear that the intersection of i,[S™] and z.[M] consists of a single
point. The intersection products of 4k (resp. 4k + 2) dimensional manifolds are
symmetric (antisymmetric). Therefore we have:

Lemma 2.2 If M is connected, closed, orientable and of dimension n, then the
intersection pairing of T M with respect to the above basis is given by

()
(=D" x)°
If a is a section of 7, then a.[M] = (deg(a) — x, 1) in this basis.

For the second claim, observe that a is an inverse of @ too, so the second
component of «,[M] is the same as the second component of z.[M]. The first
component is obtained from the following equation:

deg(ar) = a, [M] M 2[M] = (a, 1) < (_(i)n i) <(1)> —aty.  (23)

2.4. Fibrewise homotopy equivalences of many degrees. Let Vo(E @ ¢) be
the fibrewise Stiefel manifold of E®e. If o is a section of I'(Va (£ @ €)(,)) we denote
by oy the image of ¢ under the localisation of the map that forgets the second
vector:

F(V2(E ® €)p)) — L(S(E @ €)p))-
We denote by I'c(Va(E @ €)(p)) the space of sections o such that o¢ is compactly
supported.

Lemma 2.3 Let E be a vector bundle over a manifold M and let p be either a
prime or a unit. For each r ¢ pZ there are maps
P T (Vo(E & €)()) — End.(E,)

which are natural with respect to pullback of bundles. If M is closed and E =TM,
then @ (o) sends sections of degree k to sections of degree rk — (r — 1) deg(oy).

Proof. Assume first that p = 1. Any 0 € T'.(Va(E @ ¢€)) determines an isomorphism
between E @ € and E' ® E, where E/ = M x R?, and therefore an isomorphism
¢y from S(E @ €) to the fibrewise union S(E’) * S(E"). Define the map

@, := &L [ (Va(E @ €)) — End.(E).
by sending a section o to ®,.(0) = ¢, 1 (f. * Id)p,, with
frx1d: S(E")* S(E") — S(E') x S(E")
and f.(z,v) = (z,€2™"). Observe now that ®, (o) preserves oy, because the maps
€2 preserve the basepoint of S', which corresponds under the trivialization to

oo- In particular, since o is compactly supported, the map ®,.(o) sends compactly
supported sections to compactly supported sections.

If T.(Va(E @¢€)) is non-empty, then ®2 is the localisation of ®,.. Otherwise, we
choose a good cover of M. Then the space of sections I'.(Va(E @ €)) is non-empty
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over each open subset of the cover, hence there are maps ®2 over each open subset,
which glue together to define a map ®2 on the whole M.

By construction, f*(®2(c)) = ®2(f*(0)), so these maps are natural. Similarly,
observe that
End;(E,)) x D(E)) — T(Ey) (2.4)
is also natural with respect to pullback of bundles.
Now we describe the effect of ¢, := ®P (o) on components of F(TM(p)) when M
is closed. Assume first that M is orientable, in which case T M is also orientable and

Lemma 2.2 applies. First we identify the induced map (¢, ) : Hy, (E(p)) — Hn(E"(p)).
Since ¢,.(0g) = 09, we have

(¢r)«(deg(o0) — x, 1) = (deg(oo) — X, 1)-

On the other hand, ¢, acts on the fibre over a point as a map of degree r, hence

(¢T)*(170) = (r, 0)'
From this we deduce that (¢, ). has the form
r —(r—1)(deg(a0) — x)
0 1 ’
hence, for an arbitrary section «, we have that
(deg(dr(a)«[M]) = X, 1) = ¢r () [M] = (¢ )« (e [M])
= (r(deg(@) — x) — (r — 1)(deg(o0) — x), 1)
and so deg(¢r(a)) = rdeg(a) — (r — 1) deg(oyp).

Assume now that M is non-orientable. We take then the orientation cover
f+ M — M. If sis a section of TM and o is a section of Vo(T'M & ¢€), we can
pull back both sections along f to obtain a section f*s of TM and a section f*o
of Vo(TM @ €). Then, because f is a double cover, deg(f*s) = 2deg(s), and by
the naturality of ¢, and (2.4) we have that ®.(f*0)(f*s) = f*(®,(0)(s)). On
the other hand, since M is orientable, by the previous paragraph we now that
deg(®,(f*0)(s)) =rdeg(f*s) — (r — 1) deg(f*o0). As a consequence:

2deg(®,(0)(s)) = deg(f*(®,(0)(s))
= deg(®,(f"0)(f"(5))
= rdeg(f*s) — (r —1)deg(f"0o)
= 2rdeg(s) — (r — 1)2deg(op). O

We now face the following lifting problem:
VQ(TM S¥) 6)(p)
_ 7
Z- <p>iw
M=% S(TM & e)).

Proposition 2.4 If M is closed, of dimension n > 2 and n is odd, then every
diagram has a lift, whereas if n is even only sections of degree x/2 (when they
exist) have a lift.

Proof. The above problem is equivalent to find a section of the pullback 7, of @)
along o, which is an ST;_l—bundle over an n-dimensional manifold. If n is odd, 7,)
has always a section, hence in that case every section oy admits a lift. If n is even,
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the complete obstruction (if M is orientable) is the Euler class e(1,)) of 1(,). We
proceed to compute it:

Assume first that M is orientable and p = 1. The bundle 7 is the unit sphere
bundle of ofTV(T'M & €), whose Euler number can be computed by taking the
self-intersection of its zero section in the fibrewise one point compactification of
og T (TM @e€), which is precisely S(TM @e€). As the zero section of o3 T (T M @e)
is 09, we have that (we denote by " the Poincaré dual of x)

e(n)" = ao[M] N ao[M] (2.5)

— (deg(00) — X, 1) (? i) (deg(”f) - X) —2deg(o0) —x.  (2.6)

Hence a section admits a lift if and only if deg(og) = x/2.

Let us assume now that M is orientable and p is a prime. In this case, the
above computation is no longer valid, as it relies on a geometric interpretation of

the Euler class. We will first compute the Euler class e of W (p):
6(77(17)) =o5(e)’ = e~ oo[M] = e’ Noo[M],

and therefore, if ¢V = (a,b) in the basis described before, it holds that
X 0 1 deg(og) —
e(n))” = og(e)” = (a,b) (1 X) ( &l f) X) = a + bdeg(oyp).

This, together with (2.5) (which holds for integral values), implies that ¥ =
(—x,2), and therefore that of(e)¥ = 2deg(og) — x. Hence, after localising we
obtain that only sections of degree x/2 admit a lift.

Finally, let M be non-orientable and let f: M — M be the orientation cover of
M. Then deg., (f*00) = 2deg, (00) and the Euler characteristic of M is 2y, so
deg, (00) = 0 if and only if (2x)/2 = deg(f*00) = 2deg(0p). Hence only sections
of degree /2 have lifts. O

Proof of Theorem A. If the dimension of M is odd and £ is a set of primes, then
by Proposition 2.4 and Lemma 2.3, there exist homotopy equivalences

To(TM)k — De(TMg)) k- (r—1yd
for all integers r and d such that r ¢ ¢Z. Observe first that if  is odd, then k and
rk — (r — 1)d have the same parity. Hence if k and j have different parity then a
homotopy equivalence I'c(T'Mg))r — I'c(T'M(y)); as above exists only if 2 ¢ £.
Taking r = —1 and d arbitrary we obtain maps which induce Z,)-homotopy

equivalences for all £ between every pair of components of I‘C(TM ) of sections
with the same parity. Taking r = 2 and d arbitrary, we obtain Z)-homotopy

equivalences for all £ between every pair of components of I‘C(TM ).
If the dimension of M is even and x is even (resp. odd) and £ is a set of primes

(resp. odd primes), we use Proposition 2.4 and Lemma 2.3, to construct, for each
integer r with trivial ¢-adic valuation, a homotopy equivalence

Po(TMgy)k — Te(T M)k (r—1)y/2-

It is clear that 2k — x and 2(rk — (r — 1)x/2) — x = r(2k — x) have the same
¢-adic valuation if p 1 r for each p € ¢. If 2k — x and 2j — x have the same (-
adic valuation [, and s = (2k — x)/ Hpeepl(p) and r = (25 — X)/Hpeépl(p), then
rk—(r—1)x/2 = s5j+ (s —1)x/2, and therefore there is a zig-zag of Z,)-homotopy
equivalences for all ¢ such that r, s ¢ ¢Z between I‘C(TM(@);C and I’C(TM(,Z))J-.
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Theorem A is then a consequence of Theorem 2.1 applied to diagram (2.1).

For the last claim, observe that if M has even dimension, taking » = —1 one
obtains a homotopy equivalence I'.(T'M) — T.(T'M) (without localising) that sends
sections of degree k to sections of degree y — k. This homotopy equivalence may
be obtained by postcomposition with the antipodal map TM — TM. O

3. THE EXTRINSIC REPLICATION MAP

Theorem B. Let M be a connected, smooth manifold and let v be a non-vanishing
section of TM. Then there exists a map ¢, € End.,(T*M) that makes the following
diagram commute up to homotopy:

CO(M) —Z T (T'M — M),

\LPT ['U] i(br

Cﬁk(M) 7 Fc(TlM = M)

r

Hence the r-replication map induces an isomorphism on Z)-homology in the stable
range with Z,) coefficients for all primes p{r.

Remark 3.1 It can be proven that the map ¢, is homotopic to @, (¢, v).

Proof. The proof has two steps. First, since (M) is independent of § up to
homotopy, we let 2§ be smaller than the injectivity radius of M. We claim that the
following diagram commutes on the nose:

CH (M) —m T (4 (T M)

ipr[v] igr

B, (M) —= T, (% (T' M)

T

where g, is given by postcomposition with the bundle map p,[expss(v)]: ¥° (T1M) —
YO (TTM) followed by the expansion 2: ¢°(T M) — °(T'M) that sends each
point ¢ in the configuration to 2¢g. Observe that the bundle map p,[exp3s(v)] is not
continuous but it becomes continuous after composing with 2.

