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1. Introduction
This file is an annex to the article [PS23]. It first deals with recollections of presentations of

surface braid groups in §2. Then we prove in §3 some properties of the transformation groups of
the homological representation functors studied in [PS23]. We finally show in §4 the relationship
between the Moriyama representations [Mor07] with some homological representations for mapping
class groups from [PS23, §1.3.3] and their duals.

Disclaimer 1 The results of this annex file are a potpourri of “folklore” facts and classical proper-
ties, and are not strictly necessary for the proofs of the results of [PS23]. Namely, the only required
points are the following:

• The presentations of surface braid groups of Proposition 2.2: this is classical knowledge
following from the previous literature on this topic [Bel04; DPS22], which we simply adapt
to our conventions (see Remark 2.3).

• Corollary 3.8 computing the transformation groups of the mapping class groups homological
representation functors: such calculations are easy, straightforwardly following from the def-
initions and some classical computations of the abelianisation of a semi-direct product (see
Lemma 3.7).

• The identification of the Moriyama representations in Proposition 4.1: this is essentially a
consequence of Poincaré duality that we carefully detail here.

However, we explain these three points here in more detail for the convenience of the reader and for
the sake of completeness. Furthermore, the other results of this annex file add some concreteness
to the homological representation functors, and may help the reader in understanding the objects
we consider in [PS23].

General notation and conventions. This file is not intended to be read independently of
[PS23]. In particular, we follow the framework of [PS23], although we often recall its notation for
the convenience of the reader.

We denote by Sn the symmetric group on a set of n elements. For an integer n ⩾ 1, an ordered
partition of n means an ordered r-tuple n = {n1, ..., nr} of integers ni ⩾ 1 (for some r ⩾ 1 called
the length of n) such that n =

∑
1⩽i⩽r ni (and without the condition ni ⩾ ni+1). For simplicity, we

denote the trivial partition n = {n} by n. The lower central series of a group G is the descending
chain of subgroups {Γℓ(G)}ℓ⩾1 defined by Γ1(G) := G and Γℓ+1(G) := [G, Γℓ(G)], the subgroup of
G generated by the commutators [g, h] for g ∈ G and h ∈ Γℓ(G). The induced canonical projection
G ↠ G/Γℓ(G) is denoted by /Γℓ(G). When there is no ambiguity, we omit G from the notation.

2. Presentations of surface braid groups
Presentations of braid groups on surfaces with one boundary component may be found in

[HL02, §4] and in [Bel04, Th. 1.1 and A.2]; see also [DPS22, §6.3]. These are classical results that
are useful to justify some details in [PS23]. We re-write them with our own conventions, detailed
in Remark 2.3. We fix three non-negative integers k ⩾ 0, g ⩾ 0 and h ⩾ 1. We denote by Σk

g,1 an
orientable surface of genus g with one boundary component with k punctures in the interior, and
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by Nk
h,1 a non-orientable surface of genus h with one boundary component and k punctures in the

interior.

Notation 2.1 We write x ⇄ y to denote the relation saying that x and y commute.

Proposition 2.2 The braid group on n strands on the orientable surface Σk
g,1, denoted by Bn(Σk

g,1),
admits the presentation with generators S = {σi}1⩽i⩽n−1, A = {ai}1⩽i⩽g, B = {bi}1⩽i⩽g and
X = {ξi}1⩽i⩽k and relations given by the braid relations for the elements of S, to which are added
the following families of relations (where x and y denote either a or b, and 1 ⩽ r, s ⩽ g):

(BS1) σi ⇄ xr for all r and all 1 ⩽ i ⩽ n − 2 ;
(BS2) xr ⇄ σn−1ysσ−1

n−1 for s < r ;
(BS3) (σn−1xr)2 = (xrσn−1)2 for all r ;
(BS4) [σn−1brσ−1

n−1, a−1
r ] = σ2

n−1 for all r;
(BS5) ξj ⇄ σi for all 1 ⩽ j ⩽ k and all 1 ⩽ i ⩽ n − 2 ;
(BS6) xr ⇄ σn−1ξjσ−1

n−1 for all 1 ⩽ j ⩽ k and all 1 ⩽ r ⩽ g ;
(BS7) ξi ⇄ σn−1ξjσ−1

n−1 for i < j.

