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Abstract
We study a wide range of homologically-defined representations of surface braid groups

and of mapping class groups of surfaces, including the Lawrence-Bigelow representations of
the classical braid groups. These representations naturally come in families, defining homo-
logical representation functors on categories associated to surface braid groups or all mapping
class groups. We prove that many of these homological representation functors are polynomial.
This has applications to twisted homological stability and to understanding the structure of
the representation theory of the associated families of groups. Our polynomiality results are
consequences of more fundamental results establishing relations amongst the coherent repre-
sentations that we consider via short exact sequences of functors. As well as polynomiality,
these short exact sequences also have applications to understanding the kernels of the homo-
logical representations under consideration.

Introduction
The representation theory of surface braid groups and of mapping class groups has been the

subject of intensive study for several decades, and continues to be so; see for example the survey
of Birman and Brendle [BB05, §4] or the expository article of Margalit [Mar19]. These groups
naturally come in families – we will consider the following ones, where all surfaces are assumed
connected, compact and with one boundary component: the family of surface braid groups Bn(S)
for each fixed surface S (in particular the classical braid groups Bn when S is the 2-disc D), as well
as the two families Γg,1 and N h,1 of the mapping class groups of orientable and non-orientable
surfaces respectively.

Homological representation functors. One way to make the representation theory of these
groups more tractable is to study coherent representations of each family of groups. Here, coherent
representation means a collection of one representation of each group in the family so that the whole
collection of representations is compatible, in a certain sense, with the natural homomorphisms
between the groups. This structure is encoded by a functor ⟨G,M⟩ → R-Mod, where ⟨G,M⟩ is a
certain category whose automorphism groups are the family of groups in question. The categories
⟨G,M⟩ associated to the families of surface braid groups and mapping class groups of surfaces
are described in §1.1. In particular, the objects of ⟨G,M⟩ are always indexed by non-negative
integers n, whose automorphism group is either Bn(S), Γn,1 or N n,1, depending on the context.
For instance, for the classical braid groups Bn, we take G = M = β where β is the braid groupoid.

The coherent representations of surface braid groups and of mapping class groups that we
study in this paper are constructed systematically from natural actions on the homology of con-
figuration spaces on the underlying surface, with coefficients twisted by certain local systems on
these configuration spaces. Special cases of this construction recover, for example, the Lawrence-
Bigelow representations of the classical braid groups [Law90; Big04] (Example 1.15), the An-Ko
representations of surface braid groups [AK10] (Example 1.17) and the Moriyama representations
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of mapping class groups [Mor07] (Example 1.20). In general, our construction depends on a choice
of an ordered partition λ of a positive integer k (see the definition below), corresponding to the
number and partition of points in the configuration space, together with a positive integer ℓ, cor-
responding to the depth of an associated lower central series quotient that determines the local
system. This produces a functor

L(λ,ℓ) : ⟨G,M⟩ −→ R-Mod, (0.1)

called a homological representation functor. This construction (together with some variants) is
described in §1.2–§1.3, where we also explain how it fits into the larger framework of [PS24b]; we
refer the reader there for a full introduction to this notion and we focus on presenting our results
about these functors in the rest of the introduction. We mention for the sake of accuracy that the
target category of (0.1) must in general be enlarged to the category R-Modtw of twisted R-modules:
this has the same objects as R-Mod but morphisms are permitted to act on the underlying ring
R as well as on the modules; see §1.2.2. We will elide this subtlety in the introduction, although
we are careful in the rest of the paper about when the target is R-Modtw and when we may
restrict to R-Mod. (One may always compose with the functor R-Modtw → Z-Mod that forgets
module structures to avoid this twisting.) Homological representation functors have already proved
themselves of key use for the questions of the linearity of groups (see Example 1.15) and form a
natural pathway for the construction of families of irreducible representations (see the forthcoming
work [PS]). This paper aims to establish polynomiality properties (see §4.1 for an introduction to
these notions) for these functors.

When we are not working in a specific setting, we denote the homological representation
functors that we construct by L(λ,ℓ), as in (0.1) above. When we are working in the setting of
surface braid groups on a fixed surface S, we write L(λ,ℓ) = L(λ,ℓ)(S). In the special case of
classical braid groups (S = D) we also write L(λ,ℓ)(D) = LB(λ,ℓ), since they extend the Lawrence-
Bigelow representations. In the setting of mapping class groups of orientable surfaces, we write
L(λ,ℓ) = L(λ,ℓ)(Γ); in the setting of mapping class groups of non-orientable surfaces, we write
L(λ,ℓ) = L(λ,ℓ)(N ).

Short exact sequences of functors. Our main result proves the existence of fundamental
short exact sequences relating different homological representation functors; see Theorem A. Our
polynomiality results, as well as results establishing other properties of these representations, are
corollaries of these.

The short exact sequences depend on a “translation” operation τ1 defined on functors (0.1),
which is defined precisely in §3.1.1. Also, for k ⩾ 1 a positive integer, we recall that an ordered
partition λ ⊢ k is an ordered r-tuple λ = (λ1, . . . , λr) of integers λi ⩾ 1 (for some r ⩾ 1 called the
length of λ) such that k =

∑
1⩽i⩽r λi. (Note that we do not impose the condition that λi ⩾ λi+1.)

Also, for a fixed λ ⊢ k, we write λ[j] for the tuple obtained by subtracting 1 from the jth term
(and removing the jth term entirely, if it is now zero); see also Notation 3.2. Our main result is
the following.

Theorem A (Theorems 3.17, 3.24 and 3.35) For any positive integer k ⩾ 2, any ordered partition
λ = (λ1, . . . , λr) ⊢ k and any positive integer ℓ ⩾ 1, there is a short exact sequence

0 LB(λ,ℓ) τ1LB(λ,ℓ)
⊕

1⩽j⩽r

τ1LB(λ[j],ℓ) 0 (0.2)

of functors ⟨β,β⟩ → R-Mod. There are analogous short exact sequences of functors in the settings
of surface braid groups – see (3.17) – and mapping class groups of surfaces – see (3.26) and (3.27).
In the last case, these short exact sequences are moreover split.

Polynomiality. Our first corollary of Theorem A, and its analogues for surface braid groups and
mapping class groups of surfaces, is that many of the functors (0.1) are polynomial in the senses
recalled precisely in §4.1.

Corollary B Fix a positive integer k ⩾ 1, an ordered partition λ ⊢ k and a positive integer ℓ ⩾ 1.
In the setting of the classical braid groups:
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• The functor LB((1),ℓ) is strong polynomial of degree 2 and weak polynomial of degree 1.
• For k ⩾ 2, the functor LB(λ,ℓ) is both very strong and weak polynomial of degree k.

In the setting of surface braid groups on S = Σg,1 or Nh,1 for g, h ⩾ 1:
• The functor L(λ,ℓ)(S) is weak polynomial of degree k and strong polynomial of degree k or
k + 1.

In the setting of mapping class groups of surfaces:
• The functors L(λ,ℓ)(Γ) and L(λ,ℓ)(N ) are both split and weak polynomial of degree k.

The indeterminacy between k and k + 1 for the strong polynomial degree of the functor
L(λ,ℓ)(S) is a side effect of the interactions between the Bn(S)-representations for n ⩽ 2 encoded
by this functor; see Remark 4.10. In each setting, we also define an alternative version of each of
the functors L(λ,ℓ), which we call its “vertical-type alternative” functor, denoted by Lv

(λ,ℓ). (This
terminology refers to the shape of the homology cycles representing a basis for the underlying
modules of these alternative representations; see Figure 2.3.) In general, these functors have very
different polynomiality behaviour:

Theorem C Fix a positive integer k ⩾ 1, an ordered partition λ ⊢ k and a positive integer ℓ ⩾ 1.
In the setting of the classical braid groups:

• The functor LBv
(λ,ℓ) is not strong polynomial, but it is weak polynomial of degree 0.

In the setting of surface braid groups on S = Σg,1 or Nh,1 for g, h ⩾ 1:
• The functor Lv

(λ,ℓ)(S) is not strong polynomial, but it is weak polynomial of degree 0.
In the setting of mapping class groups of surfaces:

• For ℓ ∈ {1, 2}, the functors Lv
(λ,ℓ)(Γ) and Lv

(λ,ℓ)(N ) are both split and weak polynomial of
degree k.

Corollary B and Theorem C are proven in §4.2 for the classical braid groups and surface
braid groups and in §4.3 for mapping class groups of surfaces. Closely related to the functors
Lv

(λ,ℓ) are certain other functors L∨
(λ,ℓ), which are defined on automorphisms by the duals of the

representations corresponding to the effect of L(λ,ℓ) on automorphisms; see §2.3. The statement of
Theorem C also holds for these functors, as we prove in Theorems 4.14 and 4.15.

Applications of polynomiality. Corollary B and Theorem C have immediate consequences for
twisted homological stability of surface braid groups and mapping class groups of orientable or non-
orientable surfaces. More precisely, it follows from the work of Randal-Williams and Wahl [RW17,
Theorems D, I, 5.23, 5.26, 5.29] (see Theorem 4.2) that twisted homological stability holds in each
of these settings with coefficients in each functor that is proven in Corollary B or Theorem C to
be strong, very strong or split polynomial; see Corollaries 4.9 and 4.16.

Furthermore, functors of the form ⟨G,M⟩ → R-Mod that are weak polynomial of degree at
most d form a category Pold(⟨G,M⟩) that is localising as a subcategory of Pold+1(⟨G,M⟩) in the
sense of [Gab62, Chapitre III, §1]; see Proposition 4.7. This allows one to define a sequence of
quotient categories

· · · Pold(⟨G,M⟩)/Pold−1(⟨G,M⟩) Pold+1(⟨G,M⟩)/Pold(⟨G,M⟩) · · ·δ1(d) δ1(d+1) δ1(d+2) (0.3)

where each functor δ1(i) is induced by the difference functor defined in §3.1.1. It then follows from
Corollary B that:

Corollary D Fix a positive integer k ⩾ 1, an ordered partition λ = (λ1, . . . , λr) ⊢ k and a positive
integer ℓ ⩾ 1. The (λ, ℓ)-Lawrence-Bigelow functor LB(λ,ℓ) is a non-trivial element of

Polk(⟨β,β⟩)/Polk−1(⟨β,β⟩).

Moreover, for each i ∈ {1, . . . , r}, the functor LB(λ[i],ℓ) is a direct summand of δ1(k)(LB(λ,ℓ)).
Similar results hold for the other functors of Corollary B, which encode representations of Bn(S),
Γg,1 and N h,1.

The notion of polynomiality thus provides a precise organising tool for coherent representations
of these families of groups.
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Faithfulness. A second application of the short exact sequence (0.2) of Theorem A is to deduce
the faithfulness of certain homological representations of the classical braid groups:
Corollary E For any ℓ ⩾ 2 and any ordered partition λ = (λ1, . . . , λr) ⊢ k where λi ⩾ 2 for at
least one i ∈ {1, . . . , r}, the Bn-representation LB(λ,ℓ)(n + 1) is faithful.

More precisely, the short exact sequence (0.2) of Theorem A implies the existence of inclu-
sions between the kernels of different homological representations of the braid groups; see Propo-
sition 3.19. Combining this with the celebrated result of Bigelow [Big01] and Krammer [Kra02] on
the faithfulness of certain homological representations of the braid groups, we deduce Corollary E,
which tells us that many other homological representations of the braid groups are also faithful.

Analyticity. As a final application, we prove analyticity (and non-polynomiality) of a functor
encoding certain quantum representations of the braid groups.

There is a representation V of Uq(sl2), the quantum enveloping algebra of the Lie algebra sl2,
defined over the ring L := Z[s±1, q±1], introduced by Jackson and Kerler [JK11] and called the
generic Verma module. The structure of Uq(sl2) as a quasitriangular Hopf algebra induces a Bn-
representation on its nth tensor power V⊗n, which we call the nth Verma module representation.
Corollary F (Corollary 4.18) There is a functor Ver : ⟨β,β⟩ → L-Mod whose restriction to the
automorphism group of the object n of ⟨β,β⟩ is the nth Verma module representation. Moreover,
this functor is analytic, i.e. a colimit of polynomial functors, but it is not polynomial.
Remark 0.1 Theorem C and Corollary F illustrate that polynomiality is not an “automatic”
property of coherent representations, even in cases (such as the first two points of Theorem C)
where the dimensions of the underlying modules of the representations grow polynomially with n.
See also Remark 4.19 for more examples of non-polynomial homological representation functors.

Module structure. Finally, a key tool to prove Theorem A is an explicit computation (see
Theorem G below) of the underlying module structures of the homological representation functors.
Let S be a compact, connected surface with one boundary component and let A ⊂ S be either a
finite subset of its interior or one point on its boundary. For an ordered partition λ = (λ1, . . . , λr) ⊢
k, we consider the λ-partitioned configuration space

Cλ(S ∖A) = {(x1, . . . , xk) ∈ (S ∖A)k | xi ̸= xj for i ̸= j}/Sλ,

where Sλ := Sλ1 × · · · ×Sλr
⊆ Sk. Let L be a local system on Cλ(S ∖A), defined over a ring R,

and denote its fibre by V . The underlying modules of all of our representations are given by the
twisted Borel-Moore homology modules HBM

k (Cλ(S ∖A); L).
Theorem G (Proposition 2.6) The twisted Borel-Moore homology HBM

∗ (Cλ(S ∖ A); L) is trivial
except in degree k. There is an isomorphism of R-modules

HBM
k (Cλ(S ∖A); L) ∼=

⊕
w

V, (0.4)

where the direct sum on the right-hand side is indexed by the following combinatorial data. Let Γ be
an embedded graph in S with set of vertices A, such that S deformation retracts onto Γ relative to
A; see Figure 2.1 for illustrations. There is then one copy of V in the direct sum for each function
w assigning to each edge of Γ a word in the alphabet {1, . . . , r} so that each letter i ∈ {1, . . . , r}
appears precisely λi times as w runs over all edges of Γ.

In each of our examples, L will be a rank-1 local system, i.e. V ∼= R, so Theorem G says that
HBM

k (Cλ(S ∖A); L) is a free R-module, with a free generating set given by the set of functions w
described above. We note that, in the special case when λ = (k), the direct sum in (0.4) is indexed
by functions w assigning non-negative integers to each edge of Γ that sum to k.
Remark 0.2 We refer the reader to [Bre97, Chap. V] for a detailed introduction to Borel-Moore
homology. The principal reason why we work with Borel-Moore homology instead of ordinary
homology is the structural result of Theorem G. In contrast, the ordinary (co)homology of con-
figuration spaces on surfaces is in general much more complicated, and the few cases in which
the computations are known lead to representations that are much harder to work with; see for
instance [Sta23, Th. 1.4].
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Outline. In §1, we explain the categorical framework for the families of groups that we work
with (§1.1), construct the functors (0.1) in this framework (§1.2) and then discuss this construction
in more detail (§1.3) in each of our three settings: classical braid groups, surface braid groups and
mapping class groups of surfaces. In §2, we study the underlying module structure of these repre-
sentations, proving Theorem G. In §3 we then construct the short exact sequences of Theorem A,
recalling first the necessary background on translation, difference and evanescence operations on
functors (§3.1), and also prove Corollary E. Finally, in §4 we prove our results on polynomiality
(Corollary B and Theorem C) and analyticity (Corollary F).

General notation. We denote by N the set of non-negative integers. For a small category C, we
use the abbreviation ob(C) to denote the set of objects of C. For D any category and C a small cate-
gory, we denote by Fct(C,D) the category of functors from C to D. ForX a manifold with boundary,
X̊ denotes its interior. For an ordered partition λ = (λ1, . . . , λr) ⊢ k and a topological space Y ,
we denote by Cλ(Y ) the λ-configuration space

{
(x1, . . . , xk) ∈ Y ×k | xi ̸= xj if i ̸= j

}
/Sλ, with

Sλ := Sλ1 × · · · × Sλr
, where Sn denotes the symmetric group on a set of n elements. Fur-

thermore, the λ-partitioned braid group Bλ1,...,λr
(Y ) on k strings on Y is the fundamental group

π1(Cλ(Y ), c0), where c0 ∈ Cλ(Y ) is a fixed λ-partitioned configuration.
For R a non-zero unital ring, we denote by R-Mod the category of left R-modules. For an

R-module M , we denote by AutR(M) the group of R-module automorphisms of M . When R = Z,
we omit it from the notation as long as there is no ambiguity. The lower central series of a group G
is the descending chain of subgroups {Γℓ(G)}ℓ⩾1 defined by Γ1(G) := G and Γℓ+1(G) := [G,Γℓ(G)],
the subgroup of G generated by the commutators [g, h] for g ∈ G and h ∈ Γℓ(G). For the sake of
simplicity, each quotient G/Γℓ(G) is denoted by G/Γℓ.
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1. Background
This section recollects the construction of homological representation functors introduced in

[PS24b]; see §1.2. We first recall the underlying categorical framework in §1.1 and then detail in
§1.3 the outputs of the construction of [PS24b, §2–§3] for the families of groups studied in this
paper.

1.1. Categorical framework for families of groups
We introduce here the categorical framework that is central to this paper to deal with families

of groups.

Preliminaries on categorical tools. We refer to [Mac98] for a complete introduction to the
notions of strict monoidal categories and modules over them. We generically denote a strict
monoidal category by (C, ♮, 0), where C is a category, ♮ is the monoidal product and 0 is the
monoidal unit. If it is braided, then its braiding is denoted by bC

A,B : A♮B ∼→ B♮A for all objects A
and B of C. A left-module (M, ♯) over a (strict) monoidal category (C, ♮, 0) is a category M with a
functor ♯ : C ×M → M that is unital and associative. For instance, a monoidal category (C, ♮, 0) is
equipped with a (strict) left-module structure over itself, induced by its monoidal product. Each
left-module structure ♯ in this paper is defined from some underlying monoidal structure ♮ (see
§1.1.2), so we abuse notation by using the same symbol ♮ for ♯.

Considering the category of (small skeletal strict) braided monoidal groupoids BrG, there
is always an arbitrary binary choice for the convention of the braiding. We may pass from one
to the other by the following inversion of the braiding operator. Let (−)† : BrG → BrG be the
endofunctor defined on each object (G, ♮, 0) by (G, ♮, 0)† = (G, ♮, 0) as a monoidal groupoid but
whose braiding is defined by the inverse of that of (G, ♮, 0), i.e. bG†

A,B := (bG
B,A)−1.

1.1.1. The Quillen bracket construction

In this section, we describe a useful categorical construction to encode families of groups:
the bracket construction due to Quillen, which is a particular case of a more general construction
described in [Gra76, p.219]; see also [RW17, §1]. A reader familiar with [RW17] may skip this
subsection.

Throughout §1, we fix an object (G, ♮, 0) of BrG and a (small, strict) left-module (M, ♮) over
G. The Quillen bracket construction ⟨G,M⟩ on the left-module (M, ♮) over the groupoid (G, ♮, 0)
is the category with the same objects as M and whose morphisms are given by:

Hom⟨G,M⟩(A,B) = colim
G

[HomM(−♮A,B)].

Thus, a morphism from A to B in ⟨G,M⟩ is an equivalence class of pairs (X,φ), denoted by
[X,φ] : A → B, with X an object of G and φ : X♮A → B a morphism in M, and where [X,φ] ∼
[X ′, φ′] if X = X ′ and there exists χ ∈ AutG(X) such that φ′ ◦ (χ♮idA) = φ. Also, for two
morphisms [X,φ] : A → B and [Y, ψ] : B → C in ⟨G,M⟩, the composition is defined by

[Y, ψ] ◦ [X,φ] = [Y ♮X,ψ ◦ (idY ♮φ)]. (1.1)

There is a canonical faithful functor M ↪→ ⟨G,M⟩ defined as the identity on objects and sending
f ∈ HomM(A,B) to [0, f ]. From now on, we assume that M is a groupoid, that (G, ♮, 0) has no zero
divisors – i.e. X♮Y ∼= 0 if and only if X ∼= Y ∼= 0 for X,Y ∈ Obj(G) – and that AutG(0) = {id0}.
These properties are satisfied in each setting that we consider in this paper; see §1.1.2. Then M is
the maximal subgroupoid of ⟨G,M⟩ and, when considering elements of Hom⟨G,M⟩(A,A), we abuse
notation and write f for [0, f ] for each A ∈ Obj(M) and f ∈ AutM(A); see [RW17, Prop. 1.7].
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Module structure over G. The following discussion is a direct generalisation of [RW17, Prop. 1.8]
to which we refer for further details. The category ⟨G,M⟩ inherits a (strict) left-module structure
over (G, ♮, 0) as follows. The module bifunctor ♮ extends to ⟨G,M⟩ with the same assignment on
objects, by letting, for φ ∈ AutG(X) and [Y, ψ] ∈ Hom⟨G,M⟩(B,C):

φ♮[Y, ψ] = [Y, (φ♮ψ) ◦ ((bG
X,Y )−1♮idB)]. (1.2)

Extensions along the Quillen bracket construction. Note that precomposing by the canon-
ical inclusion M ↪→ ⟨G,M⟩ induces the restriction functor Fct(⟨G,M⟩, C) → Fct(M, C). The fol-
lowing result provides a way to extend a functor out of the category M to a functor with ⟨G,M⟩
as source category. Its proof repeats mutatis mutandis that of [Sou22, Lem. 1.2].

Lemma 1.1 Let C be a category and F an object of Fct(M, C). Assume that, for each X ∈ Obj(G)
and A ∈ Obj(M), there exists a morphism αX,A : F (A) → F (X♮A) such that αY,X♮A ◦ αX,A =
αY ♮X,A for all Y ∈ Obj(G) and α0,A = idF (A). Then the assignments F ([X,φ]) = F (φ) ◦ αX,A to
all morphisms [X,φ] : A → B of ⟨G,M⟩ extend the functor F : M → C to a functor F : ⟨G,M⟩ → C
if and only if for all X ∈ Obj(G) and A ∈ Obj(M), and for all φ′ ∈ AutG(X) and φ′′ ∈ AutM(A),
the following relation holds:

F (φ′♮φ′′) ◦ αX,A = αX,A ◦ F (φ′′). (1.3)

Similarly, we may extend a morphism in Fct(M, C) to a morphism in Fct(⟨G,M⟩, C) thanks
to the following result, whose proof repeats verbatim that of [Sou19, Lem. 1.12].

Lemma 1.2 Let C be a category, F and G objects of Fct(⟨G,M⟩, C) and η : F → G a natural
transformation in Fct(M, C). Then η is a natural transformation in the category Fct(⟨G,M⟩, C)
if and only if for all A,B ∈ Ob(M) such that B ∼= X♮A with X ∈ Ob(G):

ηB ◦ F ([X, idB ]) = G([X, idB ]) ◦ ηA. (1.4)

1.1.2. Categories for surface braid groups and mapping class groups

We now describe the categories associated to the families of groups that we study. For our
purposes, we shall construct each of our skeletal categories synthetically, rather than distilling
them from some more natural, larger categories. This will allow us to get a more concrete handle
on them for direct calculations.

All of the categories that we consider will be of the form ⟨G,M⟩ for a braided monoidal (small)
groupoid G and left G-module (small) groupoid M, both of them skeletal and strict. Moreover, in
each case we also have Obj(G) = Obj(M) = N, with the monoidal structure and left action given
on objects by addition and both denoted by ♮. Thus we just have to describe the groupoids G and
M, in each case, at the level of morphisms. This consists in specifying, for all m,n ∈ N:
(1) groups Gn and Mn;
(2) group homomorphisms θm,n : Gm × Gn → Gm+n that are associative and unital;
(3) group homomorphisms αm,n : Gm × Mn → Mm+n that associate with θm,n and are unital;
(4) elements bm,n ∈ Gm+n that conjugate θm,n(g1, g2) to θn,m(g2, g1) for each g1 ∈ Gm, g2 ∈ Gn.

In fact, it is enough to specify the above for positive m and n (ignoring the unitality conditions)
and then set G0 = M0 = {1}, extend θm,n and αm,n by unitality and set b0,n = bn,0 = 1 ∈ Gn.
This is what we will do in each case. In some cases we will have G = M, which corresponds to
Gn = Mn and θm,n = αm,n. In these cases we will therefore not separately specify Mn and αm,n.

The groupoids M+
2 , M−

2 , β and βS that we construct are equivalent to those of [RW17, §5.6]
and [Sou22, §3.1]. The Quillen bracket category ⟨M+

2 ,M
+
2 ⟩ is also similar to the category used

in [Iva93] to index local coefficient systems. We also note here that all of these groupoids have no
zero-divisors, since they are skeletal and their underlying monoid of objects is N.

1.1.2.1. Some injectivity results

In each of the examples that we construct in §1.1.2.2 and §1.1.2.3, the group homomorphisms
(2) and (3) will be injective. In order to prove this, we collect here some general injectivity results
for homomorphisms of mapping class groups and surface braid groups. We use the following general
notation for mapping class groups.
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Figure 1.1 The four building blocks to construct the groupoids M+
2 , M−

2 , β and βS .

Figure 1.2 The monoidal structure on M+
2 and the left action of β on βS .

Figure 1.3 The braidings on M+
2 and on β.

Notation 1.3 For a surface S, we write MCG(S) for its mapping class group, namely the group
π0(Diff∂(S)) of isotopy classes of diffeomorphisms of S that fix a neighbourhood of ∂S pointwise.
For example, in this notation we have Γg,1 = MCG(Σg,1) and N h,1 = MCG(Nh,1). For a non-
negative integer k, we write MCG(S, k) for the mapping class group of S with k marked points,
namely the group π0(Diff∂(S, k)) of isotopy classes of diffeomorphisms of S that fix a neighbourhood
of ∂S pointwise and also fix a subset P ⊂ S̊ of cardinality k setwise.

Lemma 1.4 Let S1, S2 be two compact surfaces, possibly with finitely many punctures, and let
S1♮S2 denote their boundary connected sum along specified intervals in their boundaries. Then the
homomorphism MCG(S1) × MCG(S2) → MCG(S1♮S2) induced by extending diffeomorphisms by
the identity is injective.

Proof. For i ∈ {1, 2}, let fi be a diffeomorphism of Si fixing a neighbourhood of its boundary
pointwise, and suppose that f1♮f2 is isotopic to the identity on S1♮S2. We must show that fi is
isotopic to the identity on Si for i = 1, 2. Let C be any simple proper arc or simple closed curve
in Si that does not bound a disc. By the Alexander method [FM12, Prop. 2.8], it is enough to
show that fi(C) is isotopic to C. By a preliminary isotopy, if necessary, we may assume that the
endpoints of C (if it is an arc) do not lie on the interval along which the boundary connected
sum is taken; thus we may view C as a simple closed curve or simple arc in S1♮S2. Since f1♮f2 is
isotopic to the identity, we deduce that fi(C) is isotopic to C in S1♮S2. Applying any retraction
S1♮S2 → Si to this isotopy, it follows that fi(C) is homotopic to C in Si. By [Eps66] (see also
[Bae27; Bae28]), this implies that fi(C) is isotopic to C in Si.

Corollary 1.5 In the setting of Lemma 1.4, consider the map Cm(S1) ×Cn(S2) → Cm+n(S1♮S2)
defined by taking unions of configurations. Then the induced homomorphism Bm(S1) × Bn(S2) →
Bm+n(S1♮S2) of braid groups is injective.

Proof. There is a commutative square

Bm(S1) × Bn(S2) Bm+n(S1♮S2)

MCG(S1,m) × MCG(S2, n) MCG(S1♮S2,m+ n)
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where the vertical maps are the inclusions of the Birman exact sequence (see for instance [FM12,
Lem. 4.16] or [PS24b, Cor. 1.34]), the top horizontal map is the homomorphism under consideration
and the bottom horizontal map is the homomorphism of Lemma 1.4. Since the bottom horizontal
map is injective, by Lemma 1.4, so is the top one.

1.1.2.2. For mapping class groups of surfaces

The setting for mapping class groups of surfaces corresponds to two braided monoidal groupoids,
M+

2 and M−
2 , which we define by specifying the data (1)–(4) above. Denote by T the one-holed

torus, with its boundary identified with a fixed rectangle, as in Figure 1.1. For an integer n ⩾ 1,
write T♮n for the result of gluing n copies of T side by side; see Figure 1.2 for the case n = 2. For
the groups (1), we set Gn to be the mapping class group MCG(T♮n) = π0(Diff∂(T♮n)), i.e. the group
of isotopy classes of self-diffeomorphisms of T♮n restricting to the identity on a neighbourhood of
∂(T♮n). The monoidal structure (2) is given by the homomorphisms

θm,n : MCG(T♮m) × MCG(T♮n) −→ MCG(T♮m+n), (1.5)

for m,n ⩾ 1, that send (φ1, φ2) to the diffeomorphism of T♮m+n that acts by φ1 on the left-hand
m copies of T and by φ2 on the right-hand n copies of T. (This is a well-defined diffeomorphism
since φ1 and φ2 agree on and are the identity in a neighbourhood of the interval in which their
domains of definition intersect.) This operation is clearly associative. The homomorphisms (1.5)
are also injective by Lemma 1.4.

For m,n ⩾ 1, we specify the element bm,n ∈ MCG(T♮m+n) in (4) to act as follows. First, for
an interval of integers A ⊆ {1, . . . ,m+n}, let SA ⊂ T♮m+n denote the union of the |A| consecutive
copies of T indexed by A minus a collar neighbourhood of the boundary of this subsurface. For
example, the left-hand side of Figure 1.3 illustrates the subsurfaces S{1} and S{2} in T♮2. The diffeo-
morphism bm,n is then defined separately in three regions. It restricts to S{1,...,m} → S{1+n,...,m+n}
by translating n steps to the right, it restricts to S{m+1,...,m+n} → S{1,...,n} by translating m steps
to the left and it restricts to

T♮m+n ∖ (S{1,...,m} ⊔ S{m+1,...,m+n}) −→ T♮m+n ∖ (S{1,...,n} ⊔ S{1+n,...,m+n})

by a positive half-Dehn twist, i.e. an anticlockwise half-twist. For example, the left-hand side of
Figure 1.3 illustrates the diffeomorphism b1,1 of T♮2. This completes the definition of the braided
monoidal groupoid M+

2 .
The definition of M−

2 is almost identical, the only difference being that the basic building
block is the Möbius band M (see Figure 1.1) instead of T.

We denote the mapping class groups MCG(T♮n) and MCG(M♮n) by Γn,1 and N n,1 respec-
tively. We thus say that the braided monoidal groupoid M+

2 encodes the sequence of orientable
mapping class groups Γn,1 (together with the extra structure of the operations (1.5) and the
braidings bm,n); similarly, M−

2 encodes the sequence of non-orientable mapping class groups N n,1.

1.1.2.3. For braid groups on surfaces

The setting for surface braid groups corresponds to the braided monoidal groupoid β and the
left β-module groupoid βS (for a surface S), which we define by specifying the data (1)–(4). This
definition makes sense for any surface S with one boundary component, but we will be particularly
interested in the cases S = T♮g and S = M♮h, which we denote by Σg,1 and Nh,1 respectively.

