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Abstract
We construct a 3-variable enrichment of the Lawrence-Krammer-Bigelow (LKB) represen-

tation of the braid groups, which is the limit of a pro-nilpotent tower of representations having
the original LKB representation as its bottom layer. We also construct analogous pro-nilpotent
towers of representations of surface braid groups and loop braid groups.
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Introduction
The Lawrence-Krammer-Bigelow representation was first introduced by Lawrence [Law90] as

part of a more general family of representations of the braid group Bn. It was shown, independently
by Bigelow [Big01] and by Krammer [Kra02], to be faithful, thus proving that Bn is linear; in other
words, it acts faithfully on a finite-dimensional vector space.

It is constructed via the action of Bn, which is also the mapping class group of the n-times
punctured 2-disc Dn, on the configuration space C2(Dn) of two unordered, distinct points in Dn.
There is a certain local system L2 on C2(Dn), defined over the ground ring Z[q±1, t±1] = Z[Z2],
which is preseved by this action of Bn. The induced action on the second Borel-Moore homology
group

V (2) := HBM
2 (C2(Dn);L2) (1)

is the Lawrence-Krammer-Bigelow representation. More generally, considering configurations of
k > 2 points in Dn, one obtains the family of Lawrence representations

V (k) := HBM
k (Ck(Dn);Lk) (2)

of the braid group Bn. The Z[Z2]-module V (k) is free and has rank
(
n+k−2

k

)
[Big04, Lemma 3.1].1
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Key words and phrases: Braid groups, surface braid groups, loop braid groups, homological representations, pro-
nilpotent groups.

1 There is a typo in the statement of Lemma 3.1 of [Big04]; the rank is stated there as
(

n+k−1
k

)
.
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One main significance of the Lawrence-Krammer-Bigelow (LKB) representation is its use in
the proof of the linearity of the braid groups. Another significance of the whole family of Lawrence
representations is their deep connection to the Jones polynomial [Law93; Big02], the slN polyno-
mials [Law96; Big07] and the coloured Jones polynomials [Ang22].

The pro-nilpotent LKB representation. Our first main construction upgrades the represen-
tation (1) of Bn to a pro-nilpotent representation: a compatible family of representations over the
group rings Z[Qr] for each Qr in a tower of groups Q•, where the nilpotency class of Qr is r − 1.
(See §1 for the precise definitions.)
Theorem A There is a nilpotent tower of groups Q• with Q2 = Z2 and a pro-nilpotent represen-
tation of Bn over Q• whose second layer is equal to (1).

Ribbon Lawrence representations. In fact, the pro-nilpotent representation of Theorem A
is induced by a representation of Bn over Z[Q∞] for a certain subgroup Q∞ of the pro-nilpotent
group lim(Q•). This subgroup Q∞ is isomorphic to the semi-direct product Z2 oϕ Z where ϕ(1) is
the automorphism of Z2 that swaps the two summands, which in turn is isomorphic to the ribbon
braid group on two strands RB2. This is a special case of a more general construction: the level
k Lawrence representation (2) may be augmented to a representation defined over Z[RBk], where
RBk

∼= Zk o Bk is the ribbon braid group on k strands.
Theorem B There is a well-defined representation

RLk : Bn −→ AutZ[RBk](VR(k)) (3)

that recovers (2) after reducing along the abelianisation RBk � (RBk)ab ∼= Z2. For k = 2, this
representation induces the pro-nilpotent tower of representations of Theorem A.

In the above statement, the reduction of VR(k) along the abelianisation RBk � Z2 means the
tensor product VR(k)⊗Z[RBk] Z[Z2], viewing Z[Z2] as a Z[RBk]-module via the map RBk � Z2.

In particular, for k = 2, Theorem B upgrades the LKB representation, defined over Z[q±1, t±1],
to a representation defined over the non-commutative three-variable Laurent polynomial ring

Θ = Z[Z2 o Z] = Z〈q±1
1 , q±1

2 , t±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1) (4)

that recovers the original LKB representation when setting q1 = q2. We explicitly compute the
matrices for this representation in a natural basis:
Theorem C The representation RL2 of Bn over the ring Θ is given concretely by assigning to
the generators σi of Bn the matrices depicted in Table 1 on page 3.

The representation RL2 and each layer of the pro-nilpotent LKB representation of Theorem A
are faithful, as a consequence of the faithfulness of the LKB representation; see Remark 4.8.

More pro-nilpotent representations. The construction of the pro-nilpotent representation of
Theorem A follows a general recipe that we describe in §3. The key ingredient in this recipe, if
one wishes to construct a pro-nilpotent representation of a group Γ, is a surjection of groups

G −� Γ. (5)

Whether or not the recipe produces a pro-nilpotent representation on this input depends on the
properties of the lower central series of G, and in fact in a more subtle way on the interaction be-
tween the lower central series of G and the lower central series of ker(G� Γ). For the construction
of Theorem A, the surjection (5) is B2,n � Bn, where B2,n is the partitioned braid group with
n + 2 strands partitioned into two blocks of sizes n and 2 respectively, and the surjection forgets
the two strands of the second block.

Our construction applies to many other settings of this form, providing a wide variety of pro-
nilpotent representations of surface braid groups Bn(S) and of (extended) welded braid groups
wBn and w̃Bn (see §6 for background on these).
Theorem D There are pro-nilpotent representations of the groups Γ, induced by the surjections
(5), for each of the pairs listed in Table 2 on page 4.
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The 6×6 submatrix for the basis elements of the form · · ·xyz · · · , with the
y in the i-th position. (Here, and below, · · · indicates a string of 0s.) If
i = 1, the x is omitted and we consider the red (bottom right) submatrix.
If i = n−1, the z is omitted and we consider the blue (top left) submatrix.

100 010 001
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001

1
1
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0
−q1

0

0
q1

1

The 3×3 submatrices for the basis ele-
ments of the form · · · 1 · · ·xyz · · · , with
the y in the i-th position. If i = n − 1
then the z is omitted and we consider
the blue (top left) submatrix.
There are i − 2 copies of this subma-
trix (except when i = 1, when there
are none), corresponding to the possi-
ble choices in {1, . . . , i− 2} for the po-
sition of the additional ‘1’.

100 010 001
100
010
001

1
1
0

0
−q2

0

0
q2

1

The 3×3 submatrices for the basis ele-
ments of the form · · ·xyz · · · 1 · · · , with
the y in the i-th position. If i = 1 then
the x is omitted and we consider the
red (bottom right) submatrix.
There are n − i − 2 copies of this sub-
matrix (except when i = n − 1, when
there are none), corresponding to the
possible choices in {i+2, . . . , n−1} for
the position of the additional ‘1’.

Table 1 – The matrices of the three-variable LKB representation over the ring

Θ = Z[Z2 o Z] = Z〈q±1
1 , q±1

2 , t±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1),

indicating the action of the generator σi of Bn for 1 6 i 6 n− 1. Recall that, as a Θ-module,
it is free of rank

(
n
2

)
, with basis given by ordered (n− 1)-tuples of non-negative integers that

sum to 2.

When 2 6 i 6 n − 2, the matrix consists of the 6 × 6 block described on the top row,
together with (i− 2) + (n− i− 2) = n− 4 copies of the 3× 3 blocks described on the bottom
row, together with the

(
n−3

2

)
×
(

n−3
2

)
identity matrix. In total, this is a square matrix of size(

n
2

)
= 6 + 3(n− 4) +

(
n−3

2

)
.

