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This file is an annex to the article [PS23]. It deals in §1 with some properties of the lower
central series of mapping class groups of surfaces, and in §2 with the identification of some of the
homological representation functors studied in [PS23, §1.3.3] for mapping class groups of orientable
surfaces. The article [PS23] is independent of these discussions, but we explain these points here in
order to offer a more concrete understanding of the homological representation functors considered
in [PS23]. This file is not intended to be read independently of [PS23]. In particular, we follow the
framework and notation of [PS23], some of which we now recall.

Notation 0.1 For an integer n ⩾ 1, an ordered partition of n means an ordered r-tuple λ =
(λ1, . . . , λr) of integers λi ⩾ 1 (for some r ⩾ 1 called the length of λ) such that n =

∑
1⩽i⩽r λi

(and without the condition λi ⩾ λi+1). We also write r′ for the number of i ∈ {1, . . . , r} such that
λi ⩾ 2. For simplicity, we denote the trivial partition λ = (n) by n.

The lower central series of a group G is the descending chain of subgroups {Γℓ(G)}ℓ⩾1 defined
by Γ1(G) := G and Γℓ+1(G) := [G, Γℓ(G)], the subgroup of G generated by the commutators [g, h]
for g ∈ G and h ∈ Γℓ(G). The induced canonical projection G ↠ G/Γℓ(G) is denoted by /Γℓ(G).
When there is no ambiguity, we omit G from the notation.

Let S be a smooth, connected, compact surface with one boundary component ∂S, and with
a finite set of k ⩾ 0 points removed from its interior (in other words with punctures), and let S̄
be the surface obtained from S by filling in each puncture with a marked point. For a partition
λ ⊢ k, the mapping class group MCG(S, λ) is the group of isotopy classes of diffeomorphisms of the
surface S̄ that restrict to the identity on the boundary and that fix the k marked points setwise
while respecting the partition λ. When the surface S is orientable, mapping classes automatically
preserve orientations due to the fact that they are the identity on ∂S.

We fix integers k ⩾ 0, g ⩾ 0 and h ⩾ 1. We denote by Σk
g,1 (resp. Nk

h,1) a connected, compact,
orientable (resp. non-orientable) surface of genus g (resp. h) with one boundary component and k
punctures in its interior. We denote by Γλ

g,1 the mapping class group MCG(Σk
g,1, λ) and by N λ

h,1
the mapping class group MCG(Nk

h,1, λ). When k = 0, we omit it, as well as λ, from the notation.

1. Lower central series of mapping class groups
We study here the lower central series of mapping class groups of surfaces, which are involved

in the definition of the homological representation functors of [PS23, §1.3.3]. We first recall the
following general decomposition of abelianisations of mapping class groups; see [PS24, Prop. 4.8]
for a proof.

Proposition 1.1 For a compact, connected, smooth, non-planar surface S with one boundary
component, we have:

MCG(Σk
0,1♮S, λ)ab ∼= (Z/2)r′

⊕ (H1(S;Z)r)MCG(S) ⊕ MCG(S)ab. (1.1)

Each of the first r′ Z/2-summands is generated by the image in the abelianisation σ(ρ) (with
1 ⩽ ρ ⩽ r such that λρ ⩾ 2) of a standard braid generator (considered as a mapping class)
interchanging two points in the corresponding ρ-th block of the partition. The generator is known
as the writhe (modulo 2) of the ρ-th block of strands.
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Following the methods developed in [DPS22], it is not difficult to obtain results about the lower
central series of the partitioned mapping class groups Γλ

g,1. Using the terminology of [DPS22], the
lower central series Γ∗(G) of a group G is said to stop if there exists an integer i ⩾ 1 such that
Γi(G) = Γi+1(G). We say that it stops at Γi if i is the smallest integer for which this holds.

Proposition 1.2 Let g ⩾ 1. The lower central series Γ∗(Γλ
g,1) stops before Γ2. It stops at Γ1 if

g ⩾ 3 and λ is a discrete partition.

