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Abstract
A wide family of homological representations of surface braid groups and mapping class

groups of surfaces was developed in [PS21]. These representations are naturally defined as
functors on a category whose automorphism groups are the family of groups under consider-
ation, and whose richer structure may be used to prove twisted homological stability results
— subject to the condition that the functor is polynomial. We prove that many of these
homological representation functors are polynomial, including those extending the Lawrence-
Bigelow representations of the classical braid groups. In particular, we carry out general
computations of the homological representation modules by using Borel-Moore homology and
qualitative properties of the group actions. These polynomiality results also have applications
for representation theoretic questions.

Introduction
The representation theory of surface braid groups and of mapping class groups of surfaces has

been the subject of intensive study over the last decades; see Birman and Brendle’s survey [BB05,
§4] or Margalit’s expository paper [Mar19] for instance. As many mathematical objects, these
groups naturally come in families in the sense that they are canonically indexed by non-negative
integers, forming a collection of the type {Gn}n∈N equipped with morphisms Gn → Gm whenever
n 6 m. We consider the families of classical braid groups Bn, of surface braid groups Bn(Σg,1) and
Bn(Nh,1) where Σg,1 and Nh,1 are respectively orientable and non-orientable compact surfaces with
one boundary component and genus g, h > 1, and of the mapping class groups Γg,1 and N h,1 of the
surfaces Σg,1 and Nh,1; see §1.1.2 for proper recollections on these groups. Each of these families
of groups has an associated groupoid M: a category whose objects are indexed by non-negative
integers, whose automorphism group for the object n is Gn and with no further morphisms.

A convenient idea to study and mildly simplify the representation theories of these families of
groups consists in considering families of representations. This means collecting one representation
for each group Gn and requiring these gathered representations to satisfy compatibility conditions
with respect to the morphisms Gn → Gm for n 6 m. The natural mathematical objects encoding
this procedure are functors 〈G,M〉 → R-Mod, where R-Mod denotes the category of R-modules
(for R a ring). Here 〈G,M〉 denotes a category obtained via a construction due to Quillen from the
groupoidM and an auxiliary braided monoidal groupoid G acting on it; see §1.1.1. The category
〈G,M〉 has more morphisms that allow us to encode the compatibilities. A general functorial
machinery is defined in [PS21] in order to construct such functors. In particular, we introduce a
large range of families of representations for the aforementioned families of groups.

In the present paper, we prove polynomiality results for the functors constructed in [PS21]
for surface braid groups and mapping class groups of surfaces; see Theorems B, C and D. These
results require a deep understanding of the structures of the representations (see Theorem A) and
have powerful applications for homological stability and representation theory of the families of
groups that we consider (see Theorems E, F and G).
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Homological representation functors. The general construction of [PS21] and its application
for surface braid groups and mapping class groups are recalled in §1.2 and §1.3. At the level of
a family of groups {Gn}n∈N, the key idea consists in defining a regular cover of a configuration
space of points on a surface Sn, on which a topological lift of the group Gn acts naturally. This
definition essentially depends on two parameters: a integer ` > 0 corresponding to the level of
some lower central series and a partition k of the number k > 1 of configuration points. It is
however independent of the index n of the group. We denote by Qk,`(S) the corresponding deck
transformation group. The family of representations is then defined by the action of each Gn
on the homology groups of configuration spaces on the surface Sn with local coefficients induced
from that regular covering. Furthermore, although each one of these homology groups is naturally
equipped with a Z[Qk,`(S)]-module structure, the action of Gn does not always commute with the
action of Qk,`(S), in which case we say that the representations are twisted; see Definition 1.4.
Therefore, the output of the machinery of [PS21] is in general a functor 〈G,M〉 → Z-Mod, that is
generically denoted by L(k,`) and called a homological representation functor.

We note that, when the group Q(k,`)(S) is infinite (which is the case in many of our examples;
see §1.3.1–1.3.3), the representations encoded by the functor L(k,`) may be of infinite rank (over
Z). In this case, however, there exists an optimal quotient Qu(k,`)(S) of Qk,`(S) inducing a local
coefficient system commuting with the action of each group Gn; see (1.9). This alteration defines a
homological representation functor Lu(k,`) : 〈G,M〉 → Z[Qu(k,`)(S)]-Mod that is said to be untwisted.
The representations encoded by the functor Lu(k,`) are then defined over Z[Qu(k,`)(S)] and are of
finite rank. Furthermore, an interesting variation of the construction consists in considering the
configuration spaces in the “dual” surface Šn defined by blowing up each puncture and removing
the original boundary ∂Sn; see Definition 2.12. The construction then repeats to define another
homological representation functor Lv(k,`) : 〈G,M〉 → Z[Q(k,`)(S)]-Mod, called the vertical-type
alternative to L(k,`). This terminology comes from the module structure of these alternatives and
their relations to the dual representations of those encoded by L(k,`); see §2.3 and Facts 4.15 and
4.19. Finally, we may modify the module structures of the homological representation functors by
some change of rings operation on the ground ring Z[Q(k,`)(S)]; see §1.2.2.

We study homological representation functors defined in §1.3 for surface braid groups and
mapping class groups for each pair of integers ` > 1 and k > 1, and each partition k ` k. Namely:
• For classical braid groups, the (k, `) homological representation functor is denoted by LB(k,`)

and is called the (k, `)-Lawrence-Bigelow functor. This is because the functor LB(k,2) encodes
the well-known k-th family of the representations introduced by Lawrence and Bigelow in
[Law90; Big04]; see Example 1.12. For instance, the functor LB(1,2) encodes the family of
Burau representations [Bur35], while the functor LB(2,2) that of the Lawrence-Krammer-
Bigelow representations [Big01; Kra02].

• For surface braid groups, the (k, `) homological representation functors are respectively de-
noted by L(k,`)(Σg,1) for the orientable surface Σg,1 and Lu(k,`)(Nh,1) and L(k,`)(Nh,1) for the
non-orientable surface Nh,1. The encoded representations are generally new, except those of
L(k,3)(Σg,1) which are related to the work of An and Ko [AK10]; see Example 1.13.

• For the mapping class groups of surfaces, the (k, `) homological representation functors are
respectively denoted by L(k,`)(Γ) for orientable surfaces and L(k,`)(N ) for non-orientable
surfaces. Apart from the representations encoded by L({1,...,1},1)(Γ), which were introduced
by Moriyama [Mor07] (see Example 1.15), the other families of representations are new.

Computations of the representations. First of all, we develop techniques to compute the
modules and group actions of homological representation functors.

Theorem A (Lemma 2.1, §2.2 and §3.3) For each one of the aforementioned homological rep-
resentation functors L(k,`), the Gn-modules L(k,`)(n), Lu(k,`)(n), Lv(k,`)(n) and Lu,v(k,`)(n) are free
Qk,`(S)-modules of finite rank. Their bases are geometrically modelled by distributions, respecting
the partition k, of the configuration points on some subgraphs of the surface Sn; see §2.3. We also
have certain qualitative properties for the group actions on these bases; see §3.3.

Theorem A relies on the use of Borel-Moore homology of configuration spaces in the definition
of the homological representation functors; see §§2.1–2.3. We may however repeat all our results
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for homological representation functors defined using classical homology assuming that their local
systems satisfy genericity conditions; see §2.4 and Lemma 3.4. In addition to the results of The-
orem A, we may explicitly compute the group actions of the surface braid groups and mapping
class groups on these modules. For instance, these formulas have been computed in [PS22, §4.3]
for the representations encoded by the functors LB(k,`) when ` > 3. Such technical work is not
required for the study of polynomiality; for this purpose, the qualitative properties of §3.3 are
sufficient. However, these formulas will be elaborated in [PS]. Also, the results of Theorem A
naturally generalise at a much greater level of generality than that of configurations of points on
surfaces: for instance it holds for configurations on higher-dimensional analogues of surfaces or for
configurations on complements of links; see Lemma 2.1 and Examples 2.5 and 2.6. These cases are
beyond the scope of the present paper but will be studied in forthcoming work.

Polynomiality results. For each category 〈G,M〉 considered in this paper, there are various
fundamental notions of polynomiality on the objects in the category Fct(〈G,M〉, R-Mod). The first
definitions of polynomial functors date back to Eilenberg and Mac Lane in [EM54] for functors
on module categories. This notion has progressively been extended to deal with a more general
framework, and has been the object of intensive study because of its applications in representation
theory (see Djament, Touzé and Vespa [DTV21]), group cohomology (see Franjou, Friedlander,
Scorichenko and Suslin [FFSS99]) and homological stability with twisted coefficients (see Randal-
Williams and Wahl [RW17]). In particular, Djament and Vespa [DV19, §1] introduce the notion of
strong polynomial functors in the context of a functor category Fct(M,A), whereM is a (small)
symmetric monoidal category where the unit is an initial object and A is a Grothendieck category,
which recovers and extends all the classical concepts of polynomial functors. Furthermore, the
notion of weak polynomial functor is first introduced in [DV19, §1] and reflects more accurately
the stable behaviour of the objects of the category Fct(M,A); see [DV19, §5] and Djament [Dja17].
The notions of strong and weak polynomial functors are then extended in [Sou22, §4] to the larger
setting whereM is a full subcategory of a pre-braided monoidal category where the unit is an initial
object. Also the notion of very strong polynomial functor in this context is introduced there: it
is closely related to the notion of coefficient systems of finite degree of Randal-Williams and Wahl
[RW17]. All these notions of polynomiality straightforwardly extend to the slightly more general
context of the present paper; see §3.1. We also define the notion of split polynomial functor, a
particular kind of very strong polynomial functor, following an analogous notion from [RW17]; see
also [Pal17] for a comparison of the various instances of polynomial functors.

The central results of this paper are the following polynomiality properties, which we prove
for the aforementioned homological representation functors. From now on, we consider integers
` > 1 and k > 1, and a partition k ` k. For classical braid groups, we prove:

Theorem B (See §4.1) The (1, `)-Lawrence-Bigelow functor LB(1,`) (which is isomorphic to its
untwisted version LBu

(1,`), see §1.3.1) is strong polynomial of degree 2 and weak polynomial of
degree 1. For k > 2, the (k, `)-Lawrence-Bigelow functor LB(k,`) and its untwisted version LBu

(k,`)
are both very strong and weak polynomial of degree k. These results still hold after any (non-
zero) change of rings operation. In contrast, the vertical-type alternative (k, `)-Lawrence-Bigelow
functors LBv

(k,`) and LBu,v
(k,`) are not strong polynomial, but they are weak polynomial of degree 0.

Theorem B recovers the previous results of [RW17, Ex. 4.3] about the unreduced Burau functor
LB(1,2) and of [Sou19, Prop. 3.33] about the Lawrence-Bigelow functor LB(2,2). Furthermore, for
the surface braid groups, we prove:

Theorem C (See §4.2) The functors Lu(k,`)(Σg,1) and L(k,`)(Σg,1) for orientable surfaces, and
Lu(k,`)(Nh,1) and L(k,`)(Nh,1) for non-orientable surfaces, are very strong and weak polynomial of
degree k. These results still hold after any (non-zero) change of rings operation. In contrast,
the vertical-type alternatives Lu,v(k,`)(Σg,1), Lv(k,`)(Σg,1), Lu,v(k,`)(Nh,1) and Lv(k,`)(Nh,1) are not strong
polynomial, but they are weak polynomial of degree 0.

As far as the authors know, none the results of Theorem C appear to have been known so far.
Finally, for mapping class groups of surfaces, we prove:
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Theorem D (See §4.3) Each one of the functors Lu(k,`)(Γ), L(k,`)(Γ), Lv(k,1)(Γ) and Lv(k,2)(Γ) for
orientable surfaces, Lu(k,`)(N ), L(k,`)(N ), Lv(k,1)(N ) and Lv(k,2)(N ) for non-orientable surfaces, is
split and weak polynomial of degree k. These results still hold after any (non-zero) change of rings
operation.

This recovers the previous result of Ivanov [Iva93, §2.8] (see also Boldsen [Bol12, Ex. 4.5]) for
Lu(1,2)(Γ) = L(1,2)(Γ), which encodes the natural action of Γg,1 on H1(Σg,1;Z).

Methods: the common strategy for the proofs of Theorems B, C and D consists in unearthing
key short exact sequences for homological representation functors; see (4.1) and (4.2) for classical
braid groups, (4.5) for surface braid groups, and the isomorphisms (4.6) and (4.7) induced from
split short exact sequences for mapping class groups of surfaces. They relate each functor L(k,`)
and its shift by some translation functor to the functors of type L(k′,`) where k′ is obtained from
k by deleting 1 in one partition block. None of these sequences have appeared yet in the literature
and they provide new connections between homological representation functors. All the proofs
share a common philosophy: the representation structures correspond to group actions on some
type of graphs, the sequences are guessed from this geometrical viewpoint and one then has to
check a few key relations to complete the proof.

Applications. Beyond being fundamental properties, the various types of polynomiality for func-
tors happen to be very useful for many questions.

First of all, one of the main motivations for our interest in very strong polynomial functors
is their twisted homological stability properties. We refer to §5.3 for proper recollections on the
notion of twisted homological stability. Our fundamental reference for this is the work of Randal-
Williams and Wahl [RW17], where the current optimal framework for twisted homological stability
for surface braid groups and mapping class groups is established. The key condition on the twisted
coefficients for their setting is that they are given by some type of strong polynomial functor; see
§5.3. Combining these results with the above polynomiality properties, we deduce that:

Theorem E (See §5.3) There is homological stability with twisted coefficients given by any of the
homological representation functors of Theorems B, C, D that are very strong or split polynomial.

Since the representation theories of the families of groups that we study in this paper are wild
and an active research topic, the strong polynomial functors associated with these groups are not
well-understood. Hence, Theorem E extends the scope of twisted homological stability to more
sophisticated sequences of representations.

Furthermore, our weak polynomiality results help to organise the representation theory of the
families of groups as follows. Weak polynomial functors of degree less than or equal to some d ∈ N
form a category Pold(〈G,M〉) that is localising in Pold+1(〈G,M〉): this allows us to define quotient
categories (see (5.5)), which provide an organising tool for families of representations; see §5.4. We
thus gain from Theorems B, C and D a better understanding of these quotient categories, and
these in turn catalogue the homological representation functors into a kind of family of functors:

Theorem F (See §5.4) Considering a family of groups with associated category 〈G,M〉, we denote
by L(k,`) any functor of Theorems B, C and D. There is a sequence of quotient categories

· · · Pold(〈G,M〉)/Pold−1(〈G,M〉) Pold+1(〈G,M〉)/Pold(〈G,M〉) · · ·Pd Pd+1 Pd+2

where each Pd is naturally defined from polynomial functor theory in §3.1, such that L(k,`) is non-
trivial only in the quotient category Polk(〈G,M〉)/Polk−1(〈G,M〉). Moreover, for each partition
k′ ` k − 1 obtained from k by subtracting 1 in one partition block, the functor L(k′,`) is a direct
summand of Pd(L(k,`)).

Therefore the quotients of Theorem F provide a new classifying tool to organise polynomial
functors and more generally the representation theories of families of groups. It also simplifies
them in a reasonable way. Indeed, although these polynomiality properties naturally appear for
many functors, there are also some well-known examples of families of representations, typically

4



those whose module structure is not tame enough, whose induced functors are not polynomial.
For instance, the quotients of Theorem F do not contain some wild representations such as the
exponential ones (for example, the quantum representation functor Ver : Uβ → L-Mod, the func-
tors defined from the Magnus representations or those defined from the discrete Heisenberg group
[BPS21]; see Corollary 5.2 and Remark 5.3) or some of the vertical-type alternatives of the homo-
logical representation functors (see Theorems 4.5 and 4.13). Therefore, although the polynomiality
properties are not universal, they are common enough to handle a large range of interesting families
of representations, while simplifying the representation theories by eliminating some other families
whose behaviour is too wild.

Finally, the techniques that we use to prove polynomiality allow us in addition to deduce some
faithfulness results for some of the braid group homological representations; see §5.1. Namely, using
the short exact sequences (4.1) and (4.2) that we discover in order to deal with polynomiality, we
deduce the following result from the faithfulness properties of Bigelow [Big02; Big01]:

Theorem G (see §5.1) Let n > 0 and k > 2 be integers and k = {k1; . . . ; kr} ` k be a partition
such that kl = 2 for at least one 1 6 l 6 r. Then, using the canonical injection Bn ↪→ Bn+1, the
(k, `)-Lawrence-Bigelow Bn-representations LB(k,`)(1+n) and LBu

(k,`)(1+n) are faithful for each
n > 0 and ` > 2.

Outline. The paper is organised as follows. In §1, we recollect the categorical framework and
the construction of [PS21] to properly introduce the homological representation functors. We then
study the structures of the representations in §2, proving the key result Theorem A about the
underlying modules of the representations. The general theory of polynomial functors is recalled
in §3, where we also establish some qualitative properties of the representations by diagrammatic
arguments (§3.3). The next section §4 is devoted to the proofs of Theorems B, C and D. Finally,
we explain in §5 the applications of these polynomiality properties, proving Theorems E, F and G.

General notations. We denote by N the set of non-negative integers. Let C be a small category.
We use the abbreviation ob(C) to denote the set of objects of C. For D a category and C a small
category, we denote by Fct(C,D) the category of functors from C to D. For X a space, X̊ denotes
its interior. For R a non-zero unital ring, we denote by R-Mod the category of left R-modules. For
G a group and M a G-module, we denote by AutG(M) the group of G-module automorphisms of
M . When G = Z, we omit it from the notation as long as there is no ambiguity. We denote by Sn

the symmetric group on a set of n elements. For an integer n > 1, a partition of n means an r-tuple
n = {n1, ..., nr} of integers ni > 1 (for some r > 1 called the length of n) such that n =

∑
16i6r ni.

For simplicity, we denote the trivial partition n = {n} by n. The lower central series of a group G
is the descending chain of subgroups {Γl(G)}l>0 defined by Γ1(G) := G and Γl+1(G) := [G,Γl(G)],
the subgroup of G generated by the commutators [g, h] for g ∈ G, h ∈ Γl(G).
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1. Background on homological representation functors
This section recollects the construction of homological representation functors introduced in

[PS21]; see §1.2. We first recall the underlying categorical framework in §1.1 and then detail in
§1.3 the outputs of the construction of [PS21] for the families of groups studied in this paper.

1.1. Categorical framework for families of groups
We introduce here the categorical framework that is central to this paper to handle families

of groups. Namely, we present an appropriate groupoid encoding each of the considered families
of groups in §1.1.2. These groupoids will always be braided monoidal or modules over a braided
monoidal category. This allows us to apply in each case the Quillen bracket construction recalled
in §1.1.1. The resulting category is “richer” in the sense that it has more morphisms, and is the
appropriate one both for the constructions of compatible representations of [PS21] and to define
properties of polynomiality of homological representation functors; see §3.1.

Preliminaries on categorical tools. We refer to [Mac98] for a complete introduction to the
notions of strict monoidal categories and modules over them. We generically denote a strict
monoidal category by (C, \, 0), where C is a category, \ is the monoidal product and 0 is the
monoidal unit. If it is braided, then its braiding is denoted by bCA,B : A\B ∼→ B\A for all objects A
and B of C. A left-module (M, ]) over a (strict) monoidal category (C, \, 0) is a categoryM with a
functor ] : C×M→M that is unital and associative. For instance, a monoidal category (C, \, 0) is
equipped with a left-module structure over itself, induced by the monoidal product \ : C × C → C.
Considering the category of (small skeletal strict) braided monoidal groupoids BrG, there is always
an arbitrary binary choice for the convention of the braiding. We may pass from one to the other
by the following inversion of the braiding operator. Let (−)† : BrG → BrG be the endofunctor
defined on each object (G, \, 0) by (G, \, 0)† = (G, \, 0) as a monoidal groupoid but whose braiding
is defined by the inverse of that of (G, \, 0), i.e. bG

†

A,B := (bGB,A)−1.

1.1.1. The Quillen bracket construction

In this section, we describe a useful categorical framework for handling families of groups:
the bracket construction due to Quillen, which is a particular case of a more general construction
described in [Gra76, p.219]. Throughout §1, we fix an object (G, \, 0) of BrG and a (small
strict) left-module (M, \) over G.

The Quillen bracket construction 〈G,M〉 on the left-module (M, \) over the groupoid (G, \, 0)

6



is the category with the same objects asM and whose morphisms are given by:

Hom〈G,M〉(X,Y ) = colim
G

[HomM(−\X, Y )].

Thus, a morphism from X to Y in 〈G,M〉 is denoted by [A,ϕ] : X → Y : it is an equivalence
class of pairs (A,ϕ), where A is an object of G and ϕ : A\X → Y is a morphism in M. Also,
for two morphisms [A,ϕ] : X → Y and [B,ψ] : Y → Z in 〈G,M〉, the composition is defined by
[B,ψ]◦ [A,ϕ] = [B, Y \A, ψ◦(idB\ϕ)]. There is a faithful canonical functorM ↪→ 〈G,M〉 defined as
the identity on objects and sending φ ∈ HomM(X,Y ) to [0, φ]. IfM is a groupoid, if (G, \, 0) has
no zero divisors (i.e. A\B ∼= 0 if and only if A ∼= B ∼= 0 for A,B ∈ Obj(G)) and if AutG(0) = {id0},
then M is the maximal subgroupoid of 〈G,M〉; see [RW17, Prop. 1.7]. All these properties are
satisfied in all the situations of this paper (see §1.1.2), and we assume them from now on.

Monoidal structure. The category 〈G,M〉 inherits a (strict) monoidal product as follows. All
the following discussion is a verbatim generalisation of [RW17, Prop. 1.8]. The monoidal product
\ extends to 〈G,M〉 by letting for [X,ϕ] ∈ Hom〈G,M〉(A,B) and [Y, ψ] ∈ Hom〈G,M〉(C,D):

[X,ϕ]\[Y, ψ] = [X\Y, (ϕ\ψ) ◦ (idX\(bGA,Y )−1\idC)]. (1.1)

Moreover, if M = G, the unit 0 of the monoidal structure is an initial object in 〈G,G〉. We
denote by ιX : 0 → X the unique morphism from 0 to a given object X of 〈G,G〉. Also, the
category (〈G,G〉, \, 0) is pre-braided monoidal in the sense of [RW17, Def. 1.5]: namely, its maximal
subgroupoid (G, \, 0) is braided monoidal and the braiding b〈G,G〉A,B : A\B → B\A satisfies the relation
b
〈G,G〉
A,B ◦ (idA\ιB) = ιB\idA : A→ B\A for all A,B ∈ Obj(〈G,G〉).

Extensions along the Quillen bracket construction. The following result provides a way
to extend a functor on the categoryM to a functor with 〈G,M〉 as source category. Its proof is a
mutatis mutandis generalisation of that of [Sou22, Lem. 1.2].

Lemma 1.1 Let C be a category and F an object of Fct(M, C). Assume that there exist a morphism
ηQ,P : F (P )→ F (Q\P ) for each Q ∈ Obj(G) and P ∈ Obj(M), such that ηY,X\A ◦ ηX,A = ηY \X,A
for all X,Y ∈ Obj(G) and A ∈ Obj(M), and η0,B = idF (B) for all B ∈ Obj(M). Then, the
assignments F ([X, f ]) = F (f) ◦ ηX,A to all morphisms [X, f ] : A → X\A of 〈G,M〉 extend the
functor F : M→ C to a functor F : 〈G,M〉 → C if and only if for all X ∈ Obj(G) and A ∈ Obj(M),
for all f ′ ∈ AutG(X) and f ′′ ∈ AutM(A), the following relation holds:

F ([X, idX\A]) ◦ F (f ′′) = F (f ′\f ′′) ◦ F ([X, idX\A]). (1.2)

Similarly, we have the following criterion for extending a morphism of the category Fct(M, C)
to a morphism in the category Fct(〈G,M〉, C). The proof is a verbatim adaptation of that of
[Sou19, Lem. 1.12].