(2.1)

The braid group on n strands on the non-orientable surface Nk
h,1, denoted by Bn(Nk

h,1), admits the
presentation with generators S = {σi}1⩽i⩽n−1, C = {ci}1⩽i⩽h and X = {ξi}1⩽i⩽k and relations
given by the braid relations for the elements of S, to which are added the following families of
relations (where 1 ⩽ r, s ⩽ h):

(BN1) σi ⇄ cr for all r and all 1 ⩽ i ⩽ n − 2 ;
(BN2) cr ⇄ σn−1csσ−1

n−1 for s < r ;
(BN3) [σn−1crσ−1

n−1, c−1
r ] = σ2

n−1 for all r;
(BN4) ξj ⇄ σi for all 1 ⩽ j ⩽ k and all 1 ⩽ i ⩽ n − 2 ;
(BN5) cr ⇄ σn−1ξjσ−1

n−1 for all 1 ⩽ j ⩽ k and all 1 ⩽ r ⩽ h ;
(BN6) ξi ⇄ σn−1ξjσ−1

n−1 for i < j ;
(BN7) (σn−1ξj)2 = (ξjσn−1)2 for all 1 ⩽ j ⩽ k.

(2.2)

Remark 2.3 There is an obvious correspondence between the elements of the sets A, B, C and
X in the presentations of Proposition 2.2 and the generators of the fundamental group of the
underlying surface; see [Bel04]. Namely, we fix {A′, B′} := {αi, βi | 1 ⩽ i ⩽ g} a system of
meridians and longitudes for the surface Σg,1, C ′ := {ςi | 1 ⩽ i ⩽ h}} a system of curves passing
through each of the crosscaps of Nh,1 and X ′ := {γi | 1 ⩽ i ⩽ k}} a system of curves encircling
the k punctures for each surface. Then the sets A and B correspond to moving a configuration
point along the curves of {A′, B′}, the set C corresponds to moving a configuration point along
the curves of C ′ and the set X corresponds to moving a configuration point along the curves of
X ′.

On another note, we use the opposite convention to that of [Bel04; DPS22]. More precisely,
our numbering for the generators of S = {σi}1⩽i⩽n−1 is the converse of the one used by Bellingeri,
so that the respective roles of σ1 and σn−1 in the mixed relations in the above presentations are
switched compared to those of [Bel04] and [DPS22, §6.3.1]. We made this arbitrary choice to be
consistent with the module structures for the homological representations detailed in [PS23, §2]:
our model and convention is so that σn−1 is the braid generator that naturally interacts with the
fundamental group generators; see [PS23, Fig. 3.1 (a) and (b)] for instance.

Now we consider a partition k = {k1; . . . ; kr} ⊢ k. Hence there is an isomorphism Bk(S) ∼=
B{k1;...;kr−1}

(
Dkr

♮S
)
⋊ Bkr

(S) deduced from the (Fadell-Neuwirth) split short exact sequence

1 B{k1;...;kr−1}(Dkr
♮S) Bk(S) Bkr

(S) 1. (2.3)

We recall that there is a classical method of constructing a presentation of a group extension from
a presentation of the quotient and a presentation of the kernel; see [HEO05, §2.4.3] and [DPS22,
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Appendix B]. For instance, the presentation of the group Bk,n(Σg,1) is detailed in [BGG17,
Prop. 3.2] following this method, while that of Bk,n(Nh,1) is sketched in [DPS22, Prop. 6.58]. It is
routine to generalise this work to give a full presentation for the partition k, while an analogous
study may directly be made for the non-orientable surface Nh,1 following the same method. We
thus obtain from Proposition 2.2 the following result for the partitioned surface braid groups.
Proposition 2.4 Let k = {k1; . . . ; kr} be a partition of k ⩾ 1. The surface braid group Bk(S)
admits a presentation whose generating sets are:

• X(ρ) = {ξ
(ρ)
i | 1 ⩽ i ⩽ Σρ} with Σρ :=

∑
ρ+1⩽l⩽r kl, for each block 1 ⩽ ρ ⩽ r − 1;

• S(ρ′) = {σ
(ρ′)
i }1⩽i⩽kρ′ −1 for each block 1 ⩽ ρ′ ⩽ r such that rρ′ ⩾ 2;

• if S = Σg,1: A(ρ) = {a
(ρ)
i }1⩽i⩽g and B(ρ) = {b

(ρ)
i }1⩽i⩽g for each block 1 ⩽ ρ ⩽ r;

• if S = Nh,1: C(ρ) = {c
(ρ)
i }1⩽i⩽h for each block 1 ⩽ ρ ⩽ r.

The relations between generators of the same blocks are those of (2.1) and (2.2), while the relations
between generators of different blocks are analogous to those of (c.1)–(c.8) in [BGG17, Prop. 3.2].