When i ∈ {1, n − 1}, the matrix consists of one of the 3 × 3 blocks described on the
top row, together with n − 3 copies of one of the 2 × 2 blocks described on the bottom row,
together with the

(
n−2

2

)
×
(

n−2
2

)
identity matrix. In total, this is a square matrix of size(

n
2

)
= 3 + 2(n− 3) +

(
n−2

2

)
.
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The pro-nilpotent representations constructed in the present paper
Γ G A

Bn

B2,n Z2

B2,k,n (each ki > 3) Z(l+2
2 )+l′+1

B1,1,1,n Z6

B1,1,1,k,n Z(l+4
2 )+l′

B2,2,n Z5

B2,2,k,n Z(l+3
2 )+l′+2

B1,2,n Z4

B1,2,k,n Z(l+3
2 )+l′+1

Bn(S)

B2,k,n(S) (S 6= D2)

Prop. 5.2
B1,k,n(S) (S /∈ {D2,Ann,Möb})

B1,k,n(Möb) (k 6= ∅)

B1,1,k,n(Ann)

wBn
† wB(λP , λS+ , λS)

(λP , λS+ , λS) < (∅, {n, b},∅)

Prop. 6.2
(λP , λS+ , λS) < (∅, n, b)

(λP , λS+ , λS) < (∅, {n, 1, 1},∅)

(λP , λS+ , λS) < (2, n,∅)

(λP , λS+ , λS) < (∅, n, 1)

w̃Bn
† wB(λP , λS+ , λS)

(λP , λS+ , λS) < (∅, b, n)

Prop. 6.2
(λP , λS+ , λS) < (∅,∅, {n, b})

(λP , λS+ , λS) < (∅, {1, 1}, n)

(λP , λS+ , λS) < (2, i, n), i > 1

(λP , λS+ , λS) < (∅,∅, {n, 1})

Table 2 – The pro-nilpotent representations constructed in the present paper.

Columns: The first column lists the group Γ being represented; the second column
lists the auxiliary group G whose (evident) surjection onto Γ induces the pro-nilpotent
representation. The third column lists the abelian group A whose group ring Z[A] is the
ground ring for the bottom (r = 2) layer of the pro-nilpotent representation. For the first
two rows, we also have an explicit description of the ground ring of the limit of the tower of
representations, as described in Proposition 5.3.

Further notation: In several rows we have fixed an l-tuple k = (k1, . . . , kl) of positive
integers and l′ 6 l denotes the number of 1 6 i 6 l such that ki > 2. The surface S is assumed
to be non-closed, but it may have infinite type. The letter b denotes either one of {2, 3}.
The notation wB(λP , λS+ , λS) is explained in §6 and the relation (x1, y1, z1) < (x2, y2, z2)
between triples of partitions means that x2 is a sub-partition of x1, y2 is a sub-partition of y1
and z2 is a sub-partition of z1.

† For wBn and w̃Bn we construct weakly pro-nilpotent representations; see Outlook 3.11 and
§6 for why and see §1 for the definitions.
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Outline. The paper is organised as follows. Precise definitions of pro-nilpotent representations
are given first in §1. The key technical input for the existence of our pro-nilpotent representations
is a refinement of the notion of the (non-)stopping of the lower central series of a group, which
has been studied comprehensively for (partitioned) braid groups and their relatives in [DPS22];
this refinement is introduced in §2. In §3 we give the general recipe for constructing pro-nilpotent
representations of groups, which is a refinement of a recipe introduced by the authors in [PS21]. In
§4.1 we apply this in a special case to construct the pro-nilpotent LKB representation (Theorem A).
The ribbon Lawrence representations (Theorem B) are then constructed in §4.2 and in §4.3 we
compute matrices (Theorem C) for the second ribbon Lawrence representation (which is also the
limit of the pro-nilpotent LKB representation). Finally, the construction of our other pro-nilpotent
representations (Theorem D) for surface braid groups and loop braid groups is carried out in §5
and §6 respectively.
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1. Pro-nilpotent groups and representations
In general, a pro-object is a cofiltered diagram of objects in the appropriate category. In the

case of nilpotent groups, we will consider just those of a certain form: inverse systems indexed by
the natural numbers where each morphism is surjective and the groups have increasing nilpotency
class:

Definition 1.1 A nilpotent tower of groups Q• is a sequence of surjective group homomorphisms

· · · −→→ Qr −→→ Qr−1 −→→ · · · −→→ Q2

where the nilpotency class of Qr is exactly r − 1.

Example 1.2 For example, if G is a group that is not nilpotent and Γr(G) denotes the r-th term
in its lower central series, in other words Γ1(G) = G and Γr(G) = [Γr−1(G), G] for r > 2, then the
inverse system

· · · −→→ G/Γr(G) −→→ G/Γr−1(G) −→→ · · · −→→ G/Γ2(G) = Gab (6)

is a nilpotent tower of groups.

Related to Example 1.2, we recall the following definition.

Definition 1.3 The pro-nilpotent completion Ĝnil of a group G is the inverse limit of (6).

Clearly, if G is nilpotent, then Ĝnil ∼= G.

Remark 1.4 The surjections G� G/Γr(G) induce a morphism G→ Ĝnil, which factors as

G −� G/Γ∞(G) ↪−→ Ĝnil, (7)

where Γ∞(G) is the residue of the group: Γ∞(G) =
⋂
i>1 Γi(G).

Any nilpotent tower of groups Q• induces a sequence of functors

· · · −→ ModZ[Qr] −→ ModZ[Qr−1] −→ · · · (8)

sending a Z[Qr]-module V to V ⊗Z[Qr] Z[Qr−1], where we view Z[Qr−1] as a Z[Qr]-module via the
ring homomorphism Z[Qr]→ Z[Qr−1] induced by the given quotient Qr � Qr−1.
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Definition 1.5 A pro-nilpotent representation of a group Γ is a choice of pro-nilpotent tower of
groups Q• together with a sequence of functors

Γ −→ ModZ[Qr] (9)

for r > 2 that commute up to natural isomorphism with (8). Concretely, this means that we have
a Γ-representation Vr over Z[Qr] for each r > 2 and isomorphisms Vr+1 ⊗Z[Qr+1] Z[Qr] ∼= Vr of
Γ-representations over Z[Qr] for each r > 2.

Remark 1.6 The condition in Definition 1.1 that Qr must have nilpotency class equal to r im-
plies that the tower of representations involved in a pro-nilpotent representation must increase in
complexity as r →∞.

There is also a weaker version of this notion, where we have only natural transformations
rather than natural isomorphisms.

Definition 1.7 A weakly pro-nilpotent representation of a group Γ is a choice of pro-nilpotent tower
of groups Q• together with a Γ-representation Vr over Z[Qr] for each r > 2 and homomorphisms

Vr+1 ⊗Z[Qr+1] Z[Qr] −→ Vr

of Γ-representations over Z[Qr] for each r > 2.

The notion of weakly pro-nilpotent representation above corresponds to the notion of pro-
nilpotent representation in [PS21, §5.1.7]. In the present article we will however mostly work with
the stronger notion in Definition 1.5 above, since this is what we are able to construct in most of
the cases that we consider.

Pro-nilpotent representations vs. representations over inverse limits
Notation 1.8 Given a nilpotent tower of groups Q•, we denote by Q̂• its inverse limit. Thus in
Example 1.2 we have Q̂• = Ĝnil.

Any representation of Γ over the group-ring Z[Q̂•] induces a pro-nilpotent representation of
Γ over the pro-nilpotent tower of groups Q•. However, the converse does not hold. For simplicity,
let us fix k > 1 and consider only representations that are free modules of rank k over the ground
ring. We are thus comparing homomorphisms

Γ −→ GLk(Z[Q̂•]) = GLk(Z[limr(Qr)])

with compatible systems of homomorphisms Γ→ GLk(Z[Qr]), in other words homomorphisms

Γ −→ limr(GLk(Z[Qr])).

The question is thus whether the canonical homomorphism

GLk(Z[limr(Qr)]) −→ limr(GLk(Z[Qr])) (10)

is an isomorphism of groups, i.e. whether the endofunctor GLk(Z[−]) preserves limits (of this form).
When k = 1, the map (10) is an isomorphism, since GL1(Z[−]) ∼= Z/2 × − and limits commute.
However, when k > 2 it is not in general:

Lemma 1.9 Let k > 2 and Q• = G/Γ•(G) for G = Z o Z. Then (10) is not surjective.