Lemma 1.2 Let C be a category, F and G be objects of Fct(〈G,M〉, C) and η : F → G a natural
transformation in Fct(M, C). The restriction Fct(〈G,M〉, C) → Fct(M, C) is obtained by pre-
composing by the canonical inclusion M ↪→ 〈G,M〉. Then, η is a natural transformation in the
category Fct(〈G,M〉, C) if and only if for all X,Y ∈ Ob(M) such that Y ∼= A\X with A ∈ Ob(G):

ηY ◦ F ([A, idY ]) = G([A, idY ]) ◦ ηX . (1.3)

1.1.2. Categories for surface braid groups and mapping class groups

We now recollect the suitable categories for our work, which are inspired by [RW17, §5.6].
This is done in §1.1.2.1 for the mapping class groups of surfaces and in §1.1.2.2 for (surface)
braid groups. We also take this opportunity to recollect the various definitions and properties of
these families of groups. The content of this section is classical knowledge; see [RW17, §5.6] (for
the original definitions of the categories) and [Sou22, §3.1] (for the skeletal versions) for further
technical justifications of the properties and definitions.
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1.1.2.1. For mapping class groups of surfaces

The decorated surface groupoid M̂2 is introduced in [RW17, §5.6] and defined as follows. Its
objects are the decorated surfaces (S, k, I), where S is a smooth connected compact surface with one
boundary component ∂S, with a finite set of k > 0 points removed from the interior of S (in other
words with punctures) together with a parametrised interval I : [−1, 1] ↪→ ∂S in the boundary.
When there is no ambiguity, we omit k and I from the notation for convenience. Let DiffI(S,k) be
the group of diffeomorphisms of the surface S̄ obtained from S by filling in each puncture with a
marked point, which restrict to the identity on a neighbourhood of the parametrised interval I and
fixing the k marked points setwise by stabilising the partition k as a subset. When the surface S is
orientable, the orientation on S is induced by the orientation of I, and then the isotopy classes of
DiffI(S,k) automatically preserve that orientation. The (auto)morphisms of M̂2 are the mapping
class groups of (S,k, I) denoted by MCG(S,k), i.e. the isotopy classes π0DiffI(S,k).

By [RW17, §5.6.1], the boundary connected sum \ induces a braided monoidal structure on
M̂2 as follows. For a parametrised interval I, the left half-interval [−1, 0] ↪→ ∂S of I is denoted
by I− and the right half-interval [0, 1] ↪→ ∂S of I is denoted by I+, defining I = I− ∪ I+. For two
decorated surfaces (S1, I1) and (S2, I2), the boundary connected sum (S1, I1)\(S2, I2) is defined to
be the surface (S1\S2, I1\I2), where S1\S2 obtained by gluing S1 and S2 along the half-interval I+

1
and the half-interval I−2 , and I1\I2 = I−1 ∪ I

+
2 . The braiding bM̂2

S1,S2
of the monoidal structure is the

half Dehn twist with respect to the separating curve I−2 = I+
1 that exchanges the two summands

S1 and S2; see [RW17, Fig. 2]. In order to strictify this monoidal structure, we formally adjoin a
new strict monoidal unit I to M̂2 and then apply [Sch01, Th. 4.3], which says that one may force \
to be strictly associative, without changing the underlying category or the unit object, by making
careful choices of concrete (set-theoretic) realisations of S1\S2 for each S1 and S2. Let us denote
the resulting strict braided monoidal groupoid by (M2, \, I, bM2

−,−).
Now fix a once-punctured disc D1, a torus with one boundary component T and a Möbius

strip M. We will often denote D\s1 by Ds for concision. LetM+
2 andM−2 be the full subgroupoids

of M2 on the objects {T\g}g∈N and {M\h}h∈N respectively, where T\0 = M\0 = I. The strict
braided monoidal structure onM2 restricts to a strict braided monoidal structure on each ofM+

2
andM−2 . We also note that these two subgroupoids are small, skeletal, have no zero divisors and
that AutM+

2
(T\0) = AutM−2 (M\0) = {idI}. We denote the mapping class groups MCG(T\g) and

MCG(M\h) by Γh,1 and N h,1 respectively.

1.1.2.2. For braid goups on surfaces

Let S be a compact, connected, smooth surface with one boundary component. There exist
integers g > 0 and h > 0 and a homeomorphism S ∼= T\g\M\h using the notations of §1.1.2.1. If
the surface is orientable (i.e. h = 0), then g is unique and we prefer to denote S ∼= T\g by Σg,1.
We also denote S ∼= M\h by Nh,1.

There are several ways to introduce (partitioned) surface braid groups; see for example [DPS22,
§6.2–6.3] for a detailed overview. For a partition n = {n1, . . . , nr} ` n, we denote by Cn (S)
the n-configuration space {(x1, . . . , xn) ∈ S×n | xi 6= xj if i 6= j} /Sn of n points in the surface S,
with Sn := Sn1 × · · · ×Snr . The n-partitioned braid group on n strings on the surface S is the
fundamental group of this configuration space: Bn (S) = π1 (Cn (S) , c0), where c0 is a configuration
in the boundary of S. The braid groups on the 2-disc D2 are the classical braid groups; we omit D2

from the notation in this case. Full presentations of these groups are recalled in [PS23, Prop. 2.2].
The family of classical braid groups is associated with the small skeletal groupoid β, with

objects the non-negative integers n and morphisms Homβ(n,m) = Bn if n = m and the empty set
otherwise. The composition of morphisms ◦ in the groupoid β corresponds to the group operation
of the braid groups. We recall from [Mac98, Chapter XI, §4] that β has a canonical strict monoidal
product \ : β × β → β defined by the usual addition for the objects and laying two braids side by
side for the morphisms. The object 0 is the unit of this monoidal product. The strict monoidal
groupoid (β, \, 0) is braided: the braiding is defined for all non-negative integers n and m such that
n+m > 2 by bβ

n,m = (σm ◦ · · · ◦σ2 ◦σ1) ◦ · · · ◦ (σn+m−1 ◦ · · · ◦σn+1 ◦σn), where each σi denotes the
i-th Artin generator. Finally, we note that (β, \, 0) has no zero divisors and that Autβ(0) = {id0}.

Similarly, let βS be the groupoid with objects the non-negative integers and morphisms given
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by HomβS (n,m) = Bn(S) if n = m and the empty set otherwise. For each S, there is a canonical
strict left β-module structure on βS : the associative, unital functor \ : β×βS → βS is defined by
addition on objects and, on morphisms, by the maps of configuration spaces Cn(S) × Cm(D2) →
Cn+m(S) induced by a choice of homeomorphism S\D2 ∼= S whose restriction to the left-hand
summand is a self-embedding of S that is isotopic to the identity.

1.1.3. Topological lifts

We construct in [PS21, §4] topologically-enriched versions of all of the above discrete groupoids
that recover the discrete groupoids after applying π0 to all morphism spaces (which are certain dif-
feomorphism groups). We denote these “topological lifts” of the discrete groupoids by a superscript
(−)t. We also give a topologically-enriched version of the Quillen bracket construction [PS21, §3.1],
which under mild conditions commutes with applying π0 to morphism spaces [PS21, Lem. 3.6].
Thus we also obtain topologically-enriched versions of the Quillen bracket constructions of the
above modules over braided monoidal groupoids, whose morphism spaces may be identified with
certain embedding spaces [PS21, Prop. 4.8].

1.2. Construction of homological representation functors
Here, we first recollect the general machinery of [PS21] to construct homological representation

functors for families of groups; see §1.2.1. We then explain in §1.2.2 some key manipulations of
the transformation groups associated to these homological representation functors.

1.2.1. The general recipe

In this section, we sum up the construction of homological representation functors for surface
braid groups and mapping class groups of surfaces; see Construction 1.7. We refer to [PS21, §2,
§5] for further details. This general theory may however be avoided by some ad hoc constructions;
see Remark 1.9. Hence, although we prefer following the framework of [PS21] because it is more
complete and natural, the results of the present paper do not depend on this reference.

Framework. Let G be a small strict braided monoidal groupoid andM a G-module defined in
§1.1.2. We denote by {Gn}n∈N the family of groups encoded as the automorphisms ofM. These
come equipped with canonical injections induced by the monoidal structure id1\(−)n : Gn ↪→ Gn+1.
The first key ingredient to define homological representations is to find a family of spaces on
which the family {Gn}n∈N acts. In the case of surface braid groups, this will involve considering
“partitioned versions” of the groups Gn, which we define in a general context:

Definition 1.3 Let Gk be a group equipped with a surjection sk : Gk � Sk. Given a partition
k = {k1, . . . , kr} ` k, for j 6 r, we define tj :=

∑
i6j ki (including t0 = 0). Then the set

bj(k) := {tj−1 + 1, . . . , tj} is referred to as the j-th block of k, and ki is called the size of the i-th
block. The preimage Gk := s−1

k (Sk) (where Sk := Sk1 × · · · × Skr
) is called the k-partitioned

version of Gk and fits into a short exact sequence

1 Gk Gk Sk 1.gk sk (1.4)

The extremal situations are the discrete partition k = {1, . . . , 1}, which corresponds to the pure
version of the group Gk, and the trivial case k = (k), which is simply the group Gk itself.

In all the situations addressed in this paper, the parameter k corresponds to the motion of k
points, while the surjection corresponds to the permutations of these points. For the remainder
of §1.2.1, we consider a partition k = {k1; . . . ; kr} ` k of an integer k > 1. We consider the
configuration space

{
(x1, . . . , xk) ∈ S×kn | xi 6= xj if i 6= j

}
/Sk associated to the partition k of k

points in a surface Sn, denoted by Ck(Sn). The surface Sn is defined differently depending on the
setting:
• When Gn = Bn(S) (S = Σg,1 or Nh,1) we set Sn := Dn\S. We also set Gk,n = Bk,n(S).
• When Gn = MCG(S\n) (S = T or M) we set Sn := S\n. We also set Gk,n = MCG(Sn,k).
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In each case, there is a split short exact sequence

1 Bk(Sn) Gk,n Gn 1, (1.5)

known as the Fadell-Neuwirth exact sequence if Gn = Bn(S) (see for instance [PS21, Prop. 4.15] or
[DPS22, Prop. 6.15]) and as the Birman short exact sequence if Gn = MCG(S\n) (see for instance
[FM12, Lem. 4.16] or [PS21, Cor. 4.19, §5.1.3]). This short exact sequence provides an action (by
conjugation) of Gn on Bk(Sn). We note in passing that, in the case Gn = Bn(S), the section of
(1.5), denoted by s(k,n), is such that its composition with the injection Gk,n ↪→ Gk+n of (1.4) is
equal to idk\(−)n : Gn ↪→ Gk+n.

Twisted representations. Another preliminary is the recollection of the notion of twisted repre-
sentations. For simplicity, we use Z as ground ring, although we could consider all of the following
framework over a non-zero associative unital ring A; each mention of “ring” should then be replaced
by “A-algebra”.

Definition 1.4 (Category of twisted modules.) Let Q be a group. The category of twisted Z[Q]-
modules, denoted by Z[Q]-Modtw, is defined as follows. An object of Z[Q]-Modtw is a left Z[Q]-
module V . A morphism from V to V ′ is an Z-algebra automorphism ψ ∈ AutZ(Z[Q]) preserving
units together with a morphism of left Z[Q]-modules θ : V → ψ∗(V ′). By definition, the module
category Z[Q]-Mod is the subcategory of Z[Q]-Modtw on the same objects and those morphisms
(ψ, θ) with ψ = idZ[Q]. In a larger context, one may consider the category of left modules, whose
objects are pairs of a unital ring together with a left module over that ring and whose morphisms
are compatible pairs of ring and module homomorphisms. There is an evident forgetful functor to
the category of rings and Z[Q]-Modtw is the pre-image of the full subcategory on the ring Z[Q].
There is also a forgetful functor Z[Q]-Modtw → Z-Mod, where we forget the Z[Q]-module structure
on objects and we forget the ψ component of a morphism (ψ, θ).

A functor 〈G,M〉 → Z[Q]-Modtw encodes twisted Z[Q]-representations: at the level of group
representations, it means that the action of Gn on the corresponding Z[Q]-module commutes with
the Z[Q]-structure only up to a “twist”, i.e., an action Gn → AutZ(Z[Q]). However, these repre-
sentations are always genuine Z-module representations. Indeed, we may always post-compose:

〈G,M〉 −→ Z[Q]-Modtw −→ Z-Mod, (1.6)

in order to view twisted Z[Q]-module representations as genuine Z-module representations.

Transformation group functor. We now introduce the key parameter to define a homological
representation functor. For the remainder of §1.2.1, we consider an integer ` > 1 corresponding to
a lower central series index. For each n, the short exact sequence (1.5) induces the key defining
diagram:

1 Bk(Sn) Gk,n Gn 1

1 Q(k,`,n)(S) Gk,n/Γ` Gn/Γ` 1.

(1.7)

More precisely, the right-exactness of the quotient −/Γ` gives the right-half of the bottom short
exact sequence and ensures that the right-hand square of the diagram is commutative; the group
Q(k,`,n)(S) is defined as the kernel of the surjection Gk,n/Γ` � Gn/Γ`; the map Bk(Sn) �
Q(k,`,n)(S) is uniquely defined by the universal property of Bk(Sn) as a kernel and its surjectivity
follows from the 5-lemma. Furthermore, the universal property of Gk,n/Γ` and Gn/Γ` as cokernels
ensure there exist unique maps Gk,n/Γ` → Gk,n+1/Γ` and Gn/Γ` → Gn+1/Γ`, induced by id1\(−),
making the following square commutative:

Gk,n/Γ` Gn/Γ`

Gk,n+1/Γ` Gn+1/Γ`.
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Hence, by the universal property of a kernel, there exists a canonical map q(k,`,n) : Q(k,`,n)(S) →
Q(k,`,n+1)(S) making the clear diagram commutative. The colimit of the modules {(Q(k,`,n)(S))}n∈N
with respect to the maps q(k,`,n) is denoted by Q(k,`)(S). In many examples of interest, this colimit
is isomorphic to Q(k,`,n)(S) for all n sufficiently large. This phenomenon is called Q-stability in
[PS21, Def. 5.14], although we will not need this in the present paper. With or without the above
Q-stability property, the surjection Bk(Sn) � Q(k,`,n)(S) defines a regular covering of Ck(Sn)
by classical covering space theory (see for instance [Hat02, §1.3]), on which the group Gn acts
naturally. In particular, Gn acts by conjugation on the image of the map Bk(Sn) → Q(k,`)(S).
We define below a transformation group functor F(k,`)(S) encoding all these covering spaces and
group actions.

Beforehand, we need to define a category associated to these coverings. Let Q be a group.
The category of twisted (proper) coverings over Q is denoted by Covtw

Q and defined as follows. An
object of Covtw

Q is a path-connected, based, locally-compact space X admitting a universal covering
(i.e., locally path-connected and semi-locally simply-connected), equipped with a homomorphism
φ : π1(X) → Q. Via the correspondence between path-connected, regular coverings of X and
normal subgroups of π1(X), the surjective morphism π1(X)� Im(φ) determines a regular covering
Xφ. A morphism in Covtw

Q from (X,φ) to (X ′, φ′) is a based, proper map f : X → X ′ such that
the induced homomorphism π1(f) sends ker(φ) into ker(φ′). This implies that there is a unique
homomorphism α : Q→ Q such that φ′ ◦ π1(f) = α ◦ φ. The category CovQ of (proper) coverings
over Q is the subcategory of Covtw

Q on the same objects and those morphisms f such that the
induced homomorphism α is equal to idQ; see [PS21, Def. 2.3] for further details.

Using the topological lifts of the categories recalled in §1.1.3, it follows from the general theory
of [PS21, §5.1.1–§5.1.5] that there is a well-defined functor

F(k,`)(S) : 〈Gt,Mt〉 −→ Covtw
Q(k,`)(S) (1.8)

defined, for each object Xn ofMt such that Aut〈G,M〉(Xn) ∼= Gn, by sending Xn to the configu-
ration space Ck(Sn) equipped with the morphism Bk(Sn)� Q(k,`,n)(S)→ Q(k,`)(S).

A natural goal is to choose transformation groups Qn such that the actions of the groups Gn on
the colimit group Q are trivial, i.e. so that the functor (1.8) factors through the category CovQ. The
optimal way to do this consists in taking the coinvariants of the group Q(k,`)(S) under the natural
action of each Gn. Namely, let Qu(k,`)(S) be the colimit of the modules {(Q(k,`,n)(S))Gn}n∈N with
respect to the maps (Q(k,`,n)(S))Gn

→ (Q(k,`,n+1)(S))Gn+1 induced by the canonical morphisms
id1\(−)n : Gn ↪→ Gn+1. Hence, there is a canonical surjective morphism

Q(k,`)(S)� Qu(k,`)(S). (1.9)

The quotient Qu(k,`)(S) is optimal in the sense that any other untwisted (i.e. with trivial Gn-actions)
quotient Q′ of Q(k,`)(S) is a quotient of Qu(k,`)(S); the “u” in the notation stands for untwisted.
Repeating the procedure of [PS21, §5.1.1–§5.1.5], there is a well-defined functor

Fu(k,`)(S) : 〈Gt,Mt〉 −→ CovQu
(k,`)(S) (1.10)

Homology of covering spaces. We finally describe the remaining steps of Construction 1.7,
encoding the idea of taking twisted Borel-Moore homology of covering spaces.

To do this, we first recall the category Top• of bundles of (right) modules. An object of Top•
is a locally-compact space X together with an associative, unital ring S and a bundle of right
S-modules over X; equivalently, a functor ξ : π61(X) → S-Mod. A morphism from (X,S, ξ) to
(X ′, S′, ξ′) is a proper map f : X → X ′, a ring homomorphism ψ : S → S′, and an endofunctor
E : S-Mod → S′-Mod such that ψ∗ ◦ ξ′ ◦ π61(f) = E ◦ ξ, where ψ∗ : S-Mod → S′-Mod is the
restriction functor induced by ψ. Denote by Toptw

Z[Q] ⊂ Top• the full subcategory on those objects
(X,S, ξ) where S = Z[Q], and let TopZ[Q] ⊂ Toptw

Z[Q] be the subcategory on the same objects but
with only those morphisms where E = idZ[Q]-Mod. See [PS21, §2.1] for further details.

As explained in [PS21, Prop. 2.10], there is a continuous functor

Lift : Covtw
Q(k,`)(S) −→ Top• (1.11)
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defined by sending a space X and homomorphism φ : π1(X)→ Q(k,`)(S) to the bundle of Z[Im(φ)]-
modules overX freely generated by the regular covering ofX with deck transformation group Im(φ)
corresponding to the kernel of φ. We may then slightly modify this construction by changing the
base ring of the bundle via the inclusion Im(φ) → Q(k,`)(S) (formally, we are taking a fibrewise
tensor product here). We may do the same construction with Qu(k,`)(S) in place of Q(k,`)(S),
restricting to the “untwisted” subcategories on both sides. We thus obtain functors

Covtw
Q(k,`)(S) −→ Toptw

Z[Q(k,`)(S)] and CovQu
(k,`)(S) −→ TopZ[Qu

(k,`)(S)], (1.12)

that we denote by Lift(−)⊗ Z[Q(k,`)(S)] and Lift(−)⊗ Z[Qu(k,`)(S)].

Remark 1.5 The framework detailed above slightly differs from that of [PS21]. First of all, we
introduce and use the colimit Q(k,`)(S) to define the key functors (1.8) and (1.10). This requires a
slight adaptation of the categories of twisted and untwisted (proper) coverings Covtw

Q and CovQ as
well as the functor (1.11). Here, we consider a not-necessarily-surjective morphism φ : π1(X)→ Q,
contrary to [PS21, Def. 2.2]. In particular, this avoids the necessity of checking the Q-stability
property (see the paragraph after diagram (1.7)) for the functors (1.8) and (1.10) in order for
their images to lie in a subcategory of the form Covtw

Q ⊂ Cov• or CovQ ⊂ Cov•. Also, in the
present paper, we define the untwisted transformation group Qu(k,`)(S) and directly define all the
topological categories with proper maps in order to apply Borel-Moore homology functors.

Finally, we recall that twisted Borel-Moore homology in degree k is a functor

HBM
k : Toptw

Z[Q] −→ Z[Q]-Modtw, (1.13)

whose restriction to the subcategory TopZ[Q] has image in the untwisted subcategory Z[Q]-Mod.

Remark 1.6 There are variants of the functor (1.13) and a fortiori of Construction 1.7 below for
ordinary homology and for reduced homology (where we work with categories of pairs of spaces).
However, we prefer to use Borel-Moore homology because we can calculate the representation mod-
ules and group actions when considering configuration spaces (see §§2.1–2.3). In contrast, most of
the analogous computations using ordinary homology groups are beyond current knowledge, and
the very few occurrences for which computations are done lead to representations that are much
harder to handle (see for instance [Sta21, Th. 1.4]). Also, anticipating the results of §2, we only con-
sider homology in degree k. This is because the Borel-Moore homologyHBM

∗ (Bk(Sn);Z[Q(k,`)(Sn))
is concentrated in that degree for all the situations that we consider; see §§2.2–2.3.

The construction. We now recall the general procedure of [PS21] for defining homological
representation functors: it is summarised in Construction 1.7 below. We refer to [PS21, §2.5] for
further details.

For the framework of Construction 1.7, we consider the following coupled pairs of assignments:
F is either (1.8) or (1.10); Q is either Q(k,`)(S) or Qu(k,`)(S); Cov∗Q is either Covtw

Q or CovQ; Top∗Z[Q]

is either Toptw
Z[Q] or TopZ[Q]; Z[Q]-Mod? is either Z[Q]-Modtw or Z[Q]-Mod.

Construction 1.7 Let k = {k1; . . . ; kr} ` k be a partition of an integer k > 1 and let ` > 1 be
an integer. We then define L(k,`)(F ) : 〈G,M〉 → Z[Q]-Mod? to be the functor induced on π0 by
the composition HBM

k ◦ ((Lift ◦ F )⊗ Z[Q]). This may be written as:

〈Gt,Mt〉

〈G,M〉

Cov∗Q
π0

Top∗Z[Q] Z[Q]-Mod?.F Lift(−)⊗ Z[Q] HBM
k

L(k,`)(F )

(1.14)

In Construction 1.7, when F = (1.10), then Q = Qu(k,`)(S), Cov∗Q = CovQ, Top∗Z[Q] = TopZ[Q]
and Z[Q]-Mod? = Z[Q]-Mod. Therefore the encoded representations are untwisted and we distin-
guish the resulting homological representation functor by denoting it by Lu(k,`)(F ). Moreover, it
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follows from the construction (cf. for instance [PS21, Lem. 5.24, Diag. (5.14)]) that the surjection
(1.9) defines a natural transformation L(k,`)(F ) → Lu(k,`)(F ). In particular, the homological rep-
resentations obtained by Construction 1.7 with the parameters ` ∈ {1, 2} are always untwisted:

Lemma 1.8 There are canonical identifications Lu(k,1)(F ) = L(k,1)(F ) and Lu(k,2)(F ) = L(k,2)(F ).

Proof. The result for ` = 1 is obvious since Q(k,1)(S) = 0. For ` = 2, the Gn-action on Q(k,2,n)(S)
is trivial for each n, since this is induced by conjugation in the abelian group Gk,n/Γ2. Hence
Qu(k,2)(S) = Q(k,2)(S), and the result follows by construction.

Remark 1.9 (Alternative to [PS21].) Instead of using the functorial machinery of [PS21], we may
introduce all the functors of §1.3 that we study in the present paper as follows. For each fixed
n, the quotient Bk(Sn) � Q(k,`,n)(S) defined by (1.7) formally induces a representation of Gn
on the twisted Borel-Moore homology group HBM

k (Ck(Sn);Z[Q(k,`)(S)]) via covering space theory,
working at the level of individual groups. This defines a functor L(k,`)(F ) : G → Z[Q]-Mod?. We
may then extend this functor to 〈G,M〉 following Lemma 1.1: namely, we just have to assign
images to the morphisms of type [1, idn+1] : n→ n+ 1 and check the compatibility relation (1.2).
The only appropriate candidate for these morphisms may then be guessed from the description of
the module structure results in §2.

The vertical-type alternatives. Finally, we mention an important general modification that
we may make in the parameters of Construction 1.7. We recall that we consider the configuration
space Ck(Sn) of k points in Sn which is obtained from a compact surface S possibly minus finitely
many punctures in the interior. We may alternatively use the “dual” surface Šn obtained by
blowing up each puncture to a new boundary component and removing the original boundary ∂S;
see Definition 2.12. Then we consider the configuration space of points on the surface Šn and all
the steps of Construction 1.7 repeat verbatim. This alteration has a deep impact on the module
structures of the representations; see §2.3. Therefore, we single this variant out by denoting it by
Lv(k,`)(F ). Here “v” stands for “vertical” and we call this variant the vertical-type alternative: this
terminology comes from the basis we obtain for the modules for surface braid group representations
in §2.3. Also, when Šn is orientable and under some mild assumptions on the ground ring, the
representations encoded by the functor Lv(k,`)(F ) are the dual representations of those encoded by
Lv(k,`)(F ); see Corollary 2.16 and the isomorphisms (2.17).

1.2.2. Change of rings operation and transformation groups

For a category C, a (non-zero) ring R and a (non-zero) ring homomorphism f : Z[Q]→ R, the
change of rings operation on a functor F : C → Z[Q]-Mod consists in composing with the induced
module functor f! : Z[Q]-Mod → R-Mod, also known as the tensor product functor R ⊗f −. A
typical application of such an operation consists in making the local coefficient system Z[Q] of a
homological representation functor generic in the sense of §2.4; see Trick 2.23.