3. Properties of the transformation groups
This section deals with some properties of the homological representation functors of [PS23,

§1]. It aims to compute the transformation groups (see Lemmas 3.3 and 3.5 and Corollary 3.8),
prove Q-stability properties (see Definition 3.2 below, Proposition 3.4 and Corollary 3.8), ex-
plain some restrictions on the parameter ℓ for the lower central series (see Corollary 3.9) and
characterise the transformation group rings (see Corollary 3.9). Throughout §3 we consider an
integer ℓ ⩾ 1 corresponding to a lower central series index, and an integer k ⩾ 1 and a partition
k = {k1; . . . ; kr} ⊢ k. We also denote by r′ the number of indices i ⩽ r in k such that ki ⩾ 2.

Transformation groups. We briefly recollect here the construction of the transformation groups
that define the homological representation functors of [PS23, §1.2]. We recall that we consider a
family of groups {Gn}n∈N, which will be either surface braid groups or mapping class groups, the
configuration space

{
(x1, . . . , xk) ∈ S×k

n | xi ̸= xj if i ̸= j
}

/Sk, denoted by Ck(Sn), associated to
the partition k of k points in a surface Sn which is defined depending on the setting (see [PS23,
§1.2]). For each n, there is a split short exact sequence

1 Bk(Sn) Gk,n Gn 1, (3.1)

defining the following key diagram (see [PS23, §1.2, (1.7)]):

1 Bk(Sn) Gk,n Gn 1

1 Q(k,ℓ,n)(S) Gk,n/Γℓ Gn/Γℓ 1.

(3.2)

The universal property of Gk,n/Γℓ and Gn/Γℓ as cokernels and the universal property of a kernel
ensure that there exists a canonical map q(k,ℓ,n) : Q(k,ℓ,n)(S) → Q(k,ℓ,n+1)(S) making the evident
diagram induced from (3.2) (comparing n with n + 1) commutative. The colimit of the groups
{(Q(k,ℓ,n)(S))}n∈N with respect to the maps q(k,ℓ,n) is denoted by Q(k,ℓ)(S).
Remark 3.1 The above framework for transformation groups defined in [PS23, §1.2] differs slightly
from that of [PS21]. In particular, in [PS23], we introduce and use the colimit Q(k,ℓ) to define
the homological representation functors and define the untwisted transformation group Qu

(k,ℓ).
However, these modifications do not affect the construction.

In many examples of interest, we have the following phenomenon:
Definition 3.2 ([PS21, Def. 5.14]) If the colimit Q(k,ℓ)(S) is isomorphic to Q(k,ℓ,n)(S) (via the
canonical map) for all n sufficiently large, we say that we have Q-stability in this setting.

Although we do not need this Q-stability property for the work of [PS23], this
phenomenon remains of interest to point out, for instance allowing us to compute the colimit
Q(k,ℓ)(S).
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3.1. Surface braid groups
We first deal with the computation of the transformation groups of the homological repre-

sentation functors defined in [PS23, §1.3]. We use the notations of Proposition 2.4 and 3.1. We
consider a compact, connected, smooth surface S with one boundary component.

Abelian quotients. We start with the functors defined with the Γ2-term of the lower central
series. We recall from [DPS22, Prop. 3.5] that the abelianisation of the group Bk,n(S) may be
described via the corresponding generating set of Proposition 2.4. In Bk,n(S)ab:

• for any S: we denote by ti′ the common image of the generators of S(i′) for each 1 ⩽ i′ ⩽ r
such that ri′ ⩾ 2;

• if S = D: we denote by qi the common image of all ξ
(i)
j ∈ X(i) with j ⩾ 1 +

∑
i+1⩽l⩽r kl for

each 1 ⩽ i ⩽ r, and by si1,i2 the common image of all ξ
(i1)
j with j ∈ {j′ +

∑
i1+1⩽l⩽i2−1 kl |

1 ⩽ j′ ⩽ i2} for each pair 1 ⩽ i1 < i2 ⩽ r.
• if S = Σg,1: the images {A

(i)
j , B

(i)
j }1⩽j⩽g of the sets A(ρ) and B(ρ) for each 1 ⩽ i ⩽ r;

• if S = Nh,1: the images {C
(i)
j }1⩽j⩽h of the set C(ρ) for each 1 ⩽ i ⩽ r; C

(i)
j .

By definition, the following result for the transformation groups of the functors of [PS23, §1.3.1–
§1.3.2] is then a straightforward consequence of the computations of the abelianisations of Bk,n(S)ab

and Bn(S)ab for n ⩾ 3; see for instance [DPS22, Prop. 6.47].