Proof. First, we note that when g ⩾ 3 and λ is the discrete partition δ, we know from [Kor02,
Th. 5.1] that the abelianisation of Γδ

g,1 is trivial, so its lower central series stops at Γ1. We therefore
just have to show that the lower central series of Γλ

g,1 stops before Γ2 in all cases, which we will
do by the geometric disjoint support trick introduced in [DPS22]: for a group G and a generating
set S of Gab, if for each pair (s, t) ∈ S2 we can find representatives s̃, t̃ ∈ G of s and t such that s̃
and t̃ commute, then Γ2(G) = Γ3(G); see [DPS22, Cor. 2.6].

By Proposition 1.1 with S = Σg,1, the abelianisation (Γλ
g,1)ab decomposes into three sum-

mands, namely (Z/2)r′ , the coinvariants (H1(Σg,1;Z)r)Γg,1 and (Γg,1)ab. By [Kor02, Th. 5.1], in
the case of a discrete partition λ = δ, we have (Γδ

g,1)ab ∼= (Γg,1)ab for all g ⩾ 1, so it follows that
the middle term (H1(Σg,1;Z)r)Γg,1 is zero in all cases. We may thus simplify the decomposition
for any partition λ to (Γλ

g,1)ab ∼= (Z/2)r′ ⊕ (Γg,1)ab. A Z/2-basis for the first summand is given by
σ(ρ) for each ρ ∈ {1, . . . , r} such that λρ ⩾ 2: here, σ(ρ) is the class of a standard braid generator
interchanging two points of the ρ-th block. By [Kor02, Th. 5.1], the second summand is trivial
if g ⩾ 3 and is cyclic generated by a Dehn twist if g ∈ {1, 2}. It is geometrically clear that all
of these generators may be realised by diffeomorphisms of the surface with disjoint support: one
simply has to choose pairwise disjoint subdiscs separating the different blocks of the partition of
the punctures, and (in the case g ∈ {1, 2}) ensure that these are also disjoint from a tubular
neighbourhood of the curve whose associated Dehn twist is the remaining generator.

Remark 1.3 When S = Σg,1, it follows from Proposition 1.1 and the proof of Proposition 1.2 that
Q(λ,2)(T) ∼= (Γg,1)ab ∼= (Z/2)r′ for g ⩾ 3, where the Z/2-summands are generated by the writhe
(modulo 2) of the ρ-th blocks of strands for ρ ∈ {1, . . . , r} such that λρ ⩾ 2.

For S = Nh,1, we first consider the discrete partition δ, where we know from [Stu10, Th. 6.21]
that (N δ

h,1)ab ∼= (Z/2)r × Z/2 for h ⩾ 7. Using Proposition 1.1 for the case λ = δ, we deduce
that (H1(Nh,1;Z)r)N h,1

∼= (Z/2)r. Applying Proposition 1.1 again, now for arbitrary λ, we then
obtain that (N λ

h,1)ab ∼= (Z/2)r′ × (Z/2)r × Z/2, generated by (i) standard braid generators in the
blocks of punctures of size at least 2 (i.e. the writhe modulo 2), (ii) sliding one puncture from each
block through a crosscap, (iii) one additional crosscap-slide (“Y -homeomorphism”) which generates
(N h,1)ab ∼= Z/2. In particular, this abelianisation is independent of h, and we therefore deduce
that Q(λ,2)(N ) ∼= (Z/2)r′ × (Z/2)r, with the above description (i) and (ii) of the generators; see
also [PS24, Cor. 4.9].

Remark 1.4 In general, whether or not the lower central series of the mapping class group N λ
h,1

stops is an open question. Namely, with the above description of Remark 1.3 of the abelianisation
(N λ

h,1)ab for h ⩾ 7, it is not immediately clear how to apply methods of [DPS22] in this setting.
Thus we cannot at the present time compute for ℓ ⩾ 3 the group Q(λ,ℓ)(M) associated to the
homological representation functors of [PS23, §1.3.3] associated to the mapping class groups of
non-orientable surfaces.

One exception is the case of h ⩾ 7 and λ = 1: in this case, it follows from [Stu10, Thm. 6.21]
that the abelanisation is (Z/2)2, generated by a Y -homeomorphism and sliding the unique puncture
through a crosscap; these may be realised disjointly. Similarly, if h ⩾ 7 and λ = k (with the
trivial partition) for k ⩾ 3: in this case the abelianisation is (Z/2)3, generated by the previous
two generators and a standard braid generator; these may also be realised disjointly; see [Stu10,
Thm. 6.21].