To begin, we recall the definition of partitioned surface braid groups. There are several ways
to define these; see for example [DPS22, §6.2–6.3] for an overview. For an ordered partition
λ = (λ1, . . . , λr) ⊢ n, we recall that the λ-partitioned braid group Bλ1,...,λr

(S) on n strings on the
surface S is the fundamental group π1(Cλ(S), c0) of the λ-partitioned configuration space Cλ(S),
where c0 ∈ Cλ(S) is a fixed λ-partitioned configuration. The braid groups on the 2-disc D are the
classical braid groups; we write Bλ1,...,λr

= Bλ1,...,λr
(D) in this case. Full presentations of these

groups are recalled in [PS24b, Prop. 4.1] (see also [HL02; Bel04; BGG17]).
Let us fix a 2-disc D viewed as a rectangle and equipped with a marked point p in its interior

as in Figure 1.1. For each integer n ⩾ 1 let us denote by (D♮n, p1, . . . , pn) the result of gluing
n copies of (D, p) side by side: topologically this is a 2-disc with a set of n marked points in its
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boundary. Similarly, if S is a surface with one boundary component that we have identified with
a fixed rectangle, as in Figure 1.1, then for each n ⩾ 1 we denote by (D♮n♮S, p1, . . . , pn) the result
of gluing n copies of (D, p) and one copy of S (on the right) side by side, as in Figure 1.2.

For the groups (1), we set Gn = Bn(D♮n) and Mn = Bn(D♮n♮S), where the base configuration
is {p1, . . . , pn} in each case. The monoidal structure (2) is then given by the homomorphisms
θm,n : Bm(D♮m) × Bm(D♮m) → Bm+n(D♮m+n) induced by the maps

Cm(D♮m) × Cn(D♮n) −→ Cm+n(D♮m+n) (1.6)

that send a pair of configurations (c1, c2) to the configuration in D♮m+n that consists of c1 in the left-
hand m copies of D and c2 in the right-hand n copies of D. This operation is clearly associative. The
operation (3) is given by the homomorphisms αm,n : Bm(D♮m) × Bm(D♮m♮S) → Bm+n(D♮m+n♮S)
induced by the maps

Cm(D♮m) × Cn(D♮n♮S) −→ Cm+n(D♮m+n♮S) (1.7)

that send a pair of configurations (c1, c2) to the configuration in D♮m+n that consists of c1 in the
left-handm copies of D and c2 in the right-hand n copies of D together with S. The homomorphisms
θm,n and αm,n are all injective, by Corollary 1.5.

For integers m,n ⩾ 1, we specify the element bm,n ∈ Bm+n(D♮m+n) in (4) to be the loop
constructed as follows. First, the right-hand n points in the base configuration {p1, . . . , pm+n}
move vertically upwards in D♮m+n; then they move m steps to the left while the left-hand m points
in the base configuration move n steps to the right; then the n points in the interior (which are now
on the left of the picture) move vertically downwards again. For example, Figure 1.3 illustrates
the element b2,1 ∈ B3(D♮3). This completes the definition of the braided monoidal groupoid β and
the left β-module groupoid βS . To finish, we make explicit some conventions:

Convention 1.6 For each n ∈ N, we denote the punctured disc D♮n∖{p1, . . . , pn} by Dn, with the
punctures ordered from left to right, and we write Bn = Bn(D♮n) = π0(Diff∂(D♮n, {p1, . . . , pn})),
i.e. the group of isotopy classes of self-diffeomorphisms of D♮n restricting to the identity on a
neighbourhood of ∂(D♮n) and fixing the punctures {p1, . . . , pn} setwise. We take the convention
that the element σi ∈ Bn is the geometric braid that swaps the points i and i + 1 anticlockwise
(in other words it acts locally as b1,1); see Figure 4.1 for an illustration of σ1.

1.2. Construction of homological representation functors
Here we explain the constructions introduced in [PS24b] of homological representation functors

for surface braid groups and mapping class groups of surfaces. Namely, we follow the method and
ideas of [PS24b, §2–§3], but follow a more direct method (although equivalent in the end) to simplify
the presentation; see Remark 1.12. A reader familiar with [PS24b] may skip this subsection.

1.2.1. Framework

Let G be one of the small strict braided monoidal groupoids {M+
2 ,M

−
2 ,β} introduced in

§1.1.2 along with any associated G-module M defined there (typically M+
2 , M−

2 or βS respec-
tively). Recall from §1.1.2 that in each case Obj(G) = Obj(M) = N: from now on, we denote
the objects of G and M by non-negative integers n. We denote by {Gn}n∈N the family of auto-
morphism groups {AutM(n)}n∈Obj(M) encoded by M. (These automorphism groups were denoted
in §1.1.2 by Mn, but henceforth we shall always write Gn.) They come equipped with canonical
homomorphisms id1♮(−)n : Gn → Gn+1 induced by the G-module structure: precisely, these ho-
momorphisms are α1,n(id1,−) in the notation of §1.1.2. In each of the settings described in §1.1.2,
the homomorphisms αm,n are injective (see Lemma 1.4 and Corollary 1.5), and hence so are the
maps id1♮(−)n = α1,n(id1,−). The first key ingredient to define homological representations is to
find a family of spaces on which the family {Gn}n∈N acts. In the case of surface braid groups,
this will involve considering “partitioned versions” of the groups Gn, which we define in a general
context:

Definition 1.7 (Partitioned groups.) Let Gk be a group equipped with a surjection sk : Gk ↠ Sk.
Given an ordered partition λ = (λ1, . . . , λr) ⊢ k, for j ⩽ r, we define tj :=

∑
i⩽j λi (including

t0 = 0). Then the set {tj−1 + 1, . . . , tj} is referred to as the jth block of λ, and λi is called the
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size of the ith block. The preimage Gλ := s−1
k (Sλ) (where Sλ := Sλ1 × · · · × Sλr

) is called the
λ-partitioned version of Gk. The extremal situations are the discrete partition λ = (1, . . . , 1), which
corresponds to the pure version of the group Gk, and the trivial case λ = (k), which is simply the
group Gk itself. The group Gλ fits into the short exact sequence: 1 → G(1,...,1) → Gλ → Sλ → 1.

In all the situations addressed in this paper, the parameter k corresponds to the motion of k
points, while the surjection corresponds to the permutations of these points. For the remainder of
§1.2, we consider an ordered partition λ = (λ1, . . . , λr) ⊢ k of an integer k ⩾ 1. Furthermore, for
each n ∈ N, we consider the surface Sn defined from the object n ∈ Obj(M) as follows:

• When Gn = Bn(S) (where S = Σg,1 or Nh,1), we set Sn := Dn♮S and Gk,n := Bk,n(S)
equipped with the evident surjection Bk,n(S)↠ Sk; thus Gλ,n = Bλ1,...,λr,n(S).

• When Gn = MCG(S♮n) (where S = T or M, see §1.1.2.2), we set Sn := (S♮n) ∖ I, where I
denotes the closed interval in ∂S♮n given by the bottom edge of the rectangle in Figure 1.2
(see Remark 1.19 for an explanation of this choice). We also set Gk,n := MCG(S♮n, k) (see
§1.1.2.1) equipped with the evident surjection MCG(S♮n, k)↠ Sk; thusGλ,n = MCG(S♮n, λ).

In each case, considering the λ-configuration space Cλ(Sn) and its fundamental group Bλ1,...,λr (Sn),
there is a split short exact sequence

1 Bλ1,...,λr
(Sn) Gλ,n Gn 1. (1.8)

Moreover, this split short exact sequence is functorial with respect to n, in the sense that the maps
id1♮(−)n : Gn → Gn+1 lift to maps Gλ,n → Gλ,n+1, and these together induce maps of split short
exact sequences of the form (1.8). In more detail:

• If Gn = Bn(S), the sequence (1.8) is the classical Fadell-Neuwirth exact sequence (see for
instance [DPS22, Prop. 6.15] or [PS24b, Cor. 1.30]), and its section, denoted by s(λ,n), is
induced by the embedding of configuration spaces Cn(S ′

n) ↪→ Cλ,n(Sn) defined by considering
an isotopy equivalent proper subsurface S ′

n of Sn and by fixing a λ-partitioned configuration
of k points in Sn −S ′

n (see also [DPS22, Prop. 6.15] or [PS24b, Cor. 1.30] for further details).
We note in passing that the composition of the section s(λ,n) with the canonical injection
Gλ,n ↪→ Gk+n is equal to idk♮(−)n : Gn ↪→ Gk+n.
The lift Gλ,n → Gλ,n+1 is defined analogously to id1♮(−)n : Gn → Gn+1, taking the boundary
connected sum with a disc containing an additional configuration point, where we specify
that this new configuration point belongs to the ‘n’ block of the partition (λ, n).

• If Gn = MCG(S♮n), the sequence (1.8) is known as the Birman short exact sequence (see
for instance [FM12, Lem. 4.16] or [PS24b, Cor. 1.34]), and its section is induced by extend-
ing diffeomorphisms of S♮n along the inclusion S♮n ↪→ Dk♮S

♮n by the identity on Dk, as in
Lemma 1.4 (see also [PS24b, Cor. 1.34] for further details).
We note that the kernel of (1.8) in this case is a priori equal to Bλ1,...,λr (S♮n), but removing
an interval from the boundary of S♮n does not change its isotopy type and so Bλ1,...,λr

(S♮n)
is identified with Bλ1,...,λr

(S♮n ∖ I) = Bλ1,...,λr
(Sn).

The lift Gλ,n → Gλ,n+1 is defined exactly like id1♮(−)n : Gn → Gn+1: at the level of diffeo-
morphisms, it is given by extending by the identity on the new copy of S.

Finally, we note that the short exact sequence (1.8) provides an action (by conjugation) of Gn on
Bλ1,...,λr (Sn).

1.2.2. Twisted representations

Another preliminary is the recollection of the notion of twisted representations.

Definition 1.8 (Category of twisted modules.) Let A be a non-zero associative unital ring and let
R be an associative, unital A-algebra. The category of twisted R-modules, denoted by R-Modtw,
is defined as follows. An object of R-Modtw is simply a left R-module V . A morphism V → V ′ is
an automorphism ψ ∈ AutA-Alg(R) of unital A-algebras together with a morphism ζ : V → ψ∗(V ′)
of left R-modules.

We will henceforth set A := Z, so that A-algebras are just rings. From §1.2.3 onwards, we will
typically work with group rings R := Z[Q] for a given group Q.

A functor F : ⟨G,M⟩ → R-Modtw encodes twisted R-representations. More precisely, at the
level of group representations, it means that the action of Gn on the corresponding R-module
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commutes with the R-module structure only up to a “twist”, i.e. an action an : Gn → AutRing(R)
where Ring is the category of associative, unital rings. When this action an is trivial, we recover
the classical notion of an R-representation (also called genuine R-representation) of the group Gn.

Furthermore, the module category R-Mod is by definition the subcategory of R-Modtw on
the same objects and those morphisms (ψ, ζ) with ψ = idR, so there is a canonical embedding
R-Mod ⊂ R-Modtw. In particular, a representation encoded by a functor F : ⟨G,M⟩ → R-Modtw

is a genuine R-representation if and only if F factors through the module subcategory R-Mod:

F : ⟨G,M⟩ −→ R-Mod ↪−→ R-Modtw. (1.9)

In any case, representations encoded by functors ⟨G,M⟩ → R-Modtw may always be viewed as
genuine Z-module representations. Indeed, there is a forgetful functor R-Modtw → Z-Mod, where
we forget the R-module structure on objects and the ψ component of a morphism (ψ, ζ) in Defi-
nition 1.8. Hence, we may always form the composite

⟨G,M⟩ −→ R-Modtw −→ Z-Mod, (1.10)

in order to view twisted R-module representations as genuine Z-module representations.

1.2.3. Local coefficient systems

We now introduce the key parameter to define a homological representation functor. For the
remainder of §1.2, we consider an integer ℓ ⩾ 1 corresponding to a lower central series index.
For each n, we use the short exact sequence (1.8) to define a group Q(λ,ℓ,n) so that we have the
commutative diagram:

1 Bλ1,...,λr
(Sn) Gλ,n Gn 1

1 Q(λ,ℓ,n) Gλ,n/Γℓ Gn/Γℓ 1.

ϕ(λ,ℓ,n) (1.11)

More precisely, the right-exactness of the quotient −/Γℓ gives the right half of the bottom short
exact sequence and ensures that the right-hand square of the diagram is commutative; the group
Q(λ,ℓ,n) is defined as the kernel of the surjectionGλ,n/Γℓ ↠ Gn/Γℓ; the map ϕ(λ,ℓ,n) : Bλ1,...,λr

(Sn)↠
Q(λ,ℓ,n) is uniquely defined by the universal property of Bλ1,...,λr (Sn) as a kernel and its surjec-
tivity follows from the splitting of the short exact sequence (1.8) and the fact that the lower
central series defines a functorial quotient of groups in the sense of [PS24b, Def. 2.22]; see [PS24b,
Lem. 2.24]. Furthermore, the functoriality of (1.8) with respect to n and the universal property of
Gλ,n/Γℓ and Gn/Γℓ as cokernels ensure that there exist unique maps Gλ,n/Γℓ → Gλ,n+1/Γℓ and
Gn/Γℓ → Gn+1/Γℓ making the following square commutative:

Gλ,n/Γℓ Gn/Γℓ

Gλ,n+1/Γℓ Gn+1/Γℓ.

Hence, by the universal property of a kernel, there exists a canonical map q(λ,ℓ,n) : Q(λ,ℓ,n) →
Q(λ,ℓ,n+1) making the obvious diagram commutative. The colimit of the groups {(Q(λ,ℓ,n))}n∈N
with respect to the maps q(λ,ℓ,n) is denoted by Q(λ,ℓ). Let us write ϕ(λ,ℓ) : Bλ1,...,λr (Sn) → Q(λ,ℓ)
for the composition of ϕ(λ,ℓ,n) with the map to the colimit. Since the configuration space Cλ(Sn) is
path-connected, locally path-connected and semi-locally simply-connected, the map ϕ(λ,ℓ) defines
a regular covering of Cλ(Sn) with deck transformation group Im(ϕ(λ,ℓ)) ⊆ Q(λ,ℓ) by classical
covering space theory (see for instance [Hat02, §1.3]). Equivalently, it defines a rank-1 local
system on Cλ(Sn) with fibre Z[Im(ϕ(λ,ℓ))]. We then take the fibrewise tensor product with respect
to the inclusion Z[Im(ϕ(λ,ℓ))] ⊆ Z[Q(λ,ℓ)], and thus change the ground ring to Z[Q(λ,ℓ)]. By abuse
of notation, we denote the resulting rank-1 local system on Cλ(Sn) by the name of its fibre,
i.e. Z[Q(λ,ℓ)].

Moreover, we deduce from (1.11) that the group Gn naturally acts by conjugation on the
transformation group Q(λ,ℓ,n). Via the inclusions idm♮(−)n : Gn ↪→ Gm+n, it also acts (compatibly)
by conjugation on Q(λ,ℓ,N) for each N ⩾ n and thus on the colimit Q(λ,ℓ) of this direct system.
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Untwisted local system. A natural goal (for the purpose of constructing genuine, rather than
twisted, representations) is to choose transformation groups such that the actions of the groups Gn

on their colimit group are trivial. The optimal way to do this consists in taking the coinvariants
of the group Q(λ,ℓ) under the action of each Gn.

Namely, we consider for each n the coinvariants (Q(λ,ℓ,n))Gn
, i.e. the largest quotient of Q(λ,ℓ,n)

that collapses the orbits of the Gn-action. Let Qu
(λ,ℓ) be the colimit of the groups {(Q(λ,ℓ,n))Gn

}n∈N
with respect to the maps (Q(λ,ℓ,n))Gn

→ (Q(λ,ℓ,n+1))Gn+1 induced by the canonical morphisms
id1♮(−)n : Gn ↪→ Gn+1. In particular, there is a canonical surjective morphism Q(λ,ℓ) ↠ Qu

(λ,ℓ).
The “u” in the notation stands for untwisted since the Gn-actions for all n on Qu

(λ,ℓ) are trivial.

Remark 1.9 Recall that coinvariants are particular instances of coequalisers (see [Mac98, §III.3]
for instance), so they commute with colimits (see [Mac98, §IX.8] for instance). Therefore, the group
Qu

(λ,ℓ) is isomorphic to the coinvariant group (Q(λ,ℓ))G∞ , where G∞ is the colimit of the groups
{Gn}n∈N with respect to the maps id1♮(−)n. In particular, the quotient group Qu

(λ,ℓ) of Q(λ,ℓ) is
optimal in the sense that any other untwisted (i.e. with trivial Gn-actions for all n) quotient Q′ of
Q(λ,ℓ) is a quotient of Qu

(λ,ℓ) (in other words, it is the initial untwisted quotient of Q(λ,ℓ)).

1.2.4. Definition of the homological representation functors

We may now define the homological representations and their associated functors. In §1.2.3,
we introduced actions of the group Gn on π1(Cλ(Sn)) and on the associated rank-1 local system
Z[Q(λ,ℓ)], induced by the splittings of (1.11). Now we define from these a representation

Gn −→ AutZ[Q(λ,ℓ)]-Modtw
(
HBM

k (Cλ(Sn);Z[Q(λ,ℓ)])
)

(1.12)

using the functoriality of (twisted) Borel-Moore homology (see [Bre97, Chap. V, §3] for instance).
(In fact, a priori, we need more: we need an action up to homotopy of Gn on the based space
Cλ(Sn) that induces the action on π1(−). However, since Cλ(Sn) is aspherical, i.e. a classifying
space for its fundamental group, by [FN62, Cor. 2.2], this exists and is unique, so it comes “for
free”.) These combine to define a functor

L(λ,ℓ) : M −→ Z[Q(λ,ℓ)]-Modtw. (1.13)

Alternatively, considering instead the untwisted transformation group Qu
(λ,ℓ), each group Gn acts

trivially the rank-1 local system Z[Qu
(λ,ℓ)] and thus the analogous representation to that of (1.12)

preserves the Z[Qu
(λ,ℓ)]-module structure of HBM

k (Cλ(Sn);Z[Qu
(λ,ℓ)]). Therefore, the analogue of

(1.13) using the untwisted transformation group Qu
(λ,ℓ) is a functor

Lu
(λ,ℓ) : M −→ Z[Qu

(λ,ℓ)]-Mod ⊂ Z[Qu
(λ,ℓ)]-Modtw. (1.14)

Notation 1.10 We generically denote by L⋆
(λ,ℓ) the functors (1.13) and (1.14) and by Z[Q⋆

(λ,ℓ)]-Modtw

the associated target categories for simplicity, where ⋆ either stands for the blank space or ⋆ = u.

We now extend the functors (1.13) and (1.14) along the canonical inclusion M ↪→ ⟨G,M⟩ for
the source category thanks to Lemma 1.1. In each situation described in §1.2.1, for each m ∈ Obj(G)
and n ∈ Obj(M), the morphism [m, idm♮n] of the category ⟨G,M⟩ corresponds to a proper embedding
Sn ↪→ Sm+n, which in turn induces a map HBM

k (Cλ(Sn);Z[Q⋆
(λ,ℓ)]) → HBM

k (Cλ(Sm+n);Z[Q⋆
(λ,ℓ)]),

which we denote by ιm,n.

Lemma 1.11 Assigning L⋆
(λ,ℓ)([m, idm♮n]) to be ιm,n for each m ∈ Obj(G) and n ∈ Obj(M), we extend

the functor L⋆
(λ,ℓ) : M → Z[Q⋆

(λ,ℓ)]-Modtw to a functor L⋆
(λ,ℓ) : ⟨G,M⟩ → Z[Q⋆

(λ,ℓ)]-Modtw.

Proof. By Lemma 1.1, it is enough to prove that the compatibility relation (1.3) is satisfied. We
consider f ∈ AutG(m) and g ∈ AutM(n), and denote by S ′

m the surface Dm if G = βS and S♮m if
G = M±

2 so that Sm+n
∼= S ′

m♮Sn. We note that the image of ιm,n consists of homology classes of
configurations that are fully supported in the subsurface Sn ↪→ Sm+n. Then, since the action of
f♮idn is supported in the subsurface S ′

m ↪→ Sm+n, the map L⋆
(λ,ℓ)(f♮idn) acts trivially on the image

of ιm,n, and so L⋆
(λ,ℓ)(f♮idn) ◦ ιm,n = ιm,n.
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Furthermore, the above description of the image of ιm,n implies that the action of L⋆
(λ,ℓ)(idm♮g)

on the image of ιm,n is fully determined by the action of L⋆
(λ,ℓ)(g) on the homology classes of

configurations supported in the subsurface Sn ↪→ Sm+n (because the action of idm♮g is supported
in this subsurface). Hence L⋆

(λ,ℓ)(idm♮g) ◦ ιm,n = ιm,n ◦ L⋆
(λ,ℓ)(g). Since L⋆

(λ,ℓ)(f♮idn) ◦ L⋆
(λ,ℓ)(idm♮g) =

L⋆
(λ,ℓ)(f♮g) (because of the compatibility of the monoidal structure ♮ with respect to composition

and the fact that L⋆
(λ,ℓ) is a functor), we deduce that L⋆

(λ,ℓ)(f♮g) ◦ ιm,n = ιm,n ◦L⋆
(λ,ℓ)(g) and so (1.3)

is satisfied, which ends the proof.

Remark 1.12 (Comparison with [PS24b].) The way we extend the homological representation
functors along the Quillen bracket construction ⟨G,M⟩ in Lemma 1.11 may seem a little ad hoc
since we make an apparently arbitrary choice for this extension. In [PS24b], there is a more
conceptual (although equivalent) method of the construction of the homological representation
functors L⋆

(λ,ℓ). In particular, the fact that these functors are well-defined on the category ⟨G,M⟩
is already encoded in the method of [PS24b, §2–§3], and our choice for the morphism [m, idm♮n]
in Lemma 1.11 matches with this alternative definition. We refer to [PS24b, §2–§3] for further
details.

Finally, we note that the homological representations obtained with the parameters ℓ ∈ {1, 2}
are always untwisted:

Lemma 1.13 There are equalities Qu
(λ,ℓ) = Q(λ,ℓ) and Lu

(λ,ℓ) = L(λ,ℓ) for ℓ ⩽ 2.

Proof. The result for ℓ = 1 is obvious since Q(λ,1) = 0. For ℓ = 2, the Gn-action on Q(λ,2,n) is
trivial for each n, since this is induced by conjugation in the abelian group Gλ,n/Γ2. Hence the
surjection Q(λ,ℓ) ↠ Qu

(λ,ℓ) is an equality. The result for Lu
(λ,ℓ) then follows by construction.

1.2.5. The vertical-type alternatives

Finally, we describe an important general modification that we may make in the parameters
of the construction. We recall that we consider the configuration space Cλ(Sn) of k points in a
surface Sn, which is obtained from a compact surface by removing finitely many punctures from
its interior or by removing a closed interval (equivalently, one puncture) from its boundary. For
such surfaces, we introduce the associated notions of blow-up and dual surfaces:

Definition 1.14 (Dual surfaces.) Consider a finite-type surface S ∖P, namely a compact surface
S minus a finite subset P ⊂ S. Its blow-up S is then obtained from S by blowing up each p ∈ P
to a new boundary component (if p ∈ S ∖ ∂S) or an interval (if p ∈ ∂S). Furthermore, its dual
surface Š is obtained by removing from S the original boundary ∂(S∖P). Note that (S;S∖P, Š)
is a manifold triad.

Hence, we may alternatively use the dual surface Šn instead of Sn and repeat mutatis mutandis
the construction of §1.2.1–§1.2.4. This modification has a deep impact on the module structures
of the representations, in particular for the basis we obtain for the modules for surface braid group
representations; see §2.2. We single this variant out by calling it the vertical-type alternative as
a reference to the shape of the homology classes in the alternative module basis (see Figure 2.3),
and we denote it by Lv

(λ,ℓ) (where “v” stands for “vertical”).

1.3. Applications for surface braid groups and mapping class groups
We now review the application of the construction of §1.2 to produce homological representa-

tion functors for classical braid groups (see §1.3.1), surface braid groups (see §1.3.2) and mapping
class groups of surfaces (see §1.3.3). Throughout §1.3, we consider an integer k ⩾ 1 and an ordered
partition λ = (λ1, . . . , λr) ⊢ k and we denote by r′ the number of indices i ⩽ r in λ such that
λi ⩾ 2.

1.3.1. Classical braid groups

We apply the construction of §1.2 in the setting Gn = Bn, Sn = Dn and G = M = β, denoting
by Q(λ,ℓ) = Q(λ,ℓ)(D) the colimit transformation group defined in §1.2.3 with these assignments.
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Taking quotients by the Γℓ terms for each ℓ ⩾ 1, the construction of §1.2 provides functors

LB(λ,ℓ) : ⟨β,β⟩ −→ Z[Q(λ,ℓ)(D)]-Modtw and LBu
(λ,ℓ) : ⟨β,β⟩ −→ Z[Qu

(λ,ℓ)(D)]-Mod, (1.15)

which we call the twisted and untwisted (λ, ℓ)-Lawrence-Bigelow functors.

Example 1.15 (The Lawrence-Bigelow representations [Law90; Big04].) This terminology for the
above functors comes from the fact that, when λ = (k) and ℓ = 2, the functor LB((k),2) encodes the
kth family of the Lawrence-Bigelow representations; see [PS24b, Th. 3.5]. These representations
were originally introduced by Lawrence [Law90] as representations of Hecke algebras and then
by Bigelow [Big04] via topological methods. The Burau representations originally introduced in
[Bur35] are encoded by the functor LB((1),2), while the Lawrence-Krammer-Bigelow representations
that Bigelow [Big01] and Krammer [Kra02] independently proved to be faithful are encoded by
the functor LB((2),2); see [PS24b, §3.2.1]. Also, each functor LB((k),1) corresponds to the trivial
specialisation Z[Q((k),2)(D)]↠ Z of the functor LB((k),2), and Lawrence [Law90, §3.4] proves that
it encodes the representations factoring through Bn ↠ Sn.

Remark 1.16 (Calculations of transformation groups and dependence on ℓ.) By [PS24b, Lem. 4.3],
we have Q(λ,2)(D) ∼= Zr′ × Zr(r−1)/2 × Zr. If λi ⩾ 3 for all 1 ⩽ i ⩽ r or λ is either 1 or (1, 1),
it follows from [DPS22, Th. 3.6] that Q(λ,ℓ)(D) = Qu

(λ,2)(D) = Q(λ,2)(D), and a fortiori that
LB(λ,ℓ) = LBu

(λ,ℓ) = LB(λ,2) by construction. In contrast, it follows from [PS22, Tab. 2] that
as soon as λ is of the form (2, λ′), (1, 1, 1, λ′), (2, 2, λ′) or (1, 2, λ′), then LB(λ,ℓ) ̸= LB(λ,ℓ+1) for
each ℓ ⩾ 1. Furthermore, when λ = (2, λ′) for λ′ such that each λ′

l ⩾ 3, the transformation group
Q(λ,ℓ)(D) is computed in [PS24b, Prop. 4.5]. We prove in [PS22, §5] that the representations are
untwisted in this case, and a fortiori that LB(λ,ℓ) = LBu

(λ,ℓ). We may also compute the explicit
formulas of the Bn-actions; see [PS22, Tab. 1 and Rem. 4.9].

Considering the dual surface Šn = Ďn rather than Sn = Dn, the construction of §1.2.5 defines
for each ℓ ⩾ 1 the vertical Lawrence-Bigelow functors LBv

(λ,ℓ) : ⟨β,β⟩ → Z[Q(λ,ℓ)(D)]-Modtw and
LBu,v

(λ,ℓ) : ⟨β,β⟩ → Z[Qu
(λ,ℓ)(D)]-Mod. The properties discussed in Remark 1.16 for the functors

(1.15) are the same for these vertical-type alternatives.

1.3.2. Braid groups on surfaces different from the disc

We fix two integers g ⩾ 1 and h ⩾ 1, and a surface S that is either Σg,1 or else Nh,1 defined
in §1.1.2.3. We apply the construction of §1.2 in the setting Gn = Bn(S), Sn = Dn♮S, G = β
and M = βS , denoting by Q(λ,ℓ) = Q(λ,ℓ)(S) the colimit transformation group defined in §1.2.3
with these assignments. Taking quotients by the Γℓ terms for each ℓ ⩾ 1, the construction of §1.2
provides homological representation functors, for S ∈ {Σg,1,Nh,1}:

L(λ,ℓ)(S) : ⟨β,βS⟩ −→ Z[Q(λ,ℓ)(S)]-Modtw and Lu
(λ,ℓ)(S) : ⟨β,βS⟩ −→ Z[Qu

(λ,ℓ)(S)]-Mod. (1.16)

Example 1.17 (The An-Ko representations [AK10].) For orientable surfaces, the trivial partition
λ = (k) and ℓ = 3, the Bn(Σg,1)-representation L((k),3)(Σg,1)(n) ⊗Z[Q((k),3)(Σg,1)] Z[Bk,n(Σg,1)/Γ3]
is isomorphic to the one introduced by An and Ko in [AK10, Th. 3.2]; see [PS24b, Ex. 3.6]. The
group Q((k),3)(Σg,1) is abstractly defined in [AK10] in terms of group presentations to satisfy certain
technical homological constraints, while [BGG17, §4] explains all of the connections to the third
lower central series quotient. On the other hand, the untwisted representations encoded by the
functor Lu

((k),3)(Σg,1) are specific to [PS24b, §3.2.1].

Remark 1.18 (Calculations of transformation groups and dependence on ℓ.) We know from
[PS24b, Lem. 4.3] that Q(λ,2)(S) ∼= (Z/2)r′ × H1(S;Z)×r for S ∈ {Σg,1,Nh,1}. If λi ⩾ 3 for
all 1 ⩽ i ⩽ r, it follows from [DPS22, Th. 6.52 and Prop. 6.62] that L(λ,ℓ)(S) = Lu

(λ,ℓ)(S) =
L(λ,3)(S) for ℓ ⩾ 4. Moreover, we explicitly compute the transformation groups Q(λ,3)(Σg,1),
Qu

(λ,3)(Σg,1), Q(λ,3)(Nh,1) and Qu
(λ,3)(Nh,1) in [PS24b, Prop. 4.5]. In particular, we deduce that

Lu
(λ,ℓ)(S) ̸= L(λ,ℓ)(S) if λi ⩾ 3 for all 1 ⩽ i ⩽ r. In contrast, it follows from [PS22, Tab. 2] that if λ

is of the form (2, λ′) or (1, λ′) (assuming that S ̸= M for the latter), then L(λ,ℓ)(S) ̸= L(λ,ℓ+1)(S)
for each ℓ ⩾ 3. It is unclear whether L(λ,ℓ)(S) = Lu

(λ,ℓ)(S) in this situation; see [PS24b, Rem. 4.6].
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Considering the dual surface Šn = (Dn♮S)̌ instead of Sn = Dn♮S, the construction of §1.2.5
defines the vertical homological representation functors Lu,v

(λ,ℓ)(Σg,1), Lv
(λ,ℓ)(Σg,1), Lu,v

(λ,ℓ)(Nh,1) and
Lv

(λ,ℓ)(Nh,1) for each ℓ ⩾ 1. Their source and target categories are the same as for their non-vertical
counterparts, and the properties discussed in Remark 1.18 for the functors (1.16) are the same for
these vertical-type alternatives.

1.3.3. Mapping class groups of surfaces

We apply the construction of §1.2 in the setting Gn = Γn,1 or N n,1, Sn = (S♮n) ∖ I where
S = T or M respectively and G = M = M+

2 or M−
2 respectively. We denote by Q(λ,ℓ) = Q(λ,ℓ)(S)

the colimit transformation group defined in §1.2.3 with these assignments.