Lemma 3.3 For all n ⩾ 3, we have:
• if S = D2: Q(k,2)(D) = Q(k,2,n)(D) = Zr′ ×Zr(r−1)/2 ×Zr = ⟨t1, . . . , tr′⟩×⟨sr1,r2⟩1⩽r1<r2⩽r ×

⟨q1, . . . , qr⟩;
• otherwise: Q(k,2)(S) = Q(k,2,n)(S) = (Z/2)r′ × H1(S;Z)r.

In particular, the Q-stability property for the functors of [PS23, §1.3] with parameters (k, 2)
directly follows from the observation that Q(k,ℓ,n)(D) = Q(k,ℓ,n+1)(D) for all n ⩾ 3. However, we
will more generally prove that this property holds for the transformation groups associated to any
functor LB(k,ℓ) of [PS23, §1.3.1] in Proposition 3.4 below.

Further Γℓ-quotients. We now consider more generally the surface braid group homological
representations defined with any parameter ℓ ⩾ 2. First, the following result proves the Q-
stability property for the transformation groups associated to the functors LB(k,ℓ) of [PS23, §1.3.1],
L(k,ℓ)(Σg,1) and L(k,ℓ)(Nh,1) of [PS23, §1.3.2]. This is a generalisation of [PS21, Prop. 5.35].

Proposition 3.4 We fix integers ℓ ⩾ 2 and n ⩾ 4. Then we have Q(k,ℓ,n)(S) = Q(k,ℓ,n+1)(S).

Proof. We take up the presentations, notations and conventions of §2. The data which depends
on n in the presentation of Bk,n(S) are the set of braid generators S(n) of the n-th block, and, for
each block 1 ⩽ ρ ⩽ r, the subset of X(ρ) of the pure braid generators {χ

(ρ)
i := ξ

(ρ)
Σρ+i | 1 ⩽ i ⩽ n}

where Σρ denotes the sum
∑

ρ+1⩽l⩽r kl. For a group G, we generically denote by γℓ the projection
onto the ℓ-nilpotent quotient G/Γℓ.

Since the assignment S 7→ Bn(S) is functorial with respect to embeddings of surfaces, we
have a canonical injection Bn ↪→ Bn(S) ↪→ Bk,n(S). In particular, this morphism sends Γ∞(Bn)
to Γ∞(Bk,n(S)). Since Γ∞(Bn) = Γ2(Bn) (see for instance [DPS22, Ex. 2.3]), we know that
σiσ

−1
j ∈ Γ∞(Bn) for all 1 ⩽ i, j ⩽ n−1. A fortiori, we deduce that σ

(n)
i ≡ σ

(n)
j (mod Γ∞(Bn(S)))

and we denote by σ(n) ∈ Bn(S)/Γℓ the common image of all the σ
(n)
i under γℓ.

Furthermore, for each 1 ⩽ ρ ⩽ r, we have the relations σ
(n)
i χ

(ρ)
i (σ(n)

i )−1 = (χ(ρ)
i )−1χ

(ρ)
i+1χ

(ρ)
i ,

σ
(n)
i χ

(ρ)
i+1(σ(n)

i )−1 = χ
(ρ)
i and σ

(n)
i χ

(ρ)
j (σ(n)

i )−1 = χ
(ρ)
j if j /∈ {i, i + 1} by Proposition 2.4. These

are the typical relations between pure braids and Artin generators of a given block induced by the
injection Bk,n ↪→ Bk,n(S); see [BGG17, Prop. 3.2] for the case of S = Σg,1 and k = k. Then, we
deduce from these relations that:

• γℓ(χ(ρ)
i+1) = γℓ((σ(n)

i )−1χ
(ρ)
i σ

(n)
i ) = γℓ((σ(n)

i−1)−1χ
(ρ)
i σ

(n)
i−1) = γℓ(χ(ρ)

i ) for all 2 ⩽ i ⩽ n − 1;
• γℓ(χ(ρ)

2 ) = γℓ((σ(n)
1 )−1χ

(ρ)
1 σ

(n)
1 ) = γℓ((σ(n)

3 )−1χ
(ρ)
1 σ

(n)
3 ) = γℓ(χ(ρ)

1 ).
We denote by χ(ρ) ∈ Bk,n(S)/Γℓ the common image of all the χ

(ρ)
i under γℓ.
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Therefore, the presentation of Bk,n(S)/Γℓ is independent of n. In particular, it is routine to
check that there is a well-defined map γ′

ℓ : Bk,n+1(S) → Bk,n(S)/Γℓ defined by σ
(n+1)
i 7→ σ(n),

χ
(ρ)
j 7→ χ(ρ) (with 1 ⩽ j ⩽ n+1) and the assignment of γℓ for the other generators. Then γ′

ℓ induces
an inverse to the canonical map Bk,n(S)/Γℓ → Bk,n+1(S)/Γℓ, which is thus an isomorphism. We
also know the analogous result for Bn(S)/Γℓ by [BGG17, Prop. 3.13] (see also [DPS22, Prop. 6.43]),
whence the result.