In order to understand this square, we check what happens with the adjoint
of the scanning map M x Cy (M) — °(T* M) over each point z € M:

25

{z} x CRM) =4 (T1M)
J{pr[v] J/%
o} x 5 (00) ~T = p(rian).
The square commutes on the nose unless there exists some g € q such that
6r-(q) N Bs(z) # 0,and g ¢ Bas(x).

But this is not possible, as d(s:(q), ) > d(q,r) — maxy e, (q d(q,q') = 20 —€ = 6.

Second, observe that since the exponential map is homotopic to the projection
w: TM — M, the maps ¢, = 2p,[exp3s(v)] and o, = 2p,[7*v] are homotopic.
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Third, consider now the diagram

Lo(v(T'M)) <— To(1" M)

De(y% (T M) T (T M)

whose maps are induced by the fibrewise maps which on each fibre are

V(T M) <—— T} M

o

PI(TIM) LTI M

Let us denote by v the value of the vector field v at the point . Then o,.(g,1) =
qUg+vU...Uqg+ (r—1)v and

q+jv . .o . .
hovi(q) = 27”%(#1)1)” if ¢ + jv is the closest point and (v, q + jv) > 0
if ¢ + juv is the closest point and (v, q + jv) < 0.

9___qtjv
llg+(G+1)v]l
The inverse image of a point (for instance the origin) consists of  points ({—j v}?;é),

all of them oriented according to the sign of r. Hence ho,i induces a map of degree
r on fibres. |

Corollary 3.2 If M is a connected open manifold of dimension at least 2, then
the homomorphism induced in Zy)-homology by the r-replication map for r ¢ pZ
1S 1njective.

Proof. The scanning map is injective in homology in all degrees as can be deduced
from [McD75, p. 103], from the fact that the stabilisation map Cy (M) — Cy41(M)
is injective in homology and that colimy, H, (T.(T'M)) (limy H, (T (M, dM)) in the
notation of that paper) is constant.

Therefore, in the commutative square of the previous proposition the composite
¢r is injective in Z(,)-homology, hence . p,. is injective in Z,)-homology too, so
pr is injective in Z,)-homology. U

4. THE INTRINSIC REPLICATION MAP

We first recall the statement of McDuff’s theorem (Theorem 2.1) with labels:
Let 6: X — M be a fibration, and recall from the introduction the (weak) homotopy
equivalent spaces

Cr(M;0) ={(a, f) | a € Cu(M), f € T(0)q)}
Clg(M7 9) = {(qa €, f) | (q7 6) € Clg(M)v f € F(9|Bq(6))'

The pullback 0*T'M — X is also fibred over M, and the fibres are vector
bundles. We denote by T?M the fibrewise Thom construction of 8*TM viewed as
a bundle over M. The inclusion of the points at infinity define a cofibre sequence
over M

X — 0*TM — TM.
The pullback map 6*T'M — T'M factors through the bundle maps

0 TM — T°M - TM. (4.1)
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We define the degree of a section s as the degree of £(s). If the fibres of 6 are path
connected, then the n-skeleton of the fibres of 7% M is homotopic to S™, therefore
the forgetful map

L (T°M) — T(TM)
induces a bijection on connected components.

Theorem 4.1 (McDuff’s with labels) There is a scanning map
S0 CY(M;0) — To(TP M)y

which is a homology equivalence in a range if the fibres of 6 are path-connected. We
refer to this range as the stable range with labels.

The fibrewise homotopy equivalences of Lemma 2.3 lift to fibrewise homotopy
equivalences of 0*T'M, (p)> Which in turn descend to fibrewise homotopy equivalences
TBM(p) if and only if they fix the section at infinity. This implies that o9 = ¢ in
that lemma, and therefore all of them send sections of degree k to sections of degree
rk. Hence we only recover part of Theorem A:

Theorem A’ If M is a closed, connected manifold with trivial Euler characteristic,
then H,(Cy(M;80)) = H,(C;(M;0)) in the stable range with labels if k and j have
the same p-adic valuation.

On the other hand, Theorem B generalizes in full generality:

Theorem B’ If v is a non-vanishing vector field on a connected manifold M and p {
7, then the r-replication map p? with labels induces isomorphisms in Z(p)-homology
in the stable range with labels.

Let 6 be the projection S(T'M) — M. Recall the definition of the intrinsic
replication map %,.: CJ(M;0) — C?, (M;6) from page 4.
Theorem C If M is a connected manifold, the map »,: CJ(M;0) — C°, (M;0)
induces isomorphisms on homology with Z[%]—coeﬂicients in the stable range with la-
bels. Hence if k and j have the same p-adic valuation, the groups H.(C2(M;0); Zp))
and H, (CJ‘S(M; 0); Z(p)) are isomorphic in the stable range with labels.

Proof. Define o,.: w(TM;0) — »(TM;0) to be the fibrewise version of 2, com-
posed with 2 as in the proof of Theorem B. The first square in the following dia-
gram

CJ(M;0) — T ($(TM;0)) <— To(T7 M) (4.2)

bk o

C8,.(M;0) —— To($(TM;0)) — T (TO M), 1.

commutes, by the same argument as the first step the proof of Theorem B. Therefore
we obtain a fibrewise map ho.,.i on the right hand side. The map ho,i is obtained
by postcomposition with a fibrewise map g: TM — T?M. The map g, on the
fibre over the point x restricts to the identity on the points at infinity, therefore it
extends to the following diagram of cofibre sequences

S(T,M) x {00} —= S(T,M) x T,M —T/M

N

S(T, M) x {o0} —— S(T, M) x T,M —T/M
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where the leftmost horizontal maps are the inclusion of the points at infinity. After
localizing the diagram at a prime p not dividing r, the map f,) is a map of sphere
bundles that induces a map of degree r on fibres (as in the proof of Theorem B).
Since r is a unit in Z,), it follows that f(,) is a homotopy equivalence, and therefore
that (g,)(p) is @ homotopy equivalence .

Since the fibrewise localisation of g(,) induces a homotopy equivalence on fibres,
it follows that g is a homotopy equivalence as well, and so is (ho;7)p)- O

If the bundle §: X — M factors through S(T'M) and has path-connected fibres
(for instance the oriented frame bundle of TM, if M is orientable), then Theorem
C generalises to:

Theorem C' If ptr, then the intrinsic replication map with labels
%1 Cp(M;0) — Cri(M30)

induces isomorphisms on homology with Z,) coefficients in the stable range with
labels.

We can use now the zigzag C2(M) < C9(M;0)) — C%,.(M;0) — C°.(M) of
homology isomorphisms to try to deduce something more about the homology of
Ck(M) is low dimensions. The remainder of this section is a complicated way of
proving part of the following trivial statement. The purpose of doing so is to say
explicitly what can be done with this new approach.

Remark 4.2 The homology groups H,(Cy(M); A) and H,(Cy41(M); A) are inde-
pendent of k£ provided that * < n —1 and * belongs to the stable range with labels
with A-coefficients. This follows from the cofibre sequence (defined in (5.1))

Cp(M N Az}) — Cp(M) — X(Cra (M A{z}) )

where x € M, the left hand side satisfies homological stability and the right hand
side is (n — 1)-connected.

The fibre of the map that forgets the vectors
CR(M;0) — CY(M)

is homotopy equivalent to a product of k spheres of dimension n — 1. The funda-
mental group of Cy(M) acts on this product interchanging the factors (and also
changing their orientation if M is not orientable). By the relative Hurewicz theo-
rem, the first non-trivial relative homology group of this pair is

Hy(CR(M),CR(M;6))

Il

T (Co(M),Cp(M;0)) , | Z if M is orientable,
m1(C(M)) ~|z/2 if M is not orientable.

Therefore if * < n — 2 and * is in the stable range with labels of k£ and j, there
are isomorphisms
H, (Cr(M); Zp)) = Ho(C5(M); Zy))

induced by zigzag of maps whenever k£ and j have the same p-adic valuation. In
addition if n — 1 belongs to the stable range with labels, there are exact sequences

Z(p) — Ap,k — Hn_l(Ck(M); Z(p)) — 0 if M is orientable
(Z)2)(py — Apx — Hp1(Cr(M);Zpy) — 0 if M is not orientable,

where the Ay, = H,,_1(Cy(M;0);Z,)) depends only on the p-adic valuation of .
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From this together with Theorem A we deduce that if *x <n—2 (or x =n—1,
p # 2 and M is not orientable) there are isomorphisms

H(Ch(M); Zp)) = Ho(Cj(M); Zp))

in the stable range with labels under the following conditions (recall that (k),
denotes the p-adic valuation of k):

(1) x even, if (k)p = (j)p or (k—x/2)p = —x/2)p

(2) xodd, p#2 |if (k)p = (j)p or (k—x/2)p = —x/2)p

(3) xodd, p=2|if (k)2 = (j)2
Corollary 4.3 Let M be a closed, connected, smooth n-manifold with n even and
Euler characteristic x # 0. Assume that «x <n—2 (orx=n—1,p# 2 and M
non-orientable). Assume in addition that one of the following holds:

o x is even and (k)p, (7)p = (3)p

o X is odd,‘p # 2 and (k)p, (7)p = (3)p

e (k)p=(p
Then H,(Cr(M); L)) = H.(Cj(M);Zy)) in the stable range with labels of the
scanning map with labels. Therefore for any fized j, k there are isomorphisms

H.(Cu(M);Z[2)) = H.(Cy(M); Z[2]) if x is even
HA(CU(MYZIgk]) = HL(Cy(M):Z[5-)) if x is odd

when * < n—2 and * is in the stable range with labels for j and k. If n —1 belongs
to the stable range with labels for j and k then we also have exact sequences

Z—A— H, 1(Cr(M);Z) — 0 if M is orientable
Z]2— A— H, 1(Cr(M);Z) — 0 if M is non-orientable

where the p-torsion of A = H,_1(Cx(M;0);Z) depends only on (k), and the p-
torsion of Hyp_1(Cr(M);Z) depends only on (k — %), (unless p =2 and x is odd).