Remark 1.19 A more natural assignment for applying the construction of §1.2 would be to take
Sn = S♮n, i.e. not to remove the subinterval I ⊂ ∂S♮n given by the bottom edge of the rectangle in
Figure 1.2. We do however choose (S♮n)∖I instead because it is necessary for applying Theorem 2.1
in order to compute the underlying modules of the representations; see §2.2.

Otherwise, the calculations of the representations using Sn = S♮n are much more complicated.
See for instance the work of Stavrou [Sta23, Th. 1.4], who computes the Γn,1-representation equiv-
alent to that obtained from the construction of §1.2 with Sn = T♮n, ℓ = 1, taking Q as ground ring
and using classical homology instead of Borel-Moore homology.

Taking quotients by the Γℓ terms for each ℓ ⩾ 1, the construction of §1.2 defines homological
representation functors

L(λ,ℓ)(Γ) : ⟨M+
2 ,M

+
2 ⟩ → Z[Q(λ,ℓ)(T)]-Modtw and Lu

(λ,ℓ)(Γ) : ⟨M+
2 ,M

+
2 ⟩ → Z[Qu

(λ,ℓ)(T)]-Mod,
(1.17)

L(λ,ℓ)(N ) : ⟨M−
2 ,M

−
2 ⟩ → Z[Q(λ,ℓ)(M)]-Modtw and Lu

(λ,ℓ)(N ) : ⟨M−
2 ,M

−
2 ⟩ → Z[Qu

(λ,ℓ)(M)]-Mod.
(1.18)

Example 1.20 (The Moriyama representations [Mor07].) For orientable surfaces, the discrete
partition λ = (1, . . . , 1) and ℓ = 1, the functor L((1,...,1),1)(Γ) encodes the mapping class group
representations introduced by Moriyama [Mor07]; see [PS24b, Prop. 3.9] or [PS24a, Prop. 2.1]. It
is thus called the kth Moriyama functor. In particular, the representations encoded by the functor
L((1),1)(Γ) are equivalent to the standard representations on H1(Σg,1;Z), which factor through the
symplectic groups Sp2g(Z).

We record here the computations of the transformation groups for the functors (1.17) and
(1.18) when ℓ = 2, the proofs of which are elementary (see [PS24b, Cor. 4.9] for instance). They
will be of key use later; see Lemma 3.30.

Lemma 1.21 ([PS24b, Cor. 4.9], [PS24a, Prop. 1.1, Rem. 1.3]) We have Q(λ,2)(T) ∼= (Z/2)r′ and
Q(λ,2)(M) ∼= (Z/2)r′ × (Z/2)r. More precisely:

• Each of the (first) r′ Z/2-summands is generated by the image in the abelianisation of a
standard braid generator interchanging two points in the ρ-th block of the partition, for each
ρ ∈ {1, . . . , r} such that λρ ⩾ 2. This is known as the writhe (modulo 2) of the ρ-th block of
strands; see [PS24a, Prop. 1.1].

• The last r Z/2-summands in Q(λ,2)(M) measure the number of times that a strand from the
ρ-th block of the partition passes through a crosscap, for each ρ ∈ {1, . . . , r}; see [PS24a,
Rem. 1.3].

Remark 1.22 (Further computations of transformation groups and dependence on ℓ.) For ori-
entable surfaces, it follows from [PS24b, Cor. 3.8 and 3.9] and [PS24a, Prop. 1.2] that, for all ℓ ⩾ 3,
we have Q(λ,ℓ)(T) = Q(λ,2)(T). A fortiori, L(λ,ℓ)(Γ) = L(λ,2)(Γ) for all ℓ ⩾ 3 by construction. On
the other hand, for non-orientable surfaces, it is unclear whether Q(λ,ℓ)(M) = Q(λ,2)(M) for ℓ ⩾ 3;
if not, the functors L(λ,ℓ)(N ) will give rise to more sophisticated sequences of representations of
the mapping class groups of non-orientable surfaces; see [PS24a, Rem. 1.4].

Finally, we may consider the dual surface Šn = ((S♮n)∖I )̌ instead of Sn = (S♮n)∖I (as before,
S is either T or M). In other words, instead of removing the interval I from the (rectangular)
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boundary of S♮n, we remove the complementary interval, i.e. the closure of ∂(S♮n) ∖ I. However,
in this case, we also change our convention on the braiding for the groupoid M2 by choosing its
opposite:

Convention 1.23 In this setting, we apply the construction of §1.2 taking G = M to be equal
to one of the braided monoidal groupoids (M+

2 )† or (M−
2 )† (depending on the case, orientable or

non-orientable), instead of the braided monoidal groupoids M+
2 or M−

2 . Recall from the beginning
of §1.1 that this simply consists in choosing the opposite convention for the braiding. This purely
arbitrary choice is motivated by the construction of short exact sequences; see Theorem 3.36. These
rely on computations explained in §3.3.1 that would not be satisfied defining these functors over
M+

2 and M−
2 ; see Remarks 3.32 and 3.37.

Then, for each ℓ ⩾ 1, the construction of §1.2.5 defines the vertical homological representation
functors Lv

(λ,ℓ)(Γ) : ⟨(M+
2 )†, (M+

2 )†⟩ → Z[Q(λ,ℓ)(T)]-Modtw and Lv
(λ,ℓ)(N ) : ⟨(M−

2 )†, (M−
2 )†⟩ →

Z[Q(λ,ℓ)(M)]-Modtw as well as their untwisted versions Lu,v
(λ,ℓ)(Γ) and Lu,v

(λ,ℓ)(N ). The properties of
Lemma 1.21 and Remark 1.22 are exactly the same for these vertical-type alternatives.

2. Module structure
The homological representations described above (see §1.2.4) are constructed from actions on

the twisted Borel-Moore homology of configuration spaces on surfaces. In this section, we study
the underlying module structure of these representations.

In §2.1 we prove a general criterion implying that the (possibly twisted) Borel-Moore homology
of configuration spaces on a given underlying space is isomorphic to the Borel-Moore homology
of configuration spaces on a subspace. Roughly, this works when the underlying space has a
metric and the subspace is a “skeleton” onto which it deformation retracts in a controlled, non-
expanding way. See Theorem 2.1 for the precise statement and Examples 2.3 for several examples
corresponding to the underlying modules of representations of surface braid groups, mapping class
groups, loop braid groups and related groups.

In §2.2 we study several applications of Theorem 2.1 in more detail, describing explicit free
generating sets for certain Borel-Moore homology modules. In §2.3 we then describe their “dual
bases” with respect to certain perfect pairings. These dual bases, together with some diagrammatic
reasoning, are used to prove some key lemmas needed in our arguments of §3.

In total, this gives us a detailed understanding of the underlying module structure of the
surface braid group and mapping class group representations that we consider. One may then
attempt to derive explicit formulas for the group action in these models. We shall not pursue
this here (beyond the qualitative diagrammatic arguments referred to above), since such explicit
formulas are not needed to prove our polynomiality results.

2.1. An isomorphism criterion for twisted Borel-Moore homology
The main goal of this section is to prove the following criterion for an inclusion of metric

spaces to induce isomorphisms on the (possibly twisted) Borel-Moore homology of their associated
configuration spaces. This generalises previously-known results described in Examples 2.3.

Theorem 2.1 Let M be a compact metric space with closed subspaces A ⊆ B ⊆ M , where M and
B are locally compact. Suppose that there exists a strong deformation retraction h of M onto B,
in other words a map h : [0, 1] ×M → M satisfying the following two conditions:

• h(t, x) = x whenever t = 0 or x ∈ B,
• h(1, x) ∈ B for all x ∈ M ,

such that moreover the following two additional conditions hold:
• h(t,−) is non-expanding for all t, i.e. d(x, y) ⩾ d(h(t, x), h(t, y)) for all x, y ∈ M ,
• h(t,−) is a topological self-embedding of M for all t < 1.

Then, for all k ∈ N and partitions λ ⊢ k, the inclusion of configuration spaces

Cλ(B ∖A) ↪−→ Cλ(M ∖A)

induces isomorphisms on Borel-Moore homology in all degrees and for all local coefficient systems
that extend to Cλ(M).
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The point of this theorem, for the present paper, is that the Borel-Moore homology of the
configuration space Cλ(M ∖A) is the underlying module of a representation that we are studying,
whereas the Borel-Moore homology of its subspace Cλ(B ∖A) is easily computable.

Remark 2.2 The condition that the local coefficient systems under consideration must extend
to the larger space Cλ(M) is automatically satisfied in all of the examples that we shall consider,
since in these examples the inclusion Cλ(M ∖ A) ↪→ Cλ(M) is a homotopy equivalence. Indeed,
this holds whenever M is a manifold and A ⊆ M is a subset of its boundary. Notice also that
the hypotheses on A are rather weak in Theorem 2.1: it is simply any closed subset of B; the
non-trivial hypothesis is the existence of a controlled deformation retraction of M onto B, without
reference to A. We will apply Theorem 2.1 in situations where M = S is a surface that deformation
retracts onto an embedded graph B = Γ ⊂ S.

Proof of Theorem 2.1. For t ∈ [0, 1], we write ht = h(t,−) : M → M and recall that h0 = id and
h1(M) = B. For ϵ > 0, we define

Cϵ :=
{

[c1, . . . , ck] ∈ Cλ(M) | d(ci, cj) < ϵ for some i ̸= j or d(ci, a) < ϵ for some a ∈ A
}
.

For each t ∈ [0, 1], every compact subspace of Cλ(ht(M) ∖ A) is disjoint from Cϵ for some ϵ > 0,
so we may write its Borel-Moore homology as the inverse limit

HBM
∗
(
Cλ(ht(M) ∖A); L

) ∼= lim
ϵ→0

H∗
(
Cλ(ht(M) ∖A), Cλ(ht(M) ∖A) ∩ Cϵ; L

)
for any local system L. In particular, it suffices to show that the inclusion of pairs

(Cλ(B ∖A), Cλ(B ∖A) ∩ Cϵ) ↪−→ (Cλ(M ∖A), Cλ(M ∖A) ∩ Cϵ) (2.1)

induces isomorphisms on twisted homology in all degrees for all local systems extending to Cλ(M),
for all ϵ > 0. This fits into a diagram of inclusions of pairs of spaces

(Cλ(B ∖A), Cλ(B ∖A) ∩ Cϵ) (Cλ(M ∖A), Cλ(M ∖A) ∩ Cϵ)

(Cλ(B), Cλ(B) ∩ Cϵ) (Cλ(M), Cλ(M) ∩ Cϵ).

(2.2)

The vertical inclusions in (2.2) induce isomorphisms on twisted homology in all degrees by the
excision theorem; see [Hat02, Th. 2.20] (recalling that excision holds also with local coefficients,
see [DK01, Th. 5.13] for example). Hence, abbreviating Ct := Cλ(ht(M)) and C := C0, it will
suffice to show that the inclusion of pairs (C1, C1 ∩Cϵ) ↪→ (C,Cϵ) induces isomorphisms on twisted
homology in all degrees, for all ϵ > 0.

Let us now fix ϵ > 0. The hypothesis that ht : M → M is a topological self-embedding for t < 1
implies that it induces well-defined maps of configuration spaces that define a strong deformation
retraction of C onto Ct for any t < 1. Moreover, the hypothesis that ht is non-expanding means
that these maps of configuration spaces preserve the subspace Cϵ, so we in fact have a strong
deformation retraction of the pair (C,Cϵ) onto the pair (Ct, Ct ∩ Cϵ) for any t < 1. On the other
hand, we cannot conclude the same statement for t = 1, since h1 : M → M is not assumed to
be an embedding (and in our key examples it will not be). In order to continue the deformation
retraction of configuration spaces, we first pass to a subspace: for any t < 1, we define

Čt :=
{

[c1, . . . , ck] ∈ Ct | h1(h−1
t (ci)) ̸= h1(h−1

t (cj)) for each i ̸= j
}
.

This additional condition precisely ensures that points do not collide if we continue applying the
deformation retraction ht to configurations until time t = 1. Thus there is a strong deformation
retraction of the pair (Čt, Čt ∩Cϵ) onto the pair (C1, C1 ∩Cϵ) for any t < 1. It therefore remains
to show that there exists some t < 1 (depending on ϵ) such that the inclusion

(Čt, Čt ∩ Cϵ) ↪−→ (Ct, Ct ∩ Cϵ)

induces isomorphisms on twisted homology in all degrees. By excision, it suffices to show that Čt

and Ct ∩ Cϵ form an open covering of Ct. It is clear that these are both open subspaces, so we
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just have to show that there exists some t < 1 such that Čt ∪ (Ct ∩Cϵ) = Ct, or equivalently such
that Ct ∖ Čt ⊆ Cϵ.

By continuity of h and compactness of M , there exists δ < 1 such that d(hδ(x), h1(x)) < ϵ/2
for all x ∈ M . By the argument so far, it suffices to show that Cδ∖Čδ ⊆ Cϵ. Let c = [c1, . . . , ck] be
a configuration in Cδ ∖ Čδ, in other words we have ci = hδ(xi) for some configuration [x1, . . . , xk]
in C = Cλ(M) and h1(xi) = h1(xj) for some i ̸= j. The distance from ci to cj is therefore at
most the sum of the distances from ci = hδ(xi) to h1(xi) and from h1(xi) = h1(xj) to hδ(xj) = cj .
These latter distances are both less than ϵ/2 by our choice of δ, so we have d(ci, cj) < ϵ and hence
c ∈ Cϵ. Thus we complete the excision argument in the previous paragraph with t = δ.

In summary, we have proved Theorem 2.1 by showing that, in the diagram

(Cλ(B ∖ A), Cλ(B ∖ A) ∩ Cϵ) (Cλ(M ∖ A), Cλ(M ∖ A) ∩ Cϵ)

(C1, C1 ∩ Cϵ) (Čt, Čt ∩ Cϵ) (Ct, Ct ∩ Cϵ) (C, Cϵ),

(∗) (∗)

(‡) (∗∗) (‡)

the arrows (∗) induce isomorphisms on twisted homology in all degrees (by excision), the arrows
(‡) are homotopy equivalences and for each ϵ > 0 there exists t ∈ (0, 1) such that the arrow (∗∗)
induces isomorphisms on twisted homology in all degrees (again by excision).

Examples 2.3 We describe several examples of nested subspaces A ⊆ B ⊆ M satisfying the
hypotheses of Theorem 2.1 and the corresponding inclusions of configuration spaces

Cλ(B ∖A) ↪−→ Cλ(M ∖A). (2.3)

• (Configurations on punctured discs.) Let us first consider the n-holed disc M = Σ0,n+1, let
A be the union of the n inner boundary components and let B be the union of A with n− 1
arcs connecting the consecutive components of A. With respect to an appropriate metric,
this satisfies the hypotheses of Theorem 2.1. Moreover, since A is part of the boundary of M ,
all local coefficient systems on Cλ(M ∖A) extend to Cλ(M). Thus Theorem 2.1 implies that
(2.3) induces isomorphisms on twisted Borel-Moore homology in all degrees. This special case
recovers [Big04, Lem. 3.1], which may also be deduced from the work of Kohno in [Koh86,
Th. 1] and [Koh87, Prop. 3.2]. In this setting, M ∖ A is the n-punctured 2-disc and B ∖ A
is a disjoint union of n− 1 open arcs.

• (Configurations on non-closed surfaces.) Generalising the previous point, we take M = S to
be any compact surface with non-empty boundary and B = Γ ⊆ S to be an embedded finite
graph onto which it deformation retracts. Choosing an appropriate metric, this satisfies the
hypotheses of Theorem 2.1. If we then take A to be any closed subset of Γ, we conclude that
the inclusion (2.3) induces isomorphisms on twisted Borel-Moore homology in all degrees (for
local systems on Cλ(S ∖ A) that extend to Cλ(S); this is automatic if A ⊆ Γ ∩ ∂S). In the
case S = Σg,1, this recovers [AK10, Lem. 3.3], [AP20, Th. 6.6] and [BPS21, Th. A(a)].

• (Higher dimensions.) Extending to higher dimensions, we may take M to be the manifold
Wg,1 = (Sn × Sn)♯g ∖ D̊2n, where ♯ denotes the connected sum. This deformation retracts
onto a subspace B ⊆ Wg,1 that is homeomorphic to ∨2gSn, with the basepoint of the wedge
sum corresponding to a point p in the boundary of Wg,1. Taking A = {p}, Theorem 2.1 then
implies that the twisted Borel-Moore homology of configurations in Wg,1 ∖ {p} is given by
the twisted Borel-Moore homology of configurations in disjoint unions of Euclidean spaces.

2.2. Free bases
The key setting for the rest of the paper will be the second point of Examples 2.3, which we

now consider in more detail. Let S be a connected, compact surface with one boundary component,
let Γ be the embedded graph pictured in Figure 2.1 and let A denote the set of vertices of Γ.

To apply Theorem 2.1, it will be convenient to modify these spaces a little in cases (a) and (b)
of Figure 2.1, where the vertices lie in the interior of S. In these cases, let S be the result of blowing
up each vertex of Γ to a boundary component (so that the total number of boundary components
of S is |A| + 1), let Γ be the result of replacing each vertex v of Γ with a circle (coinciding with the
corresponding new boundary component of S) subdivided into ν(v) vertices and ν(v) edges, where
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(a) The model for orientable surface braid groups. (b) The model for non-orientable surface braid groups.

(c) The model for orientable mapping class groups. (d) The model for non-orientable mapping class groups.

Figure 2.1 Four examples of the setting of Theorem 2.1 where S is a compact, connected surface with
one boundary component, Γ is the embedded graph (in green) and A is its set of vertices (blue).

ν(v) is the valence of v, and finally let A ⊂ Γ be the union of these circles (equivalently, the new
boundary components of S). We clearly have homeomorphisms S∖A ∼= S∖A and Γ∖A ∼= Γ∖A.
In cases (c) and (d) of Figure 2.1, we simply take S = S, Γ = Γ and A = A.

By Theorem 2.1, the inclusion

Cλ(Γ ∖A) ∼= Cλ(Γ ∖A) ↪−→ Cλ(S ∖A) ∼= Cλ(S ∖A) (2.4)

induces isomorphisms on Borel-Moore homology for all local coefficient systems on Cλ(S∖A) that
extend to Cλ(S). But A is contained in the boundary of S (the purpose of replacing S,Γ, A with
S,Γ, A was precisely to ensure this) so, by Remark 2.2, the inclusion (2.4) induces isomorphisms
on Borel-Moore homology with all local coefficient systems.

The twisted Borel-Moore homology of Cλ(S∖A) may therefore be computed from the twisted
Borel-Moore homology of Cλ(Γ∖A), where we may now consider Γ as an abstract graph (forgetting
its embedding into S) with vertex set A, as depicted in Figure 2.2. Since the complement Γ ∖ A
is simply the disjoint union of the (open) edges of the graph Γ, its configuration space Cλ(Γ ∖A)
is a disjoint union of k-dimensional open simplices, one for each choice of:

• the number of points that lie on each edge of Γ;
• for each edge of Γ, an ordered list of blocks of λ, prescribing which blocks of the partition

the configuration points that lie on this edge must belong to, as we pass from left to right
along the edge (with respect to an arbitrary orientation of the edge, chosen once and for all).

We summarise this combinatorial information as follows.

Notation 2.4 For a set X, write M(X) for the free monoid of words on X. For a graph Γ and an
ordered partition λ = (λ1, . . . , λr) ⊢ k, denote by E(Γ) the set of edges of Γ and define Wλ(Γ) to
be the set of all functions w : E(Γ) → M({1, . . . , r}) such that each i = 1, . . . , r appears precisely λi

times as a letter in the collection of words {w(e) | e ∈ E(Γ)} (thus the total length of these words
is k). For each word w(e), we denote by |w(e)| its length.

In this notation, the labelled graphs depicted in Figure 2.2 correspond to the different com-
ponents of the configuration space Cλ(Γ ∖A) indexed by Wλ(Γ).

Example 2.5 For example, if λ = (2, 1, 3, 1) and the graph Γ has four edges enumerated as
E(Γ) = {e1, e2, e3, e4}, then the assignment (w(e1), w(e2), w(e3), w(e4)) = (34, 12,∅, 313) specifies
an element w ∈ Wλ(Γ), where ∅ denotes the empty word.

We summarise this discussion in the following result.
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(a) The graph for orientable surface braid groups. (b) The graph for non-orientable surface braid groups.

(c) The graph for orientable mapping class groups. (d) The graph for non-orientable mapping class groups.

Figure 2.2 The graphs from Figure 2.1, considered now as abstract graphs and equipped with labels,
viewed as generators of the Borel-Moore homology of Cλ(Γ∖A); equivalently, by Proposition 2.6, the
Borel-Moore homology of Cλ(S ∖ A).

Proposition 2.6 Let S be a connected, compact surface with one boundary component, let A be
either a finite subset of its interior or a single point on its boundary and let λ be a partition of a
positive integer k. Let Γ be the abstract graph depicted in Figure 2.2. Then there is a proper map⊔

w∈Wλ(Γ)

∆̊k −→ Cλ(S ∖A), (2.5)

where ∆̊k denotes the k-dimensional open simplex, that induces isomorphisms on Borel-Moore
homology in all degrees and with coefficients in any local system L on Cλ(S ∖ A) defined over a
ring R. Thus the Borel-Moore homology HBM

∗ (Cλ(S ∖ A); L) is concentrated in degree k and the
R-module

HBM
k (Cλ(S ∖A); L) (2.6)

decomposes as a direct sum of |Wλ(Γ)| copies of the fibre of L.

Notation 2.7 It will be convenient later to fix some standard notation for the different parts of the
graphs Γ appearing in Proposition 2.6 and depicted in Figure 2.2. In cases (a) and (b), assuming
that there are n punctures, i.e. |A| = n, let us write In for the linear (or “tail”) part of the graph,
which is a linear graph with n vertices and n − 1 edges. When the surface S is orientable (cases
(a) and (c)), we write WΣ

g for the “wedge” part of the graph, which is a graph with one vertex and
2g edges, where g is the genus of S. When the surface S is non-orientable (cases (b) and (d)), we
write instead WN

h for the “wedge” part of the graph, which is a graph with one vertex and h edges,
where h is the non-orientable genus of S. The elements of Wλ(Γ) indexing the decomposition of
(2.6) will typically be denoted by

(w1, . . . , wn−1, [wn, wn+1], . . . , [wn+2g−2, wn+2g−1]) (2.7)

when S = Σg,1 and by
(w1, . . . , wn−1, [wn], . . . , [wn+h−1]) (2.8)

when S = Nh,1. The first n − 1 terms are the values of w on In and the remaining 2g (resp. h)
terms in square brackets are the values of w on WΣ

g (resp. WN
h ).

Recall from Definition 1.14 the notion of the dual surface of a punctured surface, which we
will apply to the surfaces depicted in Figure 2.1. In cases (a) and (b), the blow-up S is obtained
from the punctured surface S ∖A by blowing up each (interior) puncture in A to a new boundary
component and the dual surface Š is given by removing the original boundary component ∂S from
S but keeping the |A| new boundary components. In cases (c) and (d), the blow-up S simply
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(a) Dual basis for orientable surface braid groups. (b) Dual basis for non-orientable surface braid groups.

(c) Dual basis for orientable mapping class groups. (d) Dual basis for non-orientable mapping class groups.

Figure 2.3 A linearly independent set of elements of Hk(Cλ(S∖A), ∂; L⊗O) whose span is isomorphic
to the dual of HBM

k (Cλ(S ∖ A); L) via the perfect pairing (2.10). See Definition 2.11.

replaces the single boundary puncture A in ∂S with a closed interval and the dual surface Š is the
union of the interior of S with this closed interval in the boundary of S. We may also take the
dual of the graph Γ:

Notation 2.8 We denote by Γ̌ the embedded dual graph of Γ as illustrated in Figure 2.3. (For
the purposes of this description of Γ̌, each collection of parallel green arcs in Figure 2.3 labelled
by wi is to be considered as a single edge; the collections of parallel arcs will become relevant only
later in §2.3, for Definition 2.11.) Precisely, Γ̌ is an embedded disjoint union of edges, with one
edge e′ for each edge e of Γ, intersecting e transversely exactly once and disjoint from the other
edges of Γ, and with its endpoints on the boundary of S.

The twisted Borel-Moore homology HBM
∗ (Cλ(Š); L), considered in §1.2.5 to define vertical-

type alternatives, has an explicit description as a module similar to that of HBM
∗ (Cλ(S∖A); L) in

Proposition 2.6. This is another direct application of Theorem 2.1, this time applied to the triple
(M ′, B′, A′) where we set M ′ = S, A′ = ∂(S ∖ A) (so that M ′ ∖ A′ = Š) and B′ = A′ ∪ Γ̌ =
∂(S ∖A) ∪ Γ̌. We record this as follows:

Proposition 2.9 Let S and A be as in Proposition 2.6 and define Š as in Definition 1.14. Let λ
be a partition of a positive integer k. Then the statement of Proposition 2.6 holds verbatim with
S ∖A replaced with Š, and the graph Γ replaced with its dual Γ̌.

Remark 2.10 The embedded graphs Γ and Γ̌ are dual in the sense that each edge of Γ intersects
exactly one edge of Γ̌ and vice versa. This determines a bijection E(Γ) ∼= E(Γ̌), which induces
a bijection Wλ(Γ) ∼= Wλ(Γ̌) (see Notation 2.4) and hence, by Propositions 2.6 and 2.9, a module
isomorphism between the twisted Borel-Moore homology of Cλ(S∖A) and the twisted Borel-Moore
homology of Cλ(Š).

2.3. Dual bases
We now describe, using Poincaré-Lefschetz duality, a perfect pairing between the R-module

(2.6) = HBM
k (Cλ(S ∖ A); L) and another naturally-defined homology R-module, for which we

describe a “dual” basis. In order to apply Poincaré-Lefschetz duality, we consider the orientation
local system O of the manifold Cλ(S∖A); in particular, when S is orientable, O is the trivial local
system Z.

Let us now consider the relative homology group Hk(Cλ(S ∖ A), ∂; L ⊗ O), where ∂ is an
abbreviation of ∂Cλ(S ∖ A), the boundary of the topological manifold Cλ(S ∖ A), which consists
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of all configurations that non-trivially intersect the boundary of S ∖ A. In cases (c) and (d) of
Figure 2.1 (i.e. for the mapping class group representations), we implicitly make a small modifi-
cation here: we replace A, which is a single point in ∂S, with a small closed interval in ∂S and
we correspondingly replace S ∖ A with the closure in S of the complement of this small closed
interval. In other words, similarly to the modification that we made in cases (a) and (b) in §2.2,
we are blowing up the (unique) vertex of the graph Γ on ∂S.

For this subsection, we assume that L is a rank-one local system; i.e. its fibre over each point
is a free module of rank one over the ground ring R. In this case, the direct sum decomposition
of Proposition 2.6 corresponds to a free basis for HBM

k (Cλ(S ∖A); L) over R. There is a naturally
corresponding set of elements of the relative homology group Hk(Cλ(S ∖ A), ∂; L ⊗ O), depicted
in Figure 2.3, indexed by the set Wλ(Γ̌) (see Notations 2.4 and 2.8).

Definition 2.11 Consider one of the labelled graphs of Figure 2.3, whose labels specify an element
w ∈ Wλ(Γ); in particular, each collection of parallel arcs is labelled by a word wi in the monoid
M({1, . . . , r}). This first of all indicates that the number of parallel arcs in the collection is |wi|, and
each individual arc in the collection inherits a label which is the corresponding letter (in {1, . . . , r})
of this word (written in the direction specified by the small perpendicular arrows in Figure 2.3).
The relative homology class in Hk(Cλ(S ∖ A), ∂; L ⊗ O) depicted by this figure is represented by
the relative cycle given by the subspace of configurations where exactly one point lies on each arc
and this point belongs to the block of λ specified by the label of the arc.

Convention 2.12 The bijection Wλ(Γ) ∼= Wλ(Γ̌) of Remark 2.10 gives a bijection between (the
indexing set of) a basis for the free R-module HBM

k (Cλ(S∖A); L) (by Proposition 2.6) and the set
of elements of Hk(Cλ(S ∖A), ∂; L ⊗ O) described in Definition 2.11. We will henceforth implicitly
identify these two indexing sets via this bijection.

As explained in [AP20, Th. A] (in the orientable setting, which generalises verbatim to the
non-orientable setting in the presence of the orientation local system O), the relative cap product
and Poincaré-Lefschetz duality induce a pairing

HBM
k (Cλ(S ∖A); L) ⊗R Hk(Cλ(S ∖A), ∂; L ⊗ O) −→ R (2.9)

whose evaluation on a basis element of HBM
k (Cλ(S ∖ A); L) (from Proposition 2.6) together with

an element of Definition 2.11 is equal to 1 if the two elements are indexed by the same w ∈ Wλ(Γ)
and equal to 0 otherwise. It follows that the submodule spanned by the elements of Definition 2.11
is freely spanned by them (i.e. they are linearly independent), and the pairing (2.9) restricts to a
perfect pairing when we restrict to this submodule of the right-hand factor of its domain.

Notation 2.13 We write H∂
k (Cλ(S∖A); L ⊗ O) for the R-submodule of Hk(Cλ(S∖A), ∂; L ⊗ O)

(freely) spanned by the elements defined in Definition 2.11. In general, for a module W over a ring
R, we denote by W∨ its linear dual R-module HomR(W,R).

With this notation, the discussion above may be summarised as follows.

Corollary 2.14 Let S be a connected, compact, orientable surface with one boundary component,
let A be either a finite subset of its interior or a closed interval in its boundary and let λ be a
partition of a positive integer k. Choose any rank-one local system L on Cλ(S ∖A) defined over a
ring R. Then the R-module H∂

k (Cλ(S ∖ A); L ⊗ O) is freely generated over R by the elements of
Definition 2.11, indexed by Wλ(Γ). Moreover, there is a perfect pairing

HBM
k (Cλ(S ∖A); L) ⊗R H∂

k (Cλ(S ∖A); L ⊗ O) −→ R, (2.10)

given by the relative cap product and Poincaré-Lefschetz duality, whose matrix with respect to the
two bases that we have described is the identity matrix. In particular, we have

H∂
k (Cλ(S ∖A); L ⊗ O) ∼=

(
HBM

k (Cλ(S ∖A); L)
)∨
. (2.11)

The perfect pairing (2.10) and the dual basis described in Definition 2.11 (and illustrated in
Figure 2.3) will be used in some diagrammatic proofs in the next section, including in the proof of
the “Cloud lemma” (see Lemma 3.15).
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Relation to the vertical-type alternative. The dual of the representation HBM
k (Cλ(S∖A); L)

and its vertical-type alternative HBM
k (Cλ(Š); L) are closely related via the isomorphism (2.11), as

we now explain. For the purpose of this paragraph, we shall abbreviate these representations as
V := HBM

k (Cλ(S ∖ A); L) and V̌ := HBM
k (Cλ(Š); L). Applying Corollary 2.14 and its analogue

when S∖A is replaced by Š (which is also part of [AP20, Thm. A]), it follows from [AP20, Thm. B]
that we have embeddings of representations

V ∨ ↪−→ V̌ and (V̌ )∨ ↪−→ V (2.12)

under the mild assumption that the local coefficient system L is u-homogeneous for u ∈ R× such
that the quantum factorials [n]u! are non-zero-divisors for all n ⩾ 1; see [AP20, Def. 2.14]. In this
setting, if R is an integral domain, we have isomorphisms

V ∨ ⊗ F(R) ∼= V̌ ⊗ F(R) and (V̌ )∨ ⊗ F(R) ∼= V ⊗ F(R) (2.13)

after tensoring (2.12) with the field of fractions F(R).