In addition, there are many situations where we can actually compute the transformation
groups of the surface braid group homological representation functors. We recall that when ℓ = 2
this is done in Lemma 3.3 and the following result gathers the results for other situations.

Lemma 3.5 We assume that the partition is such that kl ⩾ 3 for all 1 ⩽ l ⩽ r.
For the classical braid groups, we have for all ℓ ⩾ 2

Q({2;k},ℓ)(D) = Z(r+2
2 )−1 × ((Z2/2ℓ−2∆̄)r+1 ⋊ Z),

where ∆̄ = (1, −1) ∈ Z2 and 1 ∈ Z acts on each copy of Z2/2ℓ−2∆̄ by swapping coordinates.
For the surfaces different from the disc, we have the following computations for ℓ = 3. For

orientable surfaces, for all g ⩾ 1:

Q(k,3)(Σg,1) = ((Zr(r−1)/2 × Zr × Zrg) ⋊ Zrg) × Zr. (3.3)

In more detail, the right-hand side of (3.3) may be written as⟨sr1,r2⟩1⩽r1<r2⩽r × ⟨t1, . . . , tr⟩ ×
∏

1⩽ρ⩽r

⟨A(ρ)
1 , . . . , A(ρ)

g ⟩

 ⋊
∏

1⩽ρ⩽r

⟨B(ρ)
1 , . . . , B(ρ)

g ⟩ × ⟨q1, . . . , qr⟩

where the action defining the semi-direct product structure is determined by
• [A(ρ)

i , B
(ρ)
i ] = t2

ρ for all 1 ⩽ ρ ⩽ r;
• [A(r1)

i , B
(r2)
i ] = [A(r2)

i , B
(r1)
i ] = sr1,r2 for all 1 ⩽ r1 < r2 ⩽ r;

• all other pairs of generators commute.
We deduce that Qu

(k,3)(Σg,1) = Q(k,3)(Σg,1)/⟨q1, . . . , qr⟩. For non-orientable surfaces, for all h ⩾ 1:

Q(k,3)(Nh,1) =
(
(Zr−1 × (Zr−2 × · · · × (Z2 × (Z × Zh) ⋊ Zh) ⋊ · · · ⋊ Zh) ⋊ Zh) ⋊ Zh

)
× (Z/2)r × Zr. (3.4)

In more detail, the right-hand side of (3.4) may be written as((
⟨s1,r2⟩2⩽r2⩽r × · · · ×

(
⟨sr−1,r⟩ × ⟨C(r)

1 , . . . , C
(r)
h ⟩

)
⋊ · · · ⋊ ⟨C(2)

1 , . . . , C
(2)
h ⟩

)
⋊ ⟨C(1)

1 , . . . , C
(1)
h ⟩

)
× ⟨t1, . . . , tr⟩ × ⟨q1, . . . , qr⟩

where the action defining the semi-direct product structure is determined by
• [C(r1)

i , C
(r2)
i ] = [C(r2)

i , C
(r1)
i ] = sr1,r2 for all 1 ⩽ r1 < r2 ⩽ r;

• all other pairs of generators commute.
We deduce that Qu

(k,3)(Nh,1) = Q(k,3)(Nh,1)/⟨q1, . . . , qr⟩.

Proof. That Q({2;k},ℓ)(D) = Qu
({2;k},ℓ)(D) and its explicit computation for each ℓ ⩾ 3 is done in

[PS22, §4, Cor. 5.4].
For the surfaces different from the disc, we first recall that the quotient Bn(Σg,1)/Γ3 is com-

puted by [BGG17, Prop. 3.13], while Bn(Nh,1)/Γ3 = Bn(Nh,1)ab by [DPS22, Th. 6.42]. Now
the computation of Bk,n(S)/Γ3 follows the same steps as the proof of [DPS22, Prop. 6.58] which
computes Bk,n(Nh,1)/Γ3 and generalises mutatis mutandis as follows.