Thus pro-nilpotent representations over a pro-nilpotent tower of groups Q• do not all come
from representations over the group-ring Z[Q̂•] of the inverse limit of Q•.

Proof of Lemma 1.9. Let us take k = 2; the general case k > 2 will follow by an obvious immediate
generalisation of the following argument. First note that Γr(G) is the subgroup 2r−1Z of Z ⊆ ZoZ
for r > 2 (this may be computed directly, or one may apply [DPS22, Proposition B.4]), so that

Qr = G/Γr(G) = Z/2r−1Z o Z,
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where the generator 1 ∈ Z acts by inversion. The inverse limit Q̂• = Ĝnil is thus Ẑ2 o Z, where
Ẑ2 is the 2-adic completion of Z. Recall that elements of Ẑ2 may be written as left-infinite strings
· · · a3a2a1 where ai ∈ {0, 1} and n ∈ Z ⊆ Ẑ2 corresponds to its expression in binary, continued to
the left by an infinite string of 0s. The quotient

Ẑ2 −� Z/2r−1Z (11)

truncates an infinite string to its rightmost r−1 digits. Continuing to write in binary, each quotient

Z/2r−1Z −� Z/2r−2Z (12)

removes the left-most digit from a string.
An element of the right-hand side of (10) is a compatible sequence Mr of invertible 2 × 2

matrices over the ring of polynomials in one variable t, whose exponents are elements of Z/2r−1Zo
Z, where compatible means that qr(Mr) = Mr−1, where qr applies (12) o idZ to each exponent
of t. An element of the left-hand side of (10) is an invertible 2 × 2 matrix M over the ring of
polynomials in one variable t, whose exponents are elements of Ẑ2 o Z. The map (10) is given by
applying (11)o idZ to each exponent of t in M .

Let H be the subgroup of the right-hand side of (10) consisting of sequences Mr, where each
Mr is of the form (

1 fr
0 1

)
for fr ∈ Z[Z/2r−1Z o Z]. Thus H is naturally isomorphic to the underlying additive group of the
ring limrZ[Z/2r−1Z o Z]. The pre-image (10)−1(H) is the subgroup of matrices M of the form(

1 f
0 1

)
for f ∈ Z[Ẑ2 oZ]; thus it is naturally isomorphic to the underlying additive group of this ring. We
therefore just have to exhibit an element that is not in the image of the canonical homomorphism

Z[Ẑ2 o Z] −→ limrZ[Z/2r−1Z o Z],

in other words a compatible sequence fr of polynomials with exponents in Z/2r−1ZoZ that cannot
be obtained by truncation from a polynomial with exponents in Ẑ2 oZ. For example, we may take
the sequence

fr =
r−2∑
i=0

(t10···0o0 − 1),

where 0 · · · 0 indicates a string of zeros of length i. This sequence cannot arise as truncations of a
single polynomial with exponents in Ẑ2oZ since there is no upper bound on the length (in binary)
of the exponents in the polynomials fr.

2. NCP and eNCP homomorphisms
Recall that the lower central series of a group G is the descending filtration of G defined by

Γ1(G) = G and Γr+1(G) = [G,Γr(G)]. If Γr(G) = Γr+1(G) for some r (hence Γr(G) = Γr+i(G)
for all i > 1) we say that the lower central series of G stops (at Γr). The stopping or non-stopping
of the lower central series of partitioned braid groups and their relatives has been comprehensively
studied in [DPS22]. In this section, we introduce an analogue of non-stopping lower central series
(a property of groups) for group homomorphisms (NCP) and for equivariant group homomorphisms
(eNCP).

Definition 2.1 A group homomorphism ϕ : K → G is called nilpotency class preserving (NCP)
if, for each r > 1, we have ϕ(Γr(K)) 6⊆ Γr+1(G).

7



Remark 2.2 If ϕ : K → G is NCP, then both K and G have non-stopping lower central series, i.e.,
we have Γr+1(K) 6= Γr(K) and Γr+1(G) 6= Γr(G) for all r > 1. We also note that the lower central
series of a group G is non-stopping if and only if the identity id : G → G is NCP. The notion of
NCP is thus the natural analogue, for group homomorphisms, of the notion of non-stopping lower
central series for groups.

Definition 2.3 For any homomorphism ϕ : K → G, define Qr(ϕ) to be the image of the induced
homomorphism

K/Γr −→ G/Γr.

This is a quotient of K/Γr and a subgroup of G/Γr, so it has nilpotency class at most r − 1.

Lemma 2.4 If ϕ : K → G is NCP, then Qr(ϕ) has nilpotency class exactly r − 1.

Proof. We will prove the contrapositive. Suppose that Qr(ϕ) has nilpotency class at most r − 2.
Since Qr(ϕ) is the image of the composition K → K/Γr → G/Γr, this assumption implies that the
kernel of the composed map K → G/Γr contains Γr−1(K). But the map K → G/Γr also factors
as K → G → G/Γr, so its kernel is ϕ−1(Γr(G)). Thus we have ϕ(Γr−1(K)) ⊆ Γr(G) and so ϕ is
not NCP.

Suppose that we have a commutative square of groups

K G

K ′ G′

ϕ

ϕ′

(13)

where the vertical homomorphisms are surjective.

Lemma 2.5 If ϕ′ is NCP then so is ϕ.

Proof. We will prove the contrapositive. Suppose that ϕ is not NCP, so there exists r > 1 so that
ϕ(Γr(K)) ⊆ Γr+1(G). Denote each of the surjections K � K ′ and G� G′ by π. Then

ϕ′(Γr(K ′)) = ϕ′(π(Γr(K))) = π(ϕ(Γr(K))) ⊆ π(Γr+1(G)) = Γr+1(G′)

so ϕ′ is not NCP.

The following special case gives a useful criterion for a homomorphism to be NCP:

Corollary 2.6 Let ϕ : K → G be a homomorphism and π : G → G′ a surjective homomorphism
onto a group G′ whose lower central series does not stop, such that π ◦ ϕ is also surjective. Then
ϕ is NCP.

Proof. We may set K ′ = G′ and ϕ′ = id in (13). Remark 2.2 implies that id : G′ → G′ is NCP.

We will also need an equivariant version of the NCP property. Fix a group Γ and consider the
category of groups equipped with left Γ-actions and Γ-equivariant group homomorphisms.

First, we define the span of a normal subgroup in this category. Let G be a group equipped
with a left Γ-action and let N be a normal subgroup of G that is Γ-invariant (for example this holds
if Γ acts on G by inner automorphisms or if N is a characteristic subgroup). There is therefore a
well-defined induced left Γ-action on the quotient group G/N .

Definition 2.7 The Γ-span 〈N〉Γ ⊆ G is defined to be the kernel of the quotient of G onto the
coinvariants (G/N)Γ of the induced Γ-action on G/N .

Warning 2.8 This is not the same as the normal subgroup of G generated by the set of elements
{γ · n | γ ∈ Γ, n ∈ N}. For example, if Γ = G acting on itself by conjugation and N is the trivial
subgroup, then the normal subgroup generated by {γ · n | γ ∈ Γ, n ∈ N} is trivial whereas 〈N〉Γ is
the commutator subgroup of G.

Definition 2.9 A Γ-equivariant group homomorphism ϕ : K → G is called equivariantly nilpotency
class preserving (eNCP) if, for each r > 1, we have ϕ(Γr(K)) 6⊆ 〈Γr+1(G)〉Γ.

8



Remark 2.10 This recovers Definition 2.1 when Γ is the trivial group, or more generally when
Γ is any group acting trivially on G, since in this case 〈N〉Γ = N for all characteristic subgroups
N ⊆ G.

The notion of eNCP has a lifting property analogous to Lemma 2.5. Suppose that we have a
commutative square in the category of groups equipped with left Γ-actions:

K G

K ′ G′

ϕ

ϕ′

(14)

where the vertical homomorphisms are surjective. We first need a technical lemma:

Lemma 2.11 Let π : G→ G′ be a Γ-equivariant homomorphism and let N ⊆ G be a characteristic
subgroup such that π(N) ⊆ G′ is also characteristic. Then π(〈N〉Γ) ⊆ 〈π(N)〉Γ.