Another key use of the change of rings operations is the following natural modification of
the ground rings of homological representation functors with respect to partitions. We consider
partitions k = {k1; . . . ; kr} ` k and k′ = {k′1; . . . ; k′r} ` k′ such that 1 6 k′ 6 k, kl > 1 and
0 6 k′l 6 kl for all 1 6 l 6 r. For each k′i < ki, there is an evident analogue of the short exact
sequence (1.5) with Gk′

i
,n as quotient and G{ki−k′i,k

′
i
},n as middle term. The section s{ki−k′i,k

′
i
},n of

that short exact sequence provides an injection Gk′
i
,n ↪→ G{ki−k′i,k

′
i
},n. Composing with the clear

injection G{ki−k′i,k
′
i
},n ↪→ Gki,n of the type of that of (1.4), we obtain an injection Gk′

i
,n ↪→ Gki,n.

Applying this procedure for each block, we obtain a canonical injection Gk′,n ↪→ Gk,n. Now, for
some fixed ` > 1, we consider the transformation groups Q(k,`)(S) and Q(k′,`)(S) associated to
homological representation functors L(k,`) and L(k′,`) respectively.

Lemma 1.10 There is a canonical group homomorphism

Q(k′,`)(S) −→ Q(k,`)(S). (1.15)
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Proof. The injection Gk′,n ↪→ Gk,n induces the following commutative triangle:

Gk′,n/Γ` Gn/Γ`.

Gk,n/Γ`.

Taking kernels and the colimit as n → ∞ (noting that this construction commutes with passing
from n to n+ 1), we obtain (1.15).

In many situations, we will apply a change of rings operation using (1.15) in order to identify
some quotients of homological representation functors with some other ones; see Convention 3.7
and its applications in §4. In particular, we will use the following fact:

Observation 1.11 A change of rings operation (1.15)! : Z[Q(k′,`)(S)]→ Z[Q(k,`)(S)] gives L(k′,`)
the same ground ring as L(k,`), as well as the same actions of the groups Gn on Z[Q(k′,`)].

1.3. Applications for surface braid groups and mapping class groups
We now review the application of Construction 1.7 to produce homological representation

functors for classical braid groups (see §1.3.1), surface braid groups (see §1.3.2) and mapping class
groups of surfaces (see §1.3.3). This is essentially a summary and straightforward generalisation
of [PS21, §5.2, §5.4]. In the exposition, we separate the homological functors defined by Construc-
tion 1.7 with the parameter ` 6 2 from those for ` > 3, because they always encode untwisted
representations (see Lemma 1.8) and we can always compute their transformation groups. Most
properties from [PS21; DPS22; PS22; PS23] (e.g. the transformation group computations or the
relevant choices for ` with respect to the partition k) are not necessary for our further work on the
polynomiality properties in §4, which are thus independent of these previous works. We however
explain them here for the sake of completeness.

We consider an integer k > 1 and a partition k = {k1; . . . ; kr} ` k for all §1.3; we denote by
r′ the number of indices i 6 r in k such that ki > 2. WhenM = G, we abbreviate 〈G,G〉 = UG.

1.3.1. Classical braid groups

We apply Construction 1.7 with the setting Gn := Bn, Sn := Dn and G = M = β. Taking
quotients by the Γ1 and Γ2 terms, Construction 1.7 provides functors

LB(k,1) : Uβ −→ Z-Mod and LB(k,2) : Uβ −→ Z[Q(k,2)(D)]-Mod. (1.16)

[PS23, Prop. 3.2] ensures that these functors satisfy the Q-stability property, and we know that
Q(k,2)(D) ∼= Zr′ × Zr(r−1)/2 × Zr; see [PS23, Lem. 3.1].

Example 1.12 (The Lawrence-Bigelow representations [Law90; Big04].) Each functor LB(k,2)
is called the (k, 2)-Lawrence-Bigelow functor. This terminology comes from the fact that, when
k = k, the functor LB(k,2) encodes the k-th family of the Lawrence-Bigelow representations. These
were originally introduced by Lawrence [Law90] as representations of Hecke algebras and then
by Bigelow [Big04] via topological methods. The Burau representations originally introduced in
[Bur35] are encoded by the functor LB(1,2), while the Lawrence-Krammer-Bigelow representations
that Bigelow [Big01] and Krammer [Kra02] independently proved to be faithful are encoded by
the functor LB(2,2); see [PS21, §5.2.1.1]. Also, each functor LB(k,1) corresponds to the trivial
specialisation Z[Q(k,2)(D)]� Z of the functor LB(k,2), and Lawrence [Law90, §3.4] proves that it
encodes the representations factoring through Bn � Sn.

Taking quotients by the Γ` terms for each ` > 3, Construction 1.7 provides functors

LB(k,`) : Uβ −→ Z[Q(k,`)(D)]-Modtw and LBu
(k,`) : Uβ −→ Z[Qu(k,`)(D)]-Mod, (1.17)

which we call the twisted and untwisted (k, `)-Lawrence-Bigelow functors. Again, [PS23, Prop. 3.2]
ensures that these functors satisfy the Q-stability property. Also, we deduce from [DPS22, Th. 3.6]
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that LB(k,`) = LBu
(k,`) = LB(k,2) if ki > 3 for all 1 6 i 6 r or k is either 1 or {1; 1}. In contrast,

it follows from [PS22, Table 2] that as soon as k is of the form {2; k′}, {1; 1; 1; k′}, {2; 2; k′} or
{1; 2; k′}, then LB(k,`) 6= LB(k,`+1) for each ` > 1. These fit together into a pro-nilpotent tower
of representations as explained in [PS22, §4]. Furthermore, when k = {2; k′} for k′ such that each
k′l > 3, the transformation group Q(k,`)(D) is recalled in [PS23, Lem. 3.3]. We prove in [PS22, §5]
that the representations are untwisted in this case, and a fortiori that LB(k,`) = LBu

(k,`). We may
also compute the explicit formulas of the Bn-actions; see [PS22, Tab. 1 and Rem. 4.9].

Finally, considering Sn := Ďn rather than Dn defines the vertical Lawrence-Bigelow functors
Lv(k,`) : Uβ → Z[Q(k,`)(D)]-Modtw and Lu,v(k,`) : Uβ → Z[Qu(k,`)(D)]-Mod for each ` > 1. The proper-
ties mentioned in the previous paragraph for the functors (1.16) and (1.17) are exactly the same
for these alternatives.

1.3.2. Surface braid groups

We fix two integers g > 1 and h > 1, and a surface S to be either Σg,1 or else Nh,1 defined
in §1.1.2.2. We apply Construction 1.7 with the setting Gn := Bn(S), Sn := Dn\S, G = β and
M = βS . Taking quotients by the Γ1 and Γ2 terms, Construction 1.7 defines functors

L(k,1)(Σg,1) : 〈β,βΣg,1〉 → Z-Mod and L(k,2)(Σg,1) : 〈β,βΣg,1〉 → Z[Q(k,2)(Σg,1)]-Mod; (1.18)

L(k,1)(Nh,1) : 〈β,βNh,1〉 → Z-Mod and L(k,2)(Nh,1) : 〈β,βNh,1〉 → Z[Q(k,2)(Nh,1)]-Mod. (1.19)
[PS23, Prop. 3.2] ensures that these functors satisfy the Q-stability property. In addition, we
know from [PS23, Lem. 3.1] that Q(k,2)(Σg,1) ∼= (Z/2)r′ ×H1(Σg,1;Z)×r and that Q(k,2)(Nh,1) ∼=
(Z/2)r′ ×H1(Nh,1;Z)×r.

Taking quotients by the Γ` terms for each ` > 3, Construction 1.7 provides homological
representation functors, for S ∈ {Σg,1,Nh,1}:

L(k,`)(S) : 〈β,βS〉 −→ Z[Q(k,`)(S)]-Modtw and Lu(k,`)(S) : 〈β,βS〉 −→ Z[Qu(k,`)(S)]-Mod.
(1.20)

Again, [PS23, Prop. 3.2] ensures that these functors satisfy the Q-stability property. Let us denote
by L(k,`) any one of the functors (1.20). If ki > 3 for all 1 6 i 6 r, we deduce from [DPS22, Th. 6.52
and Prop. 6.62] that L(k,`) = Lu(k,`) = L(k,3) for all ` > 4. Moreover, we may compute explicitly the
transformation groups Q(k,3)(Σg,1), Qu(k,3)(Σg,1), Q(k,3)(Nh,1) and Qu(k,3)(Nh,1) = Q(k,3)(Nh,1)/Zr;
see [PS23, Lem. 3.3]. A fortiori, the untwisted representation functors Lu(k,`) are really distinct
from L(k,`) if ki > 3 for all 1 6 i 6 r. In contrast, it follows from [PS22, Table 2] that if k is of
the form {2; k′} or {1; k′} (assuming that S 6= M for the latter), then L(k,`) 6= L(k,`+1) for each
` > 3. In particular, these functors form a pro-nilpotent tower of representations as explained in
[PS22, §5]. Our current knowledge is not sufficient to decide whether or not L(k,`) 6= Lu(k,`) in this
situation; see [PS23, Rem. 3.4].

Taking Sn to be the “dual” surface (Dn\S)̌ rather than Dn\S, the construction defines the
vertical homological representation functors Lu,v(k,`)(Σg,1), Lv(k,`)(Σg,1), Lu,v(k,`)(Nh,1) and Lv(k,`)(Nh,1)
for each ` > 1. Their source and target categories are the same as their non-vertical counterparts,
and the properties mentioned in the paragraph above for the functors (1.18)–(1.17) are exactly the
same for these alternatives.
Example 1.13 (The An-Ko representations [AK10].) For orientable surfaces, the trivial partition
k = k and ` = 3, the Bn(Σg,1)-representation L(k,3)(Σg,1)(n)⊗Q(k,3)(Σg,1) Bk,n(Σg,1)/Γ3 is isomor-
phic to the one introduced by An and Ko in [AK10, Th. 3.2]; see [PS21, §5.2.2.2.]. The group
Q(k,3)(Σg,1) is abstractly defined in [AK10] in terms of group presentations to satisfy certain tech-
nical homological constraints, while [BGG17, §4] gives all the connections to the third lower central
series quotient. In contrast, the untwisted representations encoded by the functor Lu(k,3)(Σg,1) are
specific to [PS21, §5.2.2.2].

1.3.3. Mapping class groups of surfaces

We denote by I ′ ( I the image of the open subinterval [−1/2, 1/2] in the boundary ∂S. We
apply Construction 1.7 with the setting Gn := Γn,1 or N n,1, Sn := Sn r I ′ where Sn := T\n or
M\n and G =M =M+

2 orM−2 .
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Remark 1.14 A more natural assignment for applying Construction 1.7 would be to take Sn :=
Sn, i.e. not to remove the subinterval I ′. We do however choose Sn r I ′ instead because it is nec-
essary for applying Lemma 2.1 in order to compute the underlying modules of the representations;
see §2.3. Otherwise, the calculations of the representations using Sn := Sn are much more compli-
cated; see for instance the work of Stavrou [Sta21, Th. 1.4], who computes the Γn,1-representation
equivalent to that obtained from Construction 1.7 with Sn := T\n, ` = 1, taking Q as ground ring
and using classical homology (see Remark 1.6).

Taking quotients by the Γ1 and Γ2 terms, Construction 1.7 defines homological representation
functors

L(k,1)(Γ) : UM+
2 → Z-Mod and L(k,2)(Γ) : UM+

2 → Z[Q(k,2)(T)]-Mod (1.21)

L(k,1)(N ) : UM−2 → Z-Mod and L(k,2)(N ) : UM−2 → Z[Q(k,2)(M)]-Mod (1.22)

where Q(1,2)(T) = 0, Q(k,2)(T) ∼= (Z/2)r′ for k > 2 and Q(k,2)(M) ∼= (Z/2)r′ × (Z/2)r; see [PS23,
Cor. 3.6]. These homological representation functors also satisfy the Q-stability property.

Example 1.15 (The Moriyama representations [Mor07].) For orientable surfaces, the discrete
partition k = {1, ..., 1} and ` = 1, the functor L({1,...,1},1)(Γ) encodes the mapping class group
representations introduced by Moriyama [Mor07]; see Remark 2.18. It is thus called the k-th
Moriyama functor. In particular, the representations encoded by the functor L(1,1)(Γ) are equiva-
lent to the well-known ones on H1(Σg,1;Z), which factor through the symplectic groups Sp2g(Z).

For orientable surfaces, it follows from [PS23, Cor. 3.6 and 3.7] that, for all ` > 3, we have
Q(k,`)(T) = Q(k,2)(T). A fortiori L(k,`) = L(k,2) by construction, and thus it is not relevant to
consider Construction 1.7 with parameters ` > 3. On the other hand, for non-orientable surfaces,
our current knowledge of the lower central series of the mapping class groups MCG(M\h,k) is
not sufficient to decide whether or not Q(k,`)(M) 6= Q(k,2)(M) for ` > 3; see [PS23, Rem. 3.8].
Therefore, it may be relevant to consider Construction 1.7 with quotients by the Γ` terms, defining
homological representation functors for each ` > 3:

L(k,`)(N ) : UM−2 → Z[Q(k,`)(M)]-Modtw and Lu(k,`)(N ) : UM−2 → Z[Qu(k,`)(M)]-Mod.
(1.23)

Due to our lack of detailed knowledge ofQ(k,`)(M) andQu(k,`)(M), it is not clear whether L(k,`)(N ) 6=
Lu(k,`)(N ) (see [PS23, Rem. 3.8]) and whether the Q-stability property is satisfied by these functors.

Finally, we may consider the “dual” surface Sn := (SnrI ′)̌ instead of SnrI ′ (as before, Sn is
either T\n or M\n). In other words, instead of removing the interval I ′ from the (circle) boundary
of Sn, we remove the complementary interval, i.e. the closure of ∂Sn r I ′. However, in this case,
we also change our convention on the braiding for the groupoidM2 by choosing its opposite:

Convention 1.16 In this setting, we apply Construction 1.7 with the groupoids (M+
2 )† and

(M−2 )† for G =M, instead ofM+
2 andM−2 respectively. This purely arbitrary choice is motivated

by the polynomiality properties we aim at proving in Theorem 4.17. These rely on computations
explained in §3.3.3.2 that would not be satisfied defining these functors over M+

2 and M−2 ; see
Remarks 3.17 and 4.18.

Therefore we define from Construction 1.7 the vertical-type alternative homological representa-
tion functors Lv(k,`′)(Γ) : U(M+

2 )† → Z[Q(k,`′)(T)]-Mod for each `′ 6 2, and Lv(k,`)(N ) : U(M−2 )† →
Z[Q(k,`)(M)]-Modtw and its untwisted version Lu,v(k,`)(N ) for each ` > 1. All of the properties
mentioned above for the functors (1.21)–(1.23) are exactly the same for these alternatives.

2. Structure of the representations
The homological representations described in the previous sections are induced from actions

on the twisted homology of configuration spaces on manifolds. Recall (see Remark 1.6) that we
will always work with Borel-Moore homology, since in all of our examples it has the useful property
that its underlying module is free, with an explicitly describable free generating set.
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In §2.1 we prove a general criterion implying that the (possibly twisted) Borel-Moore homology
of configuration spaces on a given underlying space is isomorphic to the Borel-Moore homology of
configuration spaces on a subspace. Roughly, this works when the underlying space has a metric
and the subspace is a “skeleton” onto which it deformation retracts in a controlled, non-expanding
way; see Lemma 2.1 for the precise statement.

In §2.2 we describe several examples to which this applies, which are the underlying modules
of representations of surface braid groups, mapping class groups, loop braid groups and related
groups. In §2.3 we study several applications of Lemma 2.1 in more detail, describing explicit
free generating sets for certain Borel-Moore homology modules. We also describe their “dual
bases” with respect to certain non-degenerate pairings, which span the “vertical-type” alternative
representations described in the last paragraph of §1.2.1. These dual bases, together with some
diagrammatic reasoning, will be used in §3.3 to prove some key lemmas needed in our polynomiality
arguments in §4.

The discussion so far applies only to Borel-Moore homology, but we recall in §2.4 a “genericity”
criterion on local systems that implies that ordinary and Borel-Moore homology coincide. This
criterion is due to Kohno [Koh17, Th. 3.1] and has been mildly generalised in [AP20, §5].

Formulas. In total, this gives us a detailed understanding of the underlying module structure
of the surface braid group and mapping class group representations that we consider. One may
then fruitfully attempt to derive explicit formulas for the group action in these models. We shall
not pursue this here (beyond some qualitative diagrammatic statements that we prove in §3.3),
since such explicit formulas are not needed to prove our polynomiality results. On the other
hand, explicit formulas are derived in our forthcoming work [PS], where they are used to prove
irreducibility results for surface braid group and mapping class group representations.

2.1. An isomorphism criterion for twisted Borel-Moore homology
In this section, we give a criterion for an inclusion of metric spaces to induce isomorphisms on

the (possibly twisted) Borel-Moore homology of their associated configuration spaces. It abstracts
the essential idea of [Big04, Lemma 3.1], where the underlying space is a surface of genus zero (see
also [Mar22, Lemma 3.7] for a slight variation of this). Similar results for more general surfaces
appear in [AK10, Lemma 3.3], [AP20, Theorem 6.6], [BPS21, Theorem A(a)] and (for thickenings
of ribbon graphs) in [Bla23, Theorem 2]. The general criterion below (Lemma 2.1) recovers all of
these examples, as well as many interesting examples in higher dimensions.

The advantage of this general criterion is that it applies very naturally to a wide variety of
settings in all dimensions (see §2.2 for many examples), whereas the special cases covered in the
literature quoted above only consider unordered configurations on surfaces. We also note that the
criterion works equally well for partitioned configuration spaces; not just unordered ones.

Lemma 2.1 Let M be a compact metric space with closed subspaces A ⊆ B ⊆ M , where M and
B are locally compact. Suppose that there exists a strong deformation retraction h of M onto B,
in other words a map h : [0, 1]×M →M satisfying the following two conditions:
• h(t, x) = x whenever t = 0 or x ∈ B,
• h(1, x) ∈ B for all x ∈M ,

such that moreover the following two additional conditions hold:
• h(t,−) is non-expanding for all t, i.e. d(x, y) > d(h(t, x), h(t, y)) for all x, y ∈M ,
• h(t,−) is a topological self-embedding of M for all t < 1.

Then, for all k ∈ N and partitions k ` k, the inclusion of configuration spaces

Ck(B rA) ↪−→ Ck(M rA)

induces isomorphisms on Borel-Moore homology in all degrees and for all local coefficient systems
that extend to Ck(M).

Remark 2.2 The condition that the local coefficient systems under consideration must extend
to the larger space Ck(M) is automatically satisfied in all of the examples that we shall consider,
since in these examples the inclusion Ck(M r A) ↪→ Ck(M) is a homotopy equivalence. Indeed,
this holds whenever M is a manifold and A ⊆M is a subset of its boundary.
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Notice also that the hypotheses on A are rather weak in Lemma 2.1: it is simply any closed
subset of B. (For example, it may be empty, although the result is typically most useful when it is
not.) The non-trivial hypothesis is the existence of a controlled deformation retraction of M onto
B, and does not refer to A.

Typical examples. Typically, we will apply this in situations when M is a manifold that defor-
mation retracts onto a “skeleton” B ⊂M . For example, if M = S is a compact, connected surface
with non-empty boundary, we may take B = Γ to be an embedded graph in S with its vertices in
∂M and A to be a subset of Γ ∩ ∂M . This example, and others, are detailed in §2.2.

Calculational utility. The point of Lemma 2.1 is that, in many situations, the Borel-Moore
homology of Ck(M rA) is interesting (it is the underlying module of a representation that we are
studying), whereas the Borel-Moore homology of its subspace Ck(B rA) is easily computable. In
the first example mentioned in the previous remark, BrA is a disjoint union of open intervals, and
the configuration space Ck(BrA) is therefore a disjoint union of open k-balls, whose Borel-Moore
homology (either untwisted or twisted) is concentrated in degree k and free in that degree. In
the second example, B r A is a disjoint union of n − 1 open annuli and one open 2-disc, so the
Borel-Moore homology of the configuration spaces Ck(BrA) is a little more complicated, but still
well-understood.

Proof of Lemma 2.1. We follow the outline of [AP20, Th. 6.6], which in turn is inspired by the
idea of [Big04, Lem. 3.1]. For t ∈ [0, 1], write ht = h(t,−) : M → M and recall that h0 = id and
h1(M) = B. For ε > 0, define

Cε :=
{

[c1, . . . , ck] ∈ Ck(M) | d(ci, cj) < ε for some i 6= j or d(ci, a) < ε for some a ∈ A
}
.

For each t ∈ [0, 1], every compact subspace of Ck(ht(M) r A) is disjoint from Cε for some ε > 0,
so we may write its Borel-Moore homology as the inverse limit

HBM
∗
(
Ck(ht(M) rA);L

) ∼= lim
ε→0

H∗
(
Ck(ht(M) rA), Ck(ht(M) rA) ∩ Cε;L

)
for any local system L. Thus it suffices to show that the inclusion of pairs

(Ck(B rA), Ck(B rA) ∩ Cε) ↪−→ (Ck(M rA), Ck(M rA) ∩ Cε) (2.1)

induces isomorphisms on twisted homology in all degrees for all local systems extending to Ck(M),
for all ε > 0. This fits into a diagram of inclusions of pairs of spaces

(Ck(B rA), Ck(B rA) ∩ Cε) (Ck(M rA), Ck(M rA) ∩ Cε)

(Ck(B), Ck(B) ∩ Cε) (Ck(M), Ck(M) ∩ Cε).

(2.2)

The vertical inclusions in (2.2) induce isomorphisms on twisted homology in all degrees by excision.
Hence, abbreviating Ct := Ck(ht(M)) and C := C0, it suffices to show that the inclusion of pairs
(C1, C1 ∩ Cε) ↪→ (C,Cε) induces isomorphisms on twisted homology in all degrees,for all ε > 0.

Let us fix ε > 0. The hypothesis that ht : M → M is a topological self-embedding for t < 1
implies that it induces well-defined maps of configuration spaces that define a strong deformation
retraction of C onto Ct for any t < 1. Moreover, the hypothesis that ht is non-expanding means
that these maps of configuration spaces preserve the subspace Cε, so we in fact have a strong
deformation retraction of the pair (C,Cε) onto the pair (Ct, Ct ∩ Cε) for any t < 1. On the other
hand, we cannot conclude the same statement for t = 1, since h1 : M → M is not assumed to
be an embedding (and in our key examples it will not be). In order to continue the deformation
retraction of configuration spaces, we first pass to a subspace: for any t < 1 we define

Čt :=
{

[c1, . . . , ck] ∈ Ct | h1(h−1
t (ci)) 6= h1(h−1

t (cj)) for each i 6= j
}
.

This additional condition precisely ensures that points do not collide if we continue applying the
deformation retraction ht to configurations until time t = 1. Thus there is a strong deformation
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retraction of the pair (Čt, Čt ∩Cε) onto the pair (C1, C1 ∩Cε) for any t < 1. It therefore remains
to show that there exists some t < 1 (depending on ε) such that the inclusion

(Čt, Čt ∩ Cε) ↪−→ (Ct, Ct ∩ Cε)

induces isomorphisms on twisted homology in all degrees. By excision, it suffices to show that Čt
and Ct ∩ Cε form an open covering of Ct. It is clear that these are both open subspaces, so we
just have to show that there exists some t < 1 such that Čt ∪ (Ct ∩Cε) = Ct, or equivalently such
that Ct r Čt ⊆ Cε.

By continuity of h and compactness of M , there exists δ < 1 such that d(hδ(x), h1(x)) < ε/2
for all x ∈ M . By above, it suffices to show that Cδ r Čδ ⊆ Cε. Let c = [c1, . . . , ck] be a
configuration in Cδ r Čδ, in other words we have ci = hδ(xi) for some configuration [x1, . . . , xk]
in C = Ck(M) and h1(xi) = h1(xj) for some i 6= j. The distance from ci to cj is therefore at
most the sum of the distances from ci = hδ(xi) to h1(xi) and from h1(xi) = h1(xj) to hδ(xj) = cj .
These latter distances are both less than ε/2 by our choice of δ, so we have d(ci, cj) < ε and hence
c ∈ Cε. Thus we complete the excision argument in the previous paragraph with t = δ.