Example 2.15 This applies in particular to the representations V = LB((k),2)(n) and their
vertical-type alternatives LBv

((k),2)(n) described in §1.2.5, where the ground ring R is Z[q±1] if
k = 1 and Z[t±1, q±1] if k ⩾ 2. In this example, the local coefficient system L is 1-homogeneous if
k = 1 and t-homogeneous if k ⩾ 2. We therefore have embeddings

LB((k),2)(n)∨ ↪−→ LBv
((k),2)(n) and LBv

((k),2)(n)∨ ↪−→ LB((k),2)(n)

that become isomorphisms after tensoring with the field of rational functions F(R) = Q(q) or Q(t, q).
The representations LBv

((k),2)(n) are part of a functor LBv
((k),2) defined on ⟨β,β⟩, described in

§1.2.5. The dual representations LB((k),2)(n)∨ may similarly be extended to a functor defined on
⟨β,β⟩ (see the end of §4.2.2), so the left-hand embedding above may be thought of as an embed-
ding of representations of the category ⟨β,β⟩ (that becomes an isomorphism after composing with
− ⊗ F(R) : R-Mod → F(R)-Mod). One may similarly upgrade the right-hand embedding to an
embedding of representations of ⟨β,β⟩.

2.4. Tethers
In the case when the local system L has rank one (i.e. its fibres are free modules of rank

one over the ground ring), the homology module HBM
k (Cλ(S ∖ A); L) is free of rank |Wλ(Γ)|,

by Proposition 2.6. However, the map (2.5) does not quite specify a free generating set: each
open simplex ∆̊k in its domain has a fundamental class in Borel-Moore homology, but in order to
push it forward to an element of HBM

k (Cλ(S ∖ A); L), we need to choose a lift of the proper map
∆̊k → Cλ(S∖A) to a map of local systems (where ∆̊k is equipped with a trivial local system). To
finish this section, we explain how to specify this choice via tethers.

Definition 2.16 Let f : X → Y be a map of spaces and choose x0 ∈ X and y0 ∈ Y . A tether is a
path in Y , up to endpoint-preserving homotopy, from y0 to f(x0).

Lemma 2.17 Let X be a simply-connected space and let Y be a path-connected space admitting
a universal cover, both equipped with basepoints x0 ∈ X and y0 ∈ Y . Let f : X → Y be a map,
not necessarily preserving basepoints, and let ξ be a bundle of R-modules over Y . Denote by V the
fibre of ξ over y0 and denote by τ the trivial bundle of R-modules over X with fibre V .

• Each morphism T0 : y0 → f(x0) in the fundamental groupoid Π1(Y ) determines a lift of f to
a bundle map τ → ξ.

• The two bundle maps τ → ξ determined by two morphisms T0,T
′
0 : y0 → f(x0) differ by the

automorphism of the trivial bundle τ given by the monodromy ξ(T−1
0 ◦ T′

0) ∈ AutR(V ).

Proof. By unique path lifting, bundles of R-modules over X (resp. Y ) are in one-to-one corre-
spondence with functors Π1(X) → R-Mod (resp. Π1(Y ) → R-Mod). Under this identification, a
bundle map τ → ξ lifting f corresponds (uniquely) to a natural transformation T : τ → ξ ◦ Π1(f).
Since τ is the trivial functor at V ∈ R-Mod, this is determined by specifying, for each x ∈ X,
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a homomorphism Tx : V → ξ(f(x)). Since X is simply-connected, there is a unique morphism
x0 → x in Π1(X), which we denote by γx0,x. We then define

Tx := ξ
(
Π1(f)(γx0,x) ◦ T0

)
: V = ξ(y0) −→ ξ(f(x)).

It is straightforward to check that this defines a natural transformation T : τ → ξ◦Π1(f), using the
fact that Π1(X) is an indiscrete groupoid (i.e. it has a unique morphism between any two objects).

Replacing T0 with T′
0 in the construction of the bundle map (natural transformation) has

the effect of precomposing with the automorphism ξ(T−1
0 ◦ T′

0) of V , which we may view as an
automorphism of the trivial bundle τ .

Remark 2.18 In the terminology of Definition 2.16, the first point of Lemma 2.17 says that, if
X is simply-connected and Y is path-connected admitting a universal cover, then for any bundle
ξ : E → Y of R-modules, a choice of tether determines a lift of f : X → Y to a bundle map of the
form X × E|y0 → E.

Construction 2.19 In the setting of Proposition 2.6, we may consider the restriction of the map
(2.5) to any open simplex of its domain, which we denote by ηw : ∆̊k → Cλ(S∖A) for w ∈ Wλ(Γ).
Let us choose, once and for all, a base configuration c0 ∈ Cλ(S ∖ A) contained in the boundary
∂(S ∖ A). We take the barycentre b0 ∈ ∆̊k to be the basepoint of the open simplex. Finally,
we choose a tether for ηw (with respect to b0 and c0), namely a path Tw in Cλ(S ∖ A), up to
endpoint-preserving homotopy, from c0 to the image ηw(b0) of the barycentre of the open simplex.
By the first point of Lemma 2.17 (and Remark 2.18), this determines a lift of ηw to a map of local
systems ∆̊k × V → L, where V = L|c0 denotes the fibre of L over c0. Since ηw is a proper map,
we obtain an induced map on twisted Borel-Moore homology

(ηw,Tw)∗ : HBM
k (∆̊k;V ) −→ HBM

k (Cλ(S ∖A); L). (2.14)

In particular, if L is a local system of rank one, we may identify V with the ground ring R and
the left-hand side of (2.14) has a canonical generator given by the fundamental class [∆̊k]. In this
setting, we may define

ew := (ηw,Tw)∗([∆̊k]) ∈ HBM
k (Cλ(S ∖A); L). (2.15)

By Proposition 2.6, the set {ew | w ∈ Wλ(Γ)} is a free basis for HBM
k (Cλ(S ∖A); L) over R.

Notation 2.20 For brevity, we will often denote this homology class simply by w instead of ew,
whenever this would not lead to confusion.

Remark 2.21 To be explicit, the choices involved in Construction 2.19 are the base configuration
c0 ∈ Cλ(S∖A), the identification L|c0

∼= R and one tether Tw for each w ∈ Wλ(Γ). We will specify
these choices later, when they are needed to do explicit computations; see for example Figures 3.2,
3.5 and 3.6 for illustrations of tethers Tw.

Lemma 2.22 In the setting of Construction 2.19 with L a local system of rank one, changing the
choice of tether Tw has the effect of multiplying the homology class (2.15) by a unit of the ground
ring R. More precisely, for two tethers Tw and T′

w, we have

(ηw,T
′
w)∗([∆̊k]) = µ(T′

w.T̄w)(ηw,Tw)∗([∆̊k]),

where T̄w denotes the reverse of the path Tw, so that T′
w.T̄w is an element of π1(Cλ(S∖A), c0), and

µ : π1(Cλ(S ∖A), c0) → R× denotes the monodromy of L at c0, using the identification L|c0
∼= R.

Proof. By the second point of Lemma 2.17, the two maps of local systems ∆̊k × V → L differ
by precomposition by the automorphism ξ(T−1

w ◦ T′
w) ∈ AutR(V ). Here, ξ is the local system L

viewed as a functor out of the fundamental groupoid, so its restriction to the automorphism group
of y0 = c0 is the monodromy action µ. We may therefore rewrite this automorphism as µ(T′

w.T̄w),
where we have also switched to the usual notation convention for composition of paths, which
goes from left to right and where ¯ denotes the reverse of a path. Since we have V = R, this
automorphism lies in AutR(R) = R× and it therefore acts via the canonical action of R× on the
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R-module of maps of local systems from ∆̊k ×R to L. Hence the two maps of local systems differ
by multiplication by the scalar µ(T′

w.T̄w) ∈ R×. It follows that the same is true for the induced
maps (2.14) on twisted Borel-Moore homology and thus in particular for the images (2.15) of [∆̊k]
under these maps.

Construction 2.23 One may similarly specify a free generating set of the dual homology module
H∂

k (Cλ(S ∖ A); L ⊗ O) (see Corollary 2.14). In this case, rather than a proper map from an
open k-simplex, each w ∈ Wλ(Γ) indexes a map from a closed k-cube taking its boundary to the
boundary of the manifold Cλ(S ∖ A). The construction is parallel to that of Construction 2.19,
using the same base configuration c0 ∈ Cλ(S ∖A) as before, an identification (L ⊗ O)|c0

∼= R and
one tether Tw for each w ∈ Wλ(Γ). Since we have already chosen an identification L|c0

∼= R (see
Remark 2.21), an identification (L ⊗ O)|c0

∼= R is determined by an identification O|c0
∼= R, in

other words a local orientation of the manifold Cλ(S ∖A) at c0.

3. Short exact sequences
In this section, we construct the fundamental short exact sequences for homological repre-

sentation functors of Theorem A. We start by recalling the categorical background of these short
exact sequences in §3.1. Then we construct the short exact sequences for the functors of surface
braid groups in §3.2, and in §3.3 for those of mapping class groups of surfaces. Throughout §3, we
consider homological representation functors indexed by an ordered partition λ = (λ1, . . . , λr) ⊢ k
of an integer k ⩾ 1 and by the depth ℓ ⩾ 1 of a lower central series.

3.1. Background and preliminaries
This section recollects the key categorical tools that define the setting in which we unearth

the short exact sequences of homological representation functors of §3.2 and §3.3. We also prepare
the work of these sections with an important foreword in §3.1.2.

3.1.1. Short exact sequences induced from the categorical framework

We recollect here the notions and first properties of translation, difference and evanescence
functors, which give rise to the key natural short exact sequences that we study for homological
representation functors in §3.2 and §3.3. The following definitions and results extend verbatim
to the present slightly larger framework from the previous literature on this topic; see [DV19],
[Sou19, §3] and [Sou22, §4] for instance. The various proofs are straightforward generalisations of
this previous work. Hence the content of §3.1.1 is just stated, without detailed justification, and
we refer the reader to these sources for a comprehensive introduction to the following material.

For the remainder of §3.1, we fix an abelian category A, a strict left-module groupoid (M, ♮)
over a braided strict monoidal groupoid (G, ♮, 0), such that (G, ♮, 0) has no zero divisors and that
AutG(0) = {id0}. We also assume that M and G are both small and skeletal, have the same set of
objects identified with the non-negative integers N with the standard notation n to denote these
objects as in §1.2.1, and that both the monoidal and module structures ♮ are given on objects by
addition. In particular, this is consistent with the fact that 0 is the unit for the monoidal structure
of G. One quickly checks that all of the examples of M and G defined in §1.3 satisfy all of these
assumptions.

For an object n of G, let τn be the endofunctor of the functor category Fct(⟨G,M⟩,A) defined
by τn(F ) := F (n♮−), called the translation functor. Let in : Id → τn be the natural transforma-
tion of Fct(⟨G,M⟩,A) defined by precomposition with the morphisms [n, idn♮m] : m → n♮m for each
m ∈ Obj(M). We define δn := coker(in), called the difference functor, and κn := ker(in), called the
evanescence functor; the associated canonical natural inclusion κn ↪→ Id and natural projection
τn ↠ δn are denoted by Ωn and ∆n respectively. We also denote by τd

n and δd
n the d-fold itera-

tions τn · · · τnτn and δn · · · δnδn respectively. The translation functor τd
n is by definition naturally

isomorphic to τdn.
The translation functor τn is exact and induces the following exact sequence of endofunctors

of Fct(⟨G,M⟩,A):
0 −→ κn

Ωn−→ Id in−→ τn
∆n−→ δn −→ 0. (3.1)
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Moreover, for a short exact sequence 0 → F → G → H → 0 in the category Fct(⟨G,M⟩,A), there
is a natural exact sequence defined from the snake lemma:

0 −→ κnF −→ κnG −→ κnH −→ δnF −→ δnG −→ δnH −→ 0. (3.2)

Finally, for n, m ∈ Obj(G), τn and τm commute up to natural isomorphism coming from the braiding
and they commute with limits and colimits; δn and δm commute up to natural isomorphism (induced
by the braiding) and they commute with colimits; κn and κm commute up to natural isomorphism
(induced by the braiding) and they commute with limits; and τn commute with the functors δm
and κm up to natural isomorphism.

3.1.2. Preliminaries for the homological representation functors

Throughout §3.1.2, we consider any one of the homological representation functors of §1.3.
Following Notation 1.10, we denote it by L⋆

(λ,ℓ), with Z[Q⋆
(λ,ℓ)] the ground ring of the target module

category, where ⋆ either stands for the blank space or ⋆ = u.

Remark 3.1 The short exact sequences that we exhibit in §3.2–§3.3 are applications of the exact
sequence (3.1), with n = 1, to each homological representation functor of §1.3. With a little more
work, one could deduce analogous (though slightly more complex) results from (3.1) for any object
n. However, only the case n = 1 will be needed in §4 to prove our polynomiality results, so we
shall not pursue this generalisation here.

Subpartitions. Our descriptions of the difference functor δ1L
⋆
(λ,ℓ) in §3.2–§3.3 make key use of

some appropriate partitions of k − 1 obtained from λ ⊢ k.

Notation 3.2 Let k, k′ ⩾ 1 be integers such that k ⩾ k′. For an ordered partition λ =
(λ1, . . . , λr) ⊢ k, we denote by {λ− k′} the set of ordered partitions(λ1 − λ′

1, . . . , λr − λ′
r)
∣∣ 0 ⩽ λ′

i ⩽ λi such that
∑

1⩽l⩽r

λ′
l = k′

 .

When k′ = 1, we denote by λ[i] the element (λ1, . . . , λi − 1, . . . , λr) of {λ− 1}, for each 1 ⩽ i ⩽ r
such that λi ⩾ 1.

When k′ = 2, we denote by λ[i, j] the element (λ1, . . . , λi − 1, . . . , λj − 1, . . . , λr) of {λ − 2},
for each 1 ⩽ i < j ⩽ r such that λi ⩾ 1 and λj ⩾ 1. We similarly denote by λ[i, i] the element
(λ1, . . . , λi − 2, . . . , λr) of {λ− 2}, for each 1 ⩽ i ⩽ r such that λi ⩾ 2.

For partitions λ = (λ1, . . . , λr) ⊢ k and λ′ = (λ′
1, . . . , λ

′
s) ⊢ k′, we write λ′ ≺ λ if for each

1 ⩽ i ⩽ s we have λ′
i ⩽ λji for 1 ⩽ j1 < · · · < js ⩽ r. This is a partial ordering on tuples of

positive integers.

Furthermore, we deal with partitions where some blocks may be null as follows.

Notation 3.3 Let υ = (υ1, . . . , υr) ⊢ h with h ⩾ 0 be a partition such that 0 ⩽ υl ⩽ h for all
1 ⩽ l ⩽ r. We denote by υ the partition of h obtained from υ by removing the 0-blocks. Then, we
always identify L⋆

(υ,ℓ) with L⋆
(υ,ℓ) since these functors are obviously isomorphic.

Twisted functors. Let us now consider a homological representation functor L⋆
(λ,ℓ) = L(λ,ℓ) that

is twisted, i.e. where L(λ,ℓ) ̸= Lu
(λ,ℓ) has a category of twisted modules Z[Q(λ,ℓ)]-Modtw as its target;

see Definition 1.8. (Recall that we sometimes have L(λ,ℓ) = Lu
(λ,ℓ), e.g. if ℓ ⩽ 2; see Lemma 1.13.)

The problem arising in this setting is that the category Z[Q(λ,ℓ)]-Modtw is not abelian (because it
lacks a null object), while this is a necessary condition of the categorical framework to introduce
the exact sequences of §3.1.1 and later to define polynomiality in §4.1. However, this subtlety does
not impact the core ideas we deal with, and we solve this minor issue by adopting the following
convention.

Convention 3.4 Throughout §3, when we consider a twisted homological representation functor
L(λ,ℓ), we always postcompose it by the forgetful functor Z[Q(λ,ℓ)]-Modtw → Z-Mod as in (1.10).
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A fortiori, the target category of L⋆
(λ,ℓ) is either Z-Mod if L⋆

(λ,ℓ) is twisted, and it is Z[Q(λ,ℓ)]-Mod
otherwise. Following Notation 1.10, we denote by Z[Q⋆

(λ,ℓ)]-Mod• the target category of L⋆
(λ,ℓ)

under this convention.

Remark 3.5 For the sake of simplicity, we do not fully detail the target categories of the functors
of the short exact sequences of Theorems 3.17, 3.24 and 3.35. We however record here that this
target is of the form Z[Q(λ,ℓ)]-Mod if ℓ ⩽ 2 (see Lemma 1.13), Z[Qu

(λ,ℓ)]-Mod) if ℓ ⩾ 3 and ⋆ = u,
and Z-Mod if ℓ ⩾ 3 and ⋆ is the blank space.

Change of rings operations. Finally, we explain some key manipulations of the transformation
groups associated to homological representation functors. Let R be an associative unital ring. For
a category C and a ring homomorphism f : Z[Q] → R, the change of rings operation on a functor
F : C → Z[Q]-Mod∗ consists in composing with the induced module functor f! : Z[Q]-Mod∗ →
R-Mod∗, also known as the tensor product functor R ⊗f −, where ∗ either stands for the blank
space or ∗ = tw. A key use of the change of rings operations is the following natural modification
of the ground rings of homological representation functors with respect to partitions.

We consider partitions λ = (λ1, . . . , λr) ⊢ k and λ′ = (λ′
1, . . . , λ

′
r) ⊢ k′ such that λ′ ≺ λ

(see Notation 3.2). In the notation of §1.2.1, for each 1 ⩽ i ⩽ r such that λ′
i < λi, there is

an evident analogue of the short exact sequence (1.8) with Gλ′
i
,n as quotient and G(λi−λ′

i
,λ′

i
),n

as the middle term. The section s(λi−λ′
i
,λ′

i
),n of this short exact sequence provides an injection

Gλ′
i
,n ↪→ G(λi−λ′

i
,λ′

i
),n. Composing this with the canonical injection G(λi−λ′

i
,λ′

i
),n ↪→ Gλi,n, we

obtain an injection Gλ′
i
,n ↪→ Gλi,n. Applying this procedure for each block, we obtain a canonical

injection Gλ′,n ↪→ Gλ,n. Now, for some fixed ℓ ⩾ 1, we consider the transformation groups Q⋆
(λ,ℓ)

and Q⋆
(λ′,ℓ) associated to homological representation functors L⋆

(λ,ℓ) and L⋆
(λ′,ℓ) respectively.

Lemma 3.6 The canonical injection Gλ′,n ↪→ Gλ,n induces a well-defined group homomorphism
Q(λ′→λ,ℓ) : Q⋆

(λ′,ℓ) → Q⋆
(λ,ℓ). This homomorphism also makes the following square commute (where

we temporarily shorten the notation Bλ1,...,λr (Sn) to Bλ(Sn)), where the top horizontal arrow is
the stabilisation map that adds trivial strands to a braid:

Bλ′(Sn) Bλ(Sn)

Q(λ′,ℓ) Q(λ,ℓ).

ϕ(λ′,ℓ) ϕ(λ,ℓ)

Q(λ′→λ,ℓ)

(3.3)

Proof. The canonical injection Gλ′,n ↪→ Gλ,n induces the following commutative triangle:

Gλ′,n/Γℓ Gn/Γℓ

Gλ,n/Γℓ.

Taking kernels and the colimit as n → ∞, we uniquely define the morphism Q(λ′→λ,ℓ).
The stabilisation map Bλ′(Sn) → Bλ(Sn) along the top of (3.3) is the restriction (along the

left-hand map of (1.8)) of the canonical injection Gλ′,n ↪→ Gλ,n. Instead of quotienting by Γℓ

and then passing to kernels, we may equivalently (by the universal property of kernels) pass to
the kernels first (to obtain the stabilisation map at the top of the diagram) and then pass to the
quotients (to obtain Q(λ′→λ,ℓ) at the bottom of the diagram).

In §3.2–§3.3, we will apply a change of rings operation using morphisms of the type Q(λ′→λ,ℓ)
and use the following property:

Lemma 3.7 The change of rings operation (Z[Q(λ′→λ,ℓ)])! : Z[Q⋆
(λ′,ℓ)]-Mod∗ → Z[Q⋆

(λ,ℓ)]-Mod∗

gives L⋆
(λ′,ℓ) the same ground ring as L⋆

(λ,ℓ). In the case when ∗ = tw, it also gives L⋆
(λ′,ℓ) the same

action of each group Gn on Z[Q⋆
(λ′,ℓ)] as L⋆

(λ,ℓ).
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Hence, the change of rings operation (Z[Q(λ′→λ,ℓ)])! allows us to canonically switch the module
structure of L⋆

(λ′,ℓ) from Z[Q⋆
(λ′,ℓ)] to Z[Q⋆

(λ,ℓ)], as well as the potential twisted structure, i.e. actions
of the groups Gn on these modules. In particular, we use this type of operation to identify L⋆

(λ′,ℓ)
as a summand of the difference functor δ1L

⋆
(λ,ℓ) in §3.2–§3.3. This change of ground ring map is

the identity in many situations and, regardless, it does not impact the key underlying structures
of L⋆

(λ′,ℓ) for our work. Because these subtleties are minor observations and do not affect the key
points of the reasoning, we choose to use the following conventions to simplify the notation:

Convention 3.8 Throughout §3.2–§3.3, some change of ground ring operations (Z[Q(λ′→λ,ℓ)])!
must sometimes be applied in order to properly identify the functor L⋆

(λ′,ℓ) as a summand of
δ1L

⋆
(λ,ℓ). We note here that this change of rings operation is non-zero, i.e. it does not factor

through the zero module. However, we generally keep the notation L⋆
(λ′,ℓ) for this modified functor

for the sake of simplicity and to avoid overloading the notation, whenever these change of rings
operations are clear from the context.

The following lemma will be the key point justifying that a change of rings operation does not
impact the results of §3.2–§3.3; see Corollary 3.10.

Lemma 3.9 Let Q be a group, R a ring and f : Z[Q] → R a ring homomorphism. We consider
a functor F : ⟨G,M⟩ → Z[Q]-Mod such that κ1F = 0 and so that δ1F (n) is a free Z[Q]-module
for each n ∈ Obj(M). Then the exact sequence (3.1) applied to the functor f!F induces the short
exact sequence:

0 −→ f!F −→ τ1(f!F ) −→ δ1(f!F ) −→ 0. (3.4)

The same statement also holds if F takes values in Z[Q]-Modtw. In this case, the change of
rings functor f! takes place at the level of twisted module categories Z[Q]-Modtw → R-Modtw but,
as explained in Convention 3.4, all of the statements take place in the category of functors into
Z-Mod, via post-composing with the forgetful functor.

Proof. We first note that the change of rings functor f! is right-exact and clearly commutes with
the translation functor τ1, so τ1(f!F ) ∼= f!(τ1F ) and δ1(f!F ) ∼= f!(δ1F ). Now, for each n ∈ Obj(M),
since κ1F (n) = 0 and the Z[Q]-module δ1F (n) is projective, the exact sequence (3.1) applied to
the functor F induces a split short exact sequence 0 → F (n) → τ1F (n) → δ1F (n) → 0. The result
then follows from the fact that the functor f! turns split short exact sequences of Z[Q]-modules
into split short exact sequences of R-modules.

Corollary 3.10 The results of Theorems 3.17, 3.24, 3.35 and 3.36 hold after any change of rings
operation.

Proof. Each one of the short exact sequences (3.13), (3.17) and (3.18), the isomorphisms (3.26)
and (3.27) (and their alternatives of Theorem 3.36) follow from the exact sequence (3.1) applied to
some homological representation functor F . In each case, it follows from the results on the module
structures from §2.2–§2.3 that F (n), τ1F (n) and δ1F (n) are free Z[Q]-modules for all n ∈ Obj(M),
and that κ1F = 0, so we may apply Lemma 3.9.

3.2. For surface braid group functors
We prove in §3.2.2 and §3.2.3 our results on short exact sequences of Theorem A for surface

braid group functors. The proofs of these results require certain diagrammatic arguments, which
we explain first in §3.2.1. For the remainder of §3.2, we consider any one of the homological
representation functors of (1.15) and (1.16) with the classical (i.e. non-vertical) setting. Following
Notation 1.10, we generically denote it by L⋆

(λ,ℓ)(S) where ⋆ either stands for the blank space or
⋆ = u, S ∈ {D,Σg,1,Nh,1} with g ⩾ 1 and h ⩾ 1, and the associated transformation group is
denoted by Q⋆

(λ,ℓ)(S).

3.2.1. First properties and diagrammatic arguments

We recall that we have introduced model graphs In, WΣ
g and WN

h in Notation 2.7, modelled
by Figures 2.1a and 2.1b. Let us abbreviate by writing WS = WΣ

g if S = Σg,1 and WS = WN
h if

S = Nh,1.
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Remark 3.11 For convenience, the diagrammatic arguments below illustrated in Figures 3.1–3.4
are drawn only with the case S = Σg,1. Indeed, only the planar parts of these figures are relevant
to the arguments.

We follow the notation of §2.2 and consider, for each n ∈ Obj(βS), the surface braid group
Bn(S)-representation L⋆

(λ,ℓ)(S)(n) = HBM
k (Cλ(Dn♮S);Z[Q⋆

(λ,ℓ)(S)]) where Z[Q⋆
(λ,ℓ)(S)] is a rank-

one local system explained in the general construction of §1.2. Proposition 2.6 describes a free
basis for the underlying Z[Q⋆

(λ,ℓ)(S)]-module of L⋆
(λ,ℓ)(S)(n) indexed by labellings of the embedded

graph In ∨ WS ⊂ S by words in the blocks of λ. We use the following slight simplification of
Notation 2.7 for §3.2.

Notation 3.12 Let gS denote the integer 2g if S = Σg,1 and h if S = Nh,1. We will generically
write the basis elements (2.7) and (2.8) as (w1, . . . , wgS+n−1). Also, choosing an ordering of the
edges of the embedded graph In ∨ WS ⊂ Dn♮S, we write (w1, . . . , wgS+n−1) ⊢ λ to indicate that
the basis element (w1, . . . , wgS+n−1) is associated to the ordered partition λ.

The representation τ1L
⋆
(λ,ℓ)(S)(n) = HBM

k (Cλ(D1+n♮S);Z[Q⋆
(λ,ℓ)(S)]) has a very similar de-

scription as a free module. More precisely, the only difference with respect to L⋆
(λ,ℓ)(S)(n) is

that there is one extra edge of the embedded graph I1+n ∨ WS ⊂ D1+n♮S. We write this as
(w0, w1, . . . , wgS+n−1) ⊢ λ, where w0 is the label of the extra edge. Now, we recall from Lemma 1.11
that the image of the canonical morphism [1, id1♮n] ∈ ⟨β,βS⟩(n, 1♮n) under L⋆

(λ,ℓ)(S) is the map
HBM

k (Cλ(Dn♮S);Z[Q⋆
(λ,ℓ)(S)]) → HBM

k (Cλ(D1+n♮S);Z[Q⋆
(λ,ℓ)(S)]) induced by the evident inclusion

of configuration spaces Cλ(Dn♮S) ↪→ Cλ(D1♮(Dn♮S)) coming from the boundary connected sum
with the left-most copy of D1. In terms of the above free generating sets coming from Proposi-
tion 2.6, the map L⋆

(λ,ℓ)(S)([1, id1♮n]) is thus the injection defined by

(w1, . . . , wgS+n−1) 7−→ (∅, w1, . . . , wgS+n−1). (3.5)

The cokernel δ1L
⋆
(λ,ℓ)(S)(n) of i1(L⋆

(λ,ℓ)(S))n may therefore be described as the free Z[Q⋆
(λ,ℓ)(S)]-

module generated by all edge-labellings (w0, w1, . . . , wgS+n−1) ⊢ λ of I1+n ∨ WS such that w0 is
not the empty word. On the other hand, we have κ1L

⋆
(λ,ℓ)(S)(n) = 0.

Furthermore, if k ⩾ 2, the direct sum
⊕r

i=1 τ1L
⋆
(λ[i],ℓ)(S)(n) has a basis indexed by pairs

(i, (w0, w1, . . . , wgS+n−1)), where 1 ⩽ i ⩽ r and (w0, w1, . . . , wgS+n−1) ⊢ λ[i]. There is an evident
bijection between the basis for δ1L

⋆
(λ,ℓ)(S)(n) and this basis for

⊕r
i=1 τ1L

⋆
(λ[i],ℓ)(S)(n) given by

(w0, w1, . . . , wgS+n−1) 7−→ (i, (w′
0, w1, . . . , wgS+n−1)), (3.6)

where w0 = iw′
0 with w0 and w′

0 words in the monoid M({1, . . . , r}) (see Notation 2.4) while i is
seen as a letter in the alphabet {1, . . . , r}. Extending by linearity, this bijection determines an
isomorphism of free Z[Q⋆

(λ,ℓ)(S)]-modules

δ1L
⋆
(λ,ℓ)(S)(n)

∼=−→
r⊕

i=1
τ1L

⋆
(λ[i],ℓ)(S)(n). (3.7)

The cloud lemma. In order to construct the fundamental short exact sequences of Theorem A
for surface braid groups, we will need to show that the isomorphism of modules (3.7) is an isomor-
phism of representations. (In fact, we will show that it is moreover an isomorphism of functors as
n varies.) Assuming that n ⩾ 2, the key ingredient to prove this is Lemma 3.15 below, which is
pictorially summarised in Figure 3.1. To give the precise statement of the lemma, we first have to
describe precisely what this figure is illustrating.

Definition 3.13 Given a word w in the monoid M({1, . . . , r}), write ν(w) = (ν(w)1, . . . , ν(w)r),
where ν(w)i is the number of copies of the letter i in w.

Definition 3.14 Suppose we are given a properly-embedded, oriented open arc α in the surface
D1+n♮S equipped with a path from some point on α to the basepoint of D1+n♮S. Suppose further
that we are also given a word w as in Definition 3.13. We then define ς(α,w) to be the Borel-Moore
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cycle on Cν(w)(D1+n♮S) given by the open singular simplex consisting of all configurations that lie
on α and whose labels spell the word w following the orientation of α. As explained in §2.4, in order
for this to specify a Borel-Moore cycle for twisted homology, one needs to specify also a tether,
namely a path from the base configuration to a configuration lying on α. The base configuration
consists of |w| points contained in the boundary of D1+n♮S close to the basepoint of the surface,
and we specify the tether to be the path of configurations that follows |w| paths parallel to the
given path from α to the basepoint.

The left-hand side of Figure 3.1 depicts a Borel-Moore cycle on the partitioned configuration
space Cλ(D1+n♮S), representing an element of τ1L

⋆
(λ,ℓ)(S)(n) = HBM

k (Cλ(D1+n♮S);Z[Q⋆
(λ,ℓ)(S)])

and thus determining an element of the quotient δ1L
⋆
(λ,ℓ)(S)(n) of τ1L

⋆
(λ,ℓ)(S)(n). This cycle is

assumed to be of a specific form, depending on the following two choices:
(1) A non-empty word w0 in the monoid M({1, . . . , r}). This determines a partition ν(w0) (see

Definition 3.13) and hence also λ− ν(w0) given by componentwise subtraction: for 1 ⩽ i ⩽ r
its ith term is λi − ν(w0)i. Note that this is non-negative since λi is the number of copies of
the letter i in the concatenation w0w1 · · ·wgS+n−1.