• Using the presentation from Proposition 2.4, let N be the normal closure of the σ
(ρ)
i (σ(ρ)

i+1)−1

for i < kρ together with the ξ
(ρ)
j (ξ(ρ)

j+1)−1 for j < Σρ, for each 1 ⩽ ρ ⩽ n. Therefore, N ⊆
Γ3(Bk,n(S)) because its generators are in Γ3(Bk,n(S)); see for instance [DPS22, Lem. 6.49]
and its proof.
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• We consider the partition {k, n} as a partition k′ of k with length r + 1 and we make the
identification si,n := qi for each 1 ⩽ i ⩽ r. It is routine, although lengthy (and an inductive
generalisation of the analogous point in the proof of [DPS22, Prop. 6.58]), to check from the
presentation of Proposition 2.4 that the quotient Bk,n(S)/N is⟨sr1,r2⟩1⩽r1<r2⩽r+1 × ⟨t1, . . . , tr+1⟩ ×

∏
1⩽ρ⩽r+1

⟨A(ρ)
1 , . . . , A(ρ)

g ⟩

 ⋊
∏

1⩽ρ⩽r+1
⟨B(ρ)

1 , . . . , B(ρ)
g ⟩

(3.5)
if S = Σg,1, and(

⟨s1,r2⟩2⩽r2⩽r+1 × · · · × (⟨sr,r+1⟩ × ⟨C(r+1)
1 , . . . , C

(r+1)
h ⟩) ⋊ · · · ⋊ ⟨C(1)

1 , . . . , C
(1)
h ⟩

)
× ⟨t1, . . . , tr+1⟩ (3.6)

if S = Nh,1.

• The proof thus follows from the observation that, using the second point, Bk,n(S)/N is a
2-nilpotent group. Indeed, in both cases, the commutator subgroup is generated by the
elements sr1,r2 and t2

i (if S = Σg,1 for the latter): all these generators are also clearly central
in Bk,n(S)/N , which proves our claim.

The computations of Q(k,3)(Σg,1) and Q(k,3)(Nh,1) then directly follow from the above description
of Bk,n(Nh,1)/Γ3 and Bn(Σg,1)/Γ3.

Finally, we compute the untwisted quotients Qu
(k,3)(Σg,1) and Qu

(k,3)(Nh,1) as follows. First
we know from the presentation of Bk,n(S)/Γ3 (see (3.5) and (3.6)) that the only generators of
Q(k,3)(S) on which the action of Bn(S) (given by conjugation) is not trivial are A

(ρ)
i and B

(ρ)
i for

all i and each 1 ⩽ ρ ⩽ r if S = Σg,1, or the C
(ρ)
j for all j and each 1 ⩽ ρ ⩽ r if S = Nh,1. Then,

we deduce from the presentation of Proposition 2.4 that for all 1 ⩽ ρ ⩽ r:

qρB
(ρ)
i = A

(r+1)
i B

(ρ)
i (A(r+1)

i )−1

and its analogue swapping A and B for all 1 ⩽ i ⩽ g, and

qρC
(ρ)
j = C

(r+1)
j C

(ρ)
j (C(r+1)

j )−1

for all 1 ⩽ j ⩽ h. This proves that the quotienting submodule defining the coinvariants is
⟨q1, . . . , qr⟩ in both case, which ends the proof.

Remark 3.6 If ki ⩽ 2 for some 1 ⩽ i ⩽ r, it is not clear to our knowledge that the quotient
Qu

(k,ℓ)(S) of Q(k,ℓ)(S) is proper for each ℓ ⩾ 3. However, there are conjectures on such results; see
for instance [PS21, Conjecture 5.38].

3.2. Mapping class groups
We now study the mapping class group transformation groups for the homological representa-

tion functors of [PS23, §1.3.3]. For the sake of completeness, we recall that the Lickorish generators
together with the Dehn twist along a simple closed curve encircling the boundary component gen-
erate the mapping class group Γg,1 with g ⩾ 1 (see for instance [FM12, §4.4]), and that standard
generating sets for the mapping class group N h,1 are worked out by Stukow in [Stu06, Th. A.7]
for h = 2 and in [Stu10, Th. 5.2] for h ⩾ 3 while N 0,1 = N 1,1 are trivial by [Eps66].