In summary, we have proved Lemma 2.1 by showing that, in the diagram

(Ck(B r A), Ck(B r A) ∩ Cε) (Ck(M r A), Ck(M r A) ∩ Cε)

(C1, C1 ∩ Cε) (Čt, Čt ∩ Cε) (Ct, Ct ∩ Cε) (C, Cε),

(∗) (∗)

(‡) (∗∗) (‡)

the arrows (∗) induce isomorphisms on twisted homology in all degrees (by excision), the arrows
(‡) are homotopy equivalences and for each ε > 0 there exists t ∈ (0, 1) such that the arrow (∗∗)
induces isomorphisms on twisted homology in all degrees (again by excision).

2.2. Examples
We describe various examples of A ⊆ B ⊆M and the inclusion of configuration spaces

Ck(B rA) ↪−→ Ck(M rA). (2.3)

Example 2.3 (Configurations on punctured discs.) First, let M = Σ0,n+1 be the connected,
compact surface of genus 0 with n+1 boundary components; this may be viewed as a closed 2-disc
with n holes. Let A be the union of the n inner boundary components of M and let B be the
union of A with n− 1 arcs connecting consecutive components of A. Taking a little care about the
metric, it is easy to see that there is a strong deformation retraction of M onto B satisfying the
hypotheses of Lemma 2.1. Also, since A is part of the boundary of M , all local coefficient systems
on Ck(M r A) extend to Ck(M). Thus Lemma 2.1 tells us that (2.3) induces isomorphisms on
twisted Borel-Moore homology in all degrees. This special case recovers [Big04, Lem. 3.1]. In this
case, M rA is the closed 2-disc minus n punctures in its interior and B rA is a disjoint union of
n− 1 open arcs.

One could instead take A to be the union of the n inner boundary components together with a
point p on the outer boundary component. We may then take B to be the union of A with n arcs,
each connecting a different component of A to the point p. There is again a strong deformation
retraction of M onto B satisfying the hypotheses of Lemma 2.1, so in this case we also deduce
that (2.3) induces isomorphisms on twisted Borel-Moore homology in all degrees. This special
case recovers [Mar22, Lem. 3.7]. In this case, M rA is the closed 2-disc minus n punctures in its
interior and one puncture on its boundary and B rA is a disjoint union of n open arcs.

Example 2.4 (Configurations on non-closed surfaces.) As a slight generalisation, one may take
M = S to be any compact surface with non-empty boundary and B = Γ ⊆ S to be an embedded
finite graph onto which it deformation retracts. With a little care about the metric, one may
ensure that there is a controlled deformation retraction of S onto Γ satisfying the hypotheses
of Lemma 2.1. If we then take A to be any closed subset of Γ, we conclude that the inclusion
(2.3) induces isomorphisms on twisted Borel-Moore homology in all degrees (for local systems on
Ck(S r A) that extend to Ck(S); this is automatic if A ⊆ Γ ∩ ∂S). In the case S = Σg,1, this
recovers [AK10, Lem. 3.3], [AP20, Th. 6.6] and [BPS21, Th. A(a)].
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(a) The model for orientable surface braid groups. (b) The model for non-orientable surface braid groups.

(c) The model for orientable mapping class groups. (d) The model for non-orientable mapping class groups.

Figure 2.1 Four examples of the setting of Lemma 2.1 where S is a compact, connected surface with
one boundary component, Γ is the embedded graph drawn in blue/green and A is its set of vertices.

Example 2.5 (Configurations in higher-dimensional analogues of surfaces.) Generalising the ex-
ample of connected, orientable surfaces, one may take M to be the manifold Wg,1 = (Sn×Sn)]gr
D̊2n, where ] denotes the connected sum. It is homotopy equivalent to a wedge sum of 2g copies of
Sn, and with a little care about the metric one may find a controlled deformation retraction as in
Lemma 2.1 onto a subspace B ⊆ Wg,1 that is homeomorphic to ∨2gSn, with the basepoint of the
wedge sum corresponding to a point p in the boundary of Wg,1. Take A = {p}. Lemma 2.1 then
implies that (2.3) induces isomorphisms on twisted Borel-Moore homology in all degrees. Thus we
have isomorphisms of (twisted) Borel-Moore homology:

HBM
∗
(
Ck(Wg,1 r {p});L

) ∼= HBM
∗
(
Ck
(∐2g Rn

)
;L
)
.

Example 2.6 (Configurations in the complement of a link.) For an example of a different flavour,
we may consider configurations in the complement of a link L in D3. More precisely, let U be an
open tubular neighbourhood of L, set M = D3 rU and let A be the union of the n torus boundary
components ofM . How to describe B ⊃ A, the subspace ofM = D3rU onto which it deformation
retracts in a controlled way as in Lemma 2.1, depends on properties of the link L. If L is an unlink,
we may assume that it consists of n concentric circles contained in an embedded plane in D3. We
may then take B to be the union of A with n − 1 annuli (connecting consecutive components of
A) and one 2-disc (filling the component of A corresponding to the innermost circle). If L is not
an unlink but each of its components Li is an unknot, we may look for transversely-intersecting
Seifert discs Di cobounding the Li whose union is contractible (this is possible for example for
iterated Hopf links, “necklace links” (as studied in [BB16]) or the Borromean rings); in this case
we take B = A∪

⋃
i(Dir (U ∩Di)). The twisted Borel-Moore homology of some of these examples

is studied in more detail in forthcoming work.

2.3. Free bases and dual bases
The key setting for the rest of the paper will be Example 2.4, which we now consider in more

detail. Specifically, let S be a connected, compact surface with one boundary component, let Γ be
the embedded graph pictured in Figure 2.1 and let A be the set of vertices of Γ.

To apply Lemma 2.1, it will be convenient to modify these spaces a little in cases (a) and
(b), where the vertices lie in the interior of S. In these cases, let S be the result of blowing up
each vertex of Γ to a boundary component (so that the total number of boundary components
of S is |A| + 1), let Γ be the result of replacing each vertex v of Γ with a circle (coinciding with
the corresponding new boundary component of S) subdivided into ν(v) vertices and ν(v) edges,
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(a) The graph for orientable surface braid groups. (b) The graph for non-orientable surface braid groups.

(c) The graph for orientable mapping class groups. (d) The graph for non-orientable mapping class groups.

Figure 2.2 The graphs from Figure 2.1, considered as abstract graphs and equipped with labels,
viewed as generators of the Borel-Moore homology of Ck(Γ r A), equivalently (by Lemma 2.1), the
Borel-Moore homology of Ck(S r A). In each case, a cycle representing the homology class under
consideration is given by the subspace of configurations where every configuration point lies on the
interior of a green edge and as we move along a given edge (according to an orientation fixed in
advance) the ordered list of blocks of the partition k that the configuration points that we meet belong
to agrees with the list (word on the alphabet of blocks of k) that decorates that edge in the diagram.

where ν(v) is the valence of v, and finally let A ⊂ Γ be the union of these circles (equivalently, the
new boundary components of S). We clearly have homeomorphisms Ck(S rA) ∼= Ck(S rA) and
Ck(Γ rA) ∼= Ck(Γ rA). In cases (c) and (d) we simply take S = S, Γ = Γ and A = A.

By Lemma 2.1, the inclusion Ck(Γ rA) ↪→ Ck(S rA) induces isomorphisms on Borel-Moore
homology for all local coefficient systems on Ck(SrA) that extend to Ck(S). Note thatA ⊂ ∂S (the
purpose of replacing S,Γ, A with S,Γ, A was precisely to ensure this), so the inclusion S rA ↪→ S
is an isotopy equivalence and thus Ck(S r A) ↪→ Ck(S) is a homotopy equivalence. This means
in particular that all local coefficient systems on Ck(S r A) extend to Ck(S), so the result of
Lemma 2.1 is that the inclusion Ck(Γ r A) ↪→ Ck(S r A) induces isomorphisms on Borel-Moore
homology with all local coefficient systems.

The twisted Borel-Moore homology of Ck(SrA) may therefore be computed from the twisted
Borel-Moore homology of Ck(ΓrA), where we may now consider Γ as an abstract graph (forgetting
its embedding into S) with vertex set A, as depicted in Figure 2.2. Since ΓrA is simply the disjoint
union of the (open) edges of the graph Γ, its configuration space Ck(Γ r A) is a disjoint union of
open k-dimensional simplices, one for each choice of:
• the number of points that lie on each edge of Γ;
• for each edge of Γ, an ordered list of blocks of the partition k, prescribing which blocks of
the partition the configuration points that lie on this edge must belong to, as we pass from
left to right along the edge (with respect to an arbitrary orientation of the edge, chosen once
and for all).

This combinatorial information may be summarised succinctly as a choice, for each edge e of Γ, of
a word we on the alphabet of blocks of the partition k. This choice must have the property that
the total number of times that a block of k appears in we, as e runs over all edges of Γ, is equal
to the size of the block. See Figure 2.2.

We summarise this discussion in the following corollary.

Corollary 2.7 Let S be a connected, compact surface with one boundary component, let A be either
a finite subset of its interior or a single point on its boundary and let k be a partition of a positive
integer k. Choose any local system L on Ck(S r A) defined over a ring R. As an R-module, the
twisted Borel-Moore homology

HBM
k (Ck(S rA);L) (2.4)
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decomposes as a direct sum of copies of the fibre of L, indexed by functions

w : {edges of Γ} −→ {blocks of k}∗, (2.5)

where Γ is the embedded graph in S depicted in Figure 2.1, the notation X∗ means the monoid of
words on a set X and the total number of times that a block of k appears in the word we, as e runs
over all edges of Γ, is equal to the size of the block.

Notation 2.8 It will be convenient later to fix some standard notation for the different parts of
the graphs Γ appearing in Corollary 2.7 and depicted in Figure 2.2. In cases (a) and (b), assuming
that there are n punctures, i.e. |A| = n, let us write In for the linear (or “tail”) part of the graph,
which is a linear graph with n vertices and n − 1 edges. When the surface S is orientable (cases
(a) and (c)), we write WΣ

g for the “wedge” part of the graph in Figure 2.2a, which is a graph with
one vertex and 2g edges, where g is the genus of S. When the surface S is non-orientable (cases
(b) and (d)), we write instead WN

h for the “wedge” part of the graph in Figure 2.2b, which is a
graph with one vertex and h edges, where h is the non-orientable genus of S. The elements (2.5)
of the set indexing the decomposition of (2.4) will typically be denoted by

(w1, . . . , wn−1, [wn, wn+1], . . . , [wn+2g−2, wn+2g−1]) (2.6)

when S = Σg,1 and by
(w1, . . . , wn−1, [wn], . . . , [wn+h−1]) (2.7)

when S = Nh,1. The first n− 1 terms are the values of w on In and the remaining 2g respectively
h terms in square brackets are the values of w on WΣ

g respectively WN
h .

Dual bases. We now describe, using Poincaré-Lefschetz duality, a perfect pairing between (2.4)
and another naturally-defined homology R-module, for which we describe a “dual” basis. In order
to apply Poincaré-Lefschetz duality, we assume for the remainder of §2.3 that the surface
S is orientable By tensoring appropriately with the orientation local system, one could generalise
this discussion to allow also non-orientable surfaces; this is explained briefly in Remark 2.11 below.

Let us now consider the relative homology group Hk(Ck(S r A), ∂;L), where ∂ is an abbre-
viation of ∂Ck(S rA), the boundary of the topological manifold Ck(S rA), which consists of all
configurations that non-trivially intersect the boundary of S rA.

In case (c), we implicitly make a small modification here: we replace A, which is a single
point in ∂S, with a small closed interval in ∂S; we also replace S r A with the closure in S of
the complement of this small closed interval. This is analogous to the modification that we made
earlier in this section in case (a): now, in case (c), we are essentially blowing up the (unique) vertex
of the graph Γ on ∂S.

From now on, we assume that L is a rank-one local system; i.e. its fibre over each point is a
free module of rank one over the ground ring R. Under this assumption, Corollary 2.7 describes a
free basis for HBM

k (Ck(S rA);L) over R.
There is a naturally corresponding set of elements ofHk(Ck(SrA), ∂;L), depicted in Figure 2.3

and indexed by the same combinatorial data as described in Corollary 2.7. As explained in [AP20,
Thm. A], Poincaré-Lefschetz duality and the relative cap product induce a pairing

HBM
k (Ck(S rA);L)⊗R Hk(Ck(S rA), ∂;L) −→ R (2.8)

whose evaluation on a basis element of HBM
k (Ck(S r A);L) together with one of the elements

depicted in Figure 2.3 is equal to 1 if the two elements are indexed by the same function w and
equal to 0 otherwise. It follows that the submodule spanned by the elements in Figure 2.3 is
freely spanned by them, and the pairing (2.8) restricts to a perfect pairing when we restrict to this
submodule on the right-hand factor.

Notation 2.9 We write H∂
k (Ck(S r A);L) for the R-submodule of Hk(Ck(S r A), ∂;L) (freely)

spanned by the elements depicted in Figure 2.3. As another piece of general notation, for module
W over a ring R, we denote by W∨ the dual module HomR(W,R).

With this notation, the discussion above may be summarised as follows.
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(a) Dual basis for orientable surface braid groups. (b) Dual basis for non-orientable surface braid groups.

(c) Dual basis for orientable mapping class groups. (d) Dual basis for non-orientable mapping class groups.

Figure 2.3 A linearly independent collection of elements of Hk(Ck(SrA), ∂;L) whose span is isomor-
phic to the dual of HBM

k (Ck(SrA);L) via the perfect pairing given by the restriction of (2.8). In each
of the four cases, the figure consists of a collection of arcs beginning and ending on the boundary of
the surface, each labelled by a word wi on the alphabet of blocks of the partition k = {k1; . . . ; kr} ` k.
Each arc is in fact to be thought of as |wi| parallel arcs, where |wi| is the length of the word wi;
these arcs are then labelled by letters of wi (which are blocks of the partition k). The homology class
depicted by the figure is the one represented by the cycle given by the subspace of configurations where
exactly one point lies on each arc and this point belongs to the block of the partition specified by the
label of that arc.
The same diagrams, interpreted differently, also describe a basis for the module HBM

k (Ck(Š);L) (see
Definition 2.12). More precisely, if we now interpret each arc labelled by wi as a single arc (instead of a
collection of parallel arcs) specifying that there must be precisely |wi| points lying on it and belonging
to the blocks of the partition k given by the letters of wi (in other words, interpreted exactly as in
Figure 2.2), then the corresponding homology classes form a free basis of HBM

k (Ck(Š);L).

Corollary 2.10 Let S be a connected, compact surface with one boundary component, let A be
either a finite subset of its interior or a closed interval in its boundary and let k be a partition
of a positive integer k. Choose any rank-one local system L on Ck(S r A) defined over a ring R.
Then the R-module H∂

k (Ck(S r A);L) is freely generated over R by the same combinatorial data
as described in Corollary 2.7. Moreover, there is a perfect pairing

HBM
k (Ck(S rA);L)⊗R H∂

k (Ck(S rA);L) −→ R (2.9)

given by Poincaré-Lefschetz duality and the relative cap product, whose matrix with respect to the
two bases that we have described is the identity matrix. In particular, we therefore have

H∂
k (Ck(S rA);L) ∼=

(
HBM
k (Ck(S rA);L)

)∨
. (2.10)

Remark 2.11 For non-orientable surfaces S, an analogue of Corollary 2.10 also holds, the only
difference being that, on the left-hand side of (2.10), we must tensor L with the orientation local
system of the non-orientable manifold Ck(S rA).

Embeddings. We now recall from [AP20] certain embeddings of mapping class group represen-
tations, which become isomorphisms after localising the coefficients appropriately.

Definition 2.12 Consider a finite-type surface S rP, namely a compact surface S minus a finite
subset P ⊂ S. Its blow-up S is then obtained from S by blowing up each p ∈ P to a new boundary
component (if p ∈ S r ∂S) or an interval (if p ∈ ∂S). Furthermore, its dual surface Š is obtained
by removing from S the original boundary ∂(S r P). Note that (S;S r P, Š) is a manifold triad.

For example, in cases (a) and (b) under consideration, S is obtained from S r A by blowing
up each (interior) puncture in A to a new boundary component and Š is given by removing the
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original boundary component ∂S from S but keeping the |A| new boundary components. In cases
(c) and (d), S simply replaces the single boundary puncture A in ∂S with a closed interval and Š
is the union of the interior of S with the complement of this closed interval in the boundary of S.

The twisted Borel-Moore homology module HBM
k (Ck(Š);L) has an explicit description similar

to the description of HBM
k (Ck(S r A);L) in Corollary 2.7. This is another direct application of

Lemma 2.1, this time with M = S, A = ∂S (so that M r A = Š) and B equal to the union of A
with the green arcs drawn in Figure 2.3. We record this here:

Lemma 2.13 Let S and A be as above and define Š as in Definition 2.12. Let k be a partition of a
positive integer k and choose any local system L on Ck(Š) defined over a ring R. As an R-module,
the twisted Borel-Moore homology module HBM

k (Ck(Š);L) decomposes as a direct sum of copies of
the fibre of L, indexed by the same combinatorial data as in Corollary 2.7, but using the embedded
graph in Figure 2.3 instead of Figure 2.1.

Definition 2.14 ([AP20, Def. 2.14]) Let γ be a loop in Ck(S) where all points remain fixed apart
from two, which exchange places anticlockwise within a subdisc of S that is disjoint from the other
points. If the monodromy of the rank-one local system L around every such loop γ is the same
element u ∈ R× then L is called u-homogeneous.

Under the assumption that the local system L is homogeneous, we have the following maps
of representations.

Proposition 2.15 ([AP20, Thm. B]) Let S be a connected, compact surface with one boundary
component, let A be either a finite subset of its interior or a closed interval in its boundary and
let k be a partition of a positive integer k. Let L be a rank-one local system on Ck(S rA) defined
over a ring R that is u-homogeneous for some u ∈ R×. Then there are R-linear maps

H∂
k (Ck(S rA);L) −→ HBM

k (Ck(Š);L)
H∂
k (Ck(Š);L) −→ HBM

k (Ck(S rA);L)
(2.11)

that are equivariant with respect to the natural actions of the mapping class group of (S, ∂S). With
respect to appropriate free bases over R, these two maps are given by diagonal matrices all of whose
diagonal entries are u-quantum factorials [i]u! = [1]u[2]u · · · [i]u, where [i]u = 1 + u+ · · ·+ ui−1.

Corollary 2.16 If u ∈ R× is such that [i]u! ∈ R does not divide zero for all i > 1, then the maps
(2.11) are embeddings of representations of the mapping class group of (S, ∂S).

Applying Corollary 2.10 and its analogue when S r A is replaced by Š (which is also part of
[AP20, Thm. A]), it follows that in this setting we have embeddings of representations

V ∨ ↪−→W and W∨ ↪−→ V (2.12)

where V = HBM
k (Ck(S r A);L) and W = HBM

k (Ck(Š);L). This holds in particular if R is an
integral domain and u ∈ R× is such that [i]u 6= 0 for all i > 1. In this setting, after tensoring
(2.12) with the field of fractions F(R) we have isomorphisms

V ∨ ⊗ F(R) ∼= W ⊗ F(R) and W∨ ⊗ F(R) ∼= V ⊗ F(R). (2.13)

Example 2.17 This applies in particular to the representations V = LBk(n) and their “vertical-
type” alternatives W = LBv

k(n) described in §1.2.1. In this case the ground ring R is Z[t±1, q±1]
and the local coefficient system L is t-homogeneous. We therefore have embeddings

LBk(n)∨ ↪−→ LBv
k(n) and LBv

k(n)∨ ↪−→ LBk(n)

that become ismorphisms after tensoring over Z[t±1, q±1] with the field of rational functions Q(t, q).
The representations LBk(n) are part of a functor LBk defined on Uβ, described in §1.2.1.

Their duals LBk(n)∨ may similarly be extended to a functor defined on Uβ, so the above may be
thought of as embeddings (and isomorphisms) of representations of the category Uβ.
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The Moriyama representations. In the case S = Σg,1, Moriyama [Mor07] considered the
Γg,1-representation given by its action on the relative homology group Hn(Sn,∆ ∪ A), where ∆
denotes the “fat diagonal” of Sn where at least two points coincide and A denotes the subspace of
Sn where at least one point is equal to p0, a chosen basepoint on ∂S.

Let us write S′ = S r {p0}. Since Sn is a compactification of Fn(S′) = Sn r (∆ ∪ A), the
Borel-Moore homology of Fn(S′) is isomorphic to the relative homology group H∗(Sn,∆ ∪ A).
Thus Moriyama’s representation may be viewed as an action on Borel-Moore homology. Denot-
ing by Fn(X,Y ) ⊆ Fn(X) the subspace of configurations that intersect Y ⊆ X non-trivially, by
Poincaré duality we have HBM

∗ (Fn(S′)) ∼= Hn(Fn(S′), Fn(S′, ∂S′)) since Fn(S′) is a connected,
orientable manifold. Using the fact that S′ ⊂ S and {p1} ⊂ ∂S′ are isotopy equivalences,
where p1 ∈ ∂S′ is another (different) point on the boundary of S, this is naturally isomorphic
to Hn(Fn(S), Fn(S, {p1})).

A special case of Lemma 2.1 implies that HBM
∗ (Fn(S′)) is concentrated in degree ∗ = n, so by

the universal coefficient theorem, Moriyama’s representation Hn(Sn,∆∪A) is dual to the relative
cohomology group Hn(Sn,∆ ∪A). Analogous identifications to those above, replacing HBM

∗ with
compactly-supported cohomology H∗c , etc., apply to these dual representations.

In summary, we have identifications:

Hn(Sn, ∆ ∪A) HBM
n (Fn(S′)) Hn(Fn(S′), Fn(S′, ∂S′)) Hn(Fn(S), Fn(S, {p1}))

Hn(Sn, ∆ ∪A) Hn
c (Fn(S′)) Hn(Fn(S′), Fn(S′, ∂S′)) Hn(Fn(S), Fn(S, {p1})),

dual

∼= ∼= ∼=

∼= ∼= ∼=
(2.14)

where the top row are models for Moriyama’s representation and the bottom row are models for
its dual.

Remark 2.18 Recall from §1.3.3 that the functor L({1,...,1},1)(Γ), restricted to the n-th automor-
phism group Gn = Γn,1, is given by the natural action of the mapping class group on HBM

n (Fn(S′)).
In fact in §1.3.3 we remove a closed interval from the boundary of S, instead of just a point, but
the resulting configuration spaces are homotopy equivalent. By the discussion above, this is the
n-th Moriyama representation [Mor07].

2.4. Generic local systems
We finally recall the notion of genericity for a local coefficient system, allowing us to equiv-

alently consider classical homology and Borel-Moore homology for the homological representation
functors (see Proposition 2.21).

Definition 2.19 Let L be a rank-one local system on a space X defined over a ring R. It is called
generic if it satisfies the following property. Let γ be an unbased loop in X that may be homotoped
to be disjoint from any given compact subset. Then the monodromy mγ of L around γ, which is
an element of R×, has the property that 1R −mγ ∈ R also lies in R× ⊂ R.

Remark 2.20 Genericity of L is in a sense a strong opposite of the property that L extends to
the one-point compactification of X: the latter occurs if and only if 1R−mγ = 0 for all loops γ as
above. In particular, L is generic and extends to the one-point compactification of X if and only
if either X is compact or R is the zero ring.

Proposition 2.21 Suppose that X = Ck(M r A) for a triple (M,B,A) satisfying the hypotheses
of Lemma 2.1, where MrA is a connected, non-compact, orientable surface and BrA is a disjoint
union of open intervals. Let L be a local system on X defined over an Ore domain R, denote by
F(R) the division ring of fractions of R and assume that L ⊗R F(R) is generic. Then the natural
map

Hk(X;L) −→ HBM
k (X;L) (2.15)

becomes an isomorphism after tensoring −⊗R F(R).

Beforehand, we need the following version of the Künneth theorem:
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Lemma 2.22 Let G be a group, R an Ore domain whose division ring of fractions is denoted by
F(R) and M an R[G]-module. There is a natural isomorphism H∗(G;M⊗RF(R)) ∼= H∗(G;M)⊗R
F(R).

Proof. Let P• → R be a projective right R[G]-module resolution. Then P• ⊗R[G] M and P• ⊗R[G]
(M ⊗R F(R)) are chain complexes computing H∗(G;M) and H∗(G;M ⊗R F(R)) respectively. We
recall that there is a natural isomorphism P•⊗R[G] (M⊗RF(R)) ∼= (P•⊗R[G]M)⊗RF(R) and that
the division ring of fractions F(R) is a flat R-module; see [GW04, Cor. 10.13] for instance. Then
the result follows from applying the Künneth spectral sequence for chain complexes; see [Wei94,
Th. 5.6.4] for example.