Proof. If (k), = (j)p we are done. If (k),, (j)p > (X/2)p, then (k—x/2)p, = (x/2)p =
(J—x/2)p. If (§)p > (k)p = (X/2)p, then pick i > j,k with (i), = (j), and set
U= i+ x/2. Then (), = (x/2), = (), and (1 — x/2), = (x/2), = (j — x/2)-
Notice that in the last case the stable range with labels for [ is bigger than the
stable ranges with labels for k and j. If (k), < (x/2)p, then (k — x/2), = (k)p, so
both conditions are equivalent. O

5. HOMOLOGICAL STABILITY VIA VECTOR FIELDS WITH EXACTLY ONE ZERO

We now use some different techniques to extend our results a bit further for
homology with field coefficients. Section spaces are not involved in this part; instead
we apply Theorem B (homological stability with respect to the r-replication map)
to M ~ {*} and classical homological stability for M ~\ {x} to obtain Theorem D.

5.1. Vector fields. Let M be a closed connected manifold with Euler characteristic
X-

Definition 5.1 Given a vector field X € T'(TM) with an isolated zero z € M,
define the degree degy(z) of z as follows. Choose a coordinate chart U = R"”
with z € U so that there are no other zeros of X in U and choose a trivialisation
of TM|y. The restriction of X to U \ {z} is in this way identified with a map
R™ \ {0} — R™ \ {0}. The degree of this map is by definition degy (z).
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A simple observation is that M admits a vector field with at most one zero,
which will therefore have index x by the Poincaré-Hopf theorem. Moreover we can
choose exactly what this zero looks like locally:

Lemma 5.2 Suppose we are given a vector field X on a closed ball B C M with
exactly one zero which lies in its interior and has index x. Then this extends to a
vector field X on M which is non-vanishing on M \ B.

Proof. First choose a vector field X’ on M which has only isolated (and therefore
finitely many) zeros. Choose a larger closed ball B O B and a trivialisation of
TM|p. Now homotope X’ if necessary so that all its zeros lie in int(B’) \ B.
The restriction of X’ to OB’ is a map 9B’ — R™ ~\ {0}, whose degree is the sum
of the degrees of all zeros of X’, which is y by the Poincaré-Hopf theorem. The
restriction of the vector field X to 9B is a map 0B — R™ ~ {0} which also has
degree x by assumption. Since any two maps S"~! — R" \ {0} of the same degree
are homotopic, there is a map X”: B’ \int(B) = S"~! x [0,1] — R"\ {0} agreeing
with X’ on OB’ and with X on dB. We can therefore define X to be equal to X
on B, X"’ on B~ Band X' on M \ B'. O

5.2. A cofibre sequence of configuration spaces. Choose a Riemannian met-
ric on M and an isometric embedding D — M of the closed unit disc D C R™.
Following [RW13, §6] we define U, (M) to be the subspace of Cy (M) of configura-
tions which have a unique closest point in D to its centre 0 € D. There is an open
cover of C(M) given by the subsets U, (M) and Cr(M \ {0}), so by excision the
homotopy cofibre of the inclusion Cx(M ~ {0}) < Cy(M) is homology-equivalent
to that of the inclusion Up(M ~ {0}) < Ux(M). This map is homeomorphic to
the inclusion D \ {0} — D times the identity on Cx_1(M ~\ {0}), so its homotopy
cofibre is homotopy equivalent to 3™ (Cj_1(M ~ {0})4).

By the above discussion we have a homology cofibre sequence:*

Cr(M ~{0}) — Cx(M) — Z™"(Cr—1(M ~ {0})4). (5.1)
The connecting homomorphism of the long exact sequence on homology induced
by this can be described as follows. Define a map
tho1: S"t x Cp_1 (M ~ {0}) — Cr(M ~ {0})
which radially expands the configuration in Cjy_1(M ~\ {0}) away from 0 until it
has no points in D, and then adds the point in S"~! = 0D to the configuration.

By the Kiinneth theorem we have a decomposition of the reduced homology of the
domain of this map:

H,_1(S" ' x Cr_1 (M ~ {0}))
= H, (Cho1 (M ~{0})) ® Hy_(Cr—1 (M ~ {0})) (5.2)
= H, 1 (Cho1 (M ~{0})) & H.(S"(Cre1(M ~ {0})4)).

The restriction of the induced map fl*_l (tx—1) to the second direct summand above
is the connecting homomorphism of the long exact sequence on homology induced
by (5.1).

I general, this means that there is a zig-zag of maps of diagrams which are objectwise
homology equivalences between this diagram and one of the form A — B — hocofib(A — B). In
this case the zig-zag can be taken to have length one and be the identity on the left and middle
spaces of the diagram.



18 FEDERICO CANTERO AND MARTIN PALMER

5.3. Configuration spaces on cylinders. For the remainder of this section n =
dim (M) will always be assumed even. As pointed out in the introduction, Theorem
D follows from Theorem A when M is odd-dimensional, so this is not a problem.

Some natural homology classes. We will need to do some calculations inside
the homology group H,_1(Cy(R™ \ {0}); Z) of punctured Euclidean space. There
are certain natural elements of this group which one can write down. For example
we have the following elements (see also Figure 5.1):

(a) For any 0 < i < k — 1 we have a map A;: S"1 — Ci(R™ \ {0}) which
sends v € S"! to the configuration {v,p1,...,pr_1}, where p1,...,pr_1 are
arbitrary fixed points in R™ \ {0} with |p;| < 1 for j < ¢ and |p;| > 1 for
j > i. By abuse of notation we denote the element (A;).([S"~1]) simply by
A; € H,—1(Cr(R™*\{0}); Z). We will systematically use this abuse of notation
for maps S~ — Ci(R™ ~ {0}).

(b) We also have a map 7: RP" ™' — Cy(R"~.{0}) which sends {v, —v} € RP"* =
S"=1/ ~ to the configuration {24+v,2—v,p1,...,pr_2}, where 2 = (2,0,...,0)
and p1,...,pp—o are fixed points in R™ \ Bj(2). This gives us an element
7w € Hy1(Cr(R™ {0});Z).

(¢) Composing this map with the double covering $"~' — RP"™! gives a map
representing 2. This is homotopic to the map 7: S"~! — Ci(R™ \ {0}) which
sends v € S"~! to the configuration {p1,s(v),p2,...,pr-1}, where s: "1 —
R”~{0} is an embedding so that p; is in the interior of s(S¢~1) and 0, p, ..., pr_1
are in its exterior.

(d) More generally, for any 1 <4 < k—1 we can define a map 7;: S"~1 — R~ {0}
which sends v € S™~! to the configuration {p1,...,p:,s(v),Pit1,s-->Pk_1},
where py,...,p; are in the interior of s(S"~!) and 0,p;41,...,px_1 are in its
exterior. So 11 = 7 = 27.

O

A4 ™

FIGURE 5.1. Examples of homology classes in H (Cg(R?~\.{0}); Z)
and H;(C3(R%\{0});Z) respectively. The small circle denotes the
puncture 0 and bullets denote points of the configuration.

Relations between homology classes. Let P™ denote the closed n-dimensional
disc D™ with two open subdiscs (whose closures are disjoint) removed; this is the
n-dimensional pair-of-pants. Consider the map r: P" — C(R™ \ {0}) pictured in
Figure 5.2. The image r.([0P"]) of the fundamental class of its boundary is the class
A1 —A;—71, which is therefore equal to zero in H,_1(Cr(R"~{0}); Z). Similarly
the map r’': P* — Cj(R™~\{0}) pictured in Figure 5.2 shows that 7,41 —7;—71 = 0.
Hence by induction and the fact that 7 = 27 we have

A; = Ay + 2im and T = 2m. (5.3)

Now let A denote the image of the fundamental class under the map S"~! —
Cr(R™ . {0}) which sends v to {v,2v,...,kv}. This map can be homotoped to the
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,rl

FIGURE 5.2. Pictures of maps 7,7": P* — Ci(R™ \ {0}) such that
r«([OP"]) = Air1 — A; — 11 and 75 ([0P™]) = Ti41 — 7 — 71. In each case
there are i + 1 fixed points in the bounded white region and k — i — 2
fixed points in the unbounded white region. The remaining point is in
the shaded region; its position is parametrised by P™.

map
St — sy v 87— (R N {0})

which collapses k — 1 equators to get a wedge sum of k copies of S"~! and then
applies the maps Ag, ..., Ar_; on these summands. Hence A = Ag + -+ + Ajp_y
and so by (5.3),

A = kAo + k(k —1)m. (5.4)
Similarly we let 7 denote the image of the fundamental class under the map S*~! —
Cr(R™~{0}) which sends v to p1 +{0,v,2v, ..., (k—1)v}, where p; is a fixed point in
R™ with |p1| > k. Just as above, we can homotope this to see that 7 = 71+ -+ T _1
and so by (5.3),

7=k(k—1)m. (5.5)

One can see this very directly in the case n = 2. In this case we are talking
about Hy(Cy(R?);Z) = Bi/[Bk, Bx] = Z{r}, where ). denotes the braid group on k
strands. Any one of the standard generators o1, ...,0,_1 of B, which interchange
two consecutive strands, is sent to the generator w. The element 7 is the image
of the full twist of all k strands, which can be written as a product of k(k — 1)
generating elements, and so after abelianisation we have 7 = k(k — 1).