We first make the following general decomposition for the abelianisations of the mapping class
groups:
Lemma 3.7 For S a compact, connected, smooth, non-planar surface with one boundary compo-
nent, we have:

MCG(Dk♮S, k)ab ∼= (Z/2)r′
× (H1(S;Z)r)MCG(S) × MCG(S)ab, (3.7)

where each of the first r′ Z/2-summands is generated by the image in the abelianisation σ(ρ′) (with
1 ⩽ ρ′ ⩽ r such that kρ′ ⩾ 2) of a standard braid generator (considered as a mapping class)
interchanging two points in the corresponding ρ′-th block of the partition.
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Proof. Using the computation of Bk(S)ab (see for instance [DPS22, Prop. 6.47]), it follows from
the general formula for the calculation of the abelianisation of a semi-direct product that:

MCG(Dk♮S, k)ab ∼= ((Z/2)r′
× H1(S;Z)r)MCG(S) × MCG(S)ab.

We note that the splitting of the Birman short exact sequence

1 Bk(Sn) MCG(Dk♮S, k) MCG(S) 1 (3.8)

(see [PS21, Cor. 4.19, §5.1.3] for instance) is induced by the embedding of surfaces S ↪→ Dk♮S.
Therefore, each σ(ρ′) may be represented as a mapping class supported in the subsurface Dk on
which MCG(S) acts trivially, whence the result.

A fortiori, we have the following calculations for the transformation groups of the homological
representation functors L(k,2)(Γ) and L(k,2)(N ) of [PS23, §1.3.3]. Following the notations of [PS23,
§1.1.2.1 and §1.3.3] where T ∼= Σ1,1 and M ∼= N1,1, we denote by Γk

g,1 the mapping class group
MCG(Σg,1, k) and by N k

h,1 the mapping class group MCG(Nh,1, k).

Corollary 3.8 The transformation groups of the homological representation functors for mapping
class groups are such that:

• For orientable surfaces: Q(k,2,g)(T) = (Z/2)r′ for all g ⩾ 3.
• For non-orientable surfaces: Q(k,2,h)(M) = (Z/2)r′ × (Z/2)r for all h ⩾ 7. Here, for each

1 ⩽ ρ ⩽ r, the ρ-th Z/2-summand is generated by the image of a puncture slide c(ρ) that
sends a puncture of the ρ-th block through the core of a cross-cap.

In particular, the functors L(k,2)(Γ) and L(k,2)(N ) satisfy the Q-stability property.

Proof. By Lemma 3.7, the results follow from the computations of (H1(S;Z)r)MCG(S) for S = T♮g

and M♮h. Let us denote by δ the discrete partition {1, ..., 1}. We know from [Kor02, Th. 5.1] that
the abelianisations of Γg,1 and Γδ

g,1 are trivial for g ⩾ 3, while it follows from [Stu10, Th. 6.21] that
(N δ

h,1)ab ∼= (Z/2)r × (N h,1)ab for h ⩾ 7. We then deduce from (3.7) that (H1(T♮g;Z)r)Γg,1 = 0
and that (H1(Nh,1;Z)r)N h,1

∼= (Z/2)r, whence the result.

Finally, following the methods developed in [DPS22], it is not difficult to obtain results about
the lower central series of some partitioned mapping class groups of punctured surfaces. Following
the terminology of [DPS22], the lower central series Γ∗(G) of a group G is said to stop if there
exists an integer i ⩾ 1 such that Γi(G) = Γi+1(G). We say that it stops at Γi if i is the smallest
integer for which this holds.

Corollary 3.9 Let g ⩾ 1. The lower central series Γ∗(Γk
g,1) stops before Γ2. It stops at Γ1 if g ⩾ 3

and k is a discrete partition.

Proof. First, we note that when g ⩾ 3 and k is the discrete partition δ, we know from [Kor02,
Th. 5.1] that the abelianisation of Γδ

g,1 is trivial, so its lower central series stops at Γ1. We therefore
just have to show that the lower central series of Γk

g,1 stops before Γ2 in all cases, which we will
do by the usual geometric disjoint support trick introduced in [DPS22]: for a group G and a
generating set S of Gab, if for each pair (s, t) ∈ S2, we can find representatives s̃, t̃ ∈ G of s and t
such that s̃ and t̃ commute, then Γ2(G) = Γ3(G); see [DPS22, Cor. 2.6]. We recall from Lemma 3.8
and Corollary 3.7 that (Γk

g,1)ab ∼=
⊕

kρ⩾2⟨σ(ρ)⟩ with σ(ρ) the image of a standard braid generator
interchanging two points of the ρ-th block. It is geometrically clear that the generators σ(ρ′)

for distinct ρ′ have pairwise disjoint support, because there always exits a subdisc of the surface
containing only the points of the ρ′-th block. Hence each pair of generators of the abelianisation
of Γk

g,1 may be represented by homeomorphisms of the surface with disjoint support, whence the
result.