Proof. This follows from an elementary diagram chase in the commutative square

G G/N (G/N)Γ

G′ G′/π(N) (G′/π(N))Γ,

in which 〈N〉Γ is the kernel of the composition across the top and 〈π(N)〉Γ is the kernel of the
composition across the bottom.

Lemma 2.12 In diagram (14), if ϕ′ is eNCP then so is ϕ.

Proof. As usual, we prove the contrapositive. Suppose that ϕ is not eNCP, so there is some r > 1
so that ϕ(Γr(K)) ⊆ 〈Γr+1(G)〉Γ. We thus have (denoting both of the the vertical homomorphisms
of (14) by π):

ϕ′(Γr(K ′)) = ϕ′(π(Γr(K))) = π(ϕ(Γr(K)))
⊆ π(〈Γr+1(G)〉Γ)
⊆ 〈π(Γr+1(G))〉Γ = 〈Γr+1(G′)〉Γ

where the inclusion on the bottom row follows from Lemma 2.11. Thus ϕ′ is also not eNCP.

Corollary 2.13 Let ϕ : K → G be a Γ-equivariant homomorphism and π : G → G′ a surjective,
Γ-invariant homomorphism onto a group G′ whose lower central series does not stop, such that
π ◦ ϕ is also surjective. Then ϕ is eNCP.

Proof. Consider the commutative square (14) with K ′ = G′ equipped with the trivial Γ-action (we
may do this since π : G→ G′ is assumed to be Γ-invariant) and ϕ′ = id. By Lemma 2.12 it suffices
to prove that id : G′ → G′ is eNCP. By Remark 2.10 this is the same as proving that id : G′ → G′

is NCP, ignoring the (trivial) Γ-action. By Remark 2.2 this is the same as proving that the lower
central series of G′ does not stop, which is part of our hypotheses.

Remark 2.14 Notice that the only additional hypothesis in Corollary 2.13 compared with Corol-
lary 2.6 is that the quotient π : G→ G′ is Γ-invariant.

We will be particularly interested in the setting of a split short exact sequence

1 K G Γ 1. (15)

The quotient group Γ acts by conjugation on G and on K via the given splitting, so the inclusion
ϕ : K → G becomes a Γ-equivariant group homomorphism.
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Remark 2.15 In this setting, Corollary 2.13 implies that a sufficient criterior for ϕ to be eNCP
is the existence of a surjection G → G′ onto a group G′ whose lower central series does not stop,
such that the restriction K ↪→ G → G′ is also surjective and the composition Γ 99K G → G′ has
image contained in the centre of G′. In our examples, we will typically have the stronger property
that the composition Γ 99K G→ G′ is the trivial map, so we will be in the following situation:

1 K G Γ 1

G′.

0
(16)

Let ϕ : K → G be a Γ-equivariant homomorphism. Since the terms of the lower central series
are characteristic, there is a well-defined induced left Γ-action on K/Γr and on G/Γr, and the
induced homomorphism K/Γr → G/Γr is Γ-equivariant. The image of this homomorphism, which
by Definition 2.3 is Qr(ϕ), thus also inherits a well-defined induced left Γ-action.

Definition 2.16 In the above setting, we define:

Qu
r (ϕ) = Qr(ϕ)Γ,

in other words Qu
r (ϕ) is the coinvariants of the induced left Γ-action on Qr(ϕ).

The superscript u stands for “untwisted”, since the purpose of taking this further quotient of
K is to ensure that the pro-nilpotent representations that we construct in §3 commute with the
module structure over the group ring of this quotient. (This is in contrast to commuting only up
to a “twist”, which would give a weaker notion of representation than the usual one.) See also
Remark 3.4.

As a first observation, note that Qu
r (ϕ) has nilpotency class at most r−1, since it is a quotient

of Qr(ϕ), which has nilpotency class at most r− 1. The following lemma, which is the equivariant
analogue of Lemma 2.4, is the key technical result of this section.

Lemma 2.17 In the setting of a split short exact sequence (15), if ϕ : K → G is eNCP, then the
group Qu

r (ϕ) has nilpotency class exactly r − 1.

Proof. We prove the contrapositive, so we assume that the nilpotency class of Qu
r (ϕ) is at most

r − 2 and will show that ϕ is not eNCP. Consider the following commutative diagram of groups
with left Γ-actions:

K G

K/Γr Qr(ϕ) G/Γr

Qu
r (ϕ) (G/Γr)Γ

ϕ

(17)

Since Qu
r (ϕ) is a quotient of K and has nilpotency class at most r − 2, the kernel of the quotient

must contain Γr−1(K):
Γr−1(K) ⊆ ker(K � Qu

r (ϕ)).
By commutativity of (17), this implies that

ϕ(Γr−1(K)) ⊆ ker(G� (G/Γr)Γ).

But the right-hand side is the definition of 〈Γr(G)〉Γ, so we have shown that ϕ is not eNCP.

Outline of the remaining sections. In §3 we consider the quotients Qu
r (ϕ) of the group K in a

split short exact sequence (15) and apply Lemma 2.17 to see that they have nilpotency class exactly
r, assuming the eNCP property. This is the key technical ingredient in our general construction
of pro-nilpotent representations. In §4–§6 we then consider specific examples of such split short
exact sequences and prove the eNCP property in each case using Corollary 2.13 in the setting of
Remark 2.15 – we produce a quotient group G′, fitting into diagram (16), whose lower central
series does not stop.
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3. The general recipe
Let Γ be a group. We first describe a general recipe for constructing homological representa-

tions of Γ, before explaining how to augment this to produce pro-nilpotent representations. The
idea of the general recipe is the same as that of [PS21, §2 and §5], although the details of [PS21]
are more involved, as the goal there is to construct representations of a family of groups (encoded
in a category), rather than a single group.

Homological representations. We suppose that we are given three inputs:
(1) A split short exact sequence:

1 K G Γ 1.ϕ (18)

(2) A diagram of based, path-connected spaces:

X Y Z,i f (19)

where f is a Serre fibration and i is the inclusion of the fibre, that induces (18) on π1.
(3) A quotient K � Q that is invariant under the Γ-action on K induced by (18).

Remark 3.1 There is a canonical choice of the input (2), given the input (1). Taking classifying
spaces, the quotient G� Γ induces a map BG→ BΓ, which we may assume up to based homotopy
equivalence is a Serre fibration. Its fibre is then a model for the classifying space BK. Taking
classifying spaces is functorial, so the section of (18) induces a section for (19).

In many of our examples, the input (2) will indeed be of this canonical form, i.e. the spaces X,
Y and Z that we consider will be aspherical (have vanishing higher homotopy groups). However, not
in all cases: in §6 we apply our general construction to loop braid groups using certain configuration
spaces of points and loops in the 3-disc for the spaces X, Y and Z, which are not aspherical.

Lemma 3.2 The three inputs above induce a well-defined representation of Γ over the ring Z[Q]
for each homological degree i > 0.

Proof. Composing the quotient π1(X) = K � Q with the right regular representation of Q on its
group ring Z[Q], we obtain a (rank-1) local system on X defined over Z[Q]. Let us denote this
local system by LQ. If X is a sufficiently nice space to admit a universal cover (as it always will
be in our examples), this local system may equivalently be viewed as a bundle of Z[Q]-modules
over X, constructed as follows: the quotient π1(X) = K � Q corresponds to a regular covering
XQ → X with deck transformation group Q; taking free abelian groups fibrewise turns this into a
bundle of Z[Q]-modules, which is the local system LQ.

The fundamental group of the base of any Serre fibration acts by homotopy automorphisms
on its fibre (see for example [PT20, §2] for the construction, although this is a classical fact), so
we have

Γ = π1(Z) −→ π0(hAut(X)), (20)

where hAut(X) is the grouplike topological monoid of homotopy automorphisms of X. The as-
sumption that K � Q is Γ-invariant means that the local system LQ on X is invariant under the
action (20). There is therefore a well-defined induced action on the twisted homology of X with
local system LQ in any degree i > 0:

Γ −→ AutZ[Q](Hi(X;LQ)). (21)

This is a representation over Z[Q] since the local system LQ is defined over Z[Q].