Proof of Proposition 2.21. The result is a consequence of the following three natural isomorphisms:

Hk(X;L)⊗R F(R) ∼= Hk(X;L ⊗R F(R)) ∼= HBM
k (X;L ⊗R F(R)) ∼= HBM

k (X;L)⊗R F(R). (2.16)

The first isomorphism follows from Lemma 2.22, since X is an aspherical space (because M r A
is an aspherical surface and hence so are its configuration spaces by the Fadell-Neuwirth fibration
sequences) so its homology coincides with the group homology of its fundamental group.

The second isomorphism follows from the fact that we have assumed that L ⊗R F(R) is a
generic local system on X. In general, ordinary and Borel-Moore homology are isomorphic, via
the natural transformation Hk → HBM

k , whenever taking coefficients in a generic local system on
configuration spaces on orientable surfaces. This fact is originally due to Kohno [Koh17, Thm. 3.1],
who proved this statement for local systems defined over C, and was mildly generalised to other
ground rings in [AP20, Prop. D].

Finally, the third isomorphism follows from Lemma 2.1, since that lemma implies that both
sides are free F(R)-modules with the same basis.

The utility of Proposition 2.21 is that, under its hypotheses, we understand the Borel-Moore
homology HBM

k (X;L) completely by Lemma 2.1, whereas we do not have any structural result
about the ordinary homology Hk(X;L). The proposition tells us that they become isomorphic
after tensoring with the field of fractions.

Trick 2.23 (Making the coefficients generic.) Only the first of the three isomorphisms (2.16)
depends on the fact that we are tensoring with the division ring of fractions F(R). The third
isomorphism works for any change of ring operation − ⊗R S for a ring morphism R → S and
the second isomorphism works for any such change of ring operation making L ⊗R S generic. It
is therefore useful to note the minimal change of ring required to force genericity: this is given
by considering all monodromies mγ ∈ R× for free loops γ that may be homotoped outside of any
compact subset and then setting S to be the localisation of R at the multiplicative subset generated
by 1R −mγ for all such γ. Note also that the local system L ⊗R F(R) will be generic if and only
if mγ 6= 1R for all such γ, since in this case the elements 1R −mγ will all be non-zero in R and
hence invertible in its division ring of fractions.

3. Polynomial functors: background and preliminaries
This section recollects the general theory on polynomial functors (see §3.1) and prepares the

study of polynomiality of homological representation functors of §4 (see §3.2).

3.1. Notions of polynomiality
In this section, we review the notions and basic properties of strong, very strong, split and

weak polynomial functors. The definitions and results extend verbatim to the present slightly larger
framework from the previous literature on that topic (see [DV19] and [Sou22, §4] for instance), the
various proofs being mutatis mutandis generalisations of these previous works. For the remainder
of §3.1, we fix a Grothendieck category A, a left-module (M, \) over strict monoidal small groupoid
(G, \, 0), whereM is small groupoid, (G, \, 0) has no zero divisors and AutG(0) = {id0}.
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Strong, very strong and split polynomial functors. Let X be an object of G. Let τX be
the endofunctor of Fct(〈G,M〉,A) defined by τX(F ) = F (X\−), called the translation functor.
Let iX : Id → τX be the natural transformation of Fct(M,A) induced by precomposition with
the morphisms [X, idX\A] : 0\Y → X\A for all A ∈ Obj(M). We define δX = coker(iX), called
the difference functor, and κX = ker(iX), called the evanescence functor. We denote by τmX and
δmX the m-fold iterations τX · · · τXτX and δX · · · δXδX respectively. The translation functor τX is
exact and induces the following exact sequence of endofunctors of Fct(〈G,M〉,A):

0 −→ κX
ΩX−→ Id

iX−→ τX
∆X−→ δX −→ 0. (3.1)

Moreover, for a short exact sequence 0 −→ F −→ G −→ H −→ 0 in the category Fct(〈G,M〉,A),
there is a natural exact sequence following from the snake lemma:

0 −→ κXF −→ κXG −→ κXH −→ δXF −→ δXG −→ δXH −→ 0. (3.2)

In addition, for Y another object of G, τX and τY commute up to natural isomorphism and they
commute with limits and colimits, δX and δY commute up to natural isomorphism and they
commute with colimits, κX and κY commute up to natural isomorphism and they commute with
limits, and τX commute with the functors δX and κX up to natural isomorphism.

The category of strong polynomial functors of degree less than or equal to d ∈ N, denoted by
Polstrd (〈G,M〉,A), is the full subcategory of Fct(〈G,M〉,A) defined by Polstrd (〈G,M〉,A) = {0}
if d < 0 and the objects of Polstrd (〈G,M〉,A) for d ∈ N are the functors F such that the functor
δX(F ) is an object of Polstrd−1(〈G,M〉,A). The smallest integer d ∈ N for which an object F of
Fct(〈G,M〉,A) is an object of Polstrd (〈G,M〉,A) is called the strong degree of F . The category of
very strong polynomial functors of degree less than or equal to d ∈ N, denoted by VPold(〈G,M〉,A),
is the full subcategory of Polstrd (〈G,M〉,A) of the objects F such that κ1(F ) = 0 and the functor
δ1(F ) is an object of VPold−1(〈G,M〉,A). The category of split polynomial functors of degree less
than or equal to d ∈ N, denoted by SPold(〈G,M〉,A), is the full subcategory of VPold(〈G,M〉,A)
of the objects F such that the translation map iXF : F → τXF is split injective in Fct(〈G,M〉,A)
for each object X of G.

Weak polynomial functors. Let F be an object of Fct(〈G,M〉,A). We denote by κ(F ) the
subfunctor

∑
X∈Obj(G) κXF of F . Let K(〈G,M〉,A) be the full subcategory of Fct(〈G,M〉,A)

of the objects F such that κ(F ) = F . The category K(〈G,M〉,A) is a thick subcategory of
Fct(〈G,M〉,A) and it is closed under colimits; see [Sou22, Prop. 4.6]. Since the functor category
Fct(〈G,M〉,A) is a Grothendieck category, the subcategory K(〈G,M〉,A) is localising and we may
define the quotient category of Fct(〈G,M〉,A) by K(〈G,M〉,A); see [Gab62, Chapitre III]. We
denote by St(〈G,M〉,A) this quotient category and by π〈G,M〉 the associated quotient functor.

For an object X of G, the translation functor τX and the difference functor δX in the category
Fct(〈G,M〉,A) respectively induce an exact endofunctor of St(〈G,M〉,A) which commutes with
colimits, respectively again called the translation functor τX and the difference functor δX . In
addition, we have the commutation relations δX ◦ π〈G,M〉 = π〈G,M〉 ◦ δX and τX ◦ π〈G,M〉 =
π〈G,M〉 ◦τX . Therefore, the exact sequence (3.1) induces a short exact sequence Id ↪→ τX � δX for
the induced endofunctors of St(〈G,M〉,A). Finally for another object X ′ ofM, the endofunctors
δX , δX′ , τX and τX′ of St(〈G,M〉,A) pairwise commute up to natural isomorphism.

We then define, inductively on d ∈ N, the category of polynomial functors of degree less than
or equal to d, denoted by Pold(〈G,M〉,A), to be the full subcategory of St(〈G,M〉,A) as follows. If
d < 0, Pold(〈G,M〉,A) = K(〈G,M〉,A); if d > 0, the objects of Pold(〈G,M〉,A) are the functors
F such that the functor δ1(F ) is an object of Pold−1(〈G,M〉,A). For an object F of St(〈G,M〉,A)
which is polynomial of degree less than or equal to d ∈ N, the smallest integer n 6 d for which F
is an object of Pold(〈G,M〉,A) is called the degree of F . An object F of Fct(〈G,M〉,A) is weak
polynomial of degree at most d if its image π〈G,M〉(F ) is an object of Pold(〈G,M〉,A). The degree
of polynomiality of π〈G,M〉(F ) is called the weak degree of F .

Finally, we recall useful properties of the categories associated with the different types of
polynomial functors. We recall that the category 〈G,M〉 is said to be finitely generated by the
monoidal structure \ if there exists a finite set EG of objects of G, such that each object m of
〈G,M〉 is isomorphic to a monoidal product of type e\n\m0 where e ∈ EG , m0 ∈ M and n ∈ N.
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The following properties are proven in [Sou22, Props. 4.4, 4.10] (split polynomial functors are not
considered there, but their study follows repeating mutatis mutandis this reference).

Proposition 3.1 Let d > 0 be an integer. The category Polstrd (〈G,M〉,A) is closed under
the translation functor, under quotients, under extensions and under colimits. The category
VPold(〈G,M〉,A) is closed under the translation functor, under normal subobjects and under ex-
tensions. The category SPold(〈G,M〉,A) is closed under the translation functor and under normal
subobjects. As a subcategory of St(〈G,M〉,A), the category Pold(〈G,M〉,A) is thick and closed
under limits and colimits.

Furthermore, we assume that 〈G,M〉 is finitely generated by the monoidal structure \ with
generating set EG. Let F be an object of Fct(〈G,M〉,A). Then, it is enough to check the criteria
of the above definitions of strong, very strong, split and weak polynomiality assuming that X is an
object of EG.

3.2. Framework preliminaries for polynomiality
We now briefly discuss some preliminaries for the work on polynomiality of §4. First of all, each

source category of the homological representation functors of §1.3 is of type 〈G,M〉 and finitely
generated by the monoidal structure \ using exactly two objects X ∈ Obj(G) and O ∈ Obj(M);
see §1.3. Hence by Proposition 3.1, it is enough to study the natural transformation iX to prove
the polynomiality results. We consider any one of the homological representation functors of §1.3
that we denote by L(k,`) (with Z[Q(k,`)(S)] the ground ring of the target module category).

Twisted representations and target category. We assume that L(k,`) is twisted, i.e. a functor
of the form 〈G,M〉 → Z[Q(k,`)(S)]-Modtw. The notions of polynomiality defined in §3.1 require the
target category of a functor to be a Grothendieck category. This subtlety does not impact the core
points to deal with polynomiality, and we solve this issue by adopting the following convention:

Convention 3.2 In §4, when considering a twisted homological representation functor L(k,`),
we always postcompose it by the forgetful functor Z[Q(k,`)(S)]-Modtw → Z-Mod, as done in
(1.6). We generically denote by Z[Q(k,`)(S)]-Mod? the target category of L(k,`), which is either
Z[Q(k,`)(S)]-Mod or Z-Mod.

Change of rings operation. The ground ring of most of the homological representation functors
is a group ring of type Z[Q] that we may modify by some change of rings operation, as explained
in §1.2.2. The following lemma is a key point to prove that such an alteration does not impact our
polynomiality results in §4.

Lemma 3.3 Let Q be a group, R be a (non-zero) ring and f : Z[Q] → R be a (non-zero) ring
morphism. We consider a functor F : 〈G,M〉 → Z[Q]-Mod such that F (Y ), τXF (Y ) and δXF (Y )
are free Z[Q]-modules for all Y ∈ Obj(〈G,M〉). If δXF = 0, then κXf!F = 0.

Proof. We note that the functor f! clearly commutes with the translation functor τ1, and also with
the difference functor δX because it is right-exact. Also, by our assumption on F , the R-modules
f!F (Y ) and δXf!F (Y ) are free for all Y ∈ Obj(〈G,M〉). Hence the kernel of τXf!F (Y )� δXf!F (Y )
is a free R-module whose free generating set is in bijection with that of f!F (Y ). Therefore, the
map f!F → τXf!F is injective, which ends the proof.

Borel-Moore homology vs. classical homology. All of our reasoning in order to prove poly-
nomiality results in §4 decisively relies on the module structures for the homological representations
using Borel-Moore homology exhibited in §2. However, these results may be extended to functors
defined with classical homology thanks to the notion of genericity explained in §2.4 as follows.

Lemma 3.4 (Genericity.) Assume that the surfaces Sn defining L(k,`) are orientable and consider
a ring homomorphism f : Z[Q(k,`)(S)] → F(R), where F(R) is the division ring of fractions of an
Ore domain R, such that the local system f!L(k,`) is generic. Then, the results for L(k,`) repeat
verbatim for the analogue of f!L(k,`) using ordinary homology.
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Proof. This is a consequence of an application of Proposition 2.21 along with the naturality of the
isomorphisms of Lemma 2.1, of (2.15) and of Lemma 2.22.

Example 3.5 Let k ` k be any partition of k > 1 and k′ = {k′1; . . . ; k′r} ` k′ be a partition of
k′ > 3 such that k′l > 3 for all 1 6 l 6 r. We may apply Lemma 3.4 to the functors LB(k,2),
L(k′,3)(Σg,1) and L(k′,3)(Nh,1) for f the canonical inclusion i : Z[Q(k,`)(S)] → F(Z[Q(k,`)(S)]) in
each case. Indeed, in each case, the group ring Z[Q(k,`)(S)] is an Ore domain by [PS23, Cor. 3.10],
and we then easily check that the local system i!L(k,`) is generic using Trick 2.23.

Partitions for the difference functors. Considering any homological representation functor
of §1.3 with a partition k ` k as parameter, the description of its difference functor in §4 makes
key use of some appropriate partitions of k − 1 obtained from k ` k. We denote these partitions
and their sets as follows:

Notation 3.6 Considering integers k > k′ > 1 and a partition k = {k1; . . . ; kr} ` k, we denote
by {k− k′} the set

{
{k1 − k′1; . . . ; kr − k′r};

∑
16l6r k

′
l = k′

}
.

For k′ = 1 and each 1 6 i 6 r, we denote by ki the element {k1; . . . ; ki−1; . . . ; kr} of {k−1}.
In particular, we have {k− 1} = {ki ; 1 6 i 6 r}.

For k′ = 2 and each 1 6 i 6 j 6 r, we denote by ki,j the element {k1; . . . ; ki − 1; . . . ; kj −
1; . . . ; kr} of {k− 2}. Then, we have {k− 2} = {ki,j ; 1 6 i 6 j 6 r}.

Transformation groups of the difference functors. Let k′ ∈ {k − k′}, and let L(k′,`) and
L(k,`) be the homological representation functors associated to the partitions k′ and k. We re-
call from Lemma 1.10 that there is a canonical map for the associated transformation groups
(1.15) : Q(k′,`)(S) → Q(k,`)(S). The change of rings operation (1.15)!L(k′,`) allows us to canon-
ically switch the module structure of L(k′,`) from Z[Q(k′,`)(S)] to Z[Q(k,`)(S)], as well as the
potential twisted actions of the groups on these modules; see Observation 1.11. This change of
ground ring map is just the identity in many situations, and it anyway does not impact the key
underlying structures of L(k′,`) for polynomiality. Broadly speaking, its purpose is to allow us to
identify L(k′,`) as a summand of the difference functor δ1L(k,`). Also, the partition k′ may have
null blocks, so we denote by k′ the partition of k − k′ obtained from k′ by removing the 0-blocks.

Because the above subtleties are minor points and do not affect the key points of the reasoning,
we choose to use the following conventions on the simplification of the notations:

Convention 3.7 In §4, the change of ground ring operations of type (1.15)!L(k′,`) on the functors
are always clear from the context and implicitly applied at several points. For the sake of simplicity
and to not overload the notation, we keep the notation L(k′,`) for the functor modified in this way.
We also always implicitly identify L(k′,`) with L(k′,`) because they are obviously isomorphic. For
consistency, we generically denote by L(0,`) : 〈G,M〉 → Z[Q(1,`)]-Mod the constant functor at
Z[Q(1,`)], except for Lawrence-Bigelow functors (see Notation 4.1).

3.3. Diagrammatic arguments
In §2.3 we gave explicit descriptions of the underlying (free) modules of the representations

that we consider. For the purposes of the present paper, we do not need explicit formulas for the
group actions on these modules, but we will need to use several qualitative properties of the group
actions, which we establish in this subsection.

We take up the notations of §2.3 and consider any one of the homological representation
functors of §1.3 in the classical (i.e. non-vertical) setting, that we denote by L(k,`) with associated
transformation groups Q(k,`). Before restricting our attention to automorphism groups, we first
note that the action of the canonical morphism n→ 1\n of the category on which our representa-
tions are defined has a very simple description: in each case, it is induced by the evident inclusion
of configuration spaces. For example, its action under the representation L(k,`) is the map

L(k,`)(n) = HBM
k (Ck(S rA);L) −→ HBM

k (Ck(S rA+);L) = L(k,`)(1\n), (3.3)
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where A+ = {∗} tA, induced by the closed inclusion S rA ↪→ S rA+ given by regarding S rA+

as the boundary connected sum of a punctured disc with SrA. The local systems, which we have
denoted simply by L here for simplicity, are explained in the general construction of §1.2.1.

3.3.1. The cloud lemma

We consider the representation L(k,`)(n) = HBM
k (Ck(S r A);L) of the surface braid group

Bn(S), where we are in the setting of Figure 2.1a of §2.3 and L is a rank-one local system; i.e. this
representation is part of a homological representation functor from §1.3.1 or §1.3.2. Corollary 2.7
describes a free basis for the underlying module of L(k,`)(n) indexed by labellings of the embedded
graph Γ ⊂ S by words in the blocks of the partition k. Choosing an ordering of the edges of Γ,
we write this as (w1, . . . , w2g+n−1) ` k. (This is a slight simplification of Notation 2.8 just for this
subsection.)

Remark 3.8 The diagrammatic arguments in this subsection work both for orientable surfaces
S = Σg,1 and non-orientable surfaces S = Nh,1. However, for convenience, we will write everything
for the case S = Σg,1. To obtain the case S = Nh,1, one simply has to replace “2g” with “h”
everywhere (such as in the tuple of words indexing a basis element above) and modify the right-
hand sides of Figures 3.1–3.3 (only the planar parts of these figures are important).

The representation τ1L(k,`)(n) has a very similar description as a free module: the only dif-
ference being that there is one extra edge of the embedded graph Γ+ whose edge-labellings index
the free generating set for τ1L(k,`)(n). We write this as (w0, w1, . . . , w2g+n−1) ` k, where w0 is the
label of the extra edge. The cokernel δ1L(k,`)(n) may therefore be described as the free module
generated by all edge-labellings of Γ+ such that w0 is not the empty word. As one more piece of
notation, we write A+ for the vertices of Γ+, so it has one more element than A.

Recalling Notation 3.6, the direct sum
⊕r

i=1 τ1L(ki,`)(n) therefore has a basis indexed by pairs
(i, (w0, w1, . . . , w2g+n−1)), where 1 6 i 6 r and (w0, w1, . . . , w2g+n−1) ` ki. There is an evident
bijection between the basis for δ1L(k,`)(n) and this basis for

⊕r
i=1 τ1L(ki,`)(n) given by

(w0, w1, . . . , w2g+n−1) 7−→ (i, (w′0, w1, . . . , w2g+n−1)),

where w0 = iw′0. Extending by linearity, we obtain an isomorphism of free modules

δ1L(k,`)(n) −→
r⊕
i=1

τ1L(ki,`)(n). (3.4)

The following lemma is the key ingredient to prove that this is an isomorphism of representations.
(In fact, we will have an isomorphism of functors as n varies.)

Lemma 3.9 (“Cloud lemma”.) The module isomorphism (3.4) acts as indicated in Figure 3.1.
Namely, given any homology class of the form depicted on the left-hand side of the figure, it is
sent under (3.4) to the homology class depicted on the right-hand side. A precise version of this
statement is given in the caption of Figure 3.1.

Proof. Let us write w = (w0, w1, . . . , w2g+n−1) ` k and set w′′ = (w′′0 , w1, . . . , w2g+n−1), where
w0 = jw′′0 ; in other words the operation (−)′′ removes the first letter of the first word of w. Note
that w′′ ` kj . Denote by ew the standard basis element, depicted in Figure 2.2, indexed by w ` k
and denote by e′w the corresponding dual basis element depicted in Figure 2.3. By definition, the
isomorphism (3.4) takes ew to the element ew′′ in the j-th summand of the right-hand side.

Let us first decompose the left-hand side of Figure 3.1 as

∑
w`k

ew.λw =
r∑
j=1

∑
w`k

w0=jw′′0

ew.λw, (3.5)

where λw = 〈LHS, e′w〉 is the value of the intersection pairing (2.8) evaluated on the left-hand side
of Figure 3.1 and the dual basis element e′w. This is illustrated on the left-hand side of Figure 3.2.
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Figure 3.1 The left-hand side of the figure depicts a Borel-Moore cycle on the partitioned configuration
space Ck(S r A+), representing an element of τ1L(k,`)(n) = HBM

k (Ck(S r A+);Z[Qk]) and thus
determining an element of the quotient δ1L(k,`)(n) of τ1L(k,`)(n). This cycle is assumed to be of the
following form. Choose a non-empty word w0 on the alphabet {1, . . . , r} and write l = {l1; . . . ; lr}
where li denotes the number of copies of the letter i in w0. Choose any cycle α on Ck−l(S r A+)
supported in the blue shaded region (the “cloud”) and let β denote the cycle on Cl(S rA+) given by
the singular simplex consisting of all configurations lying on the open green arc labelled according to
the word w0. Then α× β is a cycle on Ck(S rA+); this is the cycle that we consider on the left-hand
side.

The right-hand side has a similar description, where we decompose the non-empty word w0 as
iw′0. The “i” component simply says that the element lies in the i-th summand on the right-hand side
of (3.4). The second, pictorial component then describes an explicit Borel-Moore cycle on Cki

(SrA+)
representing an element of τ1L(ki,`)(n). Precisely, it is α× β′, where α is the previously-chosen cycle
and β′ is the cycle on Cl−i(SrA+) given by the singular simplex consisting of all configurations lying
on the open green arc labelled according to the word w′0.

The precise statement of Lemma 3.9 is that, for any choices of w0 = iw′0 and α as above, the
module isomorphism (3.4) sends the element [α × β] to the element (i, [α × β′]), where β and β′ are
determined by w0 as described earlier.

From that figure, it is clear that λw = 0 unless j = i, so we may remove the outer sum and set
j = i in the formula (3.5). Its image under the map (3.4) is∑

w`k
w0=iw′′0

ew′′ .λw. (3.6)

On the other hand, the right-hand side of Figure 3.1 decomposes as∑
v`ki

ev.µv, (3.7)

where µv = 〈RHS, e′v〉 is the value of the intersection pairing (2.8) evaluated on the right-hand side
of Figure 3.1 and the dual basis element e′v. This is illustrated on the right-hand side of Figure 3.2.
There is clearly a bijection between the two indexing sets of the sums above given by sending w
to v = w′′. Thus, in order to prove that (3.6) = (3.7), as desired, it remains to show that we have
an equality of coefficients

〈LHS, e′w〉 = λw = µw′′ = 〈RHS, e′w′′〉. (3.8)

To explain this, we briefly recall some of the details of how the intersection pairings 〈LHS, e′w〉
and 〈RHS, e′w′′〉 may be computed; for more precise details, see [Big01, §2.1] or [PS22, §4.3] (when
the surface is a disc) or [BPS21, §7] (for more general orientable surfaces).

We first consider 〈LHS, e′w〉 and assume that the Borel-Moore homology class denoted by
LHS (the left-hand side of Figure 3.1) is represented by configuration spaces on a collection of
pairwise disjoint properly-embedded arcs, one of these being the arc depicted and the others being
contained in the shaded “cloud”. (It is always possible to represent a Borel-Moore homology class
as a formal linear combination of such classes, due to the basis that we have described in §2.
We may therefore make this assumption without loss of generality.) The dual basis element e′w
is represented by the cycle given by the red vertical (and horizontal, in the handles) arcs on the
left-hand side of Figure 3.2. We assume that these intersect the arcs representing LHS transversely,
in particular in finitely many points.

The value of the pairing 〈LHS, e′w〉 ∈ Z[Qk] is then a sum of terms εpφ(`p) indexed by these
intersection points p, where εp ∈ {±1} is a sign, `p is a based loop in the configuration space
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Figure 3.2 An illustration of the intersection pairings λw = 〈LHS, e′w〉 (left) and µw′′ = 〈RHS, e′w′′ 〉
(right). Here, LHS and RHS refer to the Borel-Moore homology classes depicted on the left-hand side
and right-hand side of Figure 3.1 respectively.

Ck(S r A+) and φ : π1(Ck(S r A+)) � Qk is the quotient determining the local system in the
definition of L(k,`). More precisely, φ(`p) is a tuple of integers counting various winding numbers
of configuration points around the punctures A+ and around each other during the loop `p. To
determine `p, one must first of all choose a path from the base configuration to some point x on
(the cycle representing the homology class) LHS and another path from the base configuration to
some point y on (the cycle representing the homology class) e′w. Such choices of “tethers” are in
fact necessary to fully describe the homology classes that we are considering. However, different
choices correspond to homology classes that differ only by unit scalars in the ground ring, so the
choice does not matter for us, since (3.4) is a module morphism. We will assume, for convenience,
that the parts of the tethers attached to the left-most arcs are as depicted in Figure 3.2. Given
these choices, the loop `p is then a concatenation of four paths

∗ x p y  ∗

where the first and last are the tethers, the second is a path in LHS from x to the intersection
point p and the third is a path in e′w from p to y.