We now apply the above discussion to prove the following:
Lemma 5.3 For any map f: S"~!' — S"~1 define o5: S"1 — Ci(R™ \ {0}) by
sending v to {v, v+ f(v),... ,U—&—%f(v)}. Denoting the image of the fundamental
class under this map also by oy we have

or = kAo +deg(f)k(k —1)m. (5.6)

Proof. Note that if deg(f) =1 then oy = 0iqg = A so this is just (5.4). In general
this can be seen as follows. Write d = deg(f) and first assume that d > 0.

Denote the constant map to the basepoint by *: S"~! — §"~1 and the map

Sn=t — §n=lv ... v §"~1 which collapses d — 1 equators by cq. Then o can be
homotoped to the map

V= {s(v),s(v) + %g(v), oo s(u)+ k—;lg(v)}

where s = (id + %+ -+ + %) ocg and g = (id +id + - - - 4 id) o ¢4, which is in turn
homotopic to the map (A+7+---4+7)ocq: S — Cr(R™ . {0}). Therefore the
homology class o is equal to A + (d — 1)7, which is the claimed formula by (5.4)
and (5.5).

If d < 0 we can instead take s = (id+*+4---+%)ocyg_gand g = (id+r+---+
1) 0 ca—q4, where 7 is a reflection of S"71, to see that o is homotopic to the map
(A+7or4---+7or)ocy_g. The image of the fundamental class [S”~!] under 7or
is just —7, so we again get that the homology class o is equal to A+ d-17. O
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Remark 5.4 Rationally, the (n — 1)st homology of Cj(R™ ~ {0}) is known to be
two-dimensional by the presentation of the bigraded Q-algebra H.(C\(R"~{0}); Q)
given in Proposition 3.4 of [RW]. Specifically, it is generated by the elements Ag
and Ay, corresponding to [k — 1] - A and [k — 2] - A - [1] in the notation of the cited

paper.
5.4. Proof of Theorem D. Abbreviate C;(M \ {0}) by just C;. Fix a field F of
characteristic p and write H,(—) = H.(—;F). Denote by T} . the map

Ho1 (5" ((Cr-1)4)) — H.(Ch)
from the long exact sequence on homology induced by (5.1). By exactness we have:

dim(H, (Cy(M))) = dim(codomain(T% «)) + dim(domain(Ty «—1))

(5.7)
—rank (T, «) — rank(Ty «—1).

Fix a positive integer r > 2 coprime to p (no condition if p = 0). We will construct
maps a, b and ¢ such that the square

b
Sl Oy — 2 S O —— S Oy

th—1 J Jtrk—l (58)
Ok Crk

C

commutes on homology with coefficients in F. Applying H «(—) and passing to the
second direct summand in the Kiinneth decomposition (5.2) on the top row gives
a commutative square

- a  ~ B~
H, 1 (E"(Cr-1)+) = Hig1 (" (Crio—r)+) — Hu1 (B (Cri—1)+)

Tk,*l J/Trk,* (5.9)
H.(Cy).

Cx

Recall that we defined the function
Ar(k) = min{srscan(k), sTscan(k — 1) +n — 1, srsean(rk —4) | i = 2,..., 7},

and the isomorphisms claimed by Theorem D are in the range * < A,.(k). We will
show that «, 5 and ¢, are isomorphisms in the range * < A, (k), therefore identifying
the maps Ty . and T}y . in this range. Hence by (5.7) the vector spaces H, (Cy(M))
and H,(C,x(M)) have the same dimension for * < A.(k), which is Theorem D.

Remark 5.5 The first two terms of A,.(k) come from our use of the replication map
and Theorem B, which tells us that the r-replication map induces isomorphisms in
the stable range $rycan. The remaining terms come from our use of the classical
stabilisation map, which by definition induces isomorphisms in the range srgtap,. If
we assume that srgan is non-decreasing (S0 $7scan = STstab) and 7,k > 2 then the
range * < A.(k) simplifies to

* < ming{ srsean (k), srstan(k — 1) + n — 1}
For example if srgap(k) = ak + b then this is
*<ak+b if dim(M)>a+1
x<ak+b—(a+1—n) if dim(M) <a+1,
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i.e. the same as the stable range, except possibly shifted down by a constant if the
manifold is low-dimensional compared to the slope of the stable range.

Constructing the maps. Fix a basepoint 0 € M. By Lemma 5.2 we can choose
a vector field X on M which is non-vanishing except possibly at 0. This has an
associated one-parameter family of diffeomorphisms ¢;. Define the r-replication
map

prk: C(M N {0}) — Crp(M ~ {0})

to take a configuration ¢ = {x1,...,z;} to the configuration

{¢it/r(x1)v o ~>¢it/r(xk) | 0<i<r— 1},

where ¢ = t(c) > 0 is sufficiently small that ¢s(z;) # ¢u(x;) for s,u € (0,t)
unless i = j and s = u. This agrees up to homotopy with the earlier definition of
the r-replication map under the identifications C9 (M ~ {0}) ~ Cx(M ~ {0}) and
C2 (M ~{0}) ~ Cyri(M ~ {0}). We now define

a=id X prk-—1
b= (pry,trk—2) 0o (pry, tri—r)
C= Prk-
In other words a and c replace each point of the configuration by r copies in the

direction determined by the vector field, whereas b adds » — 1 new points near the
missing point 0 in the direction determined by the vector in S™~1.

Isomorphisms in a range. The vector field is non-vanishing on M~ {0}, soif p >
0 Theorem B tells us that the r-replication map p, , induces isomorphisms in the
stable range on homology with Z,) coefficients, and hence also with I coefficients.
When p = 0 choose any prime ¢ not dividing r and apply Theorem B to get
isomorphisms in the stable range with Z,) coefficients, which implies isomorphisms
for coefficients in the field F, since it has characteristic 0.

Hence ¢, is an isomorphism in the stable range * < $rscan(k). The map p, p—1
induces isomorphisms on F-homology up to degree srscan(k — 1), so its suspension
Y"((prk—1)+) induces isomorphisms up to degree srgcan(k — 1) + n. The map
that this induces on I?*H(f) is «, which is therefore an isomorphism in the range
% < STscan(k — 1) +n — 1. For the map S consider the map of (trivial) fibre bundles

(pr1> trk*i)

S Crpy S Crpigr

~

Sn—l

for i =2,...,r. Its fibre over a point in S”~! is the classical stabilisation map and
therefore induces isomorphisms on F-homology up to degree srgiap(rk—i). Hence by
the relative Serre spectral sequence the map (pry, t,x—;) also induces isomorphisms
on F-homology in this range. So the map b induces isomorphisms on F-homology
up to degree min{srstan(rk — i) |2 < i <7}

In general for a map f: S x A — S%x B over S¢, the map on homology under
the Kiinneth isomorphism f,: H,(A)® H,._4(A) — H.(B)® H._4(B) is triangular,
more precisely the component H,(A) — H,._4(B) is zero. To see this note that
a representing cycle ¢ for an element in the H,(A) component can be taken to
have support in a single fibre. Since f is a map over S the image fi(c) will also
have support in a single fibre, and therefore the image f.([c]) will be in the H,.(B)
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component of the Kiinneth decomposition of the right-hand side. Hence if f induces
an isomorphism on H,(—), then it also restricts to isomorphisms H,(A) — H.(B)
and H*_d(A) — H*_d(B).

Applying this fact to the map b we obtain that § is an isomorphism in the
range * < min{srgap(rk —4) | 2 < < r}. Hence, by definition of A.(k), each of «,
B and ¢, are isomorphisms in the range x < A.(k).

Commutativity. It therefore remains to show that the square (5.8) commutes on
F-homology. Choose a coordinate neighbourhood U 2 R"™ of 0 € M and define the
map

C: Cr(R™ N {0}) x Cr—1(M ~ {0}) — Crp(M ~{0}) (5.10)

to first apply the map p,r_1 to the configuration in M ~ {0}, i.e. replace each
point by r copies according to the vector field, then push the resulting configuration
radially away from 0 so that it is disjoint from U, and finally insert the configuration
of r points in R™ \ {0} = U \ {0} into the vacated space. Choosing a trivialisation
of TM over U = R", the vector field X restricts to a map R®™ — R™ which is
non-vanishing on S™"~!, so we may rescale it to obtain a map f: S"~! — S"~1L
Recall from Lemma 5.3 that such a map induces a map oy: S~ — C,.(R™ . {0}).
One can then easily see that the two ways c o tx_1 and t,.5_1 o b o a around the
square (5.8) are homotopic to

Co(oy xid) and (o (o x id): S x Cp_1 (M ~ {0}) — Cpr(M ~ {0})

respectively. It suffices to show that o and oiq: S~ ! — C,.(R™ \ {0}) induce the
same map on F-homology, and we only need to check this on the fundamental class.
Using our abuse of notation from §5.3 this means that we just need to check that
the homology classes oy and oiq in H,—1(Cr(R™ \ {0});F) are equal.

The degree of f: S"~1 — §"~! is y by the Poincaré-Hopf theorem (c.f. Defi-
nition 5.1) so by Lemma 5.3 we have

of =rAg+ xr(r—1)m
o =rldg+r(r—1)r

in H,—1(C-(R™ ~{0}); Z). Their difference is (x — 1)r(r — 1)m. If p is positive then
it divides (x — 1)(r — 1) by hypothesis, so the difference oy — 0iq is indeed zero
in Hy,_1(Cr(R™ \ {0});F), and therefore the square (5.8) commutes on homology
with [F coefficients. If p = 0 then we have assumed that y = 1 so in fact f ~id, so
o =~ oiq and so the square (5.8) actually commutes up to homotopy in this case.
Either way this completes the proof of Theorem D.