If the space X is locally compact, we may alternatively take twisted Borel-Moore homology
in the last step of the above proof, to obtain another representation

Γ −→ AutZ[Q](HBM
i (X;LQ)) (22)

of Γ over Z[Q] for each degree i > 0.

11



Weakly pro-nilpotent homological representations. To construct weakly pro-nilpotent rep-
resentations of Γ, we fix inputs (1) and (2) from above and allow input (3) (a Γ-invariant quotient
of K) to vary. More precisely, we construct a canonical tower of Γ-invariant quotients of K de-
termined by the split short exact sequence (18). Lemma 2.17 will then imply that this tower is
pro-nilpotent as long as (18) is eNCP.

The construction is summarised in the following diagram.

K G Γ
ϕ

Q∞ G/Γ∞ Γ/Γ∞
Qu
∞

lim(Q•) Ĝnil Γ̂nil
lim(Qu

•)

Qr+1 G/Γr+1 Γ/Γr+1
Qu
r+1

Qr G/Γr Γ/Γr
Qu
r

Q2 Gab Γab

Qu
2

(23)

The top row is the split short exact sequence (18). We first describe the second-to-bottom
row, where r > 2. On the right-hand side, we apply the functorial construction −/Γr (quotienting
a group by the r-th term in its lower central series) to the right-hand side of (1). We then define
Qr to be the kernel of the induced surjection G/Γr � Γ/Γr. Notice that this coincides with the
definition of Qr(ϕ) in Definition 2.3; here we abbreviate it to Qr to avoid cluttering the diagram.
There is an induced action of Γ on Qr given by projecting Γ onto Γ/Γr, following the section to
G/Γr and then acting by conjugation on Qr. The quotient Qu

r is defined to be the coinvariants of
this action; this coincides with Definition 2.16; we are again abbreviating Qu

r (ϕ) to Qu
r .

This describes the second-to-bottom row for any r > 2. The third-from-bottom row is the
same, replacing r with r + 1; it has a canonical surjection onto the second-from-bottom row since
the lower central series is a descending series. The bottom row is simply the r = 2 instance of the
second-from-bottom row; note that quotienting by Γ2 is the same as abelianisation. In the case
r = 2, the Γ-action on Q2 is trivial, since this action is given by conjugation in the abelian group
G/Γ2 = Gab. Hence in this case Qu

2 = Q2.
This explains the bottom three rows, which in fact represent an infinite tower of 4-term rows

indexed by integers r > 2. The third-from-top row is defined by taking inverse limits of these
four towers. On the right-hand side this gives us the pro-nilpotent completions of G and of Γ, by
Definition 1.3. Taking pro-nilpotent completions is functorial, so the homomorphism Ĝnil → Γ̂nil
is again a split surjection, as indicated in the diagram.

The second-from-top row is constructed just as the second-from-bottom row, except that we
quotient by the residue Γ∞, which is the intersection of all finite terms in the lower central series. In
general, the canonical homomorphism G→ Ĝnil of a group to its pro-nilpotent completion factors
as the quotient by its residue G � G/Γ∞ followed by an injection (see Remark 1.4); this is why
we have vertical injections G/Γ∞ ↪→ Ĝnil and Γ/Γ∞ ↪→ Γ̂nil in the diagram. The vertical injection
Q∞ ↪→ lim(Q•) then follows by commutativity. This completes the construction of diagram (23).

For completeness, we mention that the composed vertical morphisms G/Γ∞ → G/Γr are
surjective for every r (this does not follow from the information given in the diagram). Similarly
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for the vertical morphisms Γ/Γ∞ → Γ/Γr and Q∞ → Qr and Qu
∞ → Qu

r . Finally, we note that
the two arrows that are not decorated as surjections or injections in the diagram are deliberately
so: they are not tautologically injective or surjective in general.

Lemma 3.3 Suppose we are given inputs (1) and (2) and assume that ϕ in (18) is eNCP. Then
this determines a well-defined weakly pro-nilpotent representation of Γ for each i > 0.

Proof. Input (1), namely the split short exact sequence (18), induces diagram (23), in particular it
induces the tower Qu

• of groups in the bottom-left of this diagram. Since ϕ is eNCP, Lemma 2.17
implies that Qu

r has nilpotency class exactly r − 1. Thus Qu
• is a nilpotent tower of groups in the

sense of Definition 1.1.
The quotient K � Qu

r in diagram (23) is Γ-invariant by construction, so we may apply
Lemma 3.2 with this quotient as input (3) to obtain the representation Vr = Hi(X;LQu

r
) of Γ over

Z[Qu
r ].
To complete the construction of a weakly pro-nilpotent representation, we must now construct

comparison homomorphisms
Vr+1 ⊗Z[Qu

r+1] Z[Qu
r ] −→ Vr (24)

of Γ-representations over Z[Qu
r ]. To do this, first recall that, for any space X, local system L on

X defined over R and ring homomorphism θ : R→ S, there is a canonical homomorphism

Hi(X;L)⊗R S −→ Hi(X;L ⊗R S) (25)

of S-modules commuting with the action of π0(hAut(X)). This is one of the maps appearing in
the universal coefficient theorem, although we only need its existence. If we take R = Z[Qu

r+1] and
S = Z[Qu

r ], with θ induced by the quotient Qu
r+1 � Qu

r , and set L = LQu
r+1

, then (25) becomes
(24) since LQu

r+1
⊗Z[Qu

r+1]Z[Qu
r ] = LQu

r
. It is a homomorphism of Γ-representations since the action

of Γ factors through π0(hAut(X)).

If X is locally compact, we may alternatively apply Borel-Moore homology (22) rather than
ordinary homology (21), in which case we set Vr = HBM

i (X;LQu
r
). We then construct the com-

parison homomorphisms (24) as follows. The canonical homomorphism (25) exists also for relative
homology; quantifying over all compact subsets A ⊆ X and taking inverse limits, we obtain:

HBM
i (X;L)⊗R S = limA(Hi(X,X rA;L))⊗R S

→ limA(Hi(X,X rA;L)⊗R S)
→ limA(Hi(X,X rA;L ⊗R S))
= HBM

i (X;L ⊗R S).

(26)

Specialising as above, this gives us (24) in the Borel-Moore setting.

Remark 3.4 If, in Lemma 3.3, we make the weaker assumption that ϕ in (18) is NCP, rather than
eNCP, then we may apply the same construction using the tower of quotients Q• of K instead of
Qu
•. However, since the quotients K � Qr are not in general Γ-invariant (although their kernels

are preserved by the Γ-action), we obtain representations Hi(X;LQr ) of Γ that commute with the
Z[Qr]-module structure only up to a “twist”.

Lifting to representations over a pro-nilpotent group. As an aside, we observe that, given
the same inputs as in Lemma 3.3, the weakly pro-nilpotent representation over Qu

• constructed in
that lemma may be lifted to a representation over Z[lim(Qu

•)].

Lemma 3.5 Suppose we are given inputs (1) and (2) and assume that ϕ in (18) is eNCP. Then this
determines a representation of Γ over the integral group ring of the pro-nilpotent group lim(Qu

•),
which lifts the weakly pro-nilpotent representation of Γ over Qu

• from Lemma 3.3.