The intersection pairing 〈RHS, e′w′′〉 has an almost identical description, the only difference
being that one red vertical arc (containing a single point in the ith block of the partition k) has
been removed and the green arc labelled by iw′0 is now labelled by w′0, so its left-most point (in
the ith block of the partition k) has also been removed.

To compare these two elements of Z[Qk], first notice that there is a bijection of intersection
points RHS ∩ e′w′′ → LHS ∩ e′w given by p 7→ p̄ = p ∪ {p0}, where p0 ∈ S r A+ is the unique
intersection point between the left-most vertical arc and the curved (green) arc on the left-hand
side of Figure 3.2. It therefore suffices to check that we have εp̄ = εp and φ(`p̄) = φ(`p), where
the values with a subscript p̄ are computed using the left-hand side of Figure 3.2 and those with
a subscript p are computed using the right-hand side of Figure 3.2.

The loop `p̄ lies in a configuration space with one more point than the configuration space
containing the loop `p. The key observation is that – up to basepoint-preserving homotopy –
`p̄ is obtained from `p by simply adjoining a stationary point in the boundary of the surface.
This fact may be read off directly, using the description above of how the loops are constructed, by
comparing the two sides of Figure 3.2. In particular, no winding numbers are changed by adjoining
this additional stationary point, so φ(`p̄) = φ(`p).

Finally, we recall that the sign εp is the product of the local signs of the intersections of arcs in
the surface at each point of p = {p1, . . . , pr} together with an additional sign recording the parity
of the permutation of the base configuration induced by `p. The local sign of the intersection at p0
is +1, so adjoining p0 does not change the product of the local signs. In addition, as a consequence
of the paragraph above, the permutation induced by `p̄ is obtained from the permutation induced
by `p by adjoining a fixed point; in particular they both have the same parity. Thus εp̄ = εp.

3.3.2. Other diagrammatic arguments for surface braid groups

We take up the notations from §3.3.1. We will need two other (easier) diagrammatic facts
in the setting of surface braid groups. The first is an identity taking place in the Borel-Moore
homology group L(k,`)(n) = HBM

k (Ck(S rA);L).
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Figure 3.3 The identity of Lemma 3.10 in the orientable case. The identity in the non-orientable case
is the obvious analogue; only the left-hand side of each diagram, which is planar, is important.

Lemma 3.10 In L(k,`)(n), we have the identity depicted in Figure 3.3.

Proof. This follows immediately by verifying that each side of the equation evaluates to the same
element of the ground ring when applying the intersection pairing 〈−, e′v〉 with the dual basis
element e′v for each v = (v1, v2, v3 . . .) ` k. (Details of how these intersection pairings are computed
are explained in the proof of Lemma 3.9 above.)

The second fact concerns the behaviour of the vertical-type alternative functors Lv(k,`) after
applying the operation δ1.

Lemma 3.11 The functor δ1Lv(k,`) sends every morphism that is not an endomorphism to zero.

Proof. As mentioned at the beginning of this subsection, the canonical morphism n→ 1\n of the
domain category is sent, under each of our functors Lv(k,`), to the map on Borel-Moore homology
induced by the evident inclusion of configuration spaces. (In the non-vertical setting this is (3.3);
in the vertical setting it is the obvious analogue.) Since every morphism of the domain category
that is not an endomorphism factors through one of these canonical morphisms, it suffices to show
that all of these are sent to zero under δ1Lv(k,`). In other words, we wish to show that the map
labelled by (∗) in the following diagram is zero, where the rows are exact:

Lv(k,`)(n) τ1L
v
(k,`)(n) δ1L

v
(k,`)(n) 0

Lv(k,`)(1\n) τ1L
v
(k,`)(1\n) δ1L

v
(k,`)(1\n) 0

(†) (∗)

(‡)

(3.9)

To do this, it suffices to show that there is a diagonal morphism making the two triangles commute.
Recalling that τ1F (n) = F (1\n) in general, we will be able to take the diagonal morphism to be
the identity as long as the two maps labelled (†) and (‡) are equal (the top horizontal and left
vertical maps in that square are always equal by definition of the natural transformation Id→ τ1).

By definition of τ1Lv(k,`), its action on the canonical morphism n→ 1\n is given by the action
of Lv(k,`) on the canonical morphism 1\n→ 2\n composed with (b1,1)−1\idn, where b1,1 denotes the
braiding bβ

1,1 : 1\1 ∼= 1\1 of the groupoid β. This describes the map (†); on the other hand, the map
(‡) is given simply by the action of Lv(k,`) on the canonical morphism 1\n → 2\n. It is therefore
enough to prove that the automorphism b1,1\idn acts by the identity on the image of (‡). This is
immediate from Figure 3.4, where the image of an arbitrary basis element under (‡) is depicted
in green (supported on the vertical arcs) and the support of a diffeomorphism representing the
mapping class b1,1\idn is shaded in grey. Since these supports are disjoint, the action of b1,1\idn
on the image of (‡) is trivial.

Remark 3.12 It is instructive to consider why the same argument does not also show that the
functor δ1L(k,`) sends every canonical morphism n→ 1\n to the zero morphism. This boils down
to the fact that, in the analogue of Figure 3.4 for the non-vertical version L(k,`) of the functor, the
supports are not disjoint.
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Figure 3.4 The support of a diffeomorphism representing the mapping class b1,1\idn and the image
of an arbitrary basis element under the map (‡) of (3.9).

3.3.3. Other diagrammatic arguments for mapping class groups

In the setting of mapping class groups, we will need two other general diagrammatic arguments:
a disjoint support argument in the case of boundary connected sums of two surfaces (§3.3.3.1) and
some calculations of the actions of various braiding actions (§3.3.3.2). We now assume that L(k,`)
is one of the (non-vertical) homological representation functors defined in §1.3.3.

3.3.3.1. Boundary connected sums

We will sometimes use the following general principle, for representations L(S) (where L is
either L(k,`) or its vertical-type alternative Lv(k,`)) of the mapping class group of a surface S that
splits as a boundary connected sum S = S′\S′′.

Lemma 3.13 Suppose that S = S′\S′′ and let g ∈ MCG(S′). Let ew be a basis element of L(S),
using the bases described in §2 and write the tuple w as w = (w′,w′′), where the entries of w′
correspond to arcs supported in S′ and the entries of w′′ correspond to arcs supported in S′′. Then
L(g\idS′′)(ew) is a linear combination of basis elements of the form e(v′,w′′), where v′ runs over
possible labellings of arcs supported in S′.

Proof. Let e′v be an arbitrary dual basis element and write v = (v′,v′′) similarly to the decom-
position w = (w′,w′′). It suffices to show that 〈L(g\idS′′)(ew), e′v〉 = 0 unless v′′ = w′′. To see
this, recall that the homology class ew is represented by certain configuration spaces on embedded
arcs in S. Since g\idS′′ , by construction, is supported in S′, the homology class L(g\idS′′)(ew)
may be represented by certain configuration spaces on embedded arcs, which are identical, on the
boundary connected summand S′′, to those representing ew. The intersection pairing with e′v must
therefore be zero unless v′′ = w′′.

3.3.3.2. Interaction with the braiding

To discuss elements of mapping class groups that act by “braiding” handles or crosscaps of a
surface S, it is convenient to pass, in this section, to a different way of representing S diagrammat-
ically. Instead of a rectangle to which we have glued a finite number of strips (as in, for example,
Figure 2.1), we will represent S as a rectangle from which we have either erased the interiors of
2g discs and glued their boundaries in pairs (when S = Σg,1) or erased the interiors of h discs
and glued each resulting boundary component to itself by a degree-2 map (when S = Nh,1). The
basis elements of the representations L(k,`)(S) (see Figures 2.2c and 2.2d) look as illustrated in
Figure 3.5 in this picture, where we have also included explicit choices of “tethers”, i.e. paths from
a point on the (cycle representing the) homology class to the base configuration. Similarly, the
basis elements of the “vertical-type alternative” representations Lv(k,`)(S) (see Figures 2.3c and
2.3d) look as illustrated in Figure 3.6 in this picture.

Notation 3.14 Denote by σ1 ∈ MCG(S) the mapping class illustrated in Figure 3.7: it braids the
left-most two handles if S = Σg,1 and it braids the left-most two crosscaps if S = Nh,1.

Denote by ew the basis elements illustrated in Figure 3.5, where w = ([w1, w2], [w3, w4], . . .)
or w = ([w1], [w2], . . .) in the orientable and non-orientable settings respectively. Similarly, denote
by fw the basis elements illustrated in Figure 3.6.
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(a) The orientable case.

(b) The non-orientable case.

Figure 3.5 Another perspective on the basis elements depicted in Figures 2.2c and 2.2d.

(a) The orientable case.

(b) The non-orientable case.

Figure 3.6 Another perspective on the basis elements depicted in Figures 2.3c and 2.3d.
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Figure 3.7 The braiding element σ1 ∈ MCG(S) when S = Σg,1 (left) and S = Nh,1 (right).

Lemma 3.15 The following identities hold in L(k,`′)(S) and Lv(k,`′)(S) where `′ 6 2:

σ−1
1
(
e([∅,∅],[w3,w4],...)

)
= e([w3,w4],[∅,∅],...) (3.10)

σ1
(
f([∅,∅],[w3,w4],...)

)
= f([w3,w4],[∅,∅],...) (3.11)

σ−1
1
(
e([∅],[w2],...)

)
= e([w2],[∅],...) (3.12)

σ1
(
f([∅],[w2],...)

)
= f([w2],[∅],...) (3.13)

Proof. Equations (3.10) and (3.12) are clear from the diagrams, using the fact that the label(s)
corresponding to the left-most handle or crosscap are empty. On the other hand, we see from the
diagrams that the left-hand side of equation (3.11) is equal to the element illustrated in Figure 3.8a.
This differs from the right-hand side of equation (3.11) only in the choice of tether. We therefore
need to show that the difference between the two tethers, which is the based loop of configurations
illustrated in Figure 3.8b, projects to the trivial element of the group Q(k,`′). This is obvious for
`′ = 1 since the group is trivial in this case. For `′ = 2, we recall from §1.3.3 that Q(k,2) is simply
a product of copies of Z/2, one for each block of the partition k = {k1; . . . ; kr} with ki > 2.
The projection onto Q(k,2) records the writhe (modulo 2) of each block of strands (in a surface of
positive genus the writhe is only well-defined modulo 2). It is clear that the writhe of the loop of
configurations illustrated in Figure 3.8b is trivial for each block. This establishes equation (3.11).

We argue similarly for equation (3.13). (Again, the case `′ = 1 being obvious, we just consider
`′ = 2.) The left-hand side is equal to the element illustrated in Figure 3.9a, which differs from the
right-hand side only by its choice of tether; the difference between the two tethers forms the based
loop of configurations illustrated in Figure 3.9b. We therefore just have to show that this projects
to the trivial element of the group Q(k,2). This time the group Q(k,2) is a product of r′ + r copies
of Z/2, where r′ denotes the number of blocks of the partition k with ki > 2; see §1.3.3. The first
r′ copies of Z/2, in the projection to Q(k,2) of a loop of configurations, record the writhe of each
block of strands; the remaining r copies of Z/2 record, for each block of strands, the number of
times modulo 2 that a strand from that block passes through a crosscap. As before, it is clear that
the writhe of the loop of configurations illustrated in Figure 3.9b is trivial for each block; thus
the first r′ coordinates of its projection to Q(k,2) are zero. Moreover, each strand in this loop of
configurations passes around a crosscap an integer number of times, which corresponds to passing
through a crosscap an even number of times; thus the last r coordinates of its projection to Q(k,2)
are also zero. This establishes equation (3.13).

Remark 3.16 Equations (3.10) and (3.12) of Lemma 3.15 hold in fact for all `′ > 1. On the
other hand, we used the explicit structure of the quotient group Q(k,2) (and the fact that Q(k,1) is
trivial) to prove equations (3.11) and (3.13). For `′ > 3 the proof shows that these equations hold
up to a unit scalar, which is the image in Q(k,`′) of the loops in Figures 3.8b and 3.9b respectively.
We do not know whether this scalar is trivial in these cases.

Remark 3.17 We will view equations (3.11) and (3.13) as being statements about the action of
(σ−1

1 )† = σ1, where (−)† is the operation that inverts the braiding of a braided monoidal category;
see the beginning of §1.1.
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(a) The left-hand side of equation (3.11). (b) A loop given by the difference of two tethers.

Figure 3.8 The left-hand side of equation (3.11) differs from the right-hand side of equation (3.11) by
the scalar given by the image in Q(k,2) of the loop illustrated on the right.

(a) The left-hand side of equation (3.13). (b) A loop given by the difference of two tethers.

Figure 3.9 The left-hand side of equation (3.13) differs from the right-hand side of equation (3.13) by
the scalar given by the image in Q(k,2) of the loop illustrated on the right.

4. Polynomiality of homological representation functors
In this section, we prove our polynomiality results (Theorems B, C and D) for the homological

representation functors defined in §1.3. Throughout §4, we consider homological representation
functors indexed by a partition k = {k1; . . . ; kr} ` k of an integer k > 1 (corresponding to some
configuration space of points) and by the stage ` > 1 of the lower central series defining it. We
recall that we use Notation 2.8 for the bases of the representation modules, Notation 3.6 for certain
sets of partitions and Convention 3.7 about modifying these functors by change of ground ring.

4.1. For classical braid group functors
4.1.1. For the classical homological representation functors

The aim of this section is to prove the polynomiality results of Theorem B for each (k, `)-
Lawrence-Bigelow functor LB(k,`) and its untwisted version LBu

(k,`) of §1.3.1. The crucial step
consists in constructing the key short exact sequences (4.1) and (4.2) of Theorem 4.2 below. The
arguments for all of this work are exactly the same for both LB(k,`) and LBu

(k,`): for the sake of
simplicity, we therefore use the notation LB?

(k,`) with ? ∈ { , u} and make all further reasoning
with this notation.

Notation 4.1 Let us denote by LB(0,`) : Uβ → Z[Q(1,`)(D)] the subobject of the constant func-
tor at Z[Q(1,`)(D)] with LB(0,`)(0) = LB(0,`)(1) = 0 and LB(0,`)(n) = Z[Q(1,`)(D)] for n > 2.
This choice is driven by consistency with the definition of the Lawrence-Bigelow functors, in that
LB(k,`)(0) = LB(k,`)(1) = 0.

We recall from Corollary 2.7 that, for each n ∈ N, the Z[Q(k,`)(D)]-module LB?
(k,`)(n) has

a free generating set over Z[Q(k,`)(D)] indexed by the set of tuples (w1, . . . , wn−1) of words in
the alphabet {1, 2, . . . , r} such that each letter i ∈ {1, 2, . . . , r} appears precisely ki times; this
condition is indicated by the notation (w1, . . . , wn−1) ` k.

Therefore, we deduce from the definitions of the evanescence and difference functors that
κ1LB

?
(k,`)(n) = 0 and that δ1LB?

(k,`)(n) is the free Z[Q(k,`)(D)]-module with generating set indexed
the tuples such that |w1| > 1. Following the preliminary part of §3.3.1, for each n > 1, we denote
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by (p(k,`))n the Z[Q(k,`)(D)]-module isomorphism (3.4):

δ1LB
?
(k,`)(n)

∼=−→
⊕

16j6r
τ1LB

?
(kj ,`)(n).

More precisely, it is explicitly defined on the generators by (jw′0, . . . , wn) 7→ (j, (w′0, . . . , wn)), where
(j, (w′0, . . . , wn)) denotes the generator (w′0, . . . , wn) of the summand τ1LB

?
(kj ,`)(n). We also set

(p(k,`))0 to be the trivial morphism. Then we prove that:

Theorem 4.2 The exact sequence (3.1) induces the short exact sequences:

0 LB(k,`) τ1LB(k,`)
⊕

16j6r
τ1LB(kj ,`) 0 (4.1)

0 LBu
(k,`) τ1LB

u
(k,`)

⊕
16j6r

τ1LB
u
(kj ,`) 0 (4.2)

in Fct(Uβ,Z[Q(k,`)(D)]-Mod?) and Fct(Uβ,Z[Qu(k,`)(D)]-Mod) respectively. Furthermore, the short
exact sequences (4.1) and (4.2) still hold after any (non-zero) change of rings operation.

Proof. The strategy consists in showing that the isomorphisms {(p(k,`))n}n∈N define an isomor-
phism p(k,`) : δ1LB?

(k,`)
∼→
⊕

16j6r τ1LB
?
(kj ,`) in Fct(Uβ,Z[Q(k,`)(D)]-Mod?).

We start by proving that assembling these isomorphisms defines an isomorphism in the cate-
gory Fct(β,Z[Q(k,`)(D)]-Mod?), in other words that each (p(k,`))n is a Bn-module morphism. The
braid group Bn being trivial for n = 0 and n = 1, we assume that n > 2 and prove the commutation
of (p(k,`))n with respect to the action of any Artin generator σi of Bn with 1 6 i 6 n−1. First, we
note from Corollary 2.7 that the morphisms τ1LB?

(kj ,`)(σi) for all 1 6 j 6 r and δ1LB?
(k,`)(σi) are

defined by the action of the generator σi+1 on the Borel-Moore homology classes on the graph I1+n
(see Figure 2.1a with g = 0). If i > 2, the generator σi+1 acts trivially on the first edge (1, 2) of I1+n
and thus does not affect the first entries of the tuples (w′0, . . . , wn−1) and (jw′0, . . . , wn−1), because
its action is concentrated in the subsurface containing In and cutting the edge (1, 2) out. A fortiori,
by definition of (p(k,`))n, we have (p(k,`))n ◦ δ1LB?

(k,`)(n)(σi) = (
⊕

16j6r τ1LB
?
(kj ,`)(σi))◦ (p(k,`))n

for i > 2. So the remaining point is to check the action of σ1. We note that the respective actions
of τ1LB?

(kj ,`)(σ1) and δ1LB?
(k,`)(σ1) on the generators (w′0, . . . , wn) and (jw′0, . . . , wn) are precisely

those illustrated by the right-hand side and left-hand side of Figure 3.1 (with g = 0): the labelled
green arcs are the images of the first edge (1, 2) under the action of σ2 while the other edges are
concentrated in the blue shaded region. It thus follows from Lemma 3.9 and the definition of
(p(k,`))n that (p(k,`))n ◦ δ1LB?

(k,`)(n)(σ1) = (
⊕

16j6r τ1LB
?
(kj ,`)(σ1)) ◦ (p(k,`))n. Therefore, p(k,`)

is a natural transformation in Fct(β,Z[Q(k,`)(D)]-Mod?).
We now prove that p(k,`) is a natural transformation in Fct(Uβ,Z[Q(k,`)(D)]-Mod?) by us-

ing the strategy of Lemma 1.2. We fix an integer n > 1, the proof being trivial for n = 0.
We compute from (1.1) that τ1LB?

(k,`)([1, id1+n]) = LB?
(k,`)(σ−1

1 ) ◦ LB?
(k,`)([1, id2+n]). (Here,

we canonically identify the Artin generator σ1 with the braiding bβ
1,1 : 1\1 ∼= 1\1.) We recall

from the description of (3.3) that the morphism LB?
(k,`)([1, id2+n]) is the map induced by the

embedding of I1+n into I2+n defined by sending each edge (i, i + 1) for 1 6 i 6 n to the edge
(i + 1, i + 2). Hence there is no configuration point on the first edge (1, 2) of I2+n in the image
of LB?

(k,`)([1, id2+n]), while the morphism LB?
(k,`)(σ−1

1 ) is defined by the action of σ−1
1 on I2+n

as illustrated on the left-hand side of Figure 3.3. Therefore, it follows from Lemma 3.10 that
δ1LB

?
(k,`)([1, id1+n])(jw′0, . . . , wn) and τ1LB?

(kj ,`)(n)([1, id1+n])(w0, . . . , wn) for each 1 6 j 6 r are
both equal to

∑
u1v1=w1

(ju1, v1, w2, . . . , wn). Then, it follows from the definition of (p(k,`))n and a
clear induction on the integers m > 1 that (

⊕
16j6r τ1LB

?
(kj ,`)([m, idm+n])) ◦ (p(k,`))n is equal to

(p(k,`))m+n ◦ δ1LB?
(k,`)([m, idm+n]). Hence Relation (1.3) is satisfied for all n > 1, which provides,

by Lemma 1.2, the short exact sequences (4.1) and (4.2) of functors on Uβ.
For all the above work, whenever we consider a twisted homological representation functor,

we stress that the associated action of δ1LB?
(k,`) on the ground ring Z[Q(k,`)(D)] does not affect

the reasoning, since
⊕

16j6r τ1LB
?
(kj ,`) is automatically equipped with the same action (via the

implicit change of rings of Convention 3.7 for each summand; see Observation 1.11).
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Finally, the results for the change of rings operations follow from the right-exactness of a
change of rings operation and Lemma 3.3.

Remark 4.3 There is no clear splitting for the short exact sequences (4.1) and (4.2). For instance,
let us assume that ∆1LB(k,`) admits the obvious splitting Ψ induced by sending each generator
(w0, . . . , wn) ∈ τ1LB(kj ,`)(n) where 1 6 j 6 r to (jw0, . . . , wn). Then, it clearly follows from the
module structures and actions (see §2.3) that some generators of type (0, w1, . . . , wn) ∈ LB(k,`)(n)
appear in the decomposition of τ1LB(k,`)(σ1)(jw0, . . . , wn) while (jw0, . . . , wn) ∈ δ1LB(k,`)(n).
Therefore the action of τ1LB(k,`)(σ1) mixes generators of LB(k,`)(n) and of δ1LB(k,`)(n), contra-
dicting the assumption that Ψ is a splitting.

Proof of Theorem B. Using the commutation property of the difference functor δ1 and translation
functor τ1, we deduce from Theorem 4.2 that, for all 0 6 m 6 k, δm1 LB?

(k,`) is a direct sum of
functors of type τm1 LB?

km′
where km′ ∈ {k−m′} for 0 6 m′ 6 m, while κ1LB

?
(k,`) = 0.

For k = 1, we note that τ1LB?
(0,`) is the subobject of the constant functor at Z[Q(1,2)(D)] with

τ1LB
?
(0,`)(0) = 0 and τ1LB?

(0,`)(n) = Z[Q(1,2)(D)] for n > 1. Hence LB?
(1,`) is weak polynomial of

degree 1 and δ2
1LB

?
(1,`) is the functor whose unique non-null value is δ2

1LB
?
(1,`)(0) = Z[Q(1,2)(D)].

A fortiori LB?
(1,`) is strong polynomial of degree 2. For k > 2, we first note that for all integers

m > 2, τ2
1LB

?
(0,`) = τm1 LB?

(0,`) is a constant functor and thus it is both very strong and weak
polynomial of degree 0. Then, it follows from the above description of δm1 (LB?

(k,`)) by a clear
induction on k that LB?

(k,`) is both strong and weak polynomial of degree k. Then, noting from
Theorem 4.2 that κ1(LB?

(k,`)) = 0 and again viewing δm1 (LB?
(k,`)) as a direct sum of functors

of type τm1 LB?
km′

, the commutation property of the evanescence functor κ1 and the translation
functor τ1 implies that κ1(δm1 (LB?

(k,`))) = 0 for all integers 1 6 m 6 k: this proves that LB?
(k,`) is

very strong polynomial of degree k.

Remark 4.4 The functors LB(1,2) ⊗ C[Z] and LB(2,2) ⊗ C[Z2] correspond to the reduced Burau
functor Bur and the Lawrence-Krammer functor LK defined in [Sou19, §1.2]. The (very) strong
polynomiality results of Theorems B and 4.2 recover those of [Sou19, Props. 3.25 and 3.33] for the
functors LB(1,2) ⊗ C[Z] and LB(2,2) ⊗ C[Z2].

4.1.2. For the vertical-type alternatives

We consider the vertical (k, `)-Lawrence-Bigelow functor LB?,v
(k,`) : Uβ → Z[Q(k,`)(D)]-Mod?,

with ? ∈ { , u}, as introduced in §1.3.1. We recall from Lemma 2.13 that, for each n ∈ N, the
Z[Q(k,`)(D)]-module LB?,v

(k,`)(n) has a free generating set over Z[Q(k,`)(D)] indexed by the set of
(“vertical”) tuples (w1, . . . , wn−1)v, which has the same dimension as the (original) (k, `)-Lawrence-
Bigelow functor LB?