5.5. The case of the two-sphere. For M = S? we have the well-known calcu-
lation H1(Cy(S?);Z) = Z/(2k — 2)Z for k > 2 obtained from a presentation for
m1(Ck(5%)) (see [FVB62]). The degree-one F,-homology is therefore either one- or
zero-dimensional, depending on whether p | 2k — 2 or not. So the statement of
Theorem D in degree 1 for M = S? for mod-p coefficients reduces to the following
purely number-theoretic statement: if p is a prime and r is a positive integer such
that p | r — 1 then p | 2k — 2 if and only if p | 2rk — 2. This is of course obviously
true: we have r — 1 = ap for some a, so 2rk — 2 = 2k + 2kap — 2 = 2k — 2 (mod p).

5.6. Generalisation to configurations with labels in a bundle. Theorem
D generalises directly to configuration spaces Cy(M,0) with labels in a bundle
0: F — M with path-connected fibres.
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Theorem D’ Let M be a closed, connected, smooth manifold with Euler charac-
teristic x and let 0: E — M be a fibre bundle with path-connected fibres. Choose a
field F of positive characteristic p and let v > 2 be an integer coprime to p such that
p divides (x — 1)(r — 1). Alternatively choose a field F of characteristic p = 0, let
r > 2 be any positive integer and assume that x = 1. Then there are isomorphisms

H.(Cx(M,0);F) = H.(Cri(M,0);F)
in the range * < A (k).

In the remainder of this section we sketch how to generalise the proof of The-
orem D to a proof of Theorem D’. The proof follows the same steps. In §5.2 one
also has to choose a trivialisation of this bundle over the embedded disc D C M,
and there is a homology cofibre sequence

Ce(M ~{0}) — Cp(M) — X" ((F x Cr—1(M ~ {0}))4),

where F' is the typical fibre of §. The description of the connecting homomorphism
for the long exact sequence on homology is exactly analogous, using the triviali-
sation of 6 on D to determine the label of the new point which is added to the
configuration near 0 € D.

In the diagram (5.8) the top three spaces are replaced by their cartesian prod-
ucts with F'. The maps ¢, and « are isomorphisms in the range * < A.(k) for the
same reasons as before, using Theorem B’ instead of Theorem B. The map b is a
composition of maps of fibre bundles over F x S™~! and the maps of fibres are
classical stabilisation maps for configuration spaces with labels in a bundle, and so
are isomorphisms on homology in the stable range for the stabilisation map (c.f.
Proposition A.9 and the appendix of [KM14a]). The rest of the argument that g is
an isomorphism in the range * < A.(k) goes through as before.

For commutativity: the map ¢ can be defined similarly, using the chosen triv-
ialisation of @ over D. The input is now a configuration of £ — 1 points in M ~\ {0}
with labels in 6 and a configuration of r points in R™ ~\ {0} with labels in the trivial
bundle with fibre F, and the output is a configuration of rk points in M ~ {0}
with labels in 6. The map f: S"~! — S”~! corresponding to the restriction of the
vector field to D, induces a map of: F x St — C,.(R™ \ {0}, F). The two ways
around the square (5.8) are homotopic to ¢ o (o x id) and ¢ o (g1 x id). Hence we
just need to show that oy and oiq: F x S"~! — C,.(R" \ {0}, F') induce the same
map on F-homology.

Now as in §5.3 we need to find formulas, in terms of more basic classes, for
(o)« (), for any class x € H.(F x S*~!). Previously we showed that when F =
and x = [S"~!] we have

(07)([S"71)) = Ao + deg(f)r(r — D)7 € Hy1(C(R" ~ {0}); Z).

By the Kiinneth decomposition H,(F x S"~1) = H,(F)® H,_,+1(F) it suffices to
show that (07). (2 x [#]) = (1) (x x [+]) and (0p). (2 x [S"7]) = (01a) (x x [S"71])
are zero on F—homology for any class © € H,.(F ) It is easy to see that in fact

(05)«(2 X [¥]) = (g1a)«(x x [+]) € H.(Cr(R" X {0}); Z)

and therefore also on F-homology. One can define classes w(x), A;(z), 7;(x) etc. in
Hiin—1(Cr(R™ \ {0});Z) just as in §5.3 and by the same arguments as before we
have

(0)u(x x [S"71]) = rAo(x) + deg(f)r(r — D)m(z) € Huyn1(Cr(R™ ~ {0}); Z).
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Hence (o). (@ % [S"71]) = (0ia)+(z x [S"71]) is equal to (deg(f) — 1)r(r — )7w(z) =
(x—Dr(r—1)m(x) and is therefore zero on F-homology since p divides (x —1)(r—1).
This completes the sketch of the proof of Theorem D’.

5.7. Proof of Corollary E.

Proof of Corollary E. The first two lines follow directly from the odd part of The-
orem A, noting that a map of spaces which induces an isomorphism with Z[%]
coeflicients also induces isomorphisms with coefficients in any field of characteristic
different from 2. The third and fourth lines follow directly from the even part of
Theorem A, since a map of spaces inducing isomorphisms on homology with Z,)
coefficients also induces isomorphisms with Q or F,, coefficients, and therefore with
coefficients in any field of characteristic 0 or p. (For the third line: given j, k in the
X

stable range and not equal to %, choose any prime p which divides neither 2j — x

nor 2k — x and apply Theorem A to get an isomorphism with Z,) coefficients.)

Fifth line: First, if p divides neither 25 — x nor 2k — x then this follows from the
fourth line. On the other hand if p divides both 25 — x and 2k — x then j =k £ 0
mod p, using the assumption that xy # 0 mod p and that p is odd. We can therefore
choose a number [ such that jI = kl = 1 mod p. We then apply Theorem D
twice, with r = jl and r = kl, to obtain the required isomorphisms in the range
* < Ar(4), A (k).

Sixth line: By Theorems A and D we have isomorphisms for j, k in the range
% < Ap(J), Ar(k) as long as either (25 — x)p = (2k — x)p or (j)p = (k)p. Let R
be the relation on N given by jRk if and only if one of these conditions holds.
It suffices to show that for any j, k& € N we have either jRk or jRIRk for some
! > j,k. If j,k are both in pZ then (2j — 1), = (2k — 1), so jRk. If j,k are both
not in pZ then (j), = (k), so jRk. Finally suppose that j € pZ and k ¢ pZ. Then
(25 —1)p = (2(jk+1) — 1), and (jk + 1), = (k), so jR(jk + 1)Rk.

The seventh line follows directly from Theorem D: when p = 2 we may take
r to be any odd integer, so there are isomorphisms in the range * < A\.(j), A\ (k)
between any j, k with the same 2-adic valuation. To deduce the eighth line from the
seventh we need to show that there are isomorphisms in this range whenever (j)s2
and (k)o are both at least (x)2. In this case we have (2k — x)2 = (x)2 = (25 — X)2,
and so we can apply Theorem A (since we assumed that y is even). Finally, the
ninth line is a special case of the eighth line. O

APPENDIX A. THE STABILITY RANGE FOR THE TORSION IN CONFIGURATION
SPACES

In this appendix we show that the stable range for homological stability of
unordered configuration spaces may be improved to have slope 1 when taking Z[%]
coefficients. We note that this has also recently been proved by a different method
by [KM14b]. We begin by proving this in a larger range when M = R" using
Salvatore’s description [Sal04] of Cohen’s calculations [CLM76], and then use this
to deduce the slope 1 statement for general open, connected manifolds M. Our
method for this second step is a slight variation of an argument due to Oscar
Randal-Williams in [RW13, §8].

From Salvatore’s description [Sal04, page 537] of the homology of C'(R™) (based
on [CLM76, page 227]), we obtain the following. A non-empty sequence of positive
integers I = (i1, ...,4y) with £(1) > 0 is said to be (n, p)-admissible if it is weakly
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monotone and strictly bounded above by n. If p is odd, an admissible function for
I is a function e: {1,...,4(I)} — {0,1} satisfying

€(j) =i +ij—1 mod 2 for 2 < j < 4(1).

Observe that € is determined by I and €(1). If p = 2, define f to be constant with
value 0.

If p = 2, then H,(C(R");F3) is isomorphic to the free commutative graded
algebra generated by the symbols Q¢ ;(¢) where I is an (n,p)-admissible sequence
and € is an admissible function.

If p is odd, then H.(C(R™);F,) is isomorphic to the free commutative graded
algebra generated by the symbols Q. ;(¢) where I is an (n,p)-admissible sequence
with is) even and e is an admissible function for I, and also (if n is even) the
symbols Qc r([¢,¢]) where I is an (n,p)-admissible sequence with i,;) odd and e is
an admissible function for I.

The homological degrees of ¢ := Qg z(¢) and [i,¢] := Qu,&([t,¢]) are 0 and
n—1, and the configuration degrees are 1 and 2. The homological and configuration
degrees of the other generators are

MQe(ir,...i) (@) = PR(Qe(2),(1,....15) (@) + 11 (p — 1) — €(1)
V(Qe,(h,...,ik)(a)) = pV(Qe(Q),(iz,...,ik)(a))a
where o« = ¢ or [1,¢] and where by an abuse of notation, for 6 € {0,1}, Qs ()

means Q. (x) for the unique admissible function € for I with €(1) = 6. The degrees
of a product of generators are:

h(zy) = h(z) + h(y), v(zy) = v(z) +v(y).
Multiplication by the class ¢ raises the configuration degree by 1 and hence defines
a homomorphism
H.(Croa(R")) — H.(CL(R™)),
which is the same as that induced by the stabilisation map.

We say that a class in H,(Cx(R");F)p) is p-inceptive if it is not in the image
of the stabilisation map Ck_1(R"™) — Cr(R™) on mod-p homology. By the above a
class is p-inceptive if and only if it is not in the principal ideal generated by «¢.