(2) A cycle ξ on Cλ−ν(w0)(D1+n♮S) supported in the blue shaded region (the “cloud”).
Denote by α the open green arc depicted on the left-hand side of Figure 3.1, equipped with the
grey path to the basepoint (on the boundary of the surface). By Definition 3.14, together with the
word w0, this determines a cycle ς(α,w0) on Cν(w0)(D1+n♮S). The product ξ × ς(α,w0) is then a
cycle on Cλ(D1+n♮S); this is the cycle that we consider on the left-hand side of Figure 3.1.

The right-hand side has a similar description, where we decompose the non-empty word w0
as iw′

0. The “i” component simply says that the element lies in the ith summand on the right-
hand side of (3.7). The second, pictorial component depicts the Borel-Moore cycle ξ× ς(α,w′

0) on
Cλ[i](D1+n♮S), representing an element of τ1L

⋆
(λ[i],ℓ)(S)(n).

Figure 3.1 The Borel-Moore cycles considered in Lemma 3.15.

With these descriptions and notation, we may now give the precise statement of the lemma.

Lemma 3.15 (“Cloud lemma”.) For any choices of w0 = iw′
0 and ξ as above, the module isomor-

phism (3.7) sends the element [ξ × ς(α,w0)] to the element (i, [ξ × ς(α,w′
0)]).

Proof. Let us write w = (w0, w1, . . . , wgS+n−1) ⊢ λ and define an operation (−)⋄ on such tuples of
words by setting w⋄ = (w⋄

0 , w1, . . . , wgS+n−1), where w0 = jw⋄
0 ; in other words the operation (−)⋄

removes the first letter of the first word of w. Note that w⋄ ⊢ λ[j].
For the sake of clarity, we prefer in this proof to denote by ew (rather than w, see Notation 2.20)

the standard basis element corresponding to the tuple w, depicted in Figure 2.2. Then we denote
by e′

w the corresponding dual basis element depicted in Figure 2.3. As explained in §2.4, to specify
these fully, we must choose a tether for each e′

w: we choose these tethers to be paths to the base
configuration (in the boundary of the surface) given by sending all of the configuration points along
parallel horizontal trajectories, as depicted in Figure 3.2. Using this notation, by definition, the
isomorphism (3.7) takes ew to the element ew⋄ in the jth summand of the right-hand side.

Let us first decompose the element represented by the left-hand side of Figure 3.1 as

LHS := [ξ × ς(α,w0)] =
∑
w⊢λ

ϱw.ew =
r∑

j=1

∑
w⊢λ

w0=jw⋄
0

ϱw.ew, (3.8)

where ϱw = ⟨LHS, e′
w⟩ ∈ Z[Q⋆

(λ,ℓ)(S)] is the value of the intersection pairing (2.9) evaluated on the
left-hand side of Figure 3.1 and the dual basis element e′

w. This is illustrated on the left-hand side
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Figure 3.2 An illustration of the intersection pairings ϱw = ⟨LHS, e′
w⟩ (left) and µw⋄ = ⟨RHS, e′

w⋄ ⟩
(right). Here, LHS and RHS refer to the Borel-Moore homology classes depicted on the left-hand side
and right-hand side of Figure 3.1 respectively.

of Figure 3.2. From that figure, it is clear that ϱw = 0 unless j = i, so we may remove the outer
sum and set j = i in the formula (3.8). The image of the element (3.8) under the map (3.7) may
therefore be written as ∑

w⊢λ
w0=iw⋄

0

ϱw.(i, ew⋄). (3.9)

On the other hand, the element represented by the right-hand side of Figure 3.1 decomposes as

RHS := (i, [ξ × ς(α,w′
0)]) =

∑
v⊢λ[i]

µv.(i, ev), (3.10)

where µv = ⟨RHS, e′
v⟩ ∈ Z[Q⋆

(λ,ℓ)(S)] is the value of the intersection pairing (2.9) evaluated on the
right-hand side of Figure 3.1 and the dual basis element e′

v. This is illustrated on the right-hand
side of Figure 3.2. There is clearly a bijection between the two indexing sets of the sums above
given by sending w to v = w⋄. Thus, in order to prove that (3.9) = (3.10), as desired, it remains
to show that we have an equality of coefficients; in other words, we must prove that

⟨LHS, e′
w⟩ = ϱw = µw⋄ = ⟨RHS, e′

w⋄⟩ (3.11)

for each w ⊢ λ such that w0 = iw⋄
0 .

To prove the equality (3.11), we first recall, in the next few paragraphs below, some details
about how the intersection pairings ⟨LHS, e′

w⟩ and ⟨RHS, e′
w⋄⟩ may be computed. This is well-

established in the literature, but we include it in order to fix the notation and conventions that we
will use in our calculations. For further details, see [Big01, §2.1] or [PS22, §4.3] (when the surface
is a disc) or [BPS21, §7] (for more general orientable surfaces).

Calculating intersection pairings in general. We first consider ⟨LHS, e′
w⟩. We may

assume without loss of generality that the Borel-Moore homology class denoted by LHS (the left-
hand side of Figure 3.1) is represented, similarly to Definition 3.14, by configuration spaces on a
collection of pairwise disjoint, properly embedded, open arcs (each equipped with a tether, i.e. a
path to the basepoint of the surface), one of these being the arc depicted and the others being
contained in the shaded “cloud”. Indeed, this is due to the basis that we have described in §2.
The dual basis element e′

w is represented by the cycle given by the red vertical (and horizontal, in
the handles) arcs on the left-hand side of Figure 3.2 (also equipped with tethers). We assume that
these intersect the arcs representing LHS transversely, in particular at finitely many points. This
ensures that the cycles on the configuration space Cλ(D1+n♮S) representing the homology classes
LHS and e′

w intersect at finitely many points. We shall generally denote these intersection points
by p, and we emphasise that each p is a configuration, so it consists of k points on D1+n♮S.

The value of the pairing ⟨LHS, e′
w⟩ ∈ Z[Q⋆

(λ,ℓ)(S)] is then a sum of terms ϵpϕ(λ,ℓ)(γp) indexed by
these (finitely many) intersection configurations p. Here ϵp ∈ {±1} is a sign, γp is a based loop in the
configuration space Cλ(D1+n♮S) and ϕ(λ,ℓ) : π1(Cλ(D1+n♮S)) → Q⋆

(λ,ℓ)(S) is the homomorphism
determining the local system in the definition of L⋆

(λ,ℓ); see §1.2.3. The loop γp is constructed as
the concatenation of four paths of configurations

∗⇝ x⇝ p⇝ y ⇝ ∗, (3.12)
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where ∗ is the base configuration. The first path ∗⇝ x is a tether for the submanifold representing
the homology class LHS (so x is a point on this submanifold), the last path y ⇝ ∗ is the reverse
of a tether for e′

w (so y is a point on e′
w), the second is any path in LHS from x to the intersection

configuration p and the third is any path in e′
w from p to y.

The intersection pairing ⟨RHS, e′
w⋄⟩ has an almost identical description, the only difference

being that one vertical red arc (containing a single point in the ith block of λ) has been removed
and the green arc labelled by iw′

0 is now labelled by w′
0, so its left-most point (in the ith block

of λ) has also been removed. The tethers have also been modified correspondingly: one of the
parallel grey paths from the basepoint to the green arc has been removed, as has the grey path to
the (removed) left-most vertical red arc. This means, a priori, that we use the quotient map ϕλ[i],ℓ
rather than ϕλ,ℓ and the pairing takes values in Z[Q⋆

(λ[i],ℓ)(S)] rather than Z[Q⋆
(λ,ℓ)(S)]. However,

by Convention 3.8, we implicitly apply the ring homomorphism Z[Q(λ[i]→λ,ℓ)] in order to interpret
this as an element of Z[Q⋆

(λ,ℓ)(S)]. Hence in fact we are using the composition Q(λ[i]→λ,ℓ) ◦ ϕλ[i],ℓ
instead of ϕλ,ℓ and the pairing takes values in Z[Q⋆

(λ,ℓ)(S)].
Calculating the intersection pairings in our setting. To compare the two elements

of Z[Q⋆
(λ,ℓ)(S)] corresponding to the left-hand side and right-hand side of (3.11), first notice that

there is a bijection of intersection points RHS ∩ e′
w⋄ → LHS ∩ e′

w given by p 7→ p̄ = {p0} ∪ p, where
p0 ∈ D1+n♮S is the unique intersection point between the left-most vertical red arc and the curved
(green) arc on the left-hand side of Figure 3.2; see the zoomed-in Figure 3.3. It therefore suffices
to check that we have ϵp̄ = ϵp and ϕ(λ,ℓ)(γp̄) = Q(λ[i]→λ,ℓ)(ϕ(λ[i],ℓ)(γp)), where the values with a
subscript p̄ are computed using the left-hand side of Figure 3.2 and those with a subscript p are
computed using the right-hand side of Figure 3.2.

The loops γp and γp̄ are both constructed as concatenations of four paths of configurations of
the form (3.12). Since the configuration p̄ is obtained from p by adjoining one point p0 ∈ D1+n♮S,
it follows that γp̄ is obtained from γp by adjoining one loop in D1+n♮S passing through p0. This
loop is highlighted in Figure 3.3. By the commutativity of the square (3.3) of Lemma 3.6 (with
n replaced by n + 1 and setting λ′ := λ[i]), the equation ϕλ,ℓ(γp̄) = Q(λ[i]→λ,ℓ)(ϕλ[i],ℓ(γp)) that
we need to prove will follow if we prove that the stabilisation map along the top of (3.3) sends γp

to γp̄. The stabilisation map simply adjoins a stationary point in the boundary of the surface, so
what we must show is that adjoining the loop highlighted in Figure 3.3 to γp is the same, up to
homotopy, as adjoining a stationary point in the boundary. In other words, writing s(γp) for the
stabilisation of γp, we must show that the based loops s(γp) and γp̄ are homotopic in Cλ(D1+n♮S).

To see this, we will restrict attention to the small (light blue) shaded region on the left of
Figure 3.3, denoted by D. We first note that, at all times during the loops s(γp) and γp̄, there are
exactly |w0| configuration points in D and the other k − |w0| configuration points remain disjoint
from D. (The number |w0| arises because it is the number of intersection points between the
curved (green) arc and the vertical (red) arcs on the right of D.) Moreover, the loops s(γp) and
γp̄ are identical outside of D, so if we write s(γp)|D and γp̄|D for the restrictions of s(γp) and γp̄

to |w0|-point subconfigurations supported on D, it will suffice to show that s(γp)|D is homotopic
to γp̄|D in C|w0|(D). During γp̄|D, the configuration points travel in parallel anticlockwise around
the boundary of D without ‘twisting’ (i.e. we may think of the configuration as lying on a small
interval, which travels around the boundary of D without rotating). This is homotopic to the
constant loop by shrinking the loop along which the configuration points travel within D until it is
constant (here it is important that there is no twisting). During s(γp)|D, one of the points remains
stationary and the other |w0| − 1 points travel in parallel anticlockwise around the boundary of D
without twisting. This is homotopic to the constant loop for exactly the same reason. Composing
these two homotopies, we see that s(γp)|D ≃ γp̄|D in C|w0|(D). Extending this to the λ-partitioned
configuration space by a constant homotopy outside of D (i.e. by simply not modifying the trajec-
tories of the other k − |w0| configuration points), we deduce that s(γp) and γp̄ are homotopic in
Cλ(D1+n♮S). This completes the proof that we have ϕλ,ℓ(γp̄) = Q(λ[i]→λ,ℓ)(ϕλ[i],ℓ(γp)).

Finally, we recall that the sign ϵp is the product of the local signs of the intersections of arcs in
the surface at each point of p = {p1, . . . , pk} together with an additional sign recording the parity
of the permutation of the base configuration induced by γp. The local sign of the intersection at p0
is +1, so adjoining p0 does not change the product of the local signs. In addition, as a consequence
of the paragraph above, the permutation induced by γp̄ is obtained from the permutation induced
by γp by adjoining a fixed point; in particular they both have the same parity. Thus ϵp̄ = ϵp.
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Figure 3.3 A zoomed-in portion of the left-hand side of Figure 3.2. The loop of configurations γp̄ is
obtained from the loop of configurations γp by adjoining the loop (in the surface) highlighted in blue.

Figure 3.4 The identity of Lemma 3.16 in the orientable case. The identity in the non-orientable case
is the obvious analogue; only the left-hand side of each diagram, which is planar, is important.

A decomposition property. We also will need the following (more elementary) diagrammatic
fact in §3.2.2–§3.2.3. This is an identity, depicted in Figure 3.4, taking place in the Borel-Moore
homology group L⋆

(λ,ℓ)(S)(n) = HBM
k (Cλ(Dn♮S);Z[Q⋆

(λ,ℓ)(S)]).
The left-hand side of the figure represents a Borel-Moore cycle on Cλ(Dn♮S) defined as follows.

Choose a word w in the monoid M({1, . . . , r}) and a cycle ξ on Cλ−ν(w)(Dn♮S) supported in the
blue shaded region. (Recall from Definition 3.13 the notation ν(w).) If we denote by α the green
arc on the left-hand side of Figure 3.4, then the Borel-Moore cycle is ξ× ς(α,w) in the notation of
Definition 3.14.

The right-hand side of the figure represents a sum of Borel-Moore cycles, taken over all possible
decompositions w = w1w2 of the word w as a concatenation of two words. The Borel-Moore cycle
in this sum corresponding to (w1, w2) is ξ × ς(α1, w1) × ς(α2, w2), where α1, α2 are the two green
arcs depicted on the right-hand side of Figure 3.4.

Lemma 3.16 For any choices of a cycle ξ and a word w, we have the relation

[ξ × ς(α,w)] =
∑

w=w1w2

[ξ × ς(α1, w1) × ς(α2, w2)]

in L⋆
(λ,ℓ)(S)(n) = HBM

k (Cλ(Dn♮S);Z[Q⋆
(λ,ℓ)(S)]).

Proof. We follow the notation of the proof of Lemma 3.15. The result follows immediately by veri-
fying that each side of the equation evaluates to the same element of the ground ring when applying
the intersection pairing ⟨−, e′

v⟩ with the dual basis element e′
v for each v = (v1, v2, v3 . . .) ⊢ λ. (De-

tails of how these intersection pairings are computed are explained in the proof of Lemma 3.15
above.)

3.2.2. For classical braid groups

Our aim here is to prove Theorem A for each (λ, ℓ)-Lawrence-Bigelow functor LB(λ,ℓ) and its
untwisted version LBu

(λ,ℓ) of §1.3.1. The arguments for this are exactly the same for both LB(λ,ℓ)
and LBu

(λ,ℓ). So, following §1.3.1 and §3.2.1, we henceforth speak of the functor L⋆
(λ,ℓ)(D) = LB⋆

(λ,ℓ)
where ⋆ either stands for the blank space or ⋆ = u.

From now on in §3.2.2, we assume that k ⩾ 2. For any n ∈ Obj(β), we recall from the
preliminary study of §3.2.1 that κ1LB

⋆
(λ,ℓ)(n) = 0 and δ1LB

⋆
(λ,ℓ)(n) is the free Z[Q⋆

(λ,ℓ)(D)]-module
with basis given by the tuples (w0, w1, . . . , wn−1) ⊢ λ such that |w0| ⩾ 1, which identifies as a
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Z[Q⋆
(λ,ℓ)(D)]-module to the direct sum

⊕
1⩽j⩽r τ1LB

⋆
(λ[j],ℓ)(n) via the isomorphism (3.7) (if n ⩾ 1;

it is trivial otherwise). From now on, we denote this isomorphism by (p(λ,ℓ))n, setting (p(λ,ℓ))0 to
be the null morphism. We now prove the main result of §3.2.2:

Theorem 3.17 For each λ ⊢ k ⩾ 2 and ℓ ⩾ 1, the exact sequence (3.1) induces the short exact
sequences:

0 LB⋆
(λ,ℓ) τ1LB

⋆
(λ,ℓ)

⊕
1⩽j⩽r

τ1LB
⋆
(λ[j],ℓ) 0 (3.13)

in Fct(⟨β,β⟩,Z[Qu
(λ,ℓ)(S)]-Mod) if ⋆ = u, and in Fct(⟨β,β⟩,Z[Q(λ,ℓ)(S)]-Mod•) if ⋆ is the blank

space.

Proof. As a consequence of the preliminary study above, we already know that the evaluation of
(3.13) at each object n is a short exact sequence of Z[Q⋆

(λ,ℓ)(D)]-modules. Hence the key point
is to prove the compatibility with respect to the morphisms of ⟨β,β⟩. To achieve this, it suf-
fices to show that the Z[Q⋆

(λ,ℓ)(D)]-module isomorphisms {(p(λ,ℓ))n}n∈Obj(β) define an isomorphism
p(λ,ℓ) : δ1LB

⋆
(λ,ℓ)

∼→
⊕

1⩽j⩽r τ1LB
⋆
(λ[j],ℓ) in Fct(⟨β,β⟩,Z[Q⋆

(λ,ℓ)(D)]-Mod•).
As a first step, we prove that assembling these module isomorphisms defines an isomorphism

in the category Fct(β,Z[Q⋆
(λ,ℓ)(D)]-Mod•), in other words that each (p(λ,ℓ))n is a Bn-module mor-

phism. The braid group Bn being trivial for n ∈ {0, 1}, we consider n ⩾ 2 and prove the commuta-
tion of (p(λ,ℓ))n with respect to the action of any Artin generator σi of Bn with 1 ⩽ i ⩽ n−1. Since
τ1 is the left-to-right translation-by-one operator, the morphisms τ1LB

⋆
(λ[j],ℓ)(σi) for all 1 ⩽ j ⩽ r

and δ1LB
⋆
(λ,ℓ)(σi) are defined by the action of the generator σi+1 on the Borel-Moore homology

classes supported on the embedded graph I1+n; see Figure 2.1a with g = 0.
For i = 1, we use Figure 3.1 (with g = 0) to illustrate the actions of τ1LB

⋆
(λ[j],ℓ)(σ1) (the

right-hand side of Figure 3.1) and of δ1LB
⋆
(λ,ℓ)(σ1) (the left-hand side of Figure 3.1) on the basis

elements (w′
0, . . . , wn) and (jw′

0, . . . , wn). Namely, by the choice of Convention 1.6, the labelled
green arc is the image of the left-most edge of the graph I1+n, which we will denote by (1, 2) (using
the left-to-right enumeration of its vertices), under the action of σ2, which swaps the points 2 and
3 anticlockwise, while the images of the other edges are concentrated in the blue shaded region.
It thus follows from Lemma 3.15 and the definition of (p(λ,ℓ))n that (p(λ,ℓ))n ◦ δ1LB

⋆
(λ,ℓ)(n)(σ1) =

(
⊕

1⩽j⩽r τ1LB
⋆
(λ[j],ℓ)(σ1)) ◦ (p(λ,ℓ))n.

For i ⩾ 2, we note that the action of σi+1 is supported in the subsurface containing the right-
most subgraph In ⊂ I1+n (disjoint from the left-most edge (1, 2)). (This subsurface is the one whose
image under σ1 is the blue shaded region of Figure 3.2.) Hence the generator σi+1 acts trivially
on the parts of the cycles representing the basis elements (w′

0, . . . , wn−1) and (jw′
0, . . . , wn−1)

corresponding to the words w′
0 and jw′

0. It thus follows from the definition of (p(λ,ℓ))n (see (3.6))
that we have (p(λ,ℓ))n ◦ δ1LB

⋆
(λ,ℓ)(n)(σi) = (

⊕
1⩽j⩽r τ1LB

⋆
(λ[j],ℓ)(σi)) ◦ (p(λ,ℓ))n for i ⩾ 2. We have

thus verified that p(λ,ℓ) is a natural transformation in Fct(β,Z[Q⋆
(λ,ℓ)(D)]-Mod•).

Now, by Lemma 1.2, it suffices to check relation (1.4) in order to prove that p(λ,ℓ) extends
to a natural transformation in Fct(⟨β,β⟩,Z[Q⋆

(λ,ℓ)(D)]-Mod•). We consider an object n ⩾ 1, the
proof being trivial for n = 0. We note from the formula (1.2), from the composition rule (1.1),
from the fact that ♮ is a strict monoidal structure and from the functoriality of LB⋆

(λ,ℓ), that
τ1LB

⋆
(λ,ℓ)([1, id1♮n]) = LB⋆

(λ,ℓ)(σ−1
1 ) ◦ LB⋆

(λ,ℓ)([1, id2♮n]). (Here, we recall from §1.1.2.3 that we
have the canonical identification σ1 = bβ

1,1♮idn defined by the braiding bβ
1,1 : 1♮1 ∼= 1♮1.)

The map LB⋆
(λ,ℓ)([1, id2♮n]) clearly has a similar description to that of LB⋆

(λ,ℓ)([1, id1♮n]) in
§3.2.1, simply by adding a right-most extra edge and so replacing n with n + 1 in the defining
assignment (3.5). Specifically, the map LB⋆

(λ,ℓ)([1, id2♮n]) is the morphism induced by the em-
bedding of I1+n into I2+n defined by sending each edge (i, i + 1) for 1 ⩽ i ⩽ n to the edge
(i + 1, i + 2). Hence there are no configuration points on the left-most edge (1, 2) of I2+n in the
image of LB⋆

(λ,ℓ)([1, id2♮n]). Also, the morphism LB⋆
(λ,ℓ)(σ−1

1 ) is defined by the action of σ−1
1

on I2+n, so the image of (2, 3) is the green arc on the left-hand side of Figure 3.4. For each
1 ⩽ j ⩽ r, we thus deduce from Lemma 3.16 that ((p(λ,ℓ))1♮n ◦ δ1LB

⋆
(λ,ℓ)([1, id1♮n]))(jw′

0, . . . , wn)
and τ1LB

⋆
(λ[j],ℓ)(n)([1, id1♮n])(w′

0, . . . , wn) are both equal to
∑

u0v0=w′
0
(u0, v0, w1, . . . , wn). There-

fore, it follows from the definition of (p(λ,ℓ))n and an evident induction on m (the base case
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m = 1 being the previous paragraph) that (
⊕

1⩽j⩽r τ1LB
⋆
(λ[j],ℓ)([m, idm♮n])) ◦ (p(λ,ℓ))n is equal to

(p(λ,ℓ))m♮n ◦δ1LB
⋆
(λ,ℓ)([m, idm♮n]). Hence relation (1.4) is satisfied for each n ∈ Obj(β), so Lemma 1.2

implies that p(λ,ℓ) is a natural isomorphism on ⟨β,β⟩, as desired.
For the above arguments, we stress that, whenever we deal with a twisted homological rep-

resentation functor, the action of δ1LB
⋆
(λ,ℓ) on the ground ring Z[Q⋆

(λ,ℓ)(D)] does not affect any
point of the reasoning, since

⊕
1⩽j⩽r τ1LB

⋆
(λ[j],ℓ) is automatically equipped with the same action

via the implicit change of rings of Convention 3.8 for each summand; see Lemma 3.7.

Remark 3.18 There is no obvious splitting for the short exact sequences of functors (3.13). For
instance, there is an obvious splitting of (3.13) at the level of modules, given by sending each
basis element (w0, . . . , wn) ∈ τ1LB(λ[j],ℓ)(n) for 1 ⩽ j ⩽ r to (jw0, . . . , wn). However, one may
check that this splitting does not commute with the action of σ1; in particular it is not a natural
transformation of functors on ⟨β,β⟩.

Applications for kernels of representations. A remarkable consequence of the short exact
sequences of Theorem 3.17 is the following inclusion (3.14) of kernels of homological representations
encoded by Lawrence-Bigelow functors, which then allows us to prove Corollary E.

We note that, by construction, any LB(λ,ℓ)(n + 1) is a representation of Bn+1, which we may
consider as a representation of Bn by restriction.

Proposition 3.19 Whenever λ′ ≺ λ (see Notation 3.2) and ℓ ⩾ 1, we have an inclusion

ker
(
LB(λ,ℓ)(n + 1)

)
⊆ ker

(
LB(λ′,ℓ)(n + 1)

)
(3.14)

of kernels of Bn-representations.

Proof. By Theorem 3.17, there is an epimorphism of functors τ1LB(λ,ℓ) ↠ τ1LB(λ[j],ℓ) for any
1 ⩽ j ⩽ r. Repeating this finitely many times, we therefore obtain an epimorphism τ1LB(λ,ℓ) ↠
τ1LB(λ′,ℓ). Restricting to the automorphism group of the object n, we obtain a surjection of Bn-
representations LB(λ,ℓ)(n+1)↠ LB(λ′,ℓ)(n+1), which implies the claimed inclusion of kernels.

Remark 3.20 Inclusions of kernels of representations of Bn(S), Γg,1 and N h,1 analogous to those
of Proposition 3.19 follow by the same reasoning from the short exact sequences (3.17), (3.26) and
(3.27).

Proof of Corollary E. By hypothesis we have (2) ≺ λ, so it suffices by Proposition 3.19 to prove
that LB((2),ℓ)(n + 1) is faithful as a Bn-representation. For ℓ = 2, it is proven in [Big01] (see
also [Kra02]) that LB((2),2)(n + 1) is faithful as a Bn+1-representation and hence, by restriction,
also as a Bn-representation. In [PS22, Rem. 4.8], it is explained how to deduce from this that
LB((2),ℓ)(n + 1) is faithful for all ℓ ⩾ 2.

3.2.3. For braid groups on surfaces different from the disc

We deal here with the short exact sequences for the homological representation functors
L(λ,ℓ)(Σg,1), Lu

(λ,ℓ)(Σg,1), L(λ,ℓ)(Nh,1) and Lu
(λ,ℓ)(Nh,1) of §1.3.2; see Theorem 3.24. The arguments

for our work in this section are analogous regardless of which of the homological representation
functors amongst this list we consider. For the sake of simplicity and to avoid repetition, we
thus pool the key steps and common arguments for the remainder of §3.2.3, only emphasising the
(minor) differences when necessary. Following §1.3.2 and §3.2.1, we use the standard notation
L⋆

(λ,ℓ)(S), where ⋆ either stands for the blank space or ⋆ = u, S is either Σg,1 or Nh,1 with g, h ⩾ 1,
Q⋆

(λ,ℓ)(S) is the associated transformation group and βS is the associated groupoid.
Furthermore, it will be convenient to consider various “cut versions” of these homological

representation functors defined on ⟨β,βS⟩. In fact, this definition makes sense more generally:

Definition 3.21 (Cut functors.) Let C be a category whose objects form a totally-ordered set and
in which there are no morphisms a → b if a > b. For such a category C, a functor F : C → R-Mod
and an object c of C, we define the truncation F|⩾c : C → R-Mod on objects by F|⩾c(a) = F (a) for
a ⩾ c and F|⩾c(a) = 0 for a < c and on morphisms by F|⩾c(f) = F (f) if the domain of f is ⩾ c
and F|⩾c(f) = 0 otherwise.
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In the case of C = ⟨β,βS⟩, the objects form the totally-ordered set N. This “cut” alteration is
negligible for our later study of polynomiality (see the proof of Corollary B for surface braid groups
in §4.2), while the “cut” subfunctors are much more convenient to deal with (see Remark 3.27).

From now on in §3.2.3, we assume that k ⩾ 2. We recall from the preliminary study of §3.2.1
that κ1L

⋆
(λ,ℓ)(S)(n) = 0 and that δ1L

⋆
(λ,ℓ)(S)(n) is the free Z[Q⋆

(λ,ℓ)(S)]-module with basis given by
the tuples of words (w0, w1, . . . , wgS+n−1) ⊢ λ such that |w0| ⩾ 1 for each n ∈ Obj(βS). For n ⩾ 2,
we denote by (p(λ,ℓ))n the Z[Q⋆

(λ,ℓ)(S)]-module isomorphism (3.7), which may be written as

δ1(L⋆
(λ,ℓ)(S)|⩾2)(n)

∼=−→
⊕

1⩽j⩽r

(τ1L
⋆
(λ[j],ℓ)(S))|⩾2(n) (3.15)

since the truncations do not make any difference when n ⩾ 2. We also set (p(λ,ℓ))0 to be the
trivial morphism; this gives an isomorphism of the form (3.15) for n = 0. However, for n = 1
there is no isomorphism of the form (3.15), since the right-hand side is zero, whereas we have
δ1(L⋆

(λ,ℓ)(S)|⩾2)(1) ∼= (τ1L
⋆
(λ,ℓ)(S)|⩾2)(1) as B1(S)-representations over Z[Q⋆

(λ,ℓ)(S)].
Our first goal in this section is to promote (3.15) to a natural isomorphism of functors on

⟨β,βS⟩, so we first need to correct the right-hand side on the object n = 1. To do this, we choose
a certain extension of functors, via the following lemma:

Lemma 3.22 Let M be a module over a braided monoidal groupoid G that on objects is given by the
monoid N as a module over itself. Let F,G : ⟨G,M⟩ → R-Mod be two functors with F (n) = 0 for
n ⩽ c− 1 and G(n) = 0 for n ⩾ c for an integer c ⩾ 1. Then there is a one-to-one correspondence
between extensions of G by F , i.e. short exact sequences 0 → F → ? → G → 0, and morphisms
G(c− 1) → F (c) in R-Mod, given by evaluating the extension functor at [1, idc].

Proof. Since F and G have disjoint support, there is no choice about the action of any such
extension on objects and on automorphisms; in other words, there is a unique extension of G by F
when restricting the domain to the subgroupoid G. Lemma 1.1 describes the data and conditions
required to extend a functor out of G to a functor out of ⟨G,M⟩. In light of the requirement that
this is an extension of G by F , the only remaining choice is the value assigned to the morphism
[1, idc]; conversely, any such choice determines an extension.

Definition 3.23 (An extension by an atomic functor.) Denote by (τ1L
⋆
(λ,ℓ)(S)|⩾2)(1) the “atomic”

functor out of ⟨β,βS⟩ whose value on the object 1 is (τ1L
⋆
(λ,ℓ)(S)|⩾2)(1) = L⋆

(λ,ℓ)(S)|⩾2(2) and
whose value on all other objects is the zero module. Denote by

⊕̃
1⩽j⩽r(τ1L

⋆
(λ[j],ℓ)(S))|⩾2 the

unique extension of this atomic functor by the functor
⊕

1⩽j⩽r(τ1L
⋆
(λ[j],ℓ)(S))|⩾2 whose value on

[1, id2] is:

(τ1L
⋆
(λ,ℓ)(S)|⩾2)(1) τ1(L⋆

(λ,ℓ)(S)|⩾2)(2) δ1(L⋆
(λ,ℓ)(S)|⩾2)(2)

⊕
1⩽j⩽r

(τ1L
⋆
(λ[j],ℓ)(S))|⩾2(2).

τ1(L⋆
(λ,ℓ)(S)|⩾2)([1,id2]) ∆1(L⋆

(λ,ℓ)(S)|⩾2)(2)

(3.15)

We also denote by (p(λ,ℓ))1 the isomorphism

δ1(L⋆
(λ,ℓ)(S)|⩾2)(1) (τ1L

⋆
(λ,ℓ)(S)|⩾2)(1) =

( ⊕̃
1⩽j⩽r

(τ1L
⋆
(λ[j],ℓ)(S))|⩾2

)
(1).