Proof. Consider just the top two rows of diagram (23). The quotient K � Qu
∞ is Γ-invariant by

construction, so Lemma 3.2 constructs a representation V∞ = Hi(X;LQu
∞

) of Γ over Z[Qu
∞]. This

lifts the representation Vr = Hi(X;LQu
r
) of Γ over Z[Qu

r ] in the sense that there are homomorphisms

V∞ ⊗Z[Qu
∞] Z[Qu

r ] −→ Vr, (27)

13



constructed exactly as in the proof of Lemma 3.3. The homomorphisms (27) are compatible with
the comparison homomorphisms (24), so the representation V∞ of Γ over Z[Qu

∞] lifts the (weakly)
pro-nilpotent representation V• of Γ over Qu

• constructed in Lemma 3.3.
This is not yet exactly what we want, which is a representation over Z[lim(Qu

•)]. We cannot
construct this directly, since the homomorphism K → lim(Qu

•) in diagram (23) is not necessarily
surjective. Also, the homomorphism Qu

∞ → lim(Qu
•) in diagram (23) is not necessarily injective,

so we also cannot simply consider V∞ as a representation over Z[lim(Qu
•)] by inclusion of rings.

Instead, let us denote by Qu
lim the image of the homomorphism Qu

∞ → lim(Qu
•) in diagram (23).

The homomorphismK → Qu
lim from diagram (23) is thus surjective by construction, so the (weakly)

pro-nilpotent representation V• lifts to a representation Vlim of Γ over Z[Qu
lim] by a verbatim repeat

of the previous paragraph with Qu
∞ replaced by Qu

lim. Since Z[Qu
lim] is now a subring of Z[lim(Qu

•)],
this finishes the desired construction.

We note that the above construction goes through equally well if we work with Borel-Moore
homology instead of ordinary homology.

Remark 3.6 This is in contrast to the general situation of (weakly) pro-nilpotent representations
over a pro-nilpotent tower of groups vs. representations over the group-ring of the inverse limit of
the tower: in §1 (see Lemma 1.9) we observed that a lift does not always exist in general.

Genuine pro-nilpotent homological representations. We now consider conditions on the
space X guaranteeing that the above weakly pro-nilpotent representations are in fact genuine
pro-nilpotent representations, i.e. the comparison homomorphisms (24) are isomorphisms.

Lemma 3.7 Let X be a space, L a local system on X over R and θ : R→ S a ring homomorphism.
Let X ′ ⊆ X be a subspace such that the inclusion induces isomorphisms on twisted Borel-Moore
homology for all local systems on X. Suppose moreover that X ′ is homeomorphic to a disjoint
union of copies of Rk for fixed k > 0. Then (26) is an isomorphism.

Proof. Consider the commutative square:

HBM
i (X ′;L)⊗R S HBM

i (X ′;L ⊗R S)

HBM
i (X;L)⊗R S HBM

i (X;L ⊗R S).

The vertical maps are isomorphisms by hypothesis. The top horizontal map is an isomorphism
since both sides are canonically isomorphic to the free S-module generated by the components of
X ′. (Note that all local systems onX ′ are trivial, in other words untwisted, since it has contractible
components.) Hence the bottom horizontal map is also an isomorphism.

The hypotheses of Lemma 3.7 appear a little ad hoc, but they occur very naturally when the
space X is a (partitioned) configuration space of points, as we discuss shortly. First, we combine
Lemmas 3.3 and 3.7 to prove:

Corollary 3.8 Suppose we are given inputs (1) and (2). Assume that ϕ in (18) is eNCP. Assume
also that X is locally compact and that there is a subspace X ′ of X, homeomorphic to a disjoint
union of copies of Rk for a fixed k > 0, such that the inclusion X ′ ↪→ X induces isomorphisms
on twisted Borel-Moore homology for all local systems on X. Then this determines a well-defined
(genuine) pro-nilpotent representation of Γ.

Proof. Since X is locally compact, we may apply the Borel-Moore variant of the construction in
Lemma 3.3 to obtain a weakly pro-nilpotent representation (Vr)r>2 of Γ with comparison homo-
morphisms (24) = (26). Lemma 3.7 implies that these are isomorphisms, so this is in fact a genuine
pro-nilpotent representation.

In our examples, the space X will typically be a partitioned configuration space

Ck(N) = {(p1, . . . , pk) ∈ Nk | pi 6= pj for i 6= j}/Sk,
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where N is a manifold, k = (k1, . . . , kl) is an l-tuple of positive integers summing to k > 1 and
Sk = Sk1 × · · · ×Skl

, considered as a subgroup of Sk.
In [PS22], we prove the following lemma, which gives sufficient conditions for an inclusion of

configuration spaces to induce isomorphisms on twisted Borel-Moore homology. It is a generalisa-
tion of a lemma originally due to Bigelow [Big04, Lemma 3.1], and also recovers, as special cases,
similar results appearing in [AK10, Lemma 3.3], [AP20, Theorem 6.6] and [BPS21, Theorem A(a)].

Lemma 3.9 Let M be a compact metric space with closed subspaces A ⊆ B ⊆ M , where M and
B are locally compact. Suppose that there exists a strong deformation retraction h of M onto B,
in other words a map h : [0, 1]×M →M satisfying the following two conditions:
• h(t, x) = x whenever t = 0 or x ∈ B,
• h(1, x) ∈ B for all x ∈M ,

such that moreover the following two additional conditions hold:
• h(t,−) is non-expanding for all t, i.e. d(x, y) > d(h(t, x), h(t, y)) for all x, y ∈M ,
• h(t,−) is a topological self-embedding of M for all t < 1.

Then, for any k = (k1, . . . , kl), the inclusion of configuration spaces

Ck(B rA) ↪−→ Ck(M rA) (28)

induces isomorphisms on Borel-Moore homology in all degrees and for all local coefficient systems
on Ck(M rA) that extend to Ck(M).

Corollary 3.10 LetM be a compact manifold with boundary, Λ ⊆M an embedded finite graph and
A ⊆ Λ∩∂M a subspace such that ΛrA is a disjoint union of open intervals. Suppose that there is
a strong deformation retraction of M onto Λ satisfying the two additional conditions of Lemma 3.9
with respect to some metric on M . Then, for any k = (k1, . . . , kl), the space X = Ck(M r A)
satisfies the hypotheses of Corollary 3.8.

Proof. We may apply Lemma 3.9 and take X ′ = Ck(Λ r A). Since A is contained in ∂M , the
inclusion Ck(M r A) ⊆ Ck(M) is a homotopy equivalence, so all local coefficient systems on
Ck(M r A) extend to Ck(M). Moreover, any configuration space on a disjoint union of open
intervals is homeomorphic to a disjoint union of copies of Rk, where k is the total number of
points in a configuration. Thus X admits a subspace X ′ with the required properties. Finally,
X = Ck(M rA) is locally compact since it is a manifold.

Outlook 3.11 To summarise, in order to construct weakly pro-nilpotent representations of Γ it
suffices to construct inputs (1) and (2) – in other words a split fibration sequence (19) whose
induced split short exact sequence of fundamental groups is (18) – and to check that the inclusion
ϕ : K ↪→ G in (18) is eNCP (this is Lemma 3.3). If the spaceX of (19) is of the formX = Ck(MrA)
as in Corollary 3.10, then we obtain a genuine pro-nilpotent representation of Γ (by Corollaries 3.8
and 3.10).

In §4–§6 we apply this recipe in many different settings where Γ is either a classical braid
group, surface braid group or loop braid group. For classical and surface braid groups (§4 and
§5) we carry out the full recipe – constructing (19), proving that ϕ is eNCP and checking that X
has the form described in Corollary 3.10 – and thus obtain genuine pro-nilpotent representations
of these groups. On the other hand, for loop braid groups (§6) the space X in our construction
is not of the right form to apply Corollary 3.10, so for these groups we only construct weakly
pro-nilpotent representations. The reason is that, in this setting, X is either a configuration space
involving higher-dimensional objects than just points, or it is a configuration space of points in a
manifold that does not deformation retract onto a graph as in Corollary 3.10.

4. Classical braid groups
In this section, we prove Theorems A, B and C: we construct the pro-nilpotent LKB represen-

tation in §4.1, the ribbon-Lawrence representations in §4.2 and we compute explicit matrices for
the second ribbon-Lawrence representation, which is also in a sense the “limit” of the pro-nilpotent
LKB representation, in §4.3.
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4.1. The pro-nilpotent LKB representation
We apply the general construction of §3 to prove Theorem A.