Lemma A.1 In H,.(Cy(R");F,) the first p-inceptive class in a fized configuration
degree k is given in Table 2, where a = |k/p| and my(k) is the remainder af-
ter dividing k by p. Any case not covered in the table has no p-inceptive classes.
Hence by the above discussion the stabilisation map Ci_1(R"™) — Ck(R™) induces
an isomorphism on H,(—;F,) for smaller homological degrees.

Proof. First observe that

R(Qe(iy,...in) (1) = W(Qe(in), (iz...in) (1)F) V(Qc(irrnyin) (1) = V(Qc(in), (in...in) (D))
h’(Qe,(i],.A.,ik)([L?L])) 2 h(QE(i1)7(i2,...,ik)([L7L])p) V(Qe,(il,...,ik)([L7L])) = V(QS(ig),(’iz,“.,ik)([[” )]
h(Ql,(i) (1) < h(Qe,(j)(L)) V(Ql,(i)(L)) = V(Qe,(j)(b))

where ¢ < j in the bottom row. Hence the lowest p-inceptive class in a fixed
configuration degree is a product whose factors are

Q1(¢) ifp=2

Q1,2)(¢) if p odd and n odd
Q1,2)(¢); [t,¢]  if p odd and n even
[¢, 1] if p is odd and n = 2.
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p n k class homological degree
even all even Qo,1)(0)* a
odd odd € pZ Q1,2 ()" a(p—1)—-1)
odd > 6, even
- . > p, odd Qu,(2) (1) [t e "/ a2(p—1) = 1) + (n = )my(k)/2
odd > 6, even
3,5 4 even Qi) e, TP (a = 1)(2(p — 1) = 1) + (n = 1) (p+ my(k)) /2
even . L /2
#2,3,5 4 — Quey()™W [, ma(k)(2(p —1) = 1) + (n — 1)[k/2]
> p, odd
odd 2 even ¢, 2]*/2 k/2

TABLE 2. The first p-inceptive class in degree k.

This is enough to deduce the first two rows of the table, as well as the sixth. Second
observe that, if p is odd and n is even, the first configuration degree in which a
power of Q1,(2)(¢) and a power of [¢, ¢] both live is 2p, where v(Q1,(2)(¢)?) = v([t, JP),
and

h(Ql,(2)(l’)2) = 4p -6< p(n’ - 1) = h([l” l’]p) o nz 6orn= 4ap = 3757
from which the third, fourth and fifth rows of the table follow. O

Lemma A.1 tells us in particular that for odd primes p the stabilisation map
Ci(R™) — Ci41(R™) induces an isomorphism on homology with F,, coefficients in
the range * < k. We now show that this implies that the same is true for the
stabilisation map Ci(M) — Cl41(M) for any smooth, connected, open manifold
M of dimension at least 3. Our method for this is a slight variation of an argument
due to Oscar Randal-Williams in [RW13, §8].

Proposition A.2 Let M be a smooth, connected, open n-manifold with n > 3 and
let A be an abelian group. If the stabilisation map on A-homology

H.(Cr(R"); A) — H.(Cpy1(R"); A)
is an isomorphism in the range * < k then so is the stabilisation map on A-homology
H.(Cr(M); A) — Ho(Cry1(M); A).

So by Lemma A.1 the stabilisation map Cr,(M) — Cxy1(M) induces isomorphisms
on homology with F;, coefficients in the range * < k for any odd prime p.

This result has also been recently proved by [KM14b] using a different method
along the lines of [Seg79].

Proof. We will just write H,.(—) for H,(—; A). Define Ry (M) to be the homotopy
cofibre of the stabilisation map Cy(M) — Ci41(M). Now the stabilisation map
Cr(M) — Ci41(M) is split-injective on homology (see [McD75, page 103]) so it
induces an isomorphism on homology in degree x if and only if H,(R(M)) = 0. So
the hypothesis of the proposition says that H, (Rk(R™)) = 0 for * < k and we would
like to show that H,(Ry(M)) = 0 for * < k. We refer to [RW13] for background
and any details which we omit in this proof — the line of argument is very similar.
The proof is by induction on k. The base case k = 0 is obvious so we now fix k > 1
for the inductive step.
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For i > 0 let C;(M)? be the space of [-point subsets ¢ of M together with an
injection {0, ...,i} — c¢. These fit together to form an semi-simplicial space C;(M)®
augmented by C;(M). The stabilisation map lifts to a map C;(M)® — Cj41(M)*® of
augmented semi-simplicial spaces. There is a fibre bundle 7: C;(M)" — Ciy1(M),
where C denotes the ordered configuration space, given by sending an injection
{0,...,i} — c to its image and remembering the induced ordering. Its fibre over a
point is homeomorphic to C;_;_1(M;+1), where M; 1 denotes the manifold M with
i 4+ 1 points removed. Moreover the projection m commutes with the stabilisation
map C;(M)* — Cj;11(M)" and the map of fibres over a point is the stabilisation
map Cj_;—1(M;y1) = C1—;(M;41). Any map of Serre fibrations over a fixed base
space has an associated relative Serre spectral sequence; in this case it has second
page

‘B2, = Ho(Cipr(M); Hy(Ri—i—1(Miy1)))

and converges to H,(R;(M)"), where R;(M)? denotes the homotopy cofibre of the
lift Cy(M)* — Cj41(M)* of the stabilisation map.

For 1 < j < k there are maps of augmented semi-simplicial spaces Cy_;(M) X
C;(R™)® — Ci(M)* defined similarly to the stabilisation map, except one stabilises
by adding the given configuration in R™ instead of just a single point. In [RW13,
§8] it is explained how these induce maps of semi-simplicial spaces Ry_;_1(M) A
R;j(R™)* — Ry(M)* for 1 < j < k. Note that when j = k we have R_;(M) = S°
and this is just the map R;(R™)® — R;(M)® induced by an embedding R™ < M.
Each semi-simplicial space has an associated spectral sequence so we obtain a map
JE — E of spectral sequences whose first pages are

JE}, = Hy(Ri—j1 (M) A Rj(R")?)
Ej, = Hy(Re(M)*).
Note that these are first quadrant plus an extra column {s = —1,¢ > 0}.

The spectral sequence E converges to H «+1 of the homotopy cofibre of the map
|Ri(M)®|| = Ri(M) induced by the augmentation map. Since taking homotopy
cofibres commutes with taking geometric realisation of semi-simplicial spaces this
space can also be obtained as follows: first take the homotopy cofibres of the maps
IC(M)*]] = Cx(M) and ||Cry1(M)®]| — Ciy1(M); these are related by a map
induced by stabilisation; then take the homotopy cofibre of this map. Now the
augmented semi-simplicial space Cy(M)® is a (k—1)-resolution [RW13, Proposition
6.1], i.e. the map ||Cx(M)®|| — Cr(M) is (k — 1)-connected. Hence the spectral
sequence F converges to zero in total degree * < k — 1.

The inductive hypothesis says that
H.(Ry(M)) =0 for <l <k (IH)
and the hypothesis of the proposition says that

H.(R;(R™)) =0 for * < [. (Hyp)

From (IH) we deduce that ZEEt =0 for t <1 —1—1 so the spectral sequence D)
converges to zero in total degree * <[ —i—1, so

H,(Ry(M)) =0for «<l—i—1andi:>0. (A1)
In other words:
El,=0fort<k—s—1ands>0. (A.2)
Also, using the Kiinneth theorem, (A.1) and (IH) we deduce that

JE;,=0fort <k—s—1, (A.3)
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where for the case {s = —1 and j = k} we also need to use (Hyp). We now make
the following:

Claim For1 < j <k the map jE’Jl7k_j — E})k is surjective.

—J
The verification of this claim is delayed until the end of the proof. Now a
diagram chase in the following:

djt1

Jl jpJtl jpI+l JRt —
Ej g B B «— 7 E =0

L |

1 j+1 j+1 1
By A ED e By
J+1

shows that the differential d;j41: Eg;ij — E]_ngk is zero for 1 < j < k.

Now we can deduce that the first differential d; : Eéyt — Eiu is surjective in
a range. First, for t < k — 1 note that the differentials hitting Egu have source
Ej—l,t—j+1 for 1 <j <t-+1. By (A.2) these groups are all zero, so B!, , = E> ;.
The spectral sequence E converges to zero in total degree t—1so B! | , = E% , =0
and so the first differential d; : Eé,t — Ell,t is vacuously surjective. For t = k we
use the result of the diagram chase above, which tells us that the only possible non-
zero differential hitting EE'L x is the first differential. We know that E> ; = 0 since
FE converges to zero in total degree k — 1 so the first differential d; : E&k — ElLk
must be surjective. This can be identified as the map on homology induced by the
augmentation map Ry (M)° — Ry (M). Hence we have established:

Fact A.3 The augmentation map a: Rp(M)° — Ry(M) induces surjections on
A-homology up to degree k.

Now consider the maps p: Cx(M) — Cx(M1) and u: Cyp(M;y) — Cr(M), de-
fined as follows. The map p is defined similarly to the stabilisation map. Write
M = int(M) for a manifold M with non-empty boundary and choose a self-
embedding e': M < M which is isotopic to the identity and whose image does
not contain the missing point of M;. Then p is defined by applying e’ to each
point of the configuration. The map wu is simply the map induced by the inclusion
M; < M. Since €’ is isotopic to the identity the composition u o p is homotopic
to the identity, and so the induced maps u, and p, on homology are semi-inverses:
Us 0 px = id. If we are careful to define p using a self-embedding e’: M — M
whose support is disjoint from the self-embedding e: M < M used to define the
stabilisation map s, then p commutes on the nose with s and there are induced
maps p: Rp(M) — Rr(My) and u: Ri(M;) — Ri(M) on mapping cones. Again
we have u o p ~ id so u, o p, = id.