(∆1(L⋆
(λ,ℓ)(S)|⩾2)(1))−1

(3.16)

Using the extension of Definition 3.23, we may now upgrade (3.15) to an isomorphism of
functors:
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Theorem 3.24 For any S = Σg,1 or Nh,1, λ ⊢ k ⩾ 2 and ℓ ⩾ 1, the exact sequence (3.1) induces
a short exact sequence

0 L⋆
(λ,ℓ)(S)|⩾2 τ1(L⋆

(λ,ℓ)(S)|⩾2)
⊕̃

1⩽j⩽r

(τ1L
⋆
(λ[j],ℓ)(S))|⩾2 0 (3.17)

of functors in Fct(⟨β,βS⟩,Z[Qu
(λ,ℓ)(S)]-Mod) if ⋆ = u, and in Fct(⟨β,βS⟩,Z[Q(λ,ℓ)(S)]-Mod•) if

⋆ is the blank space.
Proof. The roadmap of this proof is similar to that of Theorem 3.17, whose arguments are reused
below for the analogous steps.

As a consequence of the above preliminary study, we already have that the evaluation of
(3.17) at any n is a short exact sequences of Z[Q⋆

(λ,ℓ)(S)]-modules. Hence the key point is to
prove the compatibility with respect to the morphisms of ⟨β,βS⟩. To achieve this, it suffices to
show that the Z[Q⋆

(λ,ℓ)(S)]-module isomorphisms {(p(λ,ℓ))n}n∈Obj(βS) assemble to an isomorphism
in Fct(⟨β,βS⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•).
As a first step, we prove that assembling these module isomorphisms defines an isomorphism

in the category Fct(βS ,Z[Q⋆
(λ,ℓ)(S)]-Mod•), in other words that each (p(λ,ℓ))n is a Bn(S)-module

morphism. We first consider the case where n ⩾ 2 and use the classical generating set for Bn(S),
extending the Artin generators σi of Bn, recalled in [PS24b, Prop. 4.1]. Since τ1 is the left-to-right
translation-by-one operator, for each generator ρ ∈ Bn(S), the morphisms (τ1L

⋆
(λ[j],ℓ)(S))|⩾2(ρ) for

all 1 ⩽ j ⩽ r and δ1(L⋆
(λ,ℓ)(S)|⩾2)(ρ) are defined by the action of the generator id1♮ρ on the Borel-

Moore homology classes supported on the embedded graph I1+n ∨WS ⊂ D1+n♮S; see Figures 2.1a
and 2.1b.

For ρ = σ1, we prove that (p(λ,ℓ))n ◦ δ1(L⋆
(λ,ℓ)(S)|⩾2)(σ1) =

(⊕̃
1⩽j⩽r(τ1L

⋆
(λ[j],ℓ)(S))|⩾2(σ1)

)
◦

(p(λ,ℓ))n by repeating verbatim the corresponding step in the proof of Theorem 3.17 which relies
on Lemma 3.15.

For ρ ̸= σ1, we note that the action of id1♮ρ is supported on a subsurface containing the
right-most subgraph In ∨WS ⊂ I1+n ∨WS (disjoint from the left-most edge). Hence the generator
id1♮ρ acts trivially on the parts of the cycles representing the basis elements (w′

0, . . .) and (jw′
0, . . .)

corresponding to the words w′
0 and jw′

0. Using the (simpler) analogue of Lemma 3.15 similarly to
the case of ρ = σ1, it follows from the definition of (p(λ,ℓ))n (see (3.15) and (3.16)) that we have
(p(λ,ℓ))n ◦ δ1(L⋆

(λ,ℓ)(S)|⩾2)(ρ) =
(⊕̃

1⩽j⩽r(τ1L
⋆
(λ[j],ℓ)(S))|⩾2(ρ)

)
◦ (p(λ,ℓ))n.

Furthermore, the analogous relations trivially hold also for n = 0 (because L⋆
(λ,ℓ)(S)|⩾2(0) = 0)

and for n = 1 (because the isomorphism (p(λ,ℓ))1 = (3.16) is B1(S)-equivariant by construction).
We have thus verified that p(λ,ℓ) is a natural transformation in Fct(βS ,Z[Q⋆

(λ,ℓ)(S)]-Mod•).
Now, by Lemma 1.2, it suffices to check relation (1.4) in order to prove that p(λ,ℓ) extends

to a natural transformation in Fct(⟨β,βS⟩,Z[Q⋆
(λ,ℓ)(S)]-Mod•). We consider an object n ⩾ 1,

the proof being trivial for n = 0. We note from the formula (1.2), from the composition rule
(1.1), from the fact that ♮ is a strict monoidal structure and from the functoriality of L⋆

(λ,ℓ)(S)|⩾2,
that τ1(L⋆

(λ,ℓ)(S)|⩾2)([1, id1♮n]) = L⋆
(λ,ℓ)(S)|⩾2(σ−1

1 ) ◦ L⋆
(λ,ℓ)(S)|⩾2([1, id2♮n]), using the canonical

identification bβ
1,1♮idn = σ1 defined by the braiding bβ

1,1 : 1♮1 ∼= 1♮1; see §1.1.2.3.
The map L⋆

(λ,ℓ)(S)|⩾2([1, id2♮n]) clearly has a similar description to that of L⋆
(λ,ℓ)(S)|⩾2([1, id1♮n])

in §3.2.1. Namely, it is the morphism induced by the embedding of I1+n into I2+n defined by send-
ing each edge (i, i+1) for 1 ⩽ i ⩽ n to the edge (i+1, i+2), and by the identity on the wedge WS .
In other words, it is explicitly obtained by replacing n with n+ 1 in the defining assignment (3.5).
Then, applying Lemma 3.16 with the illustration of Figure 3.4 and by an evident induction on m,
the corresponding reasoning in the proof of Theorem 3.17 repeats mutatis mutandis here, proving
that (p(λ,ℓ))m♮n ◦ δ1(L⋆

(λ,ℓ)(S)|⩾2)([m, idm♮n]) =
(⊕̃

1⩽j⩽r(τ1L
⋆
(λ[j],ℓ)(S))|⩾2([m, idm♮n])

)
◦ (p(λ,ℓ))n for

each m ⩾ 1 and n ⩾ 2. The analogous relation follows in the exact same way for n = 1, the point
being that

⊕̃
1⩽j⩽r(τ1L

⋆
(λ[j],ℓ)(S))|⩾2([1, id2]) = δ1L

⋆
(λ,ℓ)|⩾2([1, id2]) ◦ ∆1L

⋆
(λ,ℓ)|⩾2(1). In addition,

this relation also holds trivially for n = 0 because L⋆
(λ,ℓ)(S)|⩾2(0) = 0. Hence relation (1.4) is sat-

isfied for each n ∈ Obj(βS), so Lemma 1.2 implies that p(λ,ℓ) is a natural isomorphism on ⟨β,βS⟩,
as desired.
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In the above arguments, we stress that, whenever we deal with a twisted homological repre-
sentation functor, the action of δ1(L⋆

(λ,ℓ)(S)|⩾2) on the ground ring Z[Q(λ,ℓ)(S)] does not affect any
point of the reasoning, thanks to the implicit change of rings of Convention 3.8.

Corollary 3.25 For any S = Σg,1 or Nh,1, λ ⊢ k ⩾ 2 and ℓ ⩾ 1, the short exact sequence (3.17)
induces a short exact sequence

0 L⋆
(λ,ℓ)(S)|⩾2 (τ1L

⋆
(λ,ℓ)(S))|⩾2

⊕
1⩽j⩽r

(τ1L
⋆
(λ[j],ℓ)(S))|⩾2 0 (3.18)

of functors in Fct(⟨β,βS⟩,Z[Qu
(λ,ℓ)(S)]-Mod) if ⋆ = u, and Fct(⟨β,βS⟩,Z[Q(λ,ℓ)(S)]-Mod•) if ⋆

is the blank space.

Proof. It straightforwardly follows from the definition of τ1 and from Definition 3.21 that the
cut functor (τ1L

⋆
(λ,ℓ)(S))|⩾2 is a subfunctor of τ1(L⋆

(λ,ℓ)(S)|⩾2): namely, the associated natural
transformation i : (τ1L

⋆
(λ,ℓ)(S))|⩾2 ↪→ τ1(L⋆

(λ,ℓ)(S)|⩾2) is defined by the identity on the objects n ⩾ 2

and 0, while i1 : 0 → L⋆
(λ,ℓ)(S)(2) is the zero map. Furthermore, since the objects of ⟨β,βS⟩ form the

totally-ordered set N, modifying the natural transformation i1L⋆
(λ,ℓ)(S) by assigning the zero map

for n ⩽ 1 defines a natural transformation (i1L⋆
(λ,ℓ)(S))|⩾2 : L⋆

(λ,ℓ)(S)|⩾2 → (τ1L
⋆
(λ,ℓ)(S)|⩾2). We

deduce from these definitions that the composite in◦((i1L⋆
(λ,ℓ)(S))|⩾2)n is equal to (i1(L⋆

(λ,ℓ)(S)|⩾2))n

for n ⩾ 2 (which is the left-hand map in the exact sequence (3.17)), while it is the zero map for
n ⩽ 1. The result thus follows from Theorem 3.24, by using the universal property of a cokernel
and the definition of

⊕̃
1⩽j⩽r(τ1L

⋆
(λ[j],ℓ)(S))|⩾2.

Remark 3.26 Similarly to Remark 3.18, we note that there is no obvious splitting for the short
exact sequence of functors (3.17).

Remark 3.27 We conjecture that Theorem 3.24 holds also for the functors L⋆
(λ,ℓ)(S), i.e., without

truncating to the functors L⋆
(λ,ℓ)(S)|⩾2 via Definition 3.21. For the trivial partition λ = (k), we

have verified this for the functor L((k),2)(Σg,1) for each k ⩾ 2 by using explicit formulas for the
action of Bn(Σg,1) from [PS]. However, it seems significantly more difficult to prove this in general
for any ordered partition λ.

3.3. For mapping class group functors
We construct here the short exact sequences for the functors associated to mapping class groups

defined in §1.3.3, i.e. the functors (1.17) and (1.18), as well as their vertical-type alternatives, for
any λ ⊢ k ⩾ 2 and ℓ ⩾ 1. The results in the classical (i.e. non-vertical) setting are in §3.3.2, those
in the vertical setting in §3.3.3, preceded by preliminary work and diagrammatic lemmas in §3.3.1.

The arguments being analogous for orientable and non-orientable surfaces, we pool the key
steps and common arguments for these two cases. Following Notation 1.10, we use the generic
notation S for either T ∼= Σ1,1 or M ∼= N1,1, MCG(S♮n) for either Γn,1 or N n,1, L⋆

(λ,ℓ) for any one
of the functors (1.17) and (1.18), L⋆,v

(λ,ℓ) for the vertical-type alternative, Q⋆
(λ,ℓ)(S) for the associated

transformation group and M for either M+
2 or M−

2 .

3.3.1. First properties and diagrammatic arguments

For the purposes of §3.3.2 and §3.3.3, we begin by proving qualitative properties of the repre-
sentations, including a disjoint support argument in the case of boundary connected sums of two
surfaces and some calculations of the actions of various braiding actions.

Let us first focus on the classical (i.e. non-vertical) setting for homological representation
functors. We follow the notation of §2.2 and consider, for each n ∈ Obj(M), the mapping class
group MCG(S♮n) representation L⋆

(λ,ℓ)(n) = HBM
k (Cλ(S♮n ∖ I);Z[Q⋆

(λ,ℓ)(S)]) where Z[Q⋆
(λ,ℓ)(S)] is

the rank-one local system explained in the general construction of §1.2. We recall that we introduce
model graphs WΣ

g and WN
h in Notation 2.7, which are illustrated in Figures 2.1c and 2.1d. Let

us write WS
n := WΣ

n in the orientable setting and WS
n := WN

n in the non-orientable setting. By
Proposition 2.6, the Z[Q⋆

(λ,ℓ)(S)]-module L⋆
(λ,ℓ)(n) is free with basis indexed by labellings of the
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embedded graph WS
n ⊂ S♮n by words in the blocks of λ. In other words, the basis is the set of tuples

w of the form (2.7) if S = T and (2.8) if S = M (ignoring the initial tuple of words corresponding
to the linear part of the graph, which does not exist in the mapping class group setting).

Boundary connected sums. We will use the following general principle for representations of
the mapping class group of a surface that splits as a boundary connected sum. Let L̂(λ,ℓ) be either
L⋆

(λ,ℓ) or its vertical-type alternative L⋆,v
(λ,ℓ). We recall from §1.1.2.2 that each object n of M is the

surface S♮n.

Lemma 3.28 Let n, m ∈ Obj(M). Let w be a basis element (see Notation 2.20) of the representa-
tion L̂(λ,ℓ)(n♮m), using the bases described in §2 and write the tuple w as w = (w′,w′′), where the
entries of w′ correspond to arcs supported in S♮n and the entries of w′′ correspond to arcs supported
in S♮m. Then, for φm ∈ MCG(S♮m), the element L̂(λ,ℓ)(idn♮φm)(w) is a linear combination of basis
elements of the form (w′,v′′), where v′′ runs over all possible labellings of arcs supported in S♮m.

Proof. As in the proof of Lemma 3.15, we prefer to denote by ew (rather than w) the basis element
corresponding to the tuple w for the sake of clarity. Let e′

v be an arbitrary dual basis element
and write v = (v′,v′′) similarly to the decomposition w = (w′,w′′). It suffices to show that
⟨L̂(λ,ℓ)(idn♮φm)(ew), e′

v⟩ = 0 unless v′ = w′. To see this, recall that the homology class ew is
represented by some configurations on embedded arcs in S♮(n+m). Since idn♮φm, by construction, is
supported in S♮m, the homology class L̂(λ,ℓ)(idn♮φm)(ew) may be represented by some configurations
on embedded arcs that are identical on the boundary connected summand S♮n to those representing
ew. The intersection pairing with e′

v must therefore be zero unless v′ = w′.

Interaction with the braiding. To discuss elements of mapping class groups that act by
“braiding” handles or crosscaps of the surface n = S♮n, it is convenient to pass, in this section,
to a different way of representing S♮n diagrammatically. Instead of a rectangle to which we have
glued a finite number of strips (as in, for example, Figure 2.1), we will represent this surface as
a rectangle from which we have either erased the interiors of 2g discs and glued their boundaries
in pairs (when considering S♮g ∼= Σg,1) or erased the interiors of h discs and glued each resulting
boundary component to itself by a degree-2 map (when considering S♮h ∼= Nh,1).

Each basis element w of the representation L⋆
(λ,ℓ)(n) (see Figures 2.2c and 2.2d) looks as

illustrated in Figure 3.5 in this picture, where we have also included explicit choices of tethers
(see §2.4), i.e. paths from the base configuration to a point on the submanifold representing the
homology class. Similarly, we denote by wv the basis elements of the vertical-type alternative
representations L⋆,v

(λ,ℓ)(n) (see Figures 2.3c and 2.3d), which look as illustrated in Figure 3.6 in this
picture, where again we have included explicit choices of tethers.

Notation 3.29 We denote by σ1 ∈ MCG(S♮n) the mapping class illustrated in Figure 3.7: it
braids the left-most two handles if S = T and it braids the left-most two crosscaps if S = M.

Lemma 3.30 The following identities hold in L⋆
(λ,ℓ)(n) for ℓ ⩾ 1:

σ−1
1 (([∅,∅], [w3, w4], . . .)) = ([w3, w4], [∅,∅], . . .) (3.19)

σ−1
1 (([∅], [w2], . . .)) = ([w2], [∅], . . .) (3.20)

and in Lv
(λ,ℓ′)(n) for ℓ′ ⩽ 2 (recall that Lv

(λ,ℓ′) = Lu,v
(λ,ℓ′) by Lemma 1.13):

σ1 (([∅,∅], [w3, w4], . . .)v) = ([w3, w4], [∅,∅], . . .)v (3.21)
σ1 (([∅], [w2], . . .)v) = ([w2], [∅], . . .)v (3.22)

Proof. Equations (3.19) and (3.20) are clear from the diagrams of the basis element (see Figure 3.5)
and the action of σ1 (see Figure 3.7), using the facts that the label(s) corresponding to the left-most
handle or crosscap are empty and that the tethers are the same up to homotopy.

On the other hand, we see from the diagrams that the left-hand side of equation (3.21) is equal
to the element illustrated in Figure 3.8a. This differs from the right-hand side of equation (3.21)
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(a) The orientable case.

(b) The non-orientable case.

Figure 3.5 Another perspective on the basis elements depicted in Figures 2.2c and 2.2d.

(a) The orientable case.

(b) The non-orientable case.

Figure 3.6 Another perspective on the basis elements depicted in Figures 2.3c and 2.3d.
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Figure 3.7 The braiding element σ1 ∈ MCG(S) when S = Σg,1 (left) and S = Nh,1 (right).

(a) The left-hand side of equation (3.21). (b) A loop given by the difference of two tethers.

Figure 3.8 The left-hand side of equation (3.21) differs from the right-hand side of equation (3.21) by
the scalar in Z[Q(λ,2)(T)] given by the image in Q(λ,2)(T) of the loop illustrated on the right.

only in the choice of tether. As explained in Lemma 2.22, changing the tether has the effect of
multiplying the homology class by the unit in the ground ring given by the monodromy action of
the based loop of configurations given by the difference between the two tethers. In our setting, the
monodromy action is the quotient onto Q(λ,ℓ′)(T) followed by its inclusion into Z[Q(λ,ℓ′)(T)]×. We
therefore need to show that this based loop of configurations, which is illustrated in Figure 3.8b,
projects to the trivial element of the group Q(λ,ℓ′)(T). This is obvious for ℓ′ = 1 since the group
Q(λ,1)(T) is always trivial. For ℓ′ = 2, we recall from Lemma 1.21 that Q(λ,2)(T) is simply a
product of copies of Z/2, one for each block of λ = (λ1, . . . , λr) with λi ⩾ 2. The projection onto
Q(λ,2)(T) records the writhe (modulo 2) of each block of strands (in a surface of positive genus
the writhe is only well-defined modulo 2). It is clear that the writhe of the loop of configurations
illustrated in Figure 3.8b is trivial for each block. This establishes equation (3.21).

We argue similarly for equation (3.22). (Again, the case ℓ′ = 1 being obvious, we just consider
ℓ′ = 2.) The left-hand side is equal to the element illustrated in Figure 3.9a, which differs from
the right-hand side only by its choice of tether; the difference between the two tethers forms the
based loop of configurations illustrated in Figure 3.9b. We therefore just have to show that this
projects to the trivial element of the group Q(λ,2)(M). This time the group Q(λ,2)(M) is a product
of r′ + r copies of Z/2, where r′ denotes the number of blocks of λ with λi ⩾ 2; see Lemma 1.21.
The first r′ copies of Z/2, in the projection to Q(λ,2)(M) of a loop of configurations, record the
writhe of each block of strands; see [PS24a, Prop. 1.1]. The remaining r copies of Z/2 record, for
each block of strands, the number of times modulo 2 that a strand from that block passes through
a crosscap; [PS24a, Prop. 1.1]. As before, it is clear that the writhe of the loop of configurations
illustrated in Figure 3.9b is trivial for each block; thus the first r′ coordinates of its projection to
Q(λ,2)(M) are zero. Moreover, each strand in this loop of configurations passes around a crosscap
an integer number of times, which corresponds to passing through a crosscap an even number of
times; thus the last r coordinates of its projection to Q(λ,2)(M) are also zero. This establishes
equation (3.22).

Remark 3.31 Equations (3.19) and (3.20) of Lemma 3.30 hold for all ℓ ⩾ 1. On the other hand,
we used the explicit structure of the quotient group Q(λ,2)(S) (and the fact that Q(λ,1)(S) is trivial)
to prove equations (3.21) and (3.22). For ℓ′ ⩾ 3 the proof shows that these equations hold up to
a unit scalar, which is the image in Q(λ,ℓ′)(S) of the loops in Figures 3.8b and 3.9b for S = T and
S = M respectively. We do not know whether this scalar is trivial in these cases.
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(a) The left-hand side of equation (3.22). (b) A loop given by the difference of two tethers.

Figure 3.9 The left-hand side of equation (3.22) differs from the right-hand side of equation (3.22) by
the scalar in Z[Q(λ,2)(M)] given by the image in Q(λ,2)(M) of the loop illustrated on the right.

Remark 3.32 We will view equations (3.21) and (3.22) as being statements about the action of
(σ−1

1 )† = σ1, where (−)† is the operation that inverts the braiding of a braided monoidal category;
see the beginning of §1.1.

Preliminary study of the difference functor. Similarly to L⋆
(λ,ℓ)(n), the MCG(S♮n)-module

τ1L
⋆
(λ,ℓ)(n) = HBM

k (Cλ(S♮(1+n) ∖ I);Z[Q⋆
(λ,ℓ)(S)]) is a free Z[Q⋆

(λ,ℓ)(S)]-module with basis indexed
by labellings of the embedded graph WS

1+n ⊂ S♮(1+n) by words in the blocks of λ. Recall from
Lemma 1.11 that the image of the morphism [1, id1♮n] : n → 1♮n of ⟨M,M⟩ under L⋆

(λ,ℓ) is the map
HBM

k (Cλ(S♮n ∖ I);Z[Q⋆
(λ,ℓ)(S)]) → HBM

k (Cλ(S♮(1+n) ∖ I);Z[Q⋆
(λ,ℓ)(S)]) induced by the inclusion of

configuration spaces Cλ(S♮n∖I) ↪→ Cλ(S♮(1+n)∖I) coming from the boundary connected sum with
the left-most copy of S. It thus follows that the map L⋆

(λ,ℓ)([1, id1♮n]) is the injection defined on
basis elements by adjoining the empty word as the label of the left-most edge, or edges, of WS

1+n,
explicitly given by{

([w1, w2], . . . , [w2n−1, w2n]) 7→ ([∅,∅], [w1, w2], . . . , [w2n−1, w2n]) if S = T;
([w1], . . . , [wn]) 7→ ([∅], [w1], . . . , [wn]) if S = M.

(3.23)

Hence κ1L
⋆
(λ,ℓ)(n) = 0 and δ1L

⋆
(λ,ℓ)(n) is the free Z[Q⋆

(λ,ℓ)(S)]-module with generating set given by
the tuples ([w0, w

′
0], [w1, w2], . . . , [w2n−1, w2n]) such that |w0| + |w′

0| ⩾ 1 if S = T, and the tuples
([w0], [w1], . . . , [wn]) such that |w0| ⩾ 1 if S = M. Then, we define a Z[Q⋆

(λ,ℓ)(S)]-module injection

(∆′
1L

⋆
(λ,ℓ))n : δ1L

⋆
(λ,ℓ)(n) ↪−→ τ1L

⋆
(λ,ℓ)(n) (3.24)

by sending each generating tuple w = ([w0], [w1], . . . , [wn]) of δ1L
⋆
(λ,ℓ)(n) to itself in τ1L

⋆
(λ,ℓ)(n).

Difference functor decomposition. From now on in §3.3.1, we assume that k ⩾ 2. In order
to identify δ1L

⋆
(λ,ℓ)(n) in terms of some L⋆

(λ′,ℓ)(n) where λ′ ≺ λ, we define some Z[Q⋆
(λ,ℓ)(S)]-module

morphisms depending on S as follows.
For S = T. For each object n ⩾ 0, we have to define several injections into δ1L

⋆
(λ,ℓ)(Γ)(n).

First, for each fixed pair of positive integers (j1, j2) such that 1 ⩽ j1, j2 ⩽ r, we define an injection
τ1L

⋆
(λ[j1,j2],ℓ)(Γ)(n) ↪→ δ1L

⋆
(λ,ℓ)(Γ)(n) by mapping each element ([w1, w2], . . . , [w2n+1, w2n+2]) to

([j1w1, j2w2], . . . , [w2n+1, w2n+2]). We denote by (i(λ,ℓ)(Γ)){λ−2}
n the direct sum over 1 ⩽ j1, j2 ⩽ r

of these injections.
Furthermore, we introduce two subfunctors of τ1L

⋆
(λ[j],ℓ)(Γ) (see Proposition 3.33), in order to

define some more injections into δ1L
⋆
(λ,ℓ)(Γ)(n). For each object m ⩾ 0, let τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅](m) and

τ1L
⋆
(λ[j],ℓ)(Γ)[∅,−](m) be the free Z[Q⋆

(λ,ℓ)(T)]-modules with basis all the generators of τ1L
⋆
(λ[j],ℓ)(Γ)(m)

of the form ([w1,∅], . . . , [w2m+1, w2m+2]) and ([∅, w2], . . . , [w2m+1, w2m+2]) respectively. These
modules are direct summands of τ1L

⋆
(λ[j],ℓ)(Γ)(m).

Proposition 3.33 By gathering the Z[Q⋆
(λ,ℓ)(T)]-modules {τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅](m)}m∈Obj(M+

2 ) and
{τ1L

⋆
(λ[j],ℓ)(Γ)[∅,−](m)}m∈Obj(M+

2 ) respectively, and with the assignment of the functor τ1L
⋆
(λ[j],ℓ)(Γ)

on the morphisms of ⟨M+
2 ,M

+
2 ⟩, we define functors τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅] and τ1L

⋆
(λ[j],ℓ)(Γ)[∅,−] of the
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category Fct(⟨M+
2 ,M

+
2 ⟩,Z[Q⋆

(λ,ℓ)(T)]-Mod•). Moreover, these are direct summands of the functor
τ1L

⋆
(λ[j],ℓ)(Γ).

Proof. We focus here on the proof for τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅], that for τ1L

⋆
(λ[j],ℓ)(Γ)[∅,−] being a mutatis

mutandis replication. For each m ⩾ 0, we denote by i[−,∅](m) (resp. p[−,∅](m)) the canonical injec-
tion (resp. projection) associated to the direct summand τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅](m) of τ1L

⋆
(λ[j],ℓ)(Γ)(m).

For all φ ∈ Γm,1, it follows from Lemma 3.28 that L⋆
(λ[j],ℓ)(Γ)(id1♮φ) does not affect the first two en-

tries of each generator ([w1,∅], . . . , [w2m+1, w2m+2]), so the image of the composite τ1L
⋆
(λ[j],ℓ)(Γ)(φ)◦

i[−,∅](m) belongs to the module τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅](m). We deduce that the Z[Q⋆

(λ,ℓ)(T)]-modules
{τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅](m)}m∈Obj(M+

2 ) define a functor τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅] : M+

2 → Z[Q⋆
(λ,ℓ)(T)]-Mod• by

assigning the Γm,1-module structure of τ1L
⋆
(λ[j],ℓ)(Γ)(m) for each m ⩾ 0.

We now extend the functor τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅] along the inclusion M+

2 ↪→ ⟨M+
2 ,M

+
2 ⟩. Re-

call from (1.2) that τ1L
⋆
(λ[j],ℓ)(Γ)([1, id1♮m]) = L⋆

(λ[j],ℓ)(Γ)(σ−1
1 ) ◦ L⋆

(λ[j],ℓ)(Γ)([1, id2♮m]), where σ1 =

b
M+

2
1,1 ♮idm and b

M+
2

1,1 is the braiding of M+
2 (see Figure 3.7). Note that L⋆

(λ[j],ℓ)(Γ)([1, id2♮m]) has a
similar description to that of L⋆

(λ[j],ℓ)(Γ)([1, id1♮m]), by simply replacing n with n+ 1 in the defin-
ing assignment (3.23). Then, we deduce that (L⋆

(λ[j],ℓ)(Γ)([1, id2♮m]))([w1,∅], . . . , [w2m+1, w2m+2]) is
equal to ([∅,∅], [w1,∅], . . . , [w2m+1, w2m+2]) for each element of τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅](m). So it follows

from equation (3.19) of Lemma 3.30 that τ1L
⋆
(λ[j],ℓ)(Γ)([1, id1♮m])([w1,∅], . . . , [w2m+1, w2m+2]) =

([w1,∅], [∅,∅], . . . , [w2m+1, w2m+2]), and thus belongs to τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅](1♮m). Relation (1.3) is

then automatically satisfied since τ1L
⋆
(λ[j],ℓ)(Γ) is a functor out of ⟨M+

2 ,M
+
2 ⟩; it thus follows from

Lemma 1.1 that τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅] extends to an object of Fct(⟨M+

2 ,M
+
2 ⟩,Z[Q⋆

(λ,ℓ)(T)]-Mod•).
Finally, a straightforward adaptation of the above reasoning proves that all of the projec-

tion maps {p[−,∅](m)}m∈Obj(M+
2 ) are equivariant with respect to all of the morphisms of the cate-

gory ⟨M+
2 ,M

+
2 ⟩. Therefore, the subfunctor τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅] is a direct summand of the functor

τ1L
⋆
(λ[j],ℓ)(Γ).

Now, for each 1 ⩽ j ⩽ r, we define an injection τ1L
⋆
(λ[j],ℓ)(Γ)[−,∅](n) ↪→ δ1L

⋆
(λ,ℓ)(Γ)(n) by map-

ping each element ([w1,∅], . . . , [w2n+1, w2n+2]) to ([jw1,∅], . . . , [w2n+1, w2n+2]), and an injection
τ1L

⋆
(λ[j],ℓ)(Γ)[∅,−](n) ↪→ δ1L

⋆
(λ,ℓ)(Γ)(n) by mapping each element ([∅, w2], . . . , [w2n+1, w2n+2]) to

([∅, jw2], . . . , [w2n+1, w2n+2]). We denote by (i(λ,ℓ)(Γ)){λ−1}
n the direct sum over 1 ⩽ j ⩽ r of these

two injections, and by (i(λ,ℓ)(Γ))n the direct sum of the maps (i(λ,ℓ)(Γ)){λ−1}
n and (i(λ,ℓ)(Γ)){λ−2}

n .
Finally, we use the notation τ1L

⋆
(λ[j],ℓ)(Γ)[∅] for the subfunctor τ1L

⋆
(λ[j],ℓ)(Γ)[−,∅]⊕τ1L

⋆
(λ[j],ℓ)(Γ)[∅,−]

of τ1L
⋆
(λ[j],ℓ)(Γ).

For S = M. For each 1 ⩽ j ⩽ r and each n ⩾ 0, we define an injection τ1L
⋆
(λ[j],ℓ)(N )(n) ↪→

δ1L
⋆
(λ,ℓ)(N )(n) by mapping each element ([w1], . . . , [wn+1]) to ([jw1], . . . , [wn+1]). We denote by

(i(λ,ℓ)(N ))n the direct sum over 1 ⩽ j ⩽ r of these injections.

Notation 3.34 To abbreviate and unify our notation, we set (i(λ,ℓ))n to be the map (i(λ,ℓ)(Γ))n
when S = T, and the map (i(λ,ℓ)(N ))n when S = M. We also denote by

⊕
λ′ τ1L

⋆
(λ′,ℓ) the functor

(
⊕

1⩽j1,j2⩽r τ1L
⋆
(λ[j1,j2],ℓ)(Γ))⊕(

⊕
1⩽j⩽r τ1L

⋆
(λ[j],ℓ)(Γ)[∅]) for the case when S = T, and the functor⊕

1⩽j⩽r τ1L
⋆
(λ[j],ℓ)(N ) for the case when S = M.