It is therefore a priori relevant to consider higher ℓ ⩾ 3 as a parameter for the homological
representation functors L(λ,ℓ)(N ) : ⟨M−

2 , M−
2 ⟩ → Z[Q(λ,2)(M)]-Mod of [PS23, §1.3.3].
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2. Comparison of representations: Moriyama representations
Moriyama [Mor07] considered the Γg,1-representation given by its action on the relative ho-

mology group Hn(Σ×n
g,1 , ∆ ∪ Ag;Z), where ∆ denotes the “fat diagonal” of Σ×n

g,1 where at least two
points coincide and Ag denotes the subspace of Σ×n

g,1 where at least one point is equal to p0, a
chosen basepoint on ∂Σg,1. In this section, we relate these mapping class group representations
to those encoded by certain homological representation functors introduced in [PS23, §1.3.3] and
their duals; see (2.1) and Proposition 2.1.

Let us write Σ′
g,1 = Σg,1 ∖ {p0} where p0 ∈ ∂Σg,1. Since Σ×n

g,1 is a compactification of
Fn(Σ′

g,1) = Σ×n
g,1 ∖(∆∪Ag), the Borel-Moore homology of Fn(Σ′

g,1), denoted by HBM
∗ (Fn(Σ′

g,1);Z),
is isomorphic to the relative homology group H∗(Σ×n

g,1 , ∆∪Ag;Z). Thus Moriyama’s representation
may be viewed as an action on Borel-Moore homology. Denoting by Fn(X, Y ) ⊆ Fn(X) the
subspace of configurations that intersect Y ⊆ X non-trivially, by Poincaré duality (see [Bre97, §5,
Th. 16.30] for instance) we have HBM

∗ (Fn(Σ′
g,1);Z) ∼= H2n−∗(Fn(Σ′

g,1), Fn(Σ′
g,1, ∂Σ′

g,1);Z) since
Fn(Σ′

g,1) is a connected, orientable manifold. Using the fact that the inclusions Σ′
g,1 ⊂ Σg,1 and

{p1} ⊂ ∂Σ′
g,1 are isotopy equivalences, where p1 ∈ ∂Σ′

g,1 is another point on the boundary of Σg,1,
distinct from p0, this is naturally isomorphic to H2n−∗(Fn(Σg,1), Fn(Σg,1, {p1});Z).

A special case of [PS23, Thm. 2.1] implies that HBM
∗ (Fn(Σ′

g,1);Z) is concentrated in degree
∗ = n, so by the universal coefficient theorem, Moriyama’s representation Hn(Σ×n

g,1 , ∆ ∪ Ag;Z) is
dual to the relative cohomology group Hn(Σ×n

g,1 , ∆ ∪ Ag;Z). Analogous identifications to those
above, replacing HBM

∗ with compactly-supported cohomology H∗
c , etc., apply to these dual repre-

sentations. In summary, we have identifications:

Hn(Σ×n
g,1 , ∆ ∪ Ag;Z) HBM

n (Fn(Σ′
g,1);Z) Hn(Fn(Σg,1), Fn(Σg,1, {p1});Z)

Hn(Σ×n
g,1 , ∆ ∪ Ag;Z) Hn

c (Fn(Σ′
g,1);Z) Hn(Fn(Σg,1), Fn(Σg,1, {p1});Z),

dual

∼= ∼=

∼= ∼=

(2.1)

where the top row are models for Moriyama’s representation and the bottom row are models for its
dual. Finally, the representations on the top row (i.e. Moriyama’s representation) are isomorphic
to the representations encoded by the homological representation functor L((1,...,1),1)(Γ) introduced
in [PS23, §1.3.3]:

Proposition 2.1 The restriction of the functor L((1,...,1),1)(Γ) to the g-th automorphism group
Γg,1 is the n-th Moriyama representation Γg,1 → AutZ(Hn(Σ×n

g,1 , ∆ ∪ Ag;Z)).

Proof. The restriction of the functor L((1,...,1),1)(Γ) to the g-th automorphism group Γg,1 is given
by the natural action of the mapping class group on HBM

n (Fn(Σ′
g,1);Z). In fact, in [PS23, §1.3.3],

we remove a closed interval from the boundary of Σg,1, instead of just a point, but the resulting
configuration spaces are homotopy equivalent. The result then follows from the above discussion;
see in particular (2.1).
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