The methods of the proof of Proposition 6.3 in [RW13] show that
heconng(u: Rg_1(M1) — Rg_1(M)) = hconn(s: Cyx_o(M) — Cr_1(M)) + dim(M)

where hconny(f) is the A-homology-connectivity of f, i.e. the largest * such that
I;f*(mc(f); A) =0, where mc(f) is the mapping cone of f. By inductive hypothesis
the right-hand side is at least k—2+4dim(M) > k+1 since we have assumed that M
is at least 3-dimensional. Therefore the A-homology-connectivity of p: R_1(M) —

Ryp_1(M) is at least k. In particular we have:
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Fact A.4 The map p: Ri—1(M) — Rp_1(My) induces surjections on A-homology
up to degree k.

For our third and final fact, consider the spectral sequence OF with [ = k and
recall from just before (A.1) that OE’SQ,t = 0 for ¢ < k— 1. This is the relative
Serre spectral sequence for the map of fibre bundles Cy(M)° — Cii1(M)° over
C1(M) = M. The inclusion of the fibre over a point * € M is the map Cj_1 (M) =
Cr_1(M ~ {*}) = C(M)® which adds the point * to a configuration and labels it
by 0. This induces a map f: Ry_1(M;) — Ry (M)° on mapping cones. The map on

H, induced by f can be identified with the composition of the edge homomorphism
H.(Re_1(My)) ="E3, - "Eg.,
and the inclusion B B
CEGS = Hu(R(M)°)
given by all the extension problems in total degree *. But since the second page is

trivial for ¢ < k — 1 there are no extension problems in total degree * < k, and so
this inclusion is an isomorphism. Hence we have:

Fact A.5 The map f: Rp_1(My) — Ri(M)® induces surjections on A-homology
up to degree k.

The composition s’ := ao fop: Ri_1(M) — Ri(M) is defined exactly like the
stabilisation map s: Rg_1(M) — Ry(M) except that it uses the self-embedding e’
of M instead of e. Since we chose e and e’ to have disjoint support, the maps s
and s’ commute. If we now ensure that we picked e and €’ to be isotopic, we have
that s and s’ are homotopic. The square so s’ = s’ o s induces a map of long exact
sequences:

b=8« ~

= Hy(Crl(M)) — = Hy(Ry—r (M) — Hy—y(Comy (M) = Hy_1(Ch(M)) =

s;l la:si

- ﬁt(ck+1(M)) a4 Ht(Rk(M)) -

Sx

Let t < k — our aim is to show that H,(Ry(M)) = 0. By Facts A.3, A.4 and A.5
above, the map a in this diagram is surjective. As mentioned at the beginning
of the proof, the stabilisation map is split-injective on homology in all degrees
[McD75, page 103], so the map b is injective, and so by exactness the map c is
surjective. Hence the composite a o c is surjective. But

aocc=dos,=dos, =0,
so its codomain Hy(Ry(M)) must be trivial.

It now remains to prove the claim we made earlier in the proof, namely that
the map

IB} ;= Hoej(Ri—j—1 (M) A R;(R™)) — Hy_j(Ri(M)’) = E},_.

is surjective. In fact we will show that the map Rg_;_1(M) A R;j(R™)? — Ry (M)
induces surjections on homology in degrees t < k — j. First note that

Rj(R")! = me(C;(R") = Cj11(R"))
= me(2 — Cj1(R"))
= 1 (R"),
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and the map Ry_;_1(M)AC;11(R™)y — Ry(M)7 is given by taking mapping cones
of the horizontal arrows in the commutative square:

~ s x id ~
Cr—j—1(M) x Cj11(R™) Cr—j(M) x Cj11(R™)

| J

Cr(M)? Crp1 (M)

To do this we begin by defining some more explicit models for various maps.
As before, write M = int(M) for a manifold M with non-empty boundary and
choose two isotopic self-embeddings e,e’: M < M which are both non-surjective
and have disjoint support. Choose an embedding ¢: R™ < M\ €/(M) and pairwise
disjoint points po,...,p; € R™. Write M;11 = M ~ {¢(po), ..., #(p;)}. We have a

square of maps

Crj 1 (M) —— Cp_joa (M) x Cyia (R™)

VJ Jé (A.4)
Cr—j—1(Mj41) Cr(M)

defined by
= (¢, (po; - --,pj))
e

)
)
B(e) = cU{d(po),---,0(pj)};i — d(pi)
(¢, (g0, -+, 45)) = €'(c) U{e(q0), - - - ¢(q5) }51 = ().

Choose a point * € M \ e(M) and take an explicit model for the stabilisation
map to be defined by ¢ — e(c) U {x}. Since e and €’ have disjoint support this
induces a map of squares from (A.4) to (A.4)[k — k + 1]. Taking mapping cones
along this map of squares gives us the following:

Ri—j1(M) —"= Ry_;_1(M) A Cj 11 (R™) 4

| k

Ri—j—1(Mj41) ————— Rp(M)’

We need to show that § induces surjections on homology in degrees t < k — j.
This will follow if we can prove this for 4 and 3. But 7 is the composition of
7+ 1 instances of the map p from Fact A.4, and so this does induce surjections on
homology up to degree k — j by Fact A.4.2 When j = 0 the map £ is surjective on
homology up to degree k by Fact A.5. Moreover, the argument proving Fact A.5
generalises (using the spectral sequence 7 E instead of °FE) to prove precisely that
the map [ is surjective on homology up to degree k — j in general. O

2The proofs of Facts A.4 and A.5 earlier did not depend on the claim which we are currently
proving, so this is not circular.
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Remark A.6 When dim(M) > 3 we have homological stability in the range * < k
for Q coefficients (by [RW13, Theorem B]) and for Z/p coefficients with p odd (by
Proposition A.2 above). Using the short exact sequences of coefficients 0 — Z/p —
Z/p*t — Z/pt — 0 and

0—Z[i]—-Q— D, colimy_, o Z/p" — 0

this implies homological stability in the range * < k — 1 for Z[%] coefficients. This
recovers Theorem 1.4 of [KM14b], except without surjectivity in degree k.

Remark A.7 Configuration spaces also satisfy homological stability with respect
to finite-degree twisted coefficient systems: for the case of symmetric groups this
was proved by [Bet02], and the general case was proved in [Pall3]. A twisted
coefficient system for M is a functor from the partial braid category B(M) to
Z-mod. The partial braid category B(M) has objects {0,1,2,...} and a morphism
from m to n is a path in Cyx(M) from a subset of {p1,...,pm} to a subset of
{p1,...,Pn}, up to endpoint-preserving homotopy, where {p1, p2,ps,...} is a fixed
injective sequence in M.

If the twisted coefficient system has degree d the stable range obtained is
* < %, which arises since homological stability with untwisted Z coefficients in
the range * < g is an input for the proof. However, if the twisted coefficient system
takes values in the subcategory Z[%]—mod of Z-mod and dim(M) > 3, then we may
instead input [KM14b] or Proposition A.2 to obtain a stable range of * < k — d for

Ci (M) with coefficients in a functor B(M) — Z[4]-mod of degree d.

In particular we may adapt this last remark to generalise Proposition A.2 to
configuration spaces with labels in a bundle over M.

Definition A.8 Let §: E — M be a fibre bundle with path-connected fibres F
and define

Cx(M,0) = {{p1,...,px} C E | 0(p:) # 0(p;) for i # j}.

Choose a self-embedding e: M < M which is non-surjective and isotopic to the
identity. Choose an open neighbourhood U C M containing the support of e, write
V = U ~ M and choose a trivialisation ¢: 71(V) — V x F of E over V. Define
a self-embedding e: F < E by

P pg o (V)
re {¢‘1 o(exid)og(p) pebd (V)
(

and note that § oe = eo 6. Also choose points x € M ~e(M) CV and z € F. We
can then define the stabilisation map Cy (M, 0) — Ci1(M,0) by

{ph s vpk} = {g(pl)v s ,E(pk)7 ¢_1(*vx)}'

Proposition A.9 Let M be a smooth, connected, open n-manifold with n > 2 and
0: E — M a fibre bundle with path-connected fibres. Then the stabilisation map
C(M,0) = Cry1(M,0) induces isomorphisms on H,(—;Z) in the range < & —1.
It induces isomorphisms in the range x < k on H.(—;Q), unless M is an orientable
surface in which case the range is only * < k—1. If n > 3 it induces isomorphisms
on H*(—;Z[%]) in the range x < k — 1.

The worse range * < k—1 for rational homology of configurations on orientable
surfaces is necessary: for example H;(C1(R?); Q) =0 % Q = H;(Co(R?); Q).

Proof. This will follow by the same considerations as in Remark A.6 if we show
that it induces isomorphisms on H,(—; A) in the range * < % when A =T, in the
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range * < k if either (a) A = Q and M is not an orientable surface or (b) A =T,
for p odd and n > 3, and in the range * < k—1 when A = Q and M is an orientable
surface. The loss of one degree from the range occurs when going from Q and Q/Z
coefficients to Z coefficients (resp. Q and Q/Z[3] coefficients to Z[3] coefficients).

Let A= Q or F, for a prime p. There are fibre bundles Cy (M, 8) — Ci (M),
given by forgetting labels, with fibre F'*. The stabilisation maps Cy, (M) — Cl1(M)
and Ci(M,0) — Cry1(M,0) commute with these fibre bundles and the map of fi-
bres is the inclusion F* < F**1. There is then a map of Serre spectral sequences

Eit%Hs(Ck(M);Ht(Fk;A)) =  H.(Cr(M,0);A)

| |

Eit%HS(C;CH(M);Ht(F’““;A)) = H.(Cr41(M,0); A)

and our aim is to prove that the map in the limit is an isomorphism in a certain
range depending on A and M.