Proof of Theorem A. Consider the split fibration sequence (cf. [FN62, Theorem 3])

C2(Dn) C2,n(D2) Cn(D2), (29)

where Dn denotes the disc D2 minus n interior points and Ck( ) for a partition k denotes the
partitioned configuration space (defined just before Lemma 3.9). By Lemma 3.3, this determines a
weakly pro-nilpotent representation of Bn = π1(Cn(D2)) as long as the inclusion ϕ in the induced
split short exact sequence of fundamental groups

1 B2(Dn) B2,n Bn 1.ϕ (30)

is eNCP. By Corollary 2.13 (see also Remark 2.15), it will suffice to construct a quotient B2,n � G′

fitting into the diagram

1 B2(Dn) B2,n Bn 1

G′
0

(31)

where the lower central series of G′ does not stop. We will construct this for G′ = Z2 oS2, whose
lower central series does not stop by [DPS22, Proposition B.26].

To construct the desired quotient B2,n � Z2 o S2, we follow the proof of [DPS22, Propo-
sition 3.11], where we set l = 2. It is shown there that the quotient B2,n/Γ∞ is isomorphic to
Z × (Z2 o Z), where a generator of the last Z factor acts on the Z2 factor by swapping the coor-
dinates. This action has order two, so we may project the last Z factor onto Z/2 = S2, and also
project away from the first (direct) Z factor, to obtain a quotient onto Z2 oS2.

As shown in [DPS22, proof of Proposition 3.11], the generator σ1 of B2,n (a half-twist of the
first two strands) is sent to the generator s of S2 in this quotient and the generator a13 of B2,n (a
pure braid where all strands are vertical except the first one, which winds once around the third
strand) is sent to the element (1, 0) ∈ Z2 ⊆ Z2 oS2 in this quotient. Since the two elements s and
(1, 0) generate Z2 oS2 and their pre-images σ1 and a13 lie in the subgroup B2(Dn), it follows that
the restriction of the surjection B2,n � Z2 oS2 to B2(Dn) is also surjective.

The quotient B2,n � Z2 o S2 may be thought of as recording the winding numbers of the
two configuration points in the first block of the partition around the n configuration points in the
second block (in the Z2 factor) together with the induced permutation of the 2-point block in the
base configuration (in the S2 factor). From this description it is clear that its composition with
the section Bn 99K B2,n is zero.

We have thus constructed the quotient G′ = Z2 o S2 with the necessary properties, so ϕ is
eNCP by Corollary 2.13 and Lemma 3.3 implies that (30) induces a weakly pro-nilpotent repre-
sentation of Bn.

To see that this is a genuine pro-nilpotent representation, we apply Corollary 3.10. Let M be
the 2-disc with the interiors of n pairwise disjoint closed discs removed, let A be the union of its n
inner boundary circles and let Λ be the embedded finite graph in M given by the union of A with
n− 1 arcs passing between consecutive boundary circles (see Figure 1). It is easy to construct an
appropriate deformation retraction of M onto Λ, so Corollary 3.10 implies that the configuration
space X = C2(Dn) ∼= C2(M r A) satisfies the hypotheses of Corollary 3.8, which implies that the
weakly pro-nilpotent representation of Bn that we have constructed is a (genuine) pro-nilpotent
representation.

Finally, we consider the bottom (r = 2) level of this pro-nilpotent representation. This is
constructed from

1 B2(Dn) B2,n Bn 1

1 Q2 Bab
2,n Bab

n 1.

(32)

16



For n > 2, we have Bab
2,n
∼= Z3 (see for example [DPS22, Proposition 3.4]) and Bab

n
∼= Z, so Q2 ∼= Z2.

Moreover, the quotient B2(Dn)� Q2 ∼= Z2 precisely corresponds to the local system L2 from the
definition of the LKB representation (1); thus the r = 2 level of our pro-nilpotent representation
of Bn is the LKB representation. This concludes the proof of Theorem A.

4.2. Ribbon Lawrence representations
Let us consider in more detail the top two rows of diagram (23) in the setting of §4.1:

1 B2(Dn) B2,n Bn 1

1 Q∞ B2,n/Γ∞ Bn/Γ∞ 1.

(33)

For n > 2, we have Γ2(Bn) = Γ∞(Bn) (by [GL69] for n > 5 and [DPS22, Example 2.3] for n > 2)
and so Bn/Γ∞ = Bab

n
∼= Z. For n > 3, we also have B2,n/Γ∞ ∼= Z × (Z2 o Z), where the right-

hand Z factor acts on the Z2 factor by powers of the involution interchanging the two coordinates
[DPS22, Proposition 3.11]. Moreover, from the proof of [DPS22, Proposition 3.11], one sees that,
under these identifications, the projection B2,n/Γ∞ � Bn/Γ∞ is the projection onto the left-hand
Z factor. From this calculation we may conclude the following.
• We have Q∞ ∼= Z2 o Z, where 1 ∈ Z acts on Z2 by swapping the two coordinates.
• The induced Bn-action on Q∞ is trivial, since B2,n/Γ∞ is the direct product of Q∞ and

Bn/Γ∞. Hence we have Qu
∞ = Q∞.

• As a consequence of the previous point, the induced Bn-action on Qr is trivial also for all
finite r > 2, and we have Qu

r = Qr.
This establishes the paragraph before the statement of Theorem B, as well as the k = 2 case of
Theorem B. We next prove Theorem B for all k > 2.

Proof of Theorem B. We first observe that, for any inclusion of surfaces e : S ↪→ T , there is a
homomorphism

Bk(S) −→ π1(S) oBk(T ) = π1(S)k o Bk(T ), (34)
defined as follows. Choose an ordering ~c = (c1, . . . , ck) of the base configuration c of Ck(S) and
an embedded disc ι : D2 ↪→ S whose image contains c. Given a loop β ∈ Bk(S) = π1(Ck(S), c),
we may lift it uniquely to a path (γ1, . . . , γk) in the ordered configuration space Fk(S) starting
at ~c. Each path γi in S begins and ends in the image of ι, so collapsing ι(D2) to a point and
identifying the resulting surface S/ι(D2) with S, we obtain a collection of loops γ̄i in π1(S). The
homomorphism (34) is then defined to send β to ((γ̄1, . . . , γ̄k), e ◦ β).

Applying (34) in the case (T, S) = (D2,Dn), together with the projection π1(Dn) ∼= Fn � Z
sending each generator of a free basis for π1(Dn) to 1 ∈ Z, we obtain a quotient

Bk(Dn) −� Z oBk = RBk (35)

onto the kth ribbon braid group. Explicitly, a braid β = (γ1, . . . , γk) ∈ Bk(Dn) is sent to the
element ((w1, . . . , wk), β) ∈ Zk o Bk = Z oBk, where γi is the strand of β starting at ci and wi is
the total winding number of the loop γ̄i in Dn/ι(D2) ∼= Dn. Notice that in the case when k = 2 we
have RB2 = Z oZ = Z2 oZ and (35) coincides with the quotient onto Q∞ = Z2 oZ from diagram
(33) (this follows from the explicit description of the quotient B2,n � B2,n/Γ∞ from the proof of
[DPS22, Proposition 3.11]).

The homomorphism (34) is equivariant with respect to the evident action of the group of
diffeomorphisms of T that send S onto itself. In the case (T, S) = (D2,Dn) this means that the
homomorphism

Bk(Dn) −→ π1(Dn) oBk (36)
is Bn-equivariant, where the Bn-action on Bk is trivial and its action on π1(Dn) ∼= Fn is the Artin
representation. The projection p : Fn � Z is clearly Bn-invariant, hence so is (p o id) ◦ (36) = (35).