An elementary check of the bases of δ1L
⋆
(λ,ℓ)(n) and

⊕
λ′ τ1L

⋆
(λ′,ℓ)(n) shows that the morphism

(i(λ,ℓ))n is an isomorphism of (free) Z[Q⋆
(λ,ℓ)(S)]-modules for each n ⩾ 0:

(i(λ,ℓ))n :
⊕
λ′

τ1L
⋆
(λ′,ℓ)(n)

∼=−→ δ1L
⋆
(λ,ℓ)(n). (3.25)

A similar study to the above holds in the vertical setting. Namely, Proposition 2.9 provides
Lv

(λ,ℓ)(n) with the analogous free Z[Q⋆
(λ,ℓ)(S)]-module structures, indexed by the set of tuples la-

belling the embedded “vertical” graphs modelled by Figures 2.3c and 2.3d. The above reasoning
then repeats mutatis mutandis to provide an analogous isomorphism (iv(λ,ℓ))n to (3.25).
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3.3.2. Classical homological representation functors

We prove here Theorem A for the homological representation functors of mapping class groups
in the classical (non-vertical) setting. Following our notation so far in §3.3, we make all further
reasoning, as much as possible, on the (generic) functor L⋆

(λ,ℓ), which denotes any one of the
functors (1.17) and (1.18).
Theorem 3.35 For each ordered partition λ ⊢ k ⩾ 2, each integer ℓ ⩾ 1 and ⋆ either the blank
space or ⋆ = u, the exact sequence (3.1) induces the following isomorphisms in the functor cate-
gories Fct(⟨M+

2 ,M
+
2 ⟩,Z[Q⋆

(λ,ℓ)(T)]-Mod•) and Fct(⟨M−
2 ,M

−
2 ⟩,Z[Q⋆

(λ,ℓ)(M)]-Mod•) respectively:

τ1L
⋆
(λ,ℓ)(Γ) ∼= L⋆

(λ,ℓ)(Γ)
⊕ ⊕

1⩽j1,j2⩽r

τ1L
⋆
(λ[j1,j2],ℓ)(Γ)

⊕ ⊕
1⩽j⩽r

τ1L
⋆
(λ[j],ℓ)(Γ)[∅]

 , (3.26)

τ1L
⋆
(λ,ℓ)(N ) ∼= L⋆

(λ,ℓ)(N )
⊕ ⊕

1⩽j⩽r

τ1L
⋆
(λ[j],ℓ)(N )

 . (3.27)

Proof. As a consequence of the above preliminary study of §3.3.1, it suffices to show that the
Z[Q⋆

(λ,ℓ)(S)]-module isomorphisms {(i(λ,ℓ))n}n∈Obj(M) (see (3.25)) assemble into an isomorphism
i(λ,ℓ) :

⊕
λ′ τ1L

⋆
(λ′,ℓ)

∼→ δ1L
⋆
(λ,ℓ) in Fct(⟨M,M⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•), while the Z[Q⋆
(λ,ℓ)(S)]-module

injections {(∆′
1L

⋆
(λ,ℓ))n}n∈Obj(M) (see (3.24)) assemble into a natural transformation that is a sec-

tion of ∆1L
⋆
(λ,ℓ).

First, we prove the commutation of (i(λ,ℓ))n and of (∆′
1L

⋆
(λ,ℓ))n with respect to the action of

MCG(S♮n). For each element ρ of MCG(S♮n) and for each direct summand τ1L
⋆
(λ′,ℓ) of the source

of (i(λ,ℓ))n (see (3.25)), the morphisms δ1L
⋆
(λ,ℓ)(ρ) and τ1L

⋆
(λ′,ℓ)(ρ) are induced by the actions of

L⋆
(λ,ℓ)(id1♮ρ) and of L⋆

(λ′,ℓ)(id1♮ρ) respectively on the Borel-Moore homology classes supported on
the embedded graph WS

1+n ⊂ S♮(1+n). It follows from Lemma 3.28 that the actions of L⋆
(λ,ℓ)(id1♮ρ)

and of L⋆
(λ′,ℓ)(id1♮ρ) do not affect the first two (if S = T) or one (if S = M) entries of a tuple

corresponding to a generator. Since (i(λ,ℓ))n and (∆′
1L

⋆
(λ,ℓ))n both only affect the first two (if S = T)

or one (if S = M) entries of a tuple by their definitions, we deduce that δ1L
⋆
(λ,ℓ)(ρ) ◦ (i(λ,ℓ))n =

(i(λ,ℓ))n ◦
⊕

λ′ τ1L
⋆
(λ′,ℓ)(ρ) and (∆′

1L
⋆
(λ,ℓ))n ◦ δ1L

⋆
(λ,ℓ)(ρ) = τ1L

⋆
(λ,ℓ)(ρ) ◦ (∆′

1L
⋆
(λ,ℓ))n. Therefore, the

morphisms {(i(λ,ℓ))n}n∈Obj(M) and {(∆′
1L

⋆
(λ,ℓ))n}n∈Obj(M) define natural transformations i(λ,ℓ) and

∆′
1L

⋆
(λ,ℓ) in Fct(M,Z[Q⋆

(λ,ℓ)(S)]-Mod•).
Now, by Lemma 1.2, it suffices to check relation (1.4) in order to prove that i(λ,ℓ) and ∆′

1L
⋆
(λ,ℓ)

are actually natural transformations of functors on ⟨M,M⟩. We consider an object n ⩾ 1,
the proof being trivial for n = 0. We note from the formula (1.2), from the composition rule
(1.1), from the fact that ♮ is a strict monoidal structure and from the functoriality of L⋆

(λ,ℓ), that
τ1L

⋆
(λ,ℓ)([1, id1♮n]) = L⋆

(λ,ℓ)(σ
−1
1 )◦L⋆

(λ,ℓ)([1, id2♮n]), where σ1 ∈ AutM(S♮S♮Sn) is the element bM
1,1♮idn

defined by the braiding bM
1,1 : 1♮1 ∼= 1♮1 (see Figure 3.7). Note that L⋆

(λ,ℓ)([1, id2♮n]) has a similar
description to that of L⋆

(λ,ℓ)([1, id1♮n]), by simply replacing n with n+ 1 in the defining assignment
(3.23). More precisely, it is the map induced by the embedding of WS

1+n into WS
2+n given by

sending the ith edge (S1 − pt)i to the (i+ 2)nd edge (S1 − pt)i+2 (if S = T) or the (i+ 1)st edge
(S1 − pt)i+1 (if S = M). In particular this implies that, in the image of L⋆

(λ,ℓ)([1, id2♮n]), there are
no configuration points on the two first edges (S1 −pt)1 and (S1 −pt)2 if S = T or on the first edge
(S1 − pt)1 if S = M. Then the morphism L⋆

(λ,ℓ)(σ
−1
1 ) corresponds to the action of σ−1

1 on WS
2+n.

It therefore follows from equations (3.19) and (3.20) of Lemma 3.30 that for any generator w
of
⊕

λ′ τ1L
⋆
(λ′,ℓ)(n), both δ1L

⋆
(λ,ℓ)([1, id1♮n])((i(λ,ℓ))n(w)) and (i(λ,ℓ))1+n(

⊕
λ′ τ1L

⋆
(λ′,ℓ)([1, id1♮n])(w))

are equal to o((i(λ,ℓ))n(w)), where o denotes the operation{
([w1, w2], [w3, w4], . . .) 7−→ ([w1, w2], [∅,∅], [w3, w4], . . .) if S = T
([w1], [w2], . . .) 7−→ ([w1], [∅], [w2], . . .) if S = M.

The same arguments using Lemma 3.30 also prove that τ1L
⋆
(λ,ℓ)([1, id1♮n])((∆′

1L
⋆
(λ,ℓ))n(w′)) and

(∆′
1L

⋆
(λ,ℓ))1+n(δ1L

⋆
(λ,ℓ)([1, id1♮n])(w′)) are both equal to o(w′) for any generator w′ of δ1L

⋆
(λ,ℓ)(n).
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It then follows from the above equalities and induction on m ⩾ 1 that the collections of morphisms
{(i(λ,ℓ))n}n∈Obj(M) and {(∆′

1L
⋆
(λ,ℓ))n}n∈Obj(M) commute with the action of [m, idm♮n] for each m ⩾ 1.

Hence relation (1.4) is satisfied for all n ∈ Obj(M) and Lemma 1.2 implies that i(λ,ℓ) and ∆′
1L

⋆
(λ,ℓ)

are natural transformations of functors out of ⟨M,M⟩. In particular, we deduce that i(λ,ℓ) is an
isomorphism in Fct(⟨M,M⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•) between the functors δ1L
⋆
(λ,ℓ) and

⊕
λ′ τ1L

⋆
(λ′,ℓ).

Also, it follows from the definition of (∆′
1L

⋆
(λ,ℓ))n (see (3.24)) that (∆1L

⋆
(λ,ℓ))n ◦ (∆′

1L
⋆
(λ,ℓ))n =

idδ1L⋆
(λ,ℓ)(n), and so ∆′

1L
⋆
(λ,ℓ) is a section of ∆1L

⋆
(λ,ℓ) in Fct(⟨M,M⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•). Since
κ1L

⋆
(λ,ℓ) = 0 (because i1(L⋆

(λ,ℓ))n is clearly injective for each n ∈ M; see (3.23)), we deduce that
the exact sequence (3.1) is a split short exact sequence, which provides the isomorphisms (3.26)
and (3.27).

In the above arguments, whenever we deal with a twisted homological representation functor,
we stress that the action on the ground ring Z[Q⋆

(λ,ℓ)(S)] does not affect any of the above reasoning,
since L⋆

(λ,ℓ) and
⊕

λ′ τ1L
⋆
(λ′,ℓ) are equipped with the same action as τ1L

⋆
(λ,ℓ) via the change of rings

operation of Convention 3.8; see Lemma 3.7.

3.3.3. Vertical-type alternatives

We now deal with the vertical-type alternatives of the homological representation functors
for the mapping class groups of surfaces introduced in §1.3.3. We consider the functors Lv

(λ,ℓ′)(Γ)
for orientable surfaces and the functors Lv

(λ,ℓ′)(N ) for non-orientable surfaces, only for ℓ′ ⩽ 2.
(We recall from Lemma 1.13 that Lv

(λ,ℓ′) = Lu,v
(λ,ℓ′) in this case.) In particular, we do not con-

sider the functors Lv
(λ,ℓ)(N ) with ℓ ⩾ 3 for non-orientable surfaces. This is because the proof

of Theorem 3.36 below relies on the identities proven in Lemma 3.30 using the specific structure
of the transformation groups Q(λ,2)(T) and Q(λ,2)(M) (see Lemma 1.21); in contrast, the groups
Q(λ,ℓ)(M) are not known for ℓ ⩾ 3. We however conjecture that all of the following arguments,
including the results of Theorem 3.36 and Theorem C, also hold for ℓ ⩾ 3.

Theorem 3.36 For each ordered partition λ ⊢ k ⩾ 2, the exact sequence (3.1) induces the anal-
ogous isomorphisms to (3.26) and (3.27) for the functors Lv

(λ,1)(Γ), Lv
(λ,2)(Γ), Lv

(λ,1)(N ) and
Lv

(λ,2)(N ).

Proof. We fix ℓ′ ∈ {1, 2}. The analogous isomorphisms to (3.26) and (3.27) for the vertical-
type alternatives follow mutatis mutandis from the proof of Theorem 3.35 by defining analogues
(iv(λ,ℓ′))n and (∆′

1L
v
(λ,ℓ′))n to the morphisms (i(λ,ℓ′))n and (∆′

1L(λ,ℓ′))n for each n ∈ Obj(M). The
proof that these define natural transformations iv(λ,ℓ′) and ∆′

1L
v
(λ,ℓ′) in Fct(M,Z[Q(λ,ℓ′)]-Mod) is a

verbatim repetition of the first part of the proof of Theorem 3.35, again using the disjoint support
argument of Lemma 3.28. Then, the proof that iv(λ,ℓ′) and ∆′

1L
v
(λ,ℓ′) are natural transformations

in Fct(⟨M†,M†⟩,Z[Q(λ,ℓ′)]-Mod) is the same as the second part of the proof of Theorem 3.35,
except that we now use equations (3.21) and (3.22) of Lemma 3.30 to understand the action of the
braiding.

Remark 3.37 We could define the functors Lv
(λ,1)(Γ), Lv

(λ,2)(Γ), Lv
(λ,1)(N ) and Lv

(λ,2)(N ) on the
categories ⟨M+

2 ,M
+
2 ⟩ and ⟨M−

2 ,M
−
2 ⟩ respectively (i.e. without the opposite convention for the

braiding of M2 induced by the † endofunctor; see §1.3.3). However, in this setting it is not clear
that there are isomorphisms analogous to (3.26) and (3.27).

4. Polynomiality
In this section, we recollect the theory of polynomial functors in §4.1, then prove in §4.2–§4.3

the polynomiality results of Corollary B and Theorem C, and finally prove Corollary F in §4.4.

4.1. Notions of polynomiality
We review here the notions and basic properties of strong, very strong, split and weak polyno-

mial functors. The first definitions of polynomial functors date back to Eilenberg and Mac Lane
in [EM54] for functors on module categories. This notion has progressively been extended to deal
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with a more general framework, and has been the object of intensive study because of its applica-
tions in representation theory (see Djament, Touzé and Vespa [DTV19]), group cohomology (see
Franjou, Friedlander, Scorichenko and Suslin [FFSS99]) and homological stability with twisted co-
efficients (see Randal-Williams and Wahl [RW17]). In particular, Djament and Vespa [DV19, §1]
introduce the notions of strong and weak polynomial functors in the context of a functor category
Fct(C,A), where C is a symmetric monoidal category where the unit is an initial object and A is
a Grothendieck category (see the definition below). They are then extended to the case where C is
pre-braided monoidal in [Sou19; Sou22], which also introduce the notion of very strong polynomial
functor. See also [Pal17] for a comparison of the various instances of polynomial functors. All these
notions extend verbatim to the present slightly larger framework from the previous literature on
this topic (see [Sou22, §4] for instance), the various proofs being mutatis mutandis generalisations
of these previous works. We also define the notion of split polynomial functor, a particular kind
of very strong polynomial functor, following an analogous notion from [RW17].

For the remainder of §4.1, we fix a strict left-module groupoid (M, ♮) over a braided strict
monoidal groupoid (G, ♮, 0) satisfying the same assumptions as in §3.1.1: (G, ♮, 0) has no zero
divisors, AutG(0) = {id0}, M and G are both small and skeletal, have the same set of objects
identified with the non-negative integers N with the standard notation n to denote an object, and
both the monoidal and module structures ♮ are given on objects by addition. For example, one
quickly checks that all of the examples of M and G defined in §1.3 satisfy all of these assumptions.
We also consider a Grothendieck category A, i.e. a cocomplete abelian category, which admits a
generator, and in which filtered colimits of exact sequences are exact. In particular, we recall from
[Gro57, §1.7, d)] that the functor category Fct(⟨G,M⟩,A) is a Grothendieck category.

Strong, very strong and split polynomial functors. The category of strong polynomial
functors of degree at most d ∈ N, denoted by Polstr

d (⟨G,M⟩,A), is the full subcategory of
Fct(⟨G,M⟩,A) defined by Polstr

d (⟨G,M⟩,A) = {0} if d < 0 and the objects of Polstr
d (⟨G,M⟩,A)

for d ∈ N are the functors F such that the functor δ1(F ) is an object of Polstr
d−1(⟨G,M⟩,A). The

smallest integer d ∈ N for which an object F of Fct(⟨G,M⟩,A) is an object of Polstr
d (⟨G,M⟩,A)

is called the strong degree of F , and is denoted by sdeg(F ).
The category of very strong polynomial functors of degree at most d ∈ N, denoted by

VPold(⟨G,M⟩,A), is the full subcategory of Polstr
d (⟨G,M⟩,A) of the objects F such that κ1(F ) = 0

and the functor δ1(F ) is an object of VPold−1(⟨G,M⟩,A).
The category of split polynomial functors of degree at most d ∈ N, denoted by SPold(⟨G,M⟩,A),

is the full subcategory of Polstr
d (⟨G,M⟩,A) of the objects F such that the translation map

i1F : F → τ1F is split injective in Fct(⟨G,M⟩,A).

Remark 4.1 It follows from the definitions that split polynomiality implies very strong polyno-
miality, while very strong polynomiality implies strong polynomiality. Also, for F an object of
Fct(⟨G,M⟩,A), if F is very strong (resp. split) polynomial, then its strong degree sdeg(F ) is the
smallest integer d ∈ N such that F is an object of VPold(⟨G,M⟩,A) (resp. of SPold(⟨G,M⟩,A)).

A valuable application of these notions of polynomiality is that of homological stability with
twisted coefficients for families of groups; see [RW17] for a detailed introduction to this notion.
Namely, let us consider any pair of groupoids M and G introduced in §1.1.2.2 and §1.1.2.3, such
that the family of automorphism groups of the Quillen bracket construction ⟨G,M⟩ is {Bn(S)}n∈N
for a fixed S ∈ {D,Σg,1,Nh,1}, or {Γn,1}n∈N, or {N n,1}n∈N.

Theorem 4.2 ([RW17, Theorems D, I, 5.23, 5.26, 5.29]) Twisted homological stability holds for the
family of automorphism groups of ⟨G,M⟩ with coefficients in any object F of Fct(⟨G,M⟩,Z-Mod)
that is strong polynomial (of finite degree d ∈ N), and for which there exists N ∈ Obj(M) such that,
for all r ∈ {0, . . . , d}, κ1(δr

1F )(n) = 0 for each n ⩾ N − r; see [RW17, Def. 4.10] for further details
on these conditions. For instance, these conditions hold whenever F is very strong polynomial or
split polynomial.

Remark 4.3 In the case of mapping class groups of orientable surfaces, similar twisted homological
stability results to those of Theorem 4.2 from [RW17] were proven earlier by Ivanov [Iva93] and
Boldsen [Bol12].
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On another note, the target category of a homological representation functor L⋆
(λ,ℓ) is gen-

erally of the form Z[Q⋆
(λ,ℓ)]-Mod• (see Convention 3.4). To rigorously apply Theorem 4.2 (see

Corollaries 4.9 and 4.16), we implicitly postcompose the homological representation functors by
the forgetful functor Z[Q⋆

(λ,ℓ)]-Mod• → Z-Mod; such operations do not affect the polynomiality
properties of L⋆

(λ,ℓ).

Weak polynomial functors. Let F be an object of Fct(⟨G,M⟩,A). For all objects n and m of
M, it follows from a clear diagram chase, the universal property of a kernel and the 4-lemma that
the morphism [m, idm♮n] induces a canonical inclusion κn(F ) ↪→ κm♮n(F ). These inclusions provide
an ascending filtration on the evanescence functors {κn}n∈Obj(M). We denote by κ(F ) the filtered
colimit

∑
n∈Obj(M) κn(F ), which is a subfunctor of F .

Let K(⟨G,M⟩,A) be the full subcategory of Fct(⟨G,M⟩,A) of all those objects F such that
κ(F ) = F . The category K(⟨G,M⟩,A) is a thick subcategory of Fct(⟨G,M⟩,A) and it is closed
under colimits; see [Sou22, Prop. 4.6].
Remark 4.4 It would be enough to assume that A is abelian to define strong, very strong and
split polynomiality. However, we need A to be Grothendieck in order to work with the notion of
weak polynomiality and the associated quotient category of the functor category Fct(⟨G,M⟩,A).
Indeed, it is necessary to assume that the filtered colimits in the category Fct(⟨G,M⟩,A) are exact
in order to prove [Sou22, Prop. 4.6]. See also [Sou22, Rem. 4.7] for further explanations.

Therefore, the subcategory K(⟨G,M⟩,A) of the Grothendieck category Fct(⟨G,M⟩,A) is
localising, and we may define the associated quotient category denoted by St(⟨G,M⟩,A), along
with the associated left adjoint quotient functor π⟨G,M⟩, which is exact, essentially surjective and
commutes with all colimits; see [Gab62, Chapitre III, §1].

For each object n of M, the translation functor τn and the difference functor δn in the cat-
egory Fct(⟨G,M⟩,A) induce exact endofunctors of St(⟨G,M⟩,A), which commute with colimits,
respectively called again the translation functor τn and the difference functor δn. In addition, we
have the commutation relations δn ◦π⟨G,M⟩ = π⟨G,M⟩ ◦ δn and τn ◦π⟨G,M⟩ = π⟨G,M⟩ ◦ τn. Therefore,
the exact sequence (3.1) induces a short exact sequence Id ↪→ τn ↠ δn for the induced endofunctors
of St(⟨G,M⟩,A). Finally, the endofunctors δ1, δn, τ1 and τn of St(⟨G,M⟩,A) pairwise commute
up to natural isomorphism coming from the braiding.

We then define, inductively on d ∈ N, the category of polynomial functors of degree at most
d, denoted by Pold(⟨G,M⟩,A), to be the full subcategory of St(⟨G,M⟩,A) as follows. If d < 0,
Pold(⟨G,M⟩,A) = {0}; if d ⩾ 0, the objects of Pold(⟨G,M⟩,A) are the functors F such that the
functor δ1(F ) is an object of Pold−1(⟨G,M⟩,A). For an object F of St(⟨G,M⟩,A) that is polyno-
mial of degree at most d ∈ N, the smallest integer n ⩽ d for which F is an object of Poln(⟨G,M⟩,A)
is called the degree of F . An object F of Fct(⟨G,M⟩,A) is weak polynomial of degree at most d
if its image π⟨G,M⟩(F ) is an object of Pold(⟨G,M⟩,A). The degree of polynomiality of π⟨G,M⟩(F )
is called the weak degree of F , and is denoted by wdeg(F ).
Lemma 4.5 Let F be an object of Fct(⟨G,M⟩,A). If F is strong polynomial of strong degree
sdeg(F ), then it is weak polynomial of weak degree wdeg(F ) ⩽ sdeg(F ).
Proof. The result is a straightforward consequence of the commutation relation δp

1 (π⟨G,M⟩(F )) =
π⟨G,M⟩(δp

1 (F )) for all p ⩾ 1.

Remark 4.6 Since each object n is equal to 1♮n in the category ⟨G,M⟩, our definitions of the
notions of strong, very strong, split and weak polynomiality are equivalent to the more classical
ones with the analogous criteria on the functors τn, δn and κn for all n ∈ Obj(G) (instead of just
n = 1); see [DV19, Prop. 1.8], [Sou19, Prop. 3.9] and [Sou22, Prop. 4.4, (2)] for further details.

Furthermore, for a short exact sequence 0 → F → G → H → 0 in the category Fct(⟨G,M⟩,A),
the snake lemma induces the following short exact sequence in St(⟨G,M⟩,A), which is the image
of (3.2):

0 −→ δn ◦ π⟨G,M⟩(F ) −→ δn ◦ π⟨G,M⟩(G) −→ δn ◦ π⟨G,M⟩(H) −→ 0. (4.1)
Finally, we recall useful properties of the categories associated with the different types of polynomial
functors, which are proven in [Sou22, Props. 4.4, 4.10] (split polynomial functors are not considered
there, but their study follows repeating mutatis mutandis this reference).
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Proposition 4.7 Let d ⩾ 0 be an integer. The categories Polstr
d (⟨G,M⟩,A), VPold(⟨G,M⟩,A)

and SPold(⟨G,M⟩,A) are closed under the translation functor, direct sum and direct summand.
The categories Polstr

d (⟨G,M⟩,A) and VPold(⟨G,M⟩,A) are closed under extensions. The category
Polstr

d (⟨G,M⟩,A) is closed under colimits. The categories VPold(⟨G,M⟩,A) and SPold(⟨G,M⟩,A)
are closed under normal subobjects (i.e. kernels of epimorphisms). As a subcategory of St(⟨G,M⟩,A),
the category Pold(⟨G,M⟩,A) is thick, complete and cocomplete.

4.2. For surface braid group functors
In this section, we prove the polynomiality properties of Corollary B and Theorem C for the

homological representation functors for classical braid groups and surface braid groups defined in
§1.3.1 and §1.3.2. Throughout §4.2, we consider homological representation functors indexed by
an ordered partition λ ⊢ k of an integer k ⩾ 1 and by the depth ℓ ⩾ 1 of a lower central series.

4.2.1. Classical homological representation functors

We prove here Corollary B in the classical (i.e. non-vertical) setting for homological representa-
tion functors. These polynomiality results actually hold both for the standard functors (i.e. LB(λ,ℓ)
and L(λ,ℓ)(S)) as well as for their untwisted versions (i.e. LBu

(λ,ℓ) and Lu
(λ,ℓ)(S)).

Proof of Corollary B for classical braid groups. Following §3.2.2, we consider the functor LB⋆
(λ,ℓ)

where ⋆ either stands for the blank space or ⋆ = u.
We first consider the case of k = 1, and so λ = (1). We recall that the preliminary study of

§3.2.1 (except (3.6) and (3.7)) holds for the functor LB⋆
((1),ℓ). Following Notation 3.12, for each

n ∈ Obj(β), the Bn-representation δ1LB
⋆
((1),ℓ)(n) is the free Z[Q⋆

((1),ℓ)(D)]-module of rank one,
with generators given by the tuples (w0, w1, . . . , wn−1) such that |w0| = 1, while κ1LB

⋆
((1),ℓ) = 0.

By expressing δ1LB
⋆
((1),ℓ)([1, id1♮n]) as a quotient map of LB⋆

((1),ℓ)(σ−1
1 ) ◦ LB⋆

((1),ℓ)([1, id1♮n]), it
follows from Lemma 3.16 and from the description (3.5) of LB⋆

((1),ℓ)([1, id1♮n]) that i1(δ1LB
⋆
((1),ℓ))n

is an isomorphism for n ⩾ 1, while i1(δ1LB
⋆
((1),ℓ))0 is the zero map. So κ1δ1LB

⋆
((1),ℓ) = 0, while

δ2
1LB

⋆
((1),ℓ) is the atomic functor whose unique non-null value is δ2

1LB
⋆
((1),ℓ)(0) = Z[Q⋆

((1),ℓ)(D)].
A fortiori, LB⋆

((1),ℓ) is strong polynomial of strong degree 2 and weak polynomial of weak degree
1. Furthermore, it follows from the commutation property of δ1 with τ1 that δ1(τ1LB

⋆
((1),ℓ))(n) =

Z[Q⋆
((1),ℓ)(D)] for each n ⩾ 0. By repeating mutatis mutandis the above argument, we show

that κ1(δ1(τ1LB
⋆
((1),ℓ))) = δ2

1(τ1LB
⋆
((1),ℓ)) = 0, and thus τ1LB

⋆
((1),ℓ) is both very strong and weak

polynomial, of both strong and weak degrees 1. Moreover, by applying Lemma 3.9 and then
repeating verbatim the above argument, we deduce that this polynomiality result for LB⋆

((1),ℓ) still
holds after any non-zero change of rings operation.

Now, we proceed by induction on k ⩾ 2, reasoning on each ordered partition λ ⊢ k. First, we
consider the case of k = 2 (with an ordered partition λ ⊢ 2). It follows from Theorem 3.17 that
κ1(LB⋆

(λ,ℓ)) = 0, while the difference functor δ1LB
⋆
(λ,ℓ) is determined by τ1LB

⋆
((1),ℓ) (potentially

up to a non-zero change of rings; see Convention 3.8). By the above polynomiality results on
τ1LB

⋆
((1),ℓ), we deduce that the functor LB⋆

(λ,ℓ) is both very strong and weak polynomial, of both
strong and weak degrees 2. By using Corollary 3.10 and repeating verbatim this argument, this
polynomiality result for LB⋆

(λ,ℓ) with λ ⊢ 2 also holds after any non-zero change of rings operation.
We do the inductive step on any fixed λ ⊢ k ⩾ 2. Namely, we assume that for each λ′ ∈ {λ−1}

(see Notation 3.2), the functor LB⋆
(λ′,ℓ) is both very strong and weak polynomial, of both strong

and weak degrees k − 1, and that these properties still hold after any non-zero change of rings
operation. Since VPold(⟨β,β⟩,Z[Q⋆

(λ,ℓ)(D)]-Mod•) is closed under τ1 and under normal subobjects
by Proposition 4.7, this inductive assumption implies that τ1LB

⋆
(λ′,ℓ) is both very strong and

weak polynomial, of both strong and weak degrees k − 1. Now, we deduce from Theorem 3.17
that κ1LB

⋆
(λ,ℓ) = 0, while the difference functor δ1LB

⋆
(λ,ℓ) is a direct sum of functors of the form

τ1LB
⋆
(λ′,ℓ) where λ′ ∈ {λ − 1} (potentially up to a non-zero change of rings; see Convention 3.8).

Therefore, the functor LB⋆
(λ,ℓ) is both very strong and weak polynomial, of both strong and

weak degrees k. This polynomiality result also holds after applying any non-zero change of rings
operation by using Corollary 3.10 and repeating verbatim the above reasoning, which ends the
induction.
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Remark 4.8 The functors LB((1),2) ⊗C[Z] and LB((2),2) ⊗C[Z2] correspond to the reduced Burau
functor Bur and the Lawrence-Krammer functor LK defined in [Sou19, §1.2]. By Corollary 3.10,
the polynomiality results of Corollary B recover those of [Sou19, Props. 3.25 and 3.33] for the
functors LB((1),2) ⊗C[Z] and LB((2),2) ⊗C[Z2]. Also, the corresponding key short exact sequences
using [Sou19, §1.2] (i.e. (3.13) for λ ∈ {1, 2} and ℓ = 2) are proven via an alternative method,
which is more algebraic than that of Theorem 3.17.

Proof of Corollary B for surface braid groups. Following §3.2.3, we use here the notation L⋆
(λ,ℓ)(S)

where ⋆ either stands for the blank space or ⋆ = u and S is either Σg,1 or Nh,1 with g, h ⩾ 1.
First, we consider the case of k = 1 (with the trivial partition λ = (1)). We recall that

the preliminary study of §3.2.1 (except (3.6) and (3.7)) holds for the functor L⋆
((1),ℓ)(S). Follow-

ing Notation 3.12, for each n ∈ Obj(βS), the Z[Q⋆
((1),ℓ)(S)]-module L⋆

((1),ℓ)(S)(n) is free of rank
gS +n−1, with generators denoted by tuples (w1, . . . , wgS+n−1), where the wi ∈ {0, 1} are integers
such that

∑
1⩽i⩽gS+n−1 wi = 1. Also, the map i1(L⋆

((1),ℓ)(S))n = L⋆
((1),ℓ)(S)([1, id1♮n]) is the in-

jection defined by (w1, . . . , wgS+n−1) 7→ (0, w1, . . . , wgS+n−1). Hence the cokernel δ1L
⋆
((1),ℓ)(S)(n)

is the free Z[Q⋆
((1),ℓ)(S)]-module of rank one generated by the element (1, 0, . . . , 0) if n ⩾ 1, while

δ1L
⋆
((1),ℓ)(S)(0) is a free Z[Q⋆

((1),ℓ)(S)]-module of rank gS . By expressing δ1L
⋆
((1),ℓ)(S)([1, id1♮n])

as a quotient map of L⋆
((1),ℓ)(S)(σ−1

1 ) ◦ L⋆
((1),ℓ)(S)([1, id1♮n]), it follows from Lemma 3.16 that

i1(δ1L
⋆
((1),ℓ)(S))n is an isomorphism for n ⩾ 1, and a fortiori δ2

1(L⋆
((1),ℓ)(S))(n) = 0 when n ⩾ 1.

Therefore, the functor δ2
1(L⋆

((1),ℓ)(S)) is either null or atomic (with unique non-null value being
the image of 0), and so L⋆

((1),ℓ)(S) is weak polynomial of weak degree 1. Moreover, the target of
the map i1(δ2

1L
⋆
((1),ℓ)(S))n is 0 for all n ⩾ 0, so δ3

1L
⋆
((1),ℓ)(S) = 0 and thus L⋆

((1),ℓ)(S) is strong
polynomial, of strong degree at most 2.