Remark 3.10 In general, whether or not the lower central series of the mapping class group N k
h,1

stops is an open question: from its abelianisation (Z/2)r′ × (Z/2)r × (Z/2), it is not immediately
clear how to decide this via the methods of [DPS22]. Thus we cannot at present compute Q(k,ℓ)(M)
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for ℓ ⩾ 3. The only exception is the case of k = 1: the lower central series of N (1)
h,1 stops at Γ2 by

[DPS22, Cor. 2.2] because (N (1)
h,1)ab ∼= Z/2. It is therefore a priori relevant to consider higher ℓ ⩾ 3

as a parameter for the homological representation functors L(k,ℓ)(N ) : UM−
2 → Z[Q(k,2)(M)]-Mod

of [PS23, §1.3.3].

4. Comparison of representations: the Moriyama represen-
tations
Moriyama [Mor07] considered the Γg,1-representation given by its action on the relative ho-

mology group Hn(Σ×n
g,1 , ∆ ∪ Ag), where ∆ denotes the “fat diagonal” of Σ×n

g,1 where at least two
points coincide and Ag denotes the subspace of Σ×n

g,1 where at least one point is equal to p0, a
chosen basepoint on ∂Σg,1. In this section, we make the connection of these mapping class group
representations with those encoded by certain homological representation functors introduced in
[PS23, §1.3.3] and their duals; see (4.1) and Proposition 4.1.

Let us write Σ′
g,1 = Σg,1 ∖ {p0}. Since Σ×n

g,1 is a compactification of Fn(Σ′
g,1) = Σ×n

g,1 ∖
(∆ ∪ Ag), the Borel-Moore homology of Fn(Σ′

g,1) is isomorphic to the relative homology group
H∗(Σ×n

g,1 , ∆ ∪ Ag). Thus Moriyama’s representation may be viewed as an action on Borel-Moore
homology. Denoting by Fn(X, Y ) ⊆ Fn(X) the subspace of configurations that intersect Y ⊆ X
non-trivially, by Poincaré duality we have HBM

∗ (Fn(Σ′
g,1)) ∼= Hn(Fn(Σ′

g,1), Fn(Σ′
g,1, ∂Σ′

g,1)) since
Fn(Σ′

g,1) is a connected, orientable manifold. Using the fact that Σ′
g,1 ⊂ Σg,1 and {p1} ⊂ ∂Σ′

g,1
are isotopy equivalences, where p1 ∈ ∂Σ′

g,1 is another (different) point on the boundary of Σg,1,
this is naturally isomorphic to Hn(Fn(Σg,1), Fn(Σg,1, {p1})).

A special case of [PS23, Lem. 2.1] implies that HBM
∗ (Fn(Σ′

g,1)) is concentrated in degree ∗ = n,
so by the universal coefficient theorem, Moriyama’s representation Hn(Σ×n

g,1 , ∆ ∪ Ag) is dual to the
relative cohomology group Hn(Σ×n

g,1 , ∆ ∪ Ag). Analogous identifications to those above, replacing
HBM

∗ with compactly-supported cohomology H∗
c , etc., apply to these dual representations.

In summary, we have identifications:

Hn(Σ×n
g,1 , ∆ ∪ Ag) HBM

n (Fn(Σ′
g,1)) Hn(Fn(Σg,1), Fn(Σg,1, {p1}))

Hn(Σ×n
g,1 , ∆ ∪ Ag) Hn

c (Fn(Σ′
g,1)) Hn(Fn(Σg,1), Fn(Σg,1, {p1})),

dual

∼= ∼=

∼= ∼=

(4.1)

where the top row are models for Moriyama’s representation and the bottom row are models for its
dual. Finally, the representations on the top row (i.e. Moriyama’s representation) are isomorphic to
the representations encoded by the homological representation functor L({1,...,1},1)(Γ) introduced
in [PS23, §1.3.3]:

Proposition 4.1 The restriction of the functor L({1,...,1},1)(Γ) to the g-th automorphism group
Γg,1 is the n-th Moriyama representation Γg,1 → AutZ(Hn(Σ×n

g,1 , ∆ ∪ Ag)).

Proof. The restriction of the functor L({1,...,1},1)(Γ) to the g-th automorphism group Γg,1 is given
by the natural action of the mapping class group on HBM

n (Fn(Σ′
g,1)). In fact, in [PS23, §1.3.3],

we remove a closed interval from the boundary of Σg,1, instead of just a point, but the resulting
configuration spaces are homotopy equivalent. The result then follows from the above discussion;
see in particular (4.1).
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