Since the quotient (35) of π1(Ck(Dn)) is Bn-invariant, we may apply twisted Borel-Moore
homology to obtain an induced Bn-action on the Z[RBk]-module

VR(k) := HBM
k (Ck(Dn);LRBk

),
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where LRBk
is the local system on Ck(Dn) corresponding to (35). This is the desired representation

RLk of Theorem B. The kth Lawrence representation (2) is

Vk = HBM
k (Ck(Dn);Lk),

where Lk is the local system on Ck(Dn) corresponding to the quotient Bk(Dn) � Z2 sending a
braid β = (γ1, . . . , γk) ∈ Bk(Dn) to (w, b), where w is the total winding number of all strands of the
braid β around the punctures of Dn and b ∈ Bab

k = Z is the abelianisation of β viewed as a braid
in D2. Notice that, in terms of the explicit description of (35) above, we have w = w1 + · · ·+ wk.
Hence this quotient factors as

Bk(Dn) RBk = Z oBk (Z oBk)ab = Z×Bab
k = Z2.

(35) (∗) (37)

If we use the projection (∗) from (37) to view Z[Z2] as a Z[RBk]-module, we have an isomorphism
L2 ∼= LRBk

⊗Z[RBk] Z[Z2], and hence:

VR(k)⊗Z[RBk] Z[Z2] = HBM
k (Ck(Dn);LRBk

)⊗Z[RBk] Z[Z2]
∼= HBM

k (Ck(Dn);LRBk
⊗Z[RBk] Z[Z2])

∼= HBM
k (Ck(Dn);L2) = Vk = (2),

where the middle isomorphism follows from the fact that HBM
k (Ck(Dn);L), for any rank-1 local

system L over a ring R, is a free R-module; this latter fact follows from Corollary 3.10 exactly as in
the proof of Theorem A above. Thus we have shown that VR(k) recovers (2) after reducing along
the abelianisation of RBk. This concludes the proof of Theorem B except for its last statement,
which was already explained in the paragraph before this proof.

Remark 4.1 The definition of the homomorphism (34) is inspired by the definition of the homo-
morphism πS of [DPS22, §6.2]. Indeed, the latter is the composition of (34) for S = T with the
canonical quotient of π1(S) oBk(S) onto π1(S) oSk.

Remark 4.2 We note that the group RB2 ∼= Z2 o Z is residually nilpotent but not nilpotent, so
its lower central series does not stop (cf. [DPS22, Proposition B.10]), which is a necessary condition
for inducing a pro-nilpotent representation. On the other hand, for k > 3, the lower central series
of RBk stops at Γ2, so RLk does not induce a pro-nilpotent representation in this case.

4.3. Formulas for the three-variable LKB representation
We now consider in more detail the representation RL2 of Bn on the Z[RB2]-module VR(2).

Recall from the introduction that we write:

Θ = Z[RB2] = Z[Z2 o Z] = Z〈q±1
1 , q±1

2 , t±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1).

As a Θ-module, VR(2) is free of rank
(
n
2
)
(we will recall an explicit basis below), so each generator

σi of Bn acts by an
(
n
2
)
×
(
n
2
)
matrix over Θ. Our goal in the remainder of this section is to prove

Theorem C, which states that this matrix is the one described in Table 1.

Basis. We first describe a basis of VR(k) over Θ for all k > 1 (we will later come back to the
special case k = 2). As in the proof of Theorem A above, let M be the 2-disc with the interiors
of n pairwise disjoint closed discs removed, let A be the union of its n inner boundary circles and
let Λ be the embedded finite graph in M given by the union of A with n− 1 arcs passing between
consecutive boundary circles; see Figure 1.

There is then a strong deformation retraction of M onto B = Λ satisfying the conditions of
Lemma 3.9, so that lemma implies that the inclusion In := Λ r A ↪→ M r A ∼= Dn induces an
isomorphism

HBM
k (Ck(In);LRBk

) ∼= HBM
k (Ck(Dn);LRBk

) = VR(k).

Since In is a disjoint union of open n − 1 intervals, the configuration space Ck(In) is a disjoint
union of open k-balls indexed by tuples (k1, . . . , kn−1) of non-negative integers summing to k. (The

18



Figure 1 – The connected, compact, planar surface M with n+ 1 boundary components. The
subspace A is the union of its n inner boundary components; the embedded graph Λ is the
union of A with the n− 1 arcs depicted.

path-component corresponding to the tuple (k1, . . . , kn−1) naturally identifies with the product of
open simplices ∆̊k1 × · · · × ∆̊kn−1 , which is homeomorphic to an open k-ball.) In particular, each
path-component is simply-connected, so the restriction of the local system LRBk

to Ck(In) is
trivial. We deduce:

Proposition 4.3 As a module, the representation VR(k) ∼= HBM
k (Ck(In);LRBk

) has a free basis
over Z[RBk] indexed by tuples (k1, . . . , kn−1) of non-negative integers summing to k. A generator
corresponding to this tuple is given by the fundamental class of the properly-embedded submanifold
L(k1, . . . , kn−1) of Ck(Dn) equal to the subspace of all configurations where exactly ki points lie on
the ith open interval in In = Λ rA.

Intersection form. We now note that the subspace C∂k (Dn) ⊂ Ck(Dn) consisting of configura-
tions that intersect the boundary ∂Dn = ∂D2 non-trivially is preserved under the Bn-action. (This
is in fact precisely the boundary of the manifold Ck(Dn).) Thus, instead of applying twisted Borel-
Moore homology HBM

k to the space Ck(Dn) equipped with the (Bn-invariant) local system LRBk
,

we may alternatively apply ordinary (relative) homology to the pair of spaces (Ck(Dn), C∂k (Dn))
equipped with the same local system, to obtain another Bn-representation

VR(k)∂ := Hk(Ck(Dn), C∂k (Dn);LRBk
)

over Z[RBk]. For each tuple (k1, . . . , kn−1) of non-negative integers summing to k, consider the
submanifold L(k1, . . . , kn−1)∂ of Ck(Dn) consisting of configurations where exactly one point lies on
each vertical closed interval from Figure 2, where there are exactly ki such intervals between the ith
and (i+ 1)st inner boundaries of M . This is a compact, contractible submanifold (homeomorphic
to the k-cube [0, 1]k) whose boundary lies in C∂k (Dn), so it has a fundamental class in VR(k)∂ .
These classes are “dual” to the basis of Proposition 4.3 with respect to the following bilinear form.

Definition 4.4 The intersection form

〈− ,−〉 : VR(k)⊗ VR(k)∂ −→ Z[RBk] (38)

is defined by 〈x , y〉 = x∨ ∩ y, where x∨ ∈ Hk(Ck(Dn), C∂k (Dn);LRBk
) is the Poincaré dual of x

and ∩ is the relative cap product, taking values in H0(Ck(Dn);LRBk
) ∼= Z[RBk].

See [AP20, §3] for more details of (38). For the fundamental classes described above, we have

〈
[L(k1, . . . , kn−1)] , [L(k′1, . . . , k′n−1)∂ ]

〉
=
{

1 if (k1, . . . , kn−1) = (k′1, . . . , k′n−1)
0 otherwise.

(39)

As a consequence, the elements [L(k1, . . . , kn−1)∂ ] ∈ VR(k)∂ are linearly independent over Z[RBk]
and if we decompose an element x ∈ VR(k) as a linear combination in the basis [L(k1, . . . , kn−1)],
the coefficients of this decomposition are 〈x , [L(k1, . . . , kn−1)∂ ]〉.

Remark 4.5 We have elided a small subtlety above, namely that the fundamental class of a
submanifold determines a homology class only up to the action of a unit of the ground ring, in
this case Z[RBk]× = {±1} ×RBk. To resolve the {±1} ambiguity we may choose an orientation
of the submanifold and to resolve the RBk ambiguity we may choose a path from a point on
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Figure 2 – Vertical closed intervals determining an element of VR(k)∂ . In this case, we have
n = 5, k = 12 and the element corresponds to the tuple (3, 3, 3, 3).

the submanifold to the basepoint of Ck(Dn) (two choices of such a path differ by an element of
π1(Ck(Dn)), which projects to an element of RBk). We assume that we have made such choices
above so that (39) holds as written; without fixing these choices we can only say that (39) is equal
to a unit when (k1, . . . , kn−1) = (k′1, . . . , k