Now, we prove by induction on k ⩾ 1 that, for each ordered partition λ ⊢ k, the functor
Lλ := (τ1L

⋆
(λ,ℓ)(S))|⩾2 is weak polynomial with wdeg(Lλ) = k and strong polynomial with sdeg(Lλ)

equal to k or k+1, and that these properties still hold after any non-zero change of rings operation.
The base case corresponds to studying the polynomiality of L(1) := (τ1L

⋆
((1),ℓ)(S))|⩾2. Repeating

mutatis mutandis the first arguments above, we deduce that κ1L(1) = 0 and δ1(L(1))(n) is the free
Z[Q⋆

((1),ℓ)(S)]-module of rank one generated by the element (1, 0, . . . , 0) if n ⩾ 1, while δ1(L(1))(0)
is the free Z[Q⋆

((1),ℓ)(S)]-module of rank gS + 1 on the generators (w1, . . . , wgS+1) with wi ∈
{0, 1}. Viewing δ1L(1)([1, id1♮n]) as a quotient map of L(1)(σ−1

1 ) ◦ L(1)([1, id1♮n]), we deduce from
Lemma 3.16 that i1(δ1L(1))n is an isomorphism for n ⩾ 1. Hence we have δ2

1(L(1))(n) = 0 when
n ⩾ 1, and the target of the map i1(δ2

1L(1)) is 0 for all n ⩾ 0. Therefore, as above, the functor L(1)
is weak polynomial with wdeg(L(1)) = 1, and strong polynomial with sdeg(L(1)) equal to 1 or 2 by
Lemma 4.5. Furthermore, since δ1L(1)(n) is a free Z[Q⋆

(λ,ℓ)(D)]-module for each n ∈ Obj(βS) and
κ1L(1) = 0, we deduce that this polynomiality result for L(1) still holds after any non-zero change
of rings operation by using Lemma 3.9 and then repeating verbatim the above argument.

We do the inductive step on a fixed ordered partition λ ⊢ k with k ⩾ 1. Namely, we assume
that for each λ′ ∈ {λ−1} (see Notation 3.2), the functor Lλ′ := (τ1L

⋆
(λ′,ℓ)(S))|⩾2 is weak polynomial

of weak degree k−1 and strong polynomial of strong degree k−1 or k, and that these properties still
hold after any non-zero change of rings operation. By the inductive assumption on Lλ′ , the commu-
tation properties of δ1 with colimits and with π⟨β,βS⟩ and the right-exactness of π⟨β,βS⟩, we deduce
that the functor

⊕
1⩽j⩽r Lλ[j] (as well as its versions after applying any non-zero change of rings op-

erations to each one of the Lλ[j] factors) is weak polynomial of weak degree k−1 and strong polyno-
mial of strong degree k−1 or k. By Theorem 3.24, the difference functor δ1(L⋆

(λ,ℓ)(S)|⩾2) is an exten-
sion of the atomic functor τ1(L⋆

(λ,ℓ)(S)|⩾2)(1) by
⊕

1⩽j⩽r Lλ[j] (potentially up to a non-zero change
of rings; see Convention 3.8). It thus follows from the properties on extensions of Proposition 4.7
that the functor δ1(L⋆

(λ,ℓ)(S)|⩾2) is weak polynomial of weak degree at most k−1, and strong poly-
nomial of strong degree at most k. In the stable category St(⟨β,βS⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•), we note
that π⟨β,βS⟩(τ1(L⋆

(λ,ℓ)(S)|⩾2)(1)) = 0 because κ(τ1(L⋆
(λ,ℓ)(S)|⩾2)(1)) = τ1(L⋆

(λ,ℓ)(S)|⩾2)(1). Hence
π⟨β,βS⟩(δ1(L⋆

(λ,ℓ)(S)|⩾2)) ∼=
⊕

1⩽j⩽r π⟨β,βS⟩(Lλ[j]) and thus the weak degree of δ1(L⋆
(λ,ℓ)(S)|⩾2) is

equal to k − 1. Also, by Lemma 4.5, the strong degree of δ1(L⋆
(λ,ℓ)(S)|⩾2) is thus k − 1 or k.

Therefore, the functor L⋆
(λ,ℓ)(S)|⩾2 is weak polynomial of weak degree k, and strong polynomial
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of strong degree k or k + 1. Then, by the properties on extensions of Proposition 4.7, we deduce
from Corollary 3.25 that the functor Lλ is weak polynomial of weak degree at most k, and strong
polynomial of strong degree at most k + 1. Since δ1 commutes with colimits, the inductive as-
sumption on the functors Lλ[j] implies that δk

1π⟨β,βS⟩(
⊕

1⩽j⩽r Lλ[j]) = 0. Then, by iterating the
short exact sequence (4.1) on (3.18), we deduce that the functor δk

1π⟨β,βS⟩(Lλ) is isomorphic to
δk

1π⟨β,βS⟩(L⋆
(λ,ℓ)(S)|⩾2), which is non-null since wdeg(L⋆

(λ,ℓ)(S)|⩾2) = k. Hence wdeg(Lλ) = k, and
thus sdeg(Lλ) is equal to k or k + 1 by Lemma 4.5. These polynomiality results for L⋆

(λ,ℓ)(S)|⩾2
and Lλ also hold after applying any non-zero change of rings operation, by using Corollary 3.10
and repeating verbatim the above reasoning, which ends the induction.

In particular, we prove in the process of the induction that, for each k ⩾ 1 and each
ordered partition λ ⊢ k, the functor L⋆

(λ,ℓ)(S)|⩾2 is weak polynomial of weak degree k, and
strong polynomial of strong degree k or k + 1. Now, recall from §3.2.3 that L⋆

(λ,ℓ)(S) is an
extension of the atomic functor L⋆

(λ,ℓ)(S)(1) by L⋆
(λ,ℓ)(S)|⩾2, i.e there is a short exact sequence

L⋆
(λ,ℓ)(S)|⩾2 ↪→ L⋆

(λ,ℓ)(S) ↠ L⋆
(λ,ℓ)(S)(1). By the properties on extensions of Proposition 4.7,

the functor L⋆
(λ,ℓ)(S) is weak polynomial of weak degree with wdeg(L⋆

(λ,ℓ)(S)) ⩽ k, and strong
polynomial with sdeg(L⋆

(λ,ℓ)(S)) ⩽ k + 1. Then we have π⟨β,βS⟩(L⋆
(λ,ℓ)(S)(1)) = 0 because

κ(L⋆
(λ,ℓ)(S)(1)) = L⋆

(λ,ℓ)(S)(1), so π⟨β,βS⟩(L⋆
(λ,ℓ)(S)) ∼= π⟨β,βS⟩(L⋆

(λ,ℓ)(S)|⩾2). We thus deduce
that wdeg(L⋆

(λ,ℓ)(S)) = k, and so sdeg(L⋆
(λ,ℓ)(S)) = k or k + 1 by Lemma 4.5.

Corollary 4.9 Twisted homological stability holds for the classical braid groups and surface braid
groups with coefficients in the homological representation functors of Theorems 3.17 and 3.24.

Proof. Following §3.2.1, we use the generic notation L⋆
(λ,ℓ)(S) to study the functors LB⋆

(λ,ℓ) and
L⋆

(λ,ℓ)(S) of Theorems 3.17 and 3.24. Recall from the description (3.5) of the map i1(L⋆
(λ,ℓ)(S))n

that κ1L
⋆
(λ,ℓ)(S)(n) = 0 for all n ⩾ 2. Then, using the commutation property of δ1 with τ1 (and

noting that δ1(L⋆
(λ,ℓ)(S)|⩾2)(n) ∼= δ1(L⋆

(λ,ℓ)(S))(n) by (3.2) for n ⩾ 2 when S ̸= D), it follows from
a clear iteration of the short exact sequences (3.13) and (3.17) that κ1(δr

1L
⋆
(λ,ℓ)(S))(n) = 0 for all

n ⩾ 2 and all r ⩾ 0. By this last property along with Corollary B, each functor L⋆
(λ,ℓ)(S) thus

satisfies the condition of Theorem 4.2 (as long as we choose N ⩾ 2 + d), whence the result.

Remark 4.10 In the above proof of Corollary B for surface braid groups, we have not determined
if the strong degree of L⋆

(λ,ℓ)(S) is k or k + 1, nor addressed the question of whether or not this
functor is very strong polynomial. This is actually an aftereffect of the difficulty of computing
the first entries δm

1 (L⋆
(λ,ℓ)(S))(0) and κ1(δm−1

1 (L⋆
(λ,ℓ)(S)))(0) for m ⩾ 2 with the techniques of

the present paper. Indeed, although it is not difficult to compute δ2
1(L⋆

(λ,ℓ)(S))(n) and check that
κ1(δ1L

⋆
(λ,ℓ)(S))(n) = 0 for n ⩾ 1 via the methods of §3.2.1 and §3.2.3, the map

i1(δ1L
⋆
(λ,ℓ)(S))0 : (δ1L

⋆
(λ,ℓ)(S))(0) ∼= L⋆

(λ,ℓ)(S)(1) → (δ1L
⋆
(λ,ℓ)(S))(1)

is however much trickier to study. Let us illustrate this with the case of k = 1, λ = (1), ℓ = 2 and
S = Σ1,1, for which Q((1)),2)(S) ∼= Z2 ∼= ⟨A⟩⊕⟨B⟩ (see Remark 1.18). We recall that the generators
{[1, 0], [0, 1]} form a basis of L((1),2)(Σ1,1)(1) ∼= Z[Z2]⊕2. Using the further techniques of [PS], one
may then prove that the kernel of i1(δ1L((1),2)(S))0 : Z[Z2]⊕2 → Z[Z2] is isomorphic to the free
Z[Z2]-submodule of Z[Z2]⊕2 generated by (1 − A)[0, 1] − (1 − B)[1, 0], while δ2

1(L((1),2)(S))(0) ∼=
Z[Z2]/(1 −A, 1 −B). This along with the above proof of Corollary B proves that L((1),2)(Σ1,1) is
strong polynomial of degree 2 but not very strong polynomial. Nevertheless, note that if we apply
the change of rings functor for the homomorphism q : Z[Z2] → Q(Z2) (where Q(Z2) is the field of
fractions of Z[Z2]), we deduce that the functor q!L((1),2)(Σ1,1) is strong polynomial of degree 1. The
strong degree thus decisively depends on the ground ring of the functor in this case. Furthermore,
analogous results may be proved for more general L⋆

(λ,ℓ)(S).
In contrast, by similar work to §3.2.3 and the proof of Corollary B, it is routine to check that

the shifted-by-1 functor τ1L
⋆
(λ,ℓ)(S) is very strong and weak polynomial of both strong and weak

degrees k. This exemplifies how the strong polynomial degree may be heavily affected by the low
values of a given functor, thus not being optimal to describe its global behaviour, in particular for
homological stability. Moreover, this shows the interest of the notion of weak polynomiality since
it reflects more accurately the stable behaviour of functors.
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4.2.2. Vertical-type alternatives

We now deal with the vertical-type alternatives of the homological representation functors
of the surface braid groups. Following the framework of §3.2, we consider the generic vertical
homological representation functor L⋆,v

(λ,ℓ)(S) where ⋆ either stands for the blank space or ⋆ = u,
S ∈ {D,Σg,1,Nh,1} with g ⩾ 1 and h ⩾ 1 and the associated transformation group is denoted
by Q⋆

(λ,ℓ)(S). We recall from Proposition 2.9 that, for each n ∈ Obj(βS), the Z[Q⋆
(λ,ℓ)(S)]-module

L⋆,v
(λ,ℓ)(S)(n) is free with basis indexed by the set of (“vertical”) tuples wv as pictured in Figures 2.3a

and 2.3b, which has the same dimension as the (“classical”) functor L⋆
(λ,ℓ)(S)(n).

First of all, we focus on a significant fact about the behaviour of the functor L⋆,v
(λ,ℓ)(S) after

applying the operation δ1.

Lemma 4.11 The functor δ1L
⋆,v
(λ,ℓ)(S) sends every morphism that is not an endomorphism to zero.

Proof. Recall that, by construction (see Lemma 1.11), the morphism n → 1♮n of the domain
category ⟨β,βS⟩ is sent, under each of our functors L⋆,v

(λ,ℓ)(S), to the map on Borel-Moore homology
induced by the evident inclusion of configuration spaces. Since every morphism of the domain
category that is not an endomorphism factors through one of these canonical morphisms, it suffices
to show that all of these are sent to zero under δ1L

⋆,v
(λ,ℓ)(S). In other words, we wish to show that

the map labelled by (∗) in the following diagram is zero, where the rows are exact:

L⋆,v
(λ,ℓ)(S)(n) τ1L

⋆,v
(λ,ℓ)(S)(n) δ1L

⋆,v
(λ,ℓ)(S)(n) 0

L⋆,v
(λ,ℓ)(S)(1♮n) τ1L

⋆,v
(λ,ℓ)(S)(1♮n) δ1L

⋆,v
(λ,ℓ)(S)(1♮n) 0

(†) (∗)

(‡)

(4.2)

To do this, it suffices to show that there is a diagonal morphism making the two triangles commute.
Recalling that τ1F (n) = F (1♮n) in general, we will be able to take the diagonal morphism to be the
identity as long as the two maps labelled (†) and (‡) are equal (we note that the top-left horizontal
map L⋆,v

(λ,ℓ)(S)(n) → τ1L
⋆,v
(λ,ℓ)(S)(n) and the left-most vertical map L⋆,v

(λ,ℓ)(S)(n) → L⋆,v
(λ,ℓ)(S)(1♮n) in

(4.2) are always equal by definition of the natural transformation Id → τ1).
By definition of τ1L

⋆,v
(λ,ℓ)(S), its action on the canonical morphism [1, id1♮n] : n → 1♮n is given by

the action of L⋆,v
(λ,ℓ)(S) on the canonical morphism [1, id2♮n] : 1♮n → 2♮n composed with (bβ

1,1)−1♮idn,
where bβ

1,1 is the braiding 1♮1 ∼= 1♮1 of the groupoid β; see (1.2). This describes the map (†); on
the other hand, the map (‡) is given simply by the action of L⋆,v

(λ,ℓ)(S) on the canonical morphism
1♮n → 2♮n. It is therefore enough to prove that the automorphism bβ

1,1♮idn, which canonically
identifies with the Artin generator σ1, acts by the identity on the image of (‡). This is immediate
from Figure 4.1, where the image of an arbitrary basis element wv = (w1, . . . , wn) under (‡) is
depicted in green (supported on the vertical arcs) and the support of a diffeomorphism representing
the mapping class σ1 is shaded in grey. Since these supports are disjoint, the action of bβ

1,1♮idn on
the image of (‡) is trivial.

Remark 4.12 It is instructive to consider why the same argument does not also show that the
functor δ1L

⋆
(λ,ℓ)(S) sends every canonical morphism n → 1♮n to the zero morphism. This boils

down to the fact that, in the analogue of Figure 4.1 for the non-vertical version L⋆
(λ,ℓ)(S) of the

functor, the supports are not disjoint.

We are now ready to prove the (non-)polynomiality results of Theorem C, which actually
hold for any one of these vertical-type alternatives L⋆,v

(λ,ℓ)(S) (i.e. also for the untwisted versions).
In particular, this shows that these vertical-type alternatives exhibit unexpected interesting be-
haviour with respect to polynomiality, which thoroughly differs from their “classical” (non-vertical)
counterparts studied in §3.2.2–§3.2.3. Indeed, they are not strong polynomial, which is a counter-
intuitive property since the dimensions of the representations encoded by each L⋆,v

(λ,ℓ)(S) grow in
the same polynomial way as those of L⋆

(λ,ℓ)(S).
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Figure 4.1 The support of a diffeomorphism representing the mapping class σ1 = bβ
1,1♮idn and the

image of an arbitrary basis element wv = (w1, . . . , wn), shown in green, under the map (‡) of (4.2).

Proof of Theorem C for surface braid groups. By similar reasoning to that of §3.2.1, we see that
the map L⋆,v

(λ,ℓ)(S)([1, id1♮n]) is the injection defined on basis elements by (w1, . . . , wgS+n−1)v 7→
(∅, w1, . . . , wgS+n−1)v, so it follows that δ1L

⋆,v
(λ,ℓ)(S)(n) is a non-trivial free Z[Q⋆

(λ,ℓ)(S)]-module
with the same dimension as δ1L

⋆
(λ,ℓ)(S)(n) for all n ⩾ 1. Meanwhile it follows from Lemma 4.11

that δ1L
⋆,v
(λ,ℓ)(S) assigns the zero map to all morphisms of ⟨β,βS⟩(n, m) with n ̸= m. So δ1L

⋆,v
(λ,ℓ)(S)

is isomorphic to a direct sum of infinitely many atomic functors. It follows that δm
1 L⋆,v

(λ,ℓ)(S) ̸= 0 for
any m ∈ N while π⟨β,βS⟩(δ1L

⋆,v
(λ,ℓ)(S)) = 0 in the stable category St(⟨β,βS⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•),
whence the result.

Remark 4.13 The first steps of the proofs of Theorems 3.17 and 3.24 do go through in the vertical
setting, inducing a short exact sequence of functors defined on the groupoid βS for each L⋆,v

(λ,ℓ)(S),
analogous to (3.13) and (3.17) but only at the level of automorphism groups.

Finally, we briefly deal with the duals of the homological representations of Theorems 3.17
and 3.24. Let us consider any one of the above homological representation functors L⋆

(λ,ℓ)(S).
By Corollary 2.14, the Bn(S)-representation H∂

k (Cλ(Dn♮S);Z[Q⋆
(λ,ℓ)(S)] ⊗ O) of §2.3 is the dual

representation of L⋆
(λ,ℓ)(S)(n). Gathering these representations and assigning for each [m, idm♮n] ∈

⟨β,βS⟩ the evident analogue of the map ιm,n of §1.2.4 for homology relative to the boundary, one
may easily prove the analogue of Lemma 1.11 so that we define a functor L⋆,∨

(λ,ℓ)(S) : ⟨β,βS⟩ →
Z[Q⋆

(λ,ℓ)(S)]-Mod•. Then the reasoning of the proof of Theorem C repeats verbatim:

Theorem 4.14 The functor L⋆,∨
(λ,ℓ)(S) is not strong polynomial, but is weak polynomial of weak

degree 0.

4.3. For mapping class group functors
In this section, we prove the polynomiality results of Corollary B and Theorem C for the

homological representation functors for mapping class groups defined in §1.3.3. Following §3.3, we
use the generic notation L⋆

(λ,ℓ) for any one of the functors (1.17) and (1.18) indexed by an ordered
partition λ ⊢ k of an integer k ⩾ 1 and by the depth ℓ ⩾ 1 of a lower central series, L⋆,v

(λ,ℓ) for
the vertical-type alternative functor, Q⋆

(λ,ℓ)(S) with S ∈ {T,M} for the associated transformation
group and M for either M+

2 or M−
2 .

Proof of Corollary B and Theorem C for mapping class groups. We proceed by induction on k ⩾
1, reasoning on each ordered partition λ ⊢ k and considering the functor L⋆

(λ,ℓ). First, we consider
the case of k = 1 with λ = (1). We recall that the preliminary study of §3.3.1 up to the paragraph
“Difference functor decomposition” holds for L⋆

((1)),ℓ). Hence κ1L
⋆
((1),ℓ) = 0, while the MCG(S♮n)-

representation δ1L
⋆
((1),ℓ)(n) is a free Z[Q⋆

(λ,ℓ)(S)]-module of rank 1 for each n ∈ Obj(M), with gener-
ating set given by the tuples ([w0, w

′
0], [w1, w2], . . . , [w2n−1, w2n]) such that |w0|+ |w′

0| = 1 if S = T,
and the tuples ([w0], [w1], . . . , [wn]) such that |w0| = 1 if S = M. By expressing δ1L

⋆
((1),ℓ)([1, id1♮n])

as a quotient map of L⋆
((1),ℓ)(σ

−1
1 ) ◦ L⋆

((1),ℓ)([1, id1♮n]), it follows from equations (3.19) and (3.20)
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of Lemma 3.30 and from the description (3.23) of L⋆
((1),ℓ)([1, id1♮n]) that i1(δ1L

⋆
((1),ℓ))n is an iso-

morphism for n ⩾ 0. So δ2
1L

⋆
((1),ℓ) = 0 and κ1δ1L

⋆
((1),ℓ) = 0, and thus L⋆

((1),ℓ) is both very strong
and weak polynomial, of both strong and weak degrees 1. Furthermore, the part of the proof of
Theorem 3.35 showing that the Z[Q⋆

(λ,ℓ)(S)]-module injections {(∆′
1L

⋆
(λ,ℓ))n}n∈Obj(M) (see (3.24))

assemble into a natural transformation in Fct(⟨M,M⟩,Z[Q⋆
(λ,ℓ)(S)]-Mod•) repeats verbatim for

λ = (1), because Lemmas 3.28 and 3.30 also hold in this case. Then, we deduce from the definition
of these injections that (∆1L

⋆
((1),ℓ))n ◦ (∆′

1L
⋆
((1),ℓ))n = idδ1L⋆

((1),ℓ)(n) for each n ∈ Obj(M), and so
∆′

1L
⋆
((1),ℓ) is a section of ∆1L

⋆
((1),ℓ) in Fct(⟨M,M⟩,Z[Q⋆

((1),ℓ)(S)]-Mod•). Since κ1L
⋆
((1),ℓ) = 0 (be-

cause i1(L⋆
((1),ℓ))n is clearly injective for each n ∈ M), the exact sequence (3.1) for L⋆

((1),ℓ) is a split
short exact sequence, and so L⋆

((1),ℓ) is split polynomial. Furthermore, since δ1L
⋆
((1),ℓ)(n) is a free

Z[Q⋆
(λ,ℓ)(S)]-module for each n ∈ Obj(M) and κ1L

⋆
((1),ℓ) = 0, we deduce that this polynomiality

result for L⋆
((1),ℓ) still holds after any non-zero change of rings operation by using Lemma 3.9 and

then repeating verbatim the above argument for the splitting.
We do the inductive step on any fixed λ ⊢ k ⩾ 2. Namely, we assume that for each k′ ⩾ 1

and each λ′ ∈ {λ − k′} (see Notation 3.2), the functor L⋆
(λ′,ℓ) is both split and weak polynomial,

of both strong and weak degrees k − k′, and that this property still holds after any non-zero
change of rings operation. Since SPold(⟨M,M⟩,Z[Q⋆

(λ,ℓ)(S)]-Mod•) is closed under τ1 and under
normal subobjects by Proposition 4.7, this inductive assumption implies that each functor τ1L

⋆
(λ′,ℓ),

and also (τ1L
⋆
(λ′,ℓ)(Γ))[∅] in the orientable setting, are split and weak polynomial of both strong

and weak degrees k − k′, as are the versions of these functors after any non-zero change of rings
operation. Now, we deduce from Theorem 3.35 that the translation functor τ1L

⋆
(λ,ℓ) is isomorphic

to L⋆
(λ,ℓ) ⊕ δ1L

⋆
(λ,ℓ), where δ1L

⋆
(λ,ℓ) is determined by a direct sum of functors (potentially up to a

non-zero change of rings, see Convention 3.8) of the form τ1L
⋆
(λ′,ℓ) with λ′ ∈ {λ−1, λ−2}, and also

(τ1L
⋆
(λ′′,ℓ)(Γ))[∅] with λ′′ ∈ {λ − 1, λ − 2} in the orientable setting. Therefore, the functor L⋆

(λ′,ℓ)
is both very strong and weak polynomial, of both strong and weak degrees k. This polynomiality
result also holds after applying any non-zero change of rings operation, by using Corollary 3.10
and repeating verbatim the above reasoning, which ends the induction.

Fixing ℓ ∈ {1, 2}, the same polynomiality results follow for L⋆,v
(λ,ℓ) by repeating mutatis mu-

tandis the same arguments, using Theorem 3.36 instead of Theorem 3.35.

Furthermore, we briefly deal here with the duals of the homological representations of Theo-
rem 3.35. By Corollary 2.14, the MCG(S♮n)-representation H∂

k (Cλ(S♮n ∖ I);Z[Q⋆
(λ,ℓ)(S)] ⊗ O) of

§2.3, for S ∈ {T,M}, is the dual of the MCG(S♮n)-representation HBM
k (Cλ(S♮n ∖ I);Z[Q⋆

(λ,ℓ)(S)]).
Assigning for each morphism [m, idm♮n] the obvious analogue of the map ιm,n of §1.2.4 for homol-
ogy relative to the boundary, these collections of representations extend to functors L⋆,∨

(λ,ℓ)(Γ) and
L⋆,∨

(λ,ℓ)(N ) of the form ⟨M†,M†⟩ → Z[Q⋆
(λ,ℓ)(S)]-Mod. We may then deduce analogous short exact

sequences to those of Theorem 3.36, and Theorem C repeats verbatim for these functors:

Theorem 4.15 For ℓ ∈ {1, 2}, the functors L⋆,∨
(λ,ℓ)(Γ) and L⋆,∨

(λ,ℓ)(N ) are split polynomial and weak
polynomial, of both strong and weak degrees k.

Finally, as a direct consequence Theorem 4.2, we deduce the following result.

Corollary 4.16 Twisted homological stability holds for the mapping class groups of surfaces with
coefficients in the homological representation functors of Theorems 3.35 and 3.36.

4.4. Analyticity of a quantum representation
Jackson and Kerler [JK11] introduce a representation V over the group ring L := Z[s±1, q±1],

called the generic Verma module, of Uq(sl2), the quantum enveloping algebra of the Lie algebra
sl2. Since Uq(sl2) is a quasitriangular Hopf algebra, the representation V comes equipped with
an automorphism S ∈ AutL(V ⊗ V). This induces a Bn-representation on V⊗n given by sending
σi ∈ Bn to idi−1 ⊗ S ⊗ idn−i−1, which we call the Verma module representation; see [JK11, §1].
For k ⩾ 0, the weight space Vn,k ⊆ V⊗n is the eigenspace of the action of a certain generator
K ∈ Uq(sl2) corresponding to the eigenvalue snq−2k. The Bn-action on V⊗n restricts to a sub-Bn-
representation on Vn,k for each k ⩾ 0, called the quantum representation of Bn of weight k. This
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provides a decomposition of the Verma module representation via the Bn-equivariant isomorphism:

V⊗n ∼=
⊕
k⩾0

Vn,k. (4.3)

The relation between the variables s and q and the generators q and t of Q((2),2)(D) = Z2 =
Z⟨q, t⟩ (defining the representation LB((2),2)(n)) is given by the ring homomorphism Θ: K :=
Z[q±1, t±1] → L defined by (q, t) 7→ (s2,−q−2). (We note as a warning to the reader that the
notation in the literature is not consistent; in particular [JK11] and [Mar22] use different notation
from each other and from the notation used in this section, which is instead consistent with the
notation of [Big01].) In particular, L is a left K-module via Θ; the change of rings operation −⊗KL
corresponds to adjoining square roots of q and t.

A key relationship between these quantum Bn-representations and the homological represen-
tation functors studied in this paper is the following lemma.

Lemma 4.17 For n, k ⩾ 1 there is an isomorphism of Bn-representations Vn,k
∼= τ1LBk(n) ⊗K L.

Proof. Let D′
n denote the closed disc minus n interior points and minus one point on its boundary.

An alternative description of τ1LBk(n) is given by the twisted Borel-Moore homology of the space
of configurations of k unordered points in D′

n, namely the Bn-representation HBM
k (Ck(D′

n);Z[Z2])
over Z[Z2]. Gluing D′

0 to D′
n so that the two boundary punctures coincide induces an embedding

D′
n ↪→ D1+n, which in turn induces an embedding Ck(D′

n) ↪→ Ck(D1+n). This latter embedding
defines a (covariant) map on Borel-Moore homology since its image is closed, thus it is a proper
map, and Borel-Moore homology is covariantly functorial with respect to proper maps; see [Bre97,
Proposition V.4.5]. We also note that the local coefficient system that we consider on Ck(D′

n) is
the restriction of the one that we consider on Ck(D1+n). There is therefore a well-defined map

HBM
k (Ck(D′

n);Z[Z2]) −→ τ1LBk(n) (4.4)

of Bn-representations over Z[Z2] = K. The fact that this map is an isomorphism follows from the
evident bijection that it induces on the free bases as K-modules obtained from Theorem 2.1.

We now consider the subspace C−
k (Dn) ⊂ Ck(Dn) of all configurations that intersect a par-

ticular fixed point on the boundary. In particular, we consider the Bn-representation given by
the K-module HBM

k (Ck(Dn), C−
k (Dn);K), which is introduced in [Mar22, §2]. Since Ck(D′

n) is
an open subspace of Ck(Dn) with closed complement C−

k (Dn), the inclusion (Ck(D′
n),∅) ↪→

(Ck(Dn), C−
k (Dn)) is an open embedding. Relative Borel-Moore homology is contravariantly func-

torial with respect to open embeddings (since it is the composition of reduced homology with
the contravariant functor from locally-compact, Hausdorff spaces and open embeddings to based
spaces given by one-point compactification), so we have a map

HBM
k (Ck(Dn), C−

k (Dn);K) −→ HBM
k (Ck(D′

n);K). (4.5)

This is a map of Bn-representations over K since the Bn-action (up to homotopy) on Ck(Dn)
preserves its partition into C−

k (Dn) and Ck(D′
n). The fact that this map is an isomorphism follows

from the evident bijection that it induces on the free bases as K-modules obtained from Theorem 2.1
for the right-hand side and [Mar22, Prop. 3.6] for the left-hand side (see also [Mar22, Cor. 3.9]).

Now, [Mar22, Th. 1.5] provides an isomorphism

Vn,k
∼= HBM

k (Ck(Dn), C−
k (Dn);K) ⊗K L (4.6)

of Bn-representations over L. The claimed isomorphism of the lemma is then the composition of
(4.4), (4.5) and (4.6) (tensoring the first two isomorphisms over K with L).

Corollary 4.18 For each n ⩾ 2, there is an isomorphism of Bn-representations over L

V⊗n ∼=
⊕
k⩾0

τ1LBk(n) ⊗K L. (4.7)

We may therefore define the Verma module representation functor Ver : ⟨β,β⟩ → L-Mod to
be the colimit

⊕
k⩾0 τ1LBk ⊗K L. This functor Ver is analytic, i.e. it is a colimit of polynomial

functors, and exponential, i.e. it is a strong monoidal functor (⟨β,β⟩, ♮, 0) → (L-Mod,⊗,L).
However, the functor Ver is not polynomial.
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Proof. The isomorphisms (4.7) follow directly from Lemma 4.17 and the decomposition of the
Verma module representation (4.3). The analyticity of the functor Ver follows from its defi-
nition and Corollary B. We deduce from Theorem 3.17 (using Corollary 3.10) that δm

1 Ver ∼=⊕
k⩾0 τ

m+1
1 LBk ⊗K L for all m ⩾ 1. Hence there is a natural embedding Ver ↪→ δm

1 Ver for all
m ⩾ 1, which proves that the functor Ver is not polynomial. That it is an exponential functor
straightforwardly follows from the isomorphism Ver(n) ∼= V⊗n.

Remark 4.19 Analogous arguments to those of Corollary 4.18 may be repeated verbatim for
functors for the mapping class groups of surfaces extending the Magnus representations (see for
instance [Sak12, §4] or [Suz05] for the definition of these representations) or the representations
constructed from actions on discrete Heisenberg groups introduced by [BPS21].
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