(k,`)(n).
The following result shows that this alternative LB?,v

(k,`) exhibits unexpected interesting be-
haviour if we study its polynomiality, which thoroughly differs from the functor LB?

(k,`) addressed
in §4.1.1. Indeed, it is not strong polynomial, which is a counterintuitive property since the di-
mensions of the representations it encodes grow in the same polynomial way as those of LB?

(k,`).

Theorem 4.5 The vertical (k, `)-Lawrence-Bigelow functor LB?,v
(k,`) : Uβ → Z[Q(k,`)(D)]-Mod? is

not strong polynomial, but it is weak polynomial of degree 0.

Proof. It follows from Figure 2.3a and Lemma 3.11 that δ1LB?,v
(k,`)(n) is a non-trivial Z[Q(k,`)(D)]-

module for all n > 1, while δ1LB?,v
(k,`) assigns the trivial map for all morphisms of Uβ(n,m)

with n 6= m. So δ1LB
?,v
(k,`) is isomorphic to a direct sum of infinitely many atomic functors

(i.e. functors that are non-trivial just in one entry). Hence δm1 LB?,v
(k,`) 6= 0 for any m ∈ N while

πUβ(δ1LB?,v
(k,`)) = 0 in the stable category St(Uβ,Z[Q(k,`)(D)]-Mod?), whence the result.

Remark 4.6 On the other hand, the first step of the proof of Theorem 4.2 does go through in
the vertical setting, and shows that the analogue of the short exact sequences (4.1) and (4.2) for
LB?,v

(k,`) is true at the level of automorphism groups, i.e. as functors defined on β.
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4.2. For surface braid group functors
4.2.1. For the classical homological representation functors

We deal here with the functors L(k,`)(Σg,1), Lu(k,`)(Σg,1), L(k,`)(Nh,1) and Lu(k,`)(Nh,1) of §1.3.2
for any k ` k > 1, ` > 1, g > 1 and h > 1. We start by proving decomposition results for the
translations of these homological representation functors; see Theorem 4.10. The arguments for our
work in this section are analogous regardless of which of the homological representation functors
among the above list we consider. For the sake of simplicity, and to avoid repetition, we pool
the key steps and common arguments for all of them for the remainder of §4.2, only emphasising
the (minor) differences when necessary. We use the standard notation L?(k,`) with ? ∈ { , u} for
any of the homological representation functors under consideration, Q(k,`)(S) for the associated
transformation group, S for either Σg,1 or Nh,1 and βS for the associated groupoid.

We recall from Corollary 2.7 that, for each integer n > 1, the Z[Q(k,`)(S)]-module L?(k,`)(n)
has a free generating set over the group ring Z[Q(k,`)(S)] indexed by the set of tuples of the form
(2.6) if S = Σg,1 and (2.7) if S = Nh,1. Therefore, we deduce from the definition of the difference
functor that δ1L?(k,`)(n) is the free Z[Q(k,`)(S)]-module with generating set indexed the tuples such
that |w0| > 1 for n > 1. Also, it follows from the definition of the evanescence functor and these
module structures that κ1L

?
(k,`) = 0.

It will be convenient to consider various “cut verions” of functors defined on 〈β,βS〉. In fact
this definition makes sense more generally:

Definition 4.7 Let C be a category whose objects form a totally-ordered set and there are no
morphisms a→ b in C if a > b. Given such a category C, a functor F : C → R-Mod? and an object
c of C, define F|>c : C → R-Mod? on objects by F|>c(a) = F (a) for a > c and F|>c = 0 for a < c
and on morphisms by F|>c(φ) = F (φ) if the domain of φ is > c and F|>c(φ) = 0 otherwise.

In the case of C = 〈β,βS〉, the objects form the totally-ordered set N. These alterations are
negligible for our study of polynomiality (see the proof of Theorem C), while these subfunctors are
much more convenient to deal with (see Remark 4.12).

For each n > 2, following the preliminary part of §3.3.1, we denote by (p(k,`))n the Z[Q(k,`)(D)]-
module isomorphism (3.4), which may be written as

δ1L
?
(k,`)|>2(n)

∼=−→
⊕

16j6r
(τ1L?(kj ,`))|>2(n) (4.3)

since the truncations do not make any difference when n > 2. Recal that this isomorphism is defined
on the generators by (jw′0, . . .) 7→ (j, (w′0, . . .)), where (j, (w′0, . . .)) denotes the generator (w′0, . . .)
of the j-th summand on the right-hand side. We also set (p(k,`))0 to be the trivial morphism; this
gives an isomorphism of the form (4.3) for n = 0. However, for n = 1 there is no isomorphism of
the form (4.3), since the right-hand side is zero, whereas we have δ1L?(k,`)|>2(1) ∼= τ1L

?
(k,`)|>2(1) as

representations of B1(S) over Z[Q(k,`)(D)].
Our first goal in this section is to promote (4.3) to a natural isomorphism of functors on

〈β,βS〉, so we first need to correct the right-hand side on the object n = 1. To do this, we will
choose a certain extension of functors. We will choose this via the following lemma:

Lemma 4.8 LetM be a module over a braided monoidal groupoid G that on objects is given by the
monoid N as a module over itself. Let F,G : 〈G,M〉 → R-Mod? be two functors with F (n) = 0 for
n 6 c− 1 and G(n) = 0 for n > c for an integer c > 1. Then there is a one-to-one correspondence
between extensions of G by F , i.e. short exact sequences 0 → F → ? → G → 0, and morphisms
G(c− 1)→ F (c) in R-Mod?, given by evaluating the extension functor at [1, idc].

Proof. Since F and G have disjoint support, there is no choice about the action of any such
extension on objects and on automorphisms; in other words, there is a unique extension of G by F
when restricting the domain to the subgroupoid G. Lemma 1.1 describes the data and conditions
required to extend a functor on G to a functor on 〈G,M〉. In light of the requirement that this is
an extension of G by F , the only remaining choice is the value assigned to the morphism [1, idc];
conversely, any such choice determines an extension.
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Definition 4.9 Denote by
⊕̃

16j6r(τ1L?(kj ,`))|>2 the extension of the atomic functor τ1L?(k,`)|>2(1)
by the functor

⊕
16j6r(τ1L?(kj ,`))|>2 whose value on [1, id2] is:

τ1L
?
(k,`)|>2(1) τ1L

?
(k,`)|>2(2) δ1L

?
(k,`)|>2(2)

⊕
16j6r

(τ1L?(kj ,`))|>2(2).

τ1L
?
(k,`)|>2([1,id2]) ∆1L

?
(k,`)|>2(2)

(4.3)

We also denote by (p(k,`))1 the isomorphism

δ1L
?
(k,`)|>2(1) τ1L

?
(k,`)|>2(1) =

⊕̃
16j6r

(τ1L?(kj ,`))|>2(1).
(∆1L

?
(k,`)|>2(1))−1

(4.4)

Using the extension of Definition 4.9, we may now upgrade (4.3) to an isomorphism of functors:

Theorem 4.10 For S = Σg,1 or Nh,1, ? ∈ { , u} and ` > 1, the exact sequence (3.1) induces a
short exact sequence

0 L?(k,`)|>2(S) τ1L
?
(k,`)|>2(S)

⊕̃
16j6r

(τ1L?(kj ,`))|>2(S) 0 (4.5)

of functors in
• Fct(〈β,βS〉,Z[Q(k,`)(S)]-Mod) if ` 6 2;
• Fct(〈β,βS〉,Z[Qu(k,`)(S)]-Mod) if ` > 3 and ? = u;
• Fct(〈β,βS〉,Z-Mod) if ` > 3 and ? = .

This holds also after any (non-zero) change of rings operation.

Proof. The roadmap of this proof is similar to that of Theorem 4.2, whose technical computations
are also reused below for the analogous steps. As in the proof of Theorem 4.2, we stress that,
when we deal with a twisted homological representation functor, the action on the ground ring
Z[Q(k,`)(S)] does not affect any point of the following work thanks to Convention 3.7.

We first consider the case where n > 2. Recall that we use [PS23, Prop. 2.2] for the generating
set of Bn(S) and that we have introduced model graphs In, WΣ

g and WN
h in Notation 2.8, which

are illustrated in Figures 2.1a and 2.1b. Let us abbreviate by writing WS = WΣ
g if S = Σg,1 and

WS = WN
h if S = Nh,1. For each generator γ of Bn(S), the morphisms (τ1L?(kj ,`))|>2(γ) for all

1 6 j 6 r and δ1L
?
(k,`)|>2(γ) are induced by the action of id1\γ on the Borel-Moore homology

classes supported on the embedded graph I1+n ∨WS ⊂ S.
If γ 6= σ1, the action of id1\γ is supported on a subsurface containing the graph In ∨WS

and disjoint from the left-most edge (1, 2), which therefore does not affect the first entries of the
tuples (w′0, . . .) and (jw′0, . . .). Thus (τ1L?(kj ,`))|>2(γ) does not interact with the action of (p(k,`))n
and a fortiori we have (p(k,`))n ◦ δ1L?(k,`)|>2(γ) =

(⊕̃
16j6r(τ1L?(kj ,`))|>2(γ)

)
◦ (p(k,`))n. Hence the

only remaining fact to check is that this last equality also holds for σ1, which is done by repeating
verbatim the corresponding point in the proof of Theorem 4.2, using Lemma 3.9. Furthermore,
the analogous relations trivially hold also for n = 0 (because L?(k,`)|>2(0) = 0) and n = 1 (because
the isomorphism (p(k,`))1 = (4.4) is B1(S)-equivariant by construction). Therefore, the collection
of isomorphisms {(p(k,`))n}n∈N assembles into a natural isomorphism p(k,`) of functors on βS from
(the restriction to βS of) δ1L?(k,`)|>2 to (the restriction to βS of)

⊕̃
16j6r(τ1L?(kj ,`))|>2.

Since the canonical inclusion βS ↪→ 〈β,βS〉 is the identity on objects, to check that p(k,`)
extends to a natural isomorphism of functors on 〈β,βS〉, it suffices to check certain additional
relations. Specifically, by Lemma 1.2, it suffices to check Relation (1.3), which we do now. First,
we compute from (1.1) that τ1L?(k,`)|>2([1, id1+n]) = L?(k,`)|>2(σ−1

1 )◦L?(k,`)|>2([1, id2+n]) (using the
canonical identification bβ

1,1 = σ1). We recall from the description of (3.3) that L?(k,`)|>2([1, id2+n])
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is induced by the embedding of I1+n into I2+n defined by sending each edge (i, i+ 1) to the edge
(i + 1, i + 2) and by the identity on the wedge WS . Using Lemma 3.10 with the illustration of
Figure 3.3, the analogous point in the proof of Theorem 4.2 repeats mutatis mutandis here. This
proves that (p(k,`))m+n ◦ δ1L

?
(k,`)|>2([m, idm+n]) =

(⊕̃
16j6r(τ1L?(kj ,`))|>2([m, idm+n])

)
◦ (p(k,`))n

for each m > 1 and n > 2. The analogous relation follows in the exact same way for n = 1,
the point being that

⊕̃
16j6r(τ1L?(kj ,`))|>2([1, id2]) = δ1L

?
(k,`)|>2([1, id2]) ◦∆1L

?
(k,`)|>2(1); the key

relation also holds trivially for n = 0 because L?(k,`)|>2(0) = 0. Hence Relation (1.3) is satisfied for
all n ∈ N, and we deduce the short exact sequence (4.5) from Lemma 1.2.

Finally, the result for the change of rings operations follows from the right-exactness of any
change of rings operation and Lemma 3.3.

Remark 4.11 Since the effect of the Bn(S)-action on L?(k,`)|>2(n) on the In-supported compo-
nents of the basis elements is analogous to the Bn-action on L?(k,`)|>2(n) (see Corollary 2.7 and
Figures 2.1a and 2.1b), it follows from the same argument as in Remark 4.3 that there is no obvious
splitting for the short exact sequence (4.5).
Proof of Theorem C. We proceed by induction on k > 0. We first note that the functor L?(0,`) is
very strong polynomial of degree 0 since it is constant.

Now, for k > 1, we have by Theorem 4.10 that the difference functor δ1L?(k,`)|>2 is an ex-
tension of the atomic functor τ1L?(k,`)|>2(1) by a direct sum of functors of type (τ1L?(ki,`))|>2
for ki ∈ {k − 1}. We also recall that L?(k,`) is an extension of the atomic functor L?(k,`)(1)
by L?(k,`)|>2. Using the commutation property of the difference functor δ1 and the translation
functor τ1, we see by the inductive assumption that each functor τ1L?(ki,`) is strong and weak
polynomial of degree k − 1. Also, the atomic functor L?(k,`)(1) is strong polynomial of degree
1 while weak polynomial of degree 0 by definition. We therefore deduce from Proposition 3.1
that the functors L?(k,`)|>2 and L?(k,`) are both strong and weak polynomial of degree at most k.
Now, in the stable category St(〈β,βS〉,Z[Q(k,`)(S)]-Mod?), by Theorem 4.10 and the commuta-
tion properties of δ1 with colimits and with π〈β,βS〉, the functor δk1π〈β,βS〉(L?(k,`)|>2) surjects onto
each δk−1

1 π〈β,βS〉((τ1L?(ki,`))|>2) which is non-null by the inductive assumption. Also, the image
π〈β,βS〉(L?(k,`)(1)) is null, so π〈β,βS〉(L?(k,`)) ∼= π〈β,βS〉(L?(k,`)|>2). So, the weak degrees of L?(k,`)|>2
and L?(k,`) are both exactly k. Furthermore, the strong degree is always greater than or equal to
the weak one: this is a direct consequence of the commutation property δ1 ◦π〈β,βS〉 = π〈β,βS〉 ◦ δ1.
Hence, the strong degrees of L?(k,`)|>2 and L?(k,`) are also both k.

The last property to be checked is that κ1(δm1 (L?(k,`))) = 0 for all 0 6 m 6 k. We have already
checked the case of m = 0, which follows from the evident injectivity of i1L?(k,`)(n) : L?(k,`)(n) →
τ1L

?
(k,`)(n) for each n. We consider the long exact sequence (3.2) associated to the extension

L?(k,`)|>2 ↪→ L?(k,`) � L?(k,`)(1). We note that L?(k,`)(1) = κ1(L?(k,`)(1)) while κ1L
?
(k,`) = 0. Using

Theorem 4.10, we deduce from the definition of the connecting map of the snake lemma that the cok-
ernel of the injection L?(k,`)(1) ↪→ δ1L

?
(k,`)|>2 induced by (3.2) is the (unique) extension of the atomic

functor δ1L?(k,`)(1) (using the projection ∆1L
?
(k,`)(1)) by the functor

⊕
16j6r(τ1L?(kj ,`))|>2 (similar

to Definition 4.9 using Lemma 4.8). But this cokernel is also formally isomorphic to (δ1L?(k,`))|>1.
We thus obtain the short exact sequence (δ1L?(k,`))|>1 ↪→ δ1L

?
(k,`) � δ1(L?(k,`)(1)) with the explicit

description of (δ1L?(k,`))|>1 as an extension, and we consider its long exact sequence (3.2). Since
δ2
1(L?(k,`)(1)) = κ1((δ1L?(k,`))|>1) = 0 as a direct consequence of the definitions and of the inductive
assumption, we have an exact sequence κ1δ1L

?
(k,`) ↪→ δ1(L?(k,`)(1))→ δ1((δ1L?(k,`))|>1)� δ2

1L
?
(k,`).

As above, using Theorem 4.10 and the above description of (δ1L?(k,`))|>1, it is routine to check
that the middle morphism µ is an injection induced by the map i1(δ1L?(k,`))(0). Therefore, we
have κ1δ1L

?
(k,`) = 0, i.e. the desired result for m = 1. Finally, we consider the long exact sequence

(3.2) applied to the short exact sequence δ1(L?(k,`)(1)) ↪→ δ1((δ1L?(k,`))|>1) � δ2
1L

?
(k,`). Since

δ2
1(L?(k,`)(1)) = 0 and κ1(δ2

1L
?
(k,`)|>1) ∼= δ1(L?(k,`)(1)), we deduce that κ1(δ2

1L
?
(k,`)) = 0, i.e. the de-

sired result for m = 2. Also, by the commutation property of δ1 with τ1 and with colimits, it then
follows from the above description of (δ1L?(k,`))|>1 as an extension and from Theorem 4.10 that
δ3
1L

?
(k,`)

∼=
⊕

16j6j′6r τ
2
1 δ1L

?
(kj,j′ ,`)|>2. Then, by the inductive assumption, each τ2

1 δ1L
?
(kj,j′ ,`)|>2
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is a very strong polynomial functor of degree k − 3 and we deduce that κ1(δm1 (L?(k,`))) = 0 for all
3 6 m 6 k, which ends the proof.

Remark 4.12 We conjecture that Theorem 4.10 repeats verbatim for the entire functors (i.e. not
considering the “cut version” subfunctor L?(k,`)|>2) and thus that they are strong and weak poly-
nomial with the same degrees. We have in fact verified this for the functor L(k,2)(Σg,1) for each
k > 1 with the trivial partition k = k using explicit formulas for the action of Bn(Σg,1) from [PS].
However, this seems much more difficult to prove in full generality for k. The main difficulty in
proving the short exact sequences analogous to (4.5) is for the object n = 1: checking that these
are short exact sequences of B1(S)-modules involves a subtle study of the actions of the generators
ai and bi of B1(S), for which diagrammatic arguments of the type of Lemma 3.9 seem insufficient.
This task thus would require technical and heavy further computations. In any case, such finer
results would not improve the polynomiality results of Theorem C, which are already optimal.

4.2.2. Vertical-type alternatives

We now focus on the vertical-type alternatives of the homological representation functors
for the surface braid groups, namely Lv(k,2)(Σg,1), Lv(k,`)(Σg,1) and Lu,v(k,`)(Σg,1) for g > 1, and
Lv(k,2)(Nh,1), Lv(k,`)(Nh,1) and Lu,v(k,`)(Nh,1) for h > 1; see §1.3.2. We recall from Lemma 2.13 that,
for each of these functors L?,vk and each n ∈ N, the Z[Q?(k,`)(S)]-module L?,vk (n) has a free generating
set over Z[Q?(k,`)(S)] indexed by the set of (“vertical”) tuples of type (w1, . . . , [wn+2g−2, wn+2g−1])v
if S = Σg,1 and (w1, . . . , [wn+h−1])v if S = Nh,1, which has the same dimension as the (original,
non-vertical) module L?(k,`)(n). Similarly to the case of the classical braid groups in Theorem 4.5,
the polynomiality properties of these alternatives L?,vk thoroughly differ from those of their original
counterparts studied in §4.2.1:

Theorem 4.13 For each partition k ` k > 1 and ` > 3, the functors Lv(k,1)(Σg,1), Lv(k,2)(Σg,1),
Lu,v(k,`)(Σg,1), Lv(k,`)(Σg,1), Lv(k,1)(Nh,1) Lv(k,2)(Nh,1), Lu,v(k,`)(Nh,1) and Lv(k,`)(Nh,1) are not strong
polynomial, but they are weak polynomial of degree 0. These results still hold after any (non-zero)
change of rings operation on the functors.

Proof. The proof is analogous to that of Theorem 4.5: Lemma 3.11 shows that δ1L?,v(k,`) is a direct
sum of infinitely many atomic functors with δ1L?,v(k,`)(n) non-trivial for all n > 1.

Remark 4.14 Similarly to Remark 4.6, the first step of the proof of Theorem 4.10 repeats mutatis
mutandis for the vertical-type alternatives, inducing a short exact sequence of functors defined on
βS analogous to (4.5) for each L?,v(k,`).

Fact 4.15 (Dual representation functors.) We recall from Corollary 2.10 and Remark 2.11 that,
for S := D or Σg,1 or Nh,1 with g, h > 1, the Bn(S)-representation H∂

k (Ck(Dn\S);Z[Q(k,`)(S)])
introduced in Notation 2.9 is the dual of the Bn(S)-representation HBM

k (Ck(Dn\S);Z[Q(k,`)(S)]).
Gathering these representations and assigning for each morphism [1, idn+1] ∈ 〈β,βS〉 the same map
as that for the vertical-type alternatives LB?,v

(k,`), L
?,v
(k,`)(Σg,1) and L?,v(k,`)(Nh,1), it is not difficult to

check (via the strategy of Lemma 1.2) that we define functors LB?,∂
(k,`), L

?,∂
(k,`)(Σg,1) and L?,∂(k,`)(Nh,1)

respectively of the form 〈β,βS〉 → Z[Q?(k,`)(S)]-Mod. Then the reasoning and non-polynomiality
results of Theorems 4.5 and 4.13 may be repeated verbatim for these functors.

Alternatively, for orientable surfaces, the functors f!LB
?,v
(k,`)⊗F(R) and f!L

?,v
(k,`)(Σg,1)⊗F(R)

encode these dual representations, by (2.13), and the non-polynomiality results are then given
by Theorems 4.5 and 4.13. Here, f! : Z[Q?(k,`)(S)]-Mod → R-Mod denotes any change of rings
operation such that R is an integral domain and the resulting local system over R is u-homogeneous
(see Definition 2.14) for u ∈ R× such that [i]u 6= 0 for all i > 1. For instance, the case of the
Lawrence-Bigelow functors is detailed in Example 2.17 for f! = id.
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4.3. For mapping class group functors
4.3.1. For the classical homological representation functors

In this section, we prove polynomiality properties for the functors L(k,1)(Γ), L(k,2)(Γ),1
L(k,`)(N ) and Lu(k,`)(N ) defined in §1.3.3 for any k ` k > 1 and ` > 1. The arguments being
analogous for orientable and non-orientable surfaces, we pool the key steps and common arguments
for these two cases. We use the standard notation L?(k,`) for all of the above functors,M for either
M+

2 orM−2 , S for either T or M and MCG(S\n) for either Γn,1 or N n,1.
We recall from Corollary 2.7 that, for each n ∈ N, the Z[Q(k,`)(S)]-module L?(k,`)(n) has a free

generating set over Z[Q(k,`)(S)] indexed by a certain set of tuples w = ([w1, w2], . . . , [w2n−1, w2n])
if S\n = Σn,1 and w = ([w1], . . . , [wn]) if S\n = Nn,1. It follows from these module structures that
κ1L

?
(k,`) = 0 and δ1L?(k,`)(n) is the free Z[Q(k,`)(S)]-module with generating set indexed the tuples

such that |w1|+ |w2| > 1 if S\n = Σn,1 respectively |w1| > 1 if S\n = Nn,1. For n > 1, we consider
the following Z[Q(k,`)(S)]-module morphisms.
• If L?(k,`) = L(k,1)(Γ) or L(k,2)(Γ): for each 1 6 j 6 r, we define two morphisms τ1L?(kj ,`)(n) ↪→
δ1L

?
(k,`)(n), given by mapping ([w1, w2], . . . , [w2n+1, w2n+2]) to ([jw1, 0], . . . , [w2n+1, w2n+2])

and ([0, jw2], . . . , [w2n+1, w2n+2]) respectively. Furthermore, for each pair of non-negative in-
tegers (j1, j2) such that 1 6 j1 6 j2 6 r, we define a morphism τ1L

?
(kj1,j2 ,`)

(n) ↪→ δ1L
?
(k,`)(n)

by mapping ([w1, w2], . . . , [w2n+1, w2n+2]) to ([jw1, jw2], . . . , [w2n+1, w2n+2]).
• If L?(k,`) = L(k,`)(N ) or Lu(k,`)(N ): for each 1 6 j 6 r, we define τ1L?(kj ,`)(n) ↪→ δ1L

?
(k,`)(n)

by assigning ([w1], . . . , [wn]) 7→ ([jw1], . . . , [wn]).
Finally, for n = 0, we set the above morphisms to be the trivial morphism. We denote by (i(k,`))n
the direct sum over 1 6 j 6 r of all the above morphisms associated to L?(k,`). To abbreviate,
let us denote by

⊕
k′ τ1L

?
(k′,`) the functor

⊕
16j16j26r

τ1L(kj1,j2 ,`)(Γ) ⊕
⊕

16j6r(τ1L(kj ,`)(Γ)⊕2)
when S\n = Σn,1 and the functor

⊕
16j6r τ1L

?
(kj ,`)(N ) when S\n = Nn,1. It follows from the free

generating sets described in Corollary 2.7 that, for each n ∈ N, the map (i(k,`))n is a Z[Q(k,`)(S)]-
module isomorphism

⊕
k′ τ1L

?
(k′,`)(n) ∼= δ1L

?
(k,`)(n). The key technical result (Theorem 4.16) in

this section states that this assembles into an isomorphism of functors on UM.
As one last preliminary piece of notation, we consider the canonical Z[Q(k,`)(S)]-module em-

bedding (∆′1L?(k,`))n : δ1L?(k,`)(n) ↪→ τ1L
?
(k,`)(n) defined by sending each generating tuple w to

itself. The second part of the statement of Theorem 4.16 is that these assemble into a functor that
provides a splitting of the (short) exact sequence (3.1).