Now by Lemma 4.2 of [Pall3] and since A is a field the assignment k +—
Hy(F*; A) extends to form a twisted coefficient system of degree at most %ﬂ <t
where h = hconny (F'). Hence the map on the second page is an isomorphism in
the range s < % by Theorem 1.3 of [Pall3]. In particular it is an isomorphism in

total degree at most % and therefore the same holds for the map in the limit.

To obtain the improved range in certain cases note that, by Remark 6.5 of
[Pall3], if homological stability with (untwisted) A coefficients holds for (unlabelled)
configuration spaces on M in the range * < f(k), then twisted homological stability
will hold in the range * < f(k — d) for any twisted coefficient system of degree d
which factors through the forgetful functor A-mod — Z-mod. C.f. Remark A.7
above.

If A = Q then the above twisted coefficient system factors through the inclusion
Q-mod — Z-mod. By Theorem C of [RW13] we may take f(k) = kifn = dim(M) >
3. For orientable surfaces we may take f(k) = k — 1 by Corollary 3 of [Chul2] or
Theorem 1.3 of [Knul4], and for non-orientable surfaces we may take f(k) = k by
Theorem 1.3 of [Knul4]. By the above paragraph the map of spectral sequences is
an isomorphism on the second page in the range s < f(k—t), and therefore in total
degree at most k (resp. total degree at most k — 1 for orientable surfaces). Hence
so is the map in the limit.

If A =TF, for p odd and n > 3 then the twisted coeflicient system factors
through the inclusion Z[%]-mod — Z-mod. By Proposition A.2 (or Theorem 1.4 of
[KM14b]) we may take f(k) = k. So as above the map of spectral sequences is an
isomorphism in total degree at most k, and therefore so is the map in the limit. O

Remark A.10 A version of Proposition A.9 is also proved in the appendix of
[KM14a]. One of the proofs given there is essentially the same as the proof above,
and a sketch proof using semi-simplicial resolutions by collections of disjoint arcs
in M is also given. This latter method has the advantage that it gives a range of
x < £ for Z coefficients (at least when M is orientable), rather than the smaller
range * < g — 1 for Z coefficients obtained in Proposition A.9.



STABILITY FOR CONFIGURATIONS IN CLOSED MANIFOLDS 33

APPENDIX B. HOMOLOGY STABILITY FOR CONFIGURATION SPACES WITH
LABELS IN A FIBRE BUNDLE

The theorem in this appendix can be obtained following step by step the proof
in [McD75], as pointed out in the introduction to that paper. We give here a
sketch of this proof with some shortcuts, taking advantage of knowing the homology
stability theorem with labels (Proposition A.9) in the spirit of [GMTWO09].

Definition B.1 Let 0: X — M be a fibre bundle, let ¢: OM x [0,1] — M be a
collar, let N C OM, write N1 = N x [0,1], M UN_; = M Uy oy N x [-1,0] and
take 6 > 0 smaller than the injectivity radius of M.

(1) Cx(M;0) is the space of pairs (q, f), where q € Cy(M) is a configuration
and f: q— X|q is a section.

(2) C(M;0) := 11,2, Cr(M;0)

(3) ¥(M,N;0) is the underlying set of C(M;60) with the following topology:
Consider the quotient Y of C(M U N_q;8) under the relation q ~ q’ if and
only if (M) = q’N(M). The natural inclusion C'(M; 0) — C(MUN_;0)
induces a bijection C(M;6) = Y, which we use to endow C(M;0) with a
new topology.

(4) U(TM;0) is the result of applying ¥ fibrewise to TM and the fibrewise
fibre bundle 6*TM — T M.

Lemma B.2 ([Hes92, §2.3]) If the inclusion N C M induces a epimorphism on
o, then the scanning map

s W(M, N;0) — T(U(TM;9),)
defined as
5%0((17 f) (1‘) = (% expgl(q), f © expx\'yq)
is a homotopy equivalence.
In the paper, Hesselholt considers X to be a fibre bundle of based spaces. Our
case is a particular case of his theorem taking a disjoint basepoint in each fibre.

Let m1: M --» I be the partially defined function that sends a point in the
image of the collar to the second coordinate. Define W(M, N;0), to be the semi-
simplicial space whose space of i-simplices is the space of tuples (q, f, ag, . .., a;),
where (q, f) € ¥(M, N;0) and (ag, .. .,a;) € I'™t and 1 (q)N{ao, .. .,a;} = 0. The
jth face map forgets a;, and there is an augmentation to ¥(M, N; ) that forgets
all the a;’s.

Lemma B.3 The realization of the augmentation
[ (M, N;0)e|| — W (M, N;0)
is a weak homotoy equivalence.

Proof. This is an augmented topological flag complex [GRW14] satisfying the con-
ditions of Theorem 6.2 in that paper, hence a weak homotopy equivalence. ]

Proposition B.4 If M is a manifold with non-empty boundary and 6: X — M
has path-connected fibres, then the restriction of the scanning map
s70: C(M;0) — T (U (TM;0))

is a homology isomorphism in the range in which the stabilisation map of Proposi-
tion A.9 is a homology isomorphism.
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Proof. We have constructed the following commutative diagram

[ W (M, Nu; 0)|| —— W (M;0) ——T(¥(T'M;0)) (B.1)

| | i

[W(N1; 0)e|| —— ¥(N1;0) ——T(¥(T'M;0))

All the horizontal maps are homotopy equivalences, by the previous two lemmas.
The rightmost vertical map is a fibration. We now choose a ball L C M ~ N, and
take the colimit

P(M, Ny; ) := colim (\II(M7 N3 0)e = U(M, Ny;0)s — )
with respect to the stabilisation maps s that push the configurations outside I,

and add a point in L;. The scanning of this operation §7%(s) gives also a sequence
of maps between spaces of sections, whose colimit we denote by

G(M, Ny; ) := colim <F(\II(TM; 6)) ““L D (w(TM; 0)) — .. )

Observe that the maps 57 (s) increase the degree by 1. We can consider instead
the maps that push the source of the scanning map away from L; and glue there
the reflection of the scanning of some point in L;. This latter map is a homotopy
inverse of §7°%(s), hence 57%(s) homotopy equivalences.

By Proposition A.9, it follows that the semi-simplicial map
P(M,N1;0)e — U(Ny;0),
satisfies the hypotheses of [MS76, Proposition 4], so the realization
[P(M, Ni;0)|| — [[W(N1;0)e]l

is a homology fibration. Its fibre over any point is the colimit of the space C'(M;6)
with respect to the stabilisation map s. The map

G(M,Ny;0) — T(V(TM;0))

is a Serre fibration (it is a union of Serre fibrations). Its fibre over any point is the
colimit of T'.(¥(T'M); 0) with respect to the map obtained by scanning s:

colim C'(M;6) colimI'o (¥ (T'M); 0)

| |

[P(M, Ni;6)e|| ~ G(¥(TM;0)) (B.2)
Pk
[E(N1; 0)s| ~ I(W(TM;0))

The fibres of (B.2) together with the maps to the fibres of (B.2) give the
following commutative diagram

C(M;6) L. (¥(TM);0)

l l

colim C'(M;0) colimT'.(¥(TM);0).

The bottom map is a homology equivalence because the horizontal maps in diagram
(B.1) are homotopy equivalences. The left vertical map is a homology equivalence
in the stable range of Proposition A.9. The right vertical map is a homotopy
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equivalence. As a consequence, the upper horizontal map is a homology equivalence
in the range provided by Proposition A.9 O

The following is proved in the same way as Theorem 1.1 at the bottom of page
34 in [McD75].

Corollary B.5 If M is a manifold with empty boundary, then the restriction of
the scanning map
C(M;0) — T.(¥(TM;6))

s a homology isomorphism in the range in which the stabilisation map is a homology
isomorphism.

Definition B.6 Let 8: X — M be a fibre bundle, and let § > 0 be bounded by
the injectivity radius of M.

(1) Let 6*T'M be the pullback of TM along 6. This is a vector bundle over X,
and the composite my: 0*TM — X — M is a fibre bundle whose fibres are
vector bundles. We let T M be the fibrewise Thom construction on the
fibres of my.

(2) WO(M, N;0) is the space of triples (q,e¢, f), where (q, f) € ¥(M;0) and
0 < € < ¢ is such that d(q,q") > 2¢ for all ¢,¢' € q.

There are fibrewise maps
i: TYM < W(TM:;0)
h: W(TM;0) — T'M

defined by
i(y,q) = (0(y), (¢, f)) with f(g) =y i(x,00) = (x,00)
h(z,(q, f)) = {(f (Gsest) qse?orld) %f Qfirst. < Qsecond; h(zx,00) = (x,00)
(H(y), OO) if Qfirst = Jsecond

which are mutually fibrewise homotopy inverses by the same argument as on page
7 (where the definition of qsecond is also given).

Finally, there is a linear scanning map
SO0 WO(M;0) — T(T7 M)
given by
00 if ¢ ¢ B.(q)Vq € q,
exp; ' (q) :
(flg),==—") ifzeBgqcq

As on page 7, there is a commutative square

y&e((qv 6),f)(33‘) = {

WO (M;0) — 2 (10 M)

L)

U(M;0) —> T(W(TM;0))

where the vertical maps are easily seen to be homotopy equivalences, and the lower
horizontal map is a homotopy equivalence too by Lemma B.2. This together with
Corollary B.5 give:
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Theorem B.7 (McDuff’s Theorem with labels) The linear scanning map with
labels

S0 Cp(M;0) — To(T° (M)
induces an isomorphism in homology groups in the stable range provided by Propo-
sition A.9.
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