Theorem 4.16 For each partition k ` k > 1 and integers ` > 1 and `′ 6 2, the exact sequence
(3.1) induces the following isomorphisms in the functor categories Fct(UM+

2 ,Z[Q(k,2)(T)]-Mod)
and Fct(UM−2 ,Z[Q(k,`)(M)]-Mod?) respectively:

τ1L(k,`′)(Γ) ∼= L(k,`′)(Γ)
⊕ ⊕

k′′∈{k−2}

τ1L(k′′,`′)(Γ)


⊕ ⊕

16j6r
τ1L(kj ,`′)(Γ)

⊕ ⊕
16j6r

τ1L(kj ,`′)(Γ)

 ,

(4.6)

τ1L
?
(k,`)(N ) ∼= L?(k,`)(N )

⊕ ⊕
16j6r

τ1L
?
(kj ,`)(N )

 , (4.7)

with ? ∈ { , u}. These isomorphisms still hold after any (non-zero) change of rings operation.

Proof. The strategy consists in showing that, in the category Fct(UM,Z[Q(k,`)(S)]-Mod), the
morphisms {(i(k,`))n}n∈N assemble into an isomorphism i(k,`) :

⊕
k′ τ1L

?
(k′,`)

∼→ δ1L
?
(k,`), while the

morphisms {(∆′1L?(k,`))n}n∈N define a section ∆′1L?(k,`) : δ1L?(k,`) → τ1L
?
(k,`) of ∆1L

?
(k,`).

1 We recall that L(k,2)(Γ) = L(k,`)(Γ) for ` > 3 and L(k,`′)(Γ) = Lu(k,`′)(Γ) for `′ 6 2; see §1.3.3 and Lemma 1.8.
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First, we prove the commutation of (i(k,`))n and (∆′1L?(k,`))n with respect to the action of
MCG(S\n). We recall that we introduce model graphs WΣ

g and WN
h in Notation 2.8, which are

illustrated in Figures 2.1c and 2.1d. Let us writeWS
n = WΣ

2n in the orientable setting andWS
n = WN

n

in the non-orientable setting. For each generator γ of MCG(S\n), the morphisms τ1L?(kj ,`)(γ),
τ1L

?
(k′′,`)(γ) and δ1L?(k,`)(γ) are induced by the action of id1\γ on the Borel-Moore homology classes

supported on the embedded graph WS
1+n ⊂ S\1+n. It follows from a disjoint support argument

(Lemma 3.13) that the action of the mapping class group MCG(S\n) does not affect the first two
(if S = T) or one (if S = M) entries of a tuple corresponding to a generator. We thus deduce that
(i(k,`))n and (∆′1L?(k,`))n commute with the action of γ, since they only affect the first two or one
entries of a tuple. Therefore, the isomorphisms {(i(k,`))n}n∈N and {(∆′1L?(k,`))n}n∈N define natural
isomorphisms i(k,`) and ∆′1L?(k,`) in Fct(M,Z[Q(k,`)(S)]-Mod).

We now prove that i(k,`) and ∆′1L?(k,`) are actually natural isomorphisms of functors UM→
Z[Q(k,`)(S)]-Mod by using the approach of Lemma 1.2. We fix an integer n > 1, the proof being
trivial for n = 0. We compute from (1.1) that τ1L?(k,`)([S, idS\1+n ]) = L?(k,`)(σ

−1
1 )◦L?(k,`)([S, idS\2+n ])

where σ1 ∈ AutM(S\S) is the braiding of M (see Figure 3.7). We recall from the description of
(3.3) that the morphism L?(k,`)([S, idS\2+n ]) is the map induced by the embedding of WS

1+n into
WS

2+n given by sending the i-th edge (S1−pt)i to the (i+2)-nd edge (S1−pt)i+2 (if S = T) or the
(i+1)-st edge (S1−pt)i+1 (if S = M). In particular, in the image of L?(k,`)([S, idS\2+n ]), there are no
configuration points on the two first edges (S1−pt)1 and (S1−pt)2 if S = T or on the first interval
(S1−pt)1 if S = M. Then the morphism L?(k,`)(σ

−1
1 ) corresponds to the action of σ−1

1 on WS
2+n. It

follows from equations (3.10) and (3.12) of Lemma 3.15 that for any generator w of
⊕

k′ τ1L
?
(k′,`)(n),

both δ1L?(k,`)([S, idS\1+n ])((i(k,`))n(w)) and (i(k,`))1+n(
⊕

k′ τ1L
?
(k′,`)([S, idS\1+n ])(w)) are equal to:{∑

16j1+j26r
([j1w1, j2w2], [0, 0], [w3, w4], . . . , [w2n+3, w2n+4]) if S = T;∑

16j6r([jw1], [0], [w2], . . . , [wn+2]) if S = M.

The same arguments using Lemma 3.15 also prove that τ1L?(k,`)([S, idS\1+n ])((∆′1L?(k,`))n(w′)) and
(∆′1L?(k,`))1+n(δ1L?(k,`)([S, idS\1+n ])(w′)) are both equal to:{

([w′1, w′2], [0, 0], [w′3, w′4], . . . , [w′2n+3, w
′
2n+4]) if S = T;

([w′1], [0], [w′2], . . . , [w′n+2]) if S = M;

for any generator w′ of δ1L?(k,`)(n). It then straightforwardly follows from the above equalities and a
clear induction on m > 1 that the collections of isomorphisms {(i(k,`))n}n∈N and {(∆′1L?(k,`))n}n∈N
commute with the action of [m, idS\m+n ] for each m > 1. Hence Relation (1.3) is satisfied for all
n ∈ N and we apply Lemma 1.2 for i(k,`) and ∆′1L?(k,`).

Thus i(k,`) is an isomorphism in Fct(UM,Z[Q(k,`)(S)]-Mod) between δ1L?(k,`) and
⊕

k′ τ1L
?
(k′,`).

Also, it follows from the definitions that (∆1L
?
(k,`))n ◦ (∆′1L?(k,`))n = idδ1L?

(k,`)(n), so ∆′1L?(k,`) is a
section of ∆1L

?
(k,`) in Fct(UM,Z[Q(k,`)(S)]-Mod). Since κ1L

?
(k,`) = 0 (because i1L?(k,`) is clearly

injective), we deduce that the exact sequence (3.1) is a split short exact sequence, which provides
the isomorphisms (4.6) and (4.7).

Whenever we deal with a twisted homological representation functor, we note that the ac-
tion on the ground ring Z[Q(k,`)(S)] does not affect any of the above reasoning, while L?(k,`) and⊕

16j6r τ1L
?
(kj ,`) are equipped with the same action as τ1L?(k,`) (via the change of rings operation

of Convention 3.7 for each summand of the latter; see Observation 1.11).
Finally, the result after a change of rings operation follows from the right-exactness of any

change of rings operation and Lemma 3.3.

Proof of Theorem D. Let 0 6 m 6 k. Using the commutation property of δ1 and τ1, we deduce
from Theorem 4.16 that τm1 L?(k,`)

∼= L?(k,`)⊕ δ
m
1 L?(k,`), where δm1 L?(k,`) is a direct sum of functors of

the form τm1 L?(k′,`) for k′ ∈ {k −m′} with m 6 m′ 6 2m in the orientable setting and m′ = m in
the non-orientable setting. In particular, δ1L?(1,`) is the constant functor at Z[Q(1,`)]. Hence L?(1,`)
is both split and weak polynomial of degree 1. Using the above properties of τm1 L?(k,`), δm1 L?(k,`)
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and κ1L
?
(k,`) = 0, along with the commutation property of κ1 and τ1, it then follows from a clear

induction on k that L?(k,`) is both split and weak polynomial of degree k.

4.3.2. Vertical-type alternatives

We now deal with the vertical-type alternatives of the homological representation functors for
the mapping class groups of surfaces introduced in §1.3.3. We consider the functors Lv(k,`′)(Γ) for
orientable surfaces and the functors Lv(k,`′)(N ) for non-orientable surfaces for `′ 6 2. In particular,
we do not consider the functors Lv(k,`)(N ) with ` > 3 for non-orientable surfaces because the proof
of Theorem 4.17 relies on some technical arguments of §3.3.3.2: these decisively use the specific
structure of the transformation groups Q(k,2)(T) and Q(k,2)(M), described in [PS23, Cor. 3.6],
whereas the groups Q(k,`)(M) are not known for ` > 3. We however conjecture that all of the
following arguments, and a fortiori the results of Theorem 4.17, also hold for the homological
representation functors Lv(k,`)(N ) with ` > 3.

We recall from Lemma 2.13 that, for each of these functors Lv(k,`′) and each n ∈ N, the
Z[Q(k,`′)]-module Lv(k,`′)(n) has a free generating set over Z[Q(k,`′)] indexed by the set of (“vertical”)
tuples of type ([w1, w2], . . . , [w2n−1, w2n])v in the orientable setting and ([w1], . . . , [wn])v in the non-
orientable setting. In particular, it has the same dimension as the corresponding (“non-vertical”)
module of §4.3.1. In contrast to the vertical-type alternatives of the homological representation
functors for classical braid groups in §4.1.2 and for surface braid groups in §4.2.2, these vertical-
type alternatives Lv(k,`′)(Γ) and Lv(k,`′)(N ) have the same polynomiality properties as their original
counterparts studied in §4.3.1:

Theorem 4.17 For each partition k ` k > 1, the exact sequence (3.1) induces the analogous
isomorphisms to (4.6) and (4.7) for the functors Lv(k,1)(Γ), Lv(k,2)(Γ), Lv(k,1)(N ) and Lv(k,2)(N ).
Therefore, these functors are split and weak polynomial of degree k. These results still hold after
any (non-zero) change of rings operation.

Proof. We fix ` ∈ {1, 2}. The analogous isomorphisms to (4.6) and (4.7) for the vertical-type alter-
natives follow mutatis mutandis from the proof of Theorem 4.16 by defining analogues {(iv(k,`))n}n∈N
and {(∆′1Lv(k,`))n}n∈N of the morphisms {(i(k,`))n}n∈N and {(∆′1L(k,`))n}n∈N. The proof that these
define natural transformations iv(k,`) and ∆′1Lv(k,`) in Fct(M,Z[Q(k,`)]-Mod) is a verbatim repeti-
tion of the first part of the proof of Theorem 4.16, again using Lemma 3.13. Then, the proof that
iv(k,`) and ∆′1Lv(k,`) are natural transformations in Fct(U(M)†,Z[Q(k,`)]-Mod) is the same as the
second part of the proof of Theorem 4.16, except that we now use equations (3.11) and (3.13)
of Lemma 3.15 to understand the action of the braiding. Finally, the proof of the polynomiality
result repeats mutatis mutandis that of Theorem D.

Remark 4.18 We could define the functors Lv(k,1)(Γ), Lv(k,2)(Γ), Lv(k,1)(N ) and Lv(k,2)(N ) as
objects of UM+

2 and UM−2 respectively (i.e. without the opposite convention for the braiding of
M2 induced by the † endofunctor; see §1.3.3); however, in this setting it is not clear that there
are isomorphisms analogous to (4.6) and (4.7). On the other hand, the polynomiality results still
hold with this opposite convention, via certain dimension reduction arguments on the objects of
the difference functors.

Fact 4.19 (Dual representation functors.) As in Fact 4.15, we note that, for either S = T or
S = M, the MCG(S\n)-representation H∂

k (Ck(S\n);Z[Q(k,`)(S)]) introduced in Notation 2.9 is
the dual of the MCG(S\n)-representation HBM

k (Ck(S\n);Z[Q(k,`)(S)]); see Corollary 2.10 and Re-
mark 2.11. Assigning for each morphism [S, idS\1+n ] ∈ UM the same map as for the vertical-type al-
ternatives, they extend to functors L?,∂(k,`)(Γ) and L?,∂(k,`)(N ) of the form U(M)† → Z[Q(k,`)(S)]-Mod
encoding the dual representations to those of L?(k,`)(Γ) and L?(k,`)(N ). The polynomiality results
of Theorem 4.17 may then be repeated verbatim for these functors.

5. Applications
We now explain the main applications of the polynomiality results proved in §4.
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5.1. Faithfulness results for classical braid group representations
The short exact sequences of (4.1) and (4.2) provide new connections between the different

Lawrence-Bigelow representations. Note that the natural transformation i1 : Id→ τ1 corresponds
to considering the Bn+1-representations LB(k,`)(1 + n) and LBu

(k,`)(1 + n) as Bn-representations
via the injection Bn ↪→ Bn+1 defined by σi 7→ σi+1 for 1 6 i 6 n− 1. Recall from [Big02, §4] that
the Bn-representation LB(2,2)(n) is faithful for each n (see also [Big01; Kra02]), from which we
may now deduce Theorem G:

Proof of Theorem G. In [PS21, §5.2.1.2], we deduce from the faithfulness of the Bn-representation
LB(2,2)(n) that the representation LB(2,`)(n) is faithful for each ` > 3, and so is LBu

(2,`)(n) by
repeating verbatim the same reasoning. Thus τ1LB(2,`)(n) and τ1LBu

(2,`)(n) are faithful as Bn+1-
representations, so in particular they are faithful as Bn-representations. Then, we deduce the
faithfulness of the Bn-representations τ1LB(k,`)(n) and τ1LBu

(k,`)(n) by identifying τ1LB(2,`)(n)
and τ1LBu

(2,`)(n) as their quotients thanks to (4.1) and (4.2).

5.2. Analyticity of a quantum representation
Jackson and Kerler [JK11] introduce a representation V over the group ring L := Z[s±1, q±1],

called the generic Verma module, of Uq(sl2), the quantum enveloping algebra of the Lie algebra
sl2. Since Uq(sl2) is a quasitriangular Hopf algebra, the representation V comes equipped with
an automorphism S ∈ AutL(V ⊗ V). This induces a Bn-representation on V⊗n given by sending
σi ∈ Bn to idi−1 ⊗ S ⊗ idn−i−1, which we call the Verma quantum representation; see [JK11, §1].
For k > 1, the weight space Vn,k ⊆ V⊗n is the eigenspace of the action of a certain generator
K ∈ Uq(sl2) corresponding to the eigenvalue snq−2k and the highest weight space Wn,k is its
intersection with the kernel of the action of another generator E ∈ Uq(sl2). The Bn-action on
V⊗n restricts to sub-Bn-representations on Vn,k and Wn,k for each k > 1. The first one is the
quantum representation of Bn of weight k, while the second one is the quantum representation
of Bn of highest weight k. The relation between the variables s and q and the generators q
and t of Q(2,2)(D) = Z2 (defining the representation LB(2,2)(n)) is given by the ring morphism
θ : K := Z[q±1, t±1]→ L defined by (q, t) 7→ (s2,−q−2).2 In particular, L is a left K-module via θ;
the change of rings operation − ⊗K L corresponds to adjoining square roots of q and t. For each
n and k > 1, we have:

Lemma 5.1 There is an isomorphism of Bn-representations Vn,k ∼= τ1LBk(n)⊗K L.

Proof. Let D′n denote the closed disc minus n interior points and minus a point on its boundary.
To obtain an alternative description of τ1LBk(n), the construction of [PS21, §2] may be applied
using the space of configurations of k unordered points in D′n: we thus obtain a Z[Z2]-module
HBM
k (Ck(D′n);Z[Z2]), which is a Bn-representation; see [PS21, §2.4]. Gluing D′0 to D′n so that

the two boundary punctures coincide induces an embedding D′n ↪→ D1+n, which in turn induces
an embedding Ck(D′n) ↪→ Ck(D1+n). This latter embedding defines a (covariant) map on Borel-
Moore homology since its image is closed, thus it is a proper map, and Borel-Moore homology is
covariantly functorial with respect to proper maps [Bre97, Proposition V.4.5]. We also note that
the local coefficient system that we define on Ck(D′n) is the restriction of the one that we consider
on Ck(D1+n). Therefore there is a well-defined map

HBM
k (Ck(D′n);Z[Z2]) −→ τ1LBk(n) (5.1)

of Bn-representations over Z[Z2] = K. The fact that this map is an isomorphism follows from the
evident bijection that it induces on the free bases as K-modules obtained from Lemma 2.1.

We now consider the subspace C−k (Dn) ⊂ Ck(Dn) of all configurations that intersect a partic-
ular fixed point on the boundary. Martel [Mar22, §2] introduces the Bn-representation given by

2 We note that [JK11] and [Mar22] use slightly different notations from those used here, where we have been
consistent with the usual notations for the variables q and t of the homological representations [Big01; Big02]. In
[JK11], the variables q, t, s, q are denoted q, t, s, q respectively. In [Mar22], instead of the variables q, t, s, q related
by q = s2 and t = −q−2, the author has variables t, t, s, q related by t = −t = −q−2 and the variable s is also
sometimes denoted by qα. In particular one should not confuse the t of [JK11] (which corresponds to t in [Mar22])
with the t of [Mar22] (which corresponds to −t in [JK11]).
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the K-module HBM
k (Ck(Dn), C−k (Dn);K). Since Ck(D′n) is an open subspace of Ck(Dn) with closed

complement C−k (Dn), the inclusion (Ck(D′n),∅) ↪→ (Ck(Dn), C−k (Dn)) is an open embedding. Rel-
ative Borel-Moore homology is contravariantly functorial with respect to open embeddings (since it
is the composition of reduced homology with the contravariant functor from locally-compact, Haus-
dorff spaces and open embeddings to based spaces and maps given by one-point compactification),
so we have a map

HBM
k (Ck(Dn), C−k (Dn);K) −→ HBM

k (Ck(D′n);K). (5.2)

This is a map of Bn-representations over K since the Bn-action (up to homotopy) on Ck(Dn)
preserves its partition into C−k (Dn) and Ck(D′n). The fact that this map is an isomorphism follows
from the evident bijection that it induces on the free bases as K-modules obtained from Lemma 2.1
for the right-hand side and [Mar22, Prop. 3.6] for the left-hand side (see also [Mar22, Cor. 3.9]).3

Now, [Mar22, Th. 1.5] provides an isomorphism

Vk,n ∼= HBM
k (Ck(Dn), C−k (Dn);Z[Z2])⊗K L (5.3)

of Bn-representations over L. The desired isomorphism of the lemma is then the composition of
(5.1), (5.2) and (5.3) (tensoring the first two isomorphisms over K with L).

Corollary 5.2 For each n > 2, there is an isomorphism of Bn-representations over L

V⊗n ∼=
⊕
k>0

τ1LBk(n)⊗K L. (5.4)

We may therefore define the Verma module representation functor Ver : Uβ → L-Mod to be
the colimit

⊕
k>0 τ1LBk⊗KL. This functor Ver is analytic, i.e. it is a colimit of polynomial func-

tors, and exponential, i.e. it is a strong monoidal functor (Uβ, \, 0)→ (L-Mod,⊗,L). However,
the functor Ver is not polynomial.

Proof. The isomorphisms (5.4) follow directly from Lemma 5.1 and the decomposition of the Verma
module representations into weight spaces. The analyticity of the functor Ver follows from its
definition and Theorem 4.2, from which we also deduce that δm1 Ver ∼=

⊕
k>0 τ

m+1
1 LBk ⊗K L for

all m > 1. Hence there is a natural embedding Ver ↪−→ δm1 Ver for all m > 1, which proves that
the functor Ver is not polynomial. That it is an exponential functor straightforwardly follows from
the isomorphism Ver(n) ∼= V⊗n.

Remark 5.3 Analogous arguments to those of Corollary 5.2 may be repeated verbatim for functors
for the mapping class groups of surfaces extending the Magnus representations (see for instance
[Sak12, §4] for the definition of this representation) or the representations induced by actions on
discrete Heisenberg groups introduced by [BPS21].

5.3. Homological stability
Another key application of the polynomiality results of §4 is homological stability. Namely,

fixing a strict monoidal groupoid (G, \, 0), an object X of G, a left-module (M, \) and an object A
of M, we denote by 〈G,M〉X,A the full subcategory of 〈G,M〉 with objects {X\n\A}n∈N and by
Gn the automorphism group Aut〈G,M〉(X\n\A) for all n ∈ N. The family of groups {Gn}n∈N is
said to satisfy homological stability (with twisted coefficients) if for any strong polynomial functor
F : 〈G,M〉X,A → Z-Mod of degree d for which there exists NF ∈ N such that κX\n(δiXF ) = 0 for
all i ∈ N and n > NF − i,4 the natural maps

H∗(Gn, F (X\n\A)) −→ H∗(G1+n, F (X\1+n\A))
3 In fact there is a natural isomorphism HBM

∗ (X,X r U ;L) ∼= HBM
∗ (U ;L) for any open inclusion U ⊂ X if

X is Hausdorff, locally compact and paracompact, and if the local system L is finitely generated over a principal
ideal domain. This follows from [Bre97, Corollary V.5.10, page 312] (see the note mdp.ac/notes/2301-relative-Borel-
Moore-homology.pdf for details on how to deduce this special case of that much more general result). Although
this is a more conceptual reason for the isomorphism (5.2), it does not apply directly in our setting, since K is not
a principal ideal domain. The explicit free generating sets for each side of (5.2) allow us to avoid this subtlety by
simply checking directly that it is a bijection.

4 The functor F is then said to be a coefficient system of degree d at NF .
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are isomorphisms for all n > B(∗, d,NF ), where B(∗, d,NF ) ∈ N depends on ∗ and d. The lower
d and NF are, the lower (and so the better) the stability bound B(∗, d,NF ) is. If F is in addition
split polynomial, the stability bound B(∗, d,NF ) is even lower.

Homological stability with constant coefficients for the classical braid groups is due to Arnold
[Arn70] (see also [Seg73]), and to McDuff [McD75] and Segal [Seg79] for braid groups on connected,
open surfaces. For a certain more restrictive family of twisted coefficients, homological stability is
proven by the first author [Pal18]. For general (strong polynomial) twisted coefficients, homological
stability is proven by Randal-Williams and Wahl [RW17, Th. 5.22]. For the mapping class groups of
orientable surfaces {Γg,1}g∈N, the first homological stability properties are due to Harer [Har85] (for
constant coefficients and some particular twisted coefficients), while the first general framework and
results for (strong polynomial) twisted coefficients are due to Ivanov [Iva93]. The stability bound
B(∗, d,NF ) is improved by Boldsen [Bol12] (both for constant and twisted coefficients) and by
Randal-Williams [Ran16] (for constant coefficients). Randal-Williams and Wahl [RW17, Th. 5.26]
extract the general framework for proving homological stability properties (both for constant and
twisted coefficients) for this family of groups, subsuming these previous results. For the mapping
class groups of non-orientable surfaces {N h,1}h∈N, homological stability with constant coefficients
is proved in [Wah08, Th. A] (with improvements to the range in [Ran16, §1.4]) and the general
case of (strong polynomial) twisted coefficients is covered by [RW17, Th. 5.29].

Proof of Theorem E. This is an immediate corollary of Theorems B, C and D, which state that a
large family of homological representation functors are very strong or split polynomial, applied to
[RW17, Th. A] (see also [RW17, Th. 4.20] for the improvement to the range when the functors are
split polynomial).

5.4. Classification
A fundamental reason for the notion of weak polynomial functors to be introduced in [DV19] is

that, contrary to the category Polstrd (〈G,M〉,A), the category Pold(〈G,M〉,A) is localising. This
allows us to define the quotient categories for all d ∈ N:

Pold+1(〈G,M〉,A)/Pold(〈G,M〉,A). (5.5)

A refined description of the category Polstrd (〈G,M〉,A) is out of reach in general even for small
values of d. In contrast, understanding the quotient categories (5.5) is more attainable: for ex-
ample, when G = M = FB (the category of finite sets and bijections) [DV19, Prop. 5.9] gives a
general equivalence of these quotients in terms of module categories. Also, these quotient categories
shed new light on the behaviour of the successive homological representation functors, thanks to
Theorem F, which we may now prove:

Proof of Theorem F. First, each functor Pd+1 : (5.5)d+1 → (5.5)d is canonically induced from the
difference functors δ1 : Pold+1(〈G,M〉,A) → Pold(〈G,M〉,A). We know from Theorems 4.2, 4.10
and 4.16 that each of the functors L(k,`) under consideration is weak polynomial of degree k.
These results, combined with the short exact sequences of Theorems 4.2 and 4.10 (for the surface
braid groups) and from the isomorphisms of Theorems 4.16 and 4.17 (for mapping class groups of
surfaces), we deduce that L(k,`) ∼= τ1L(k,`) in the quotient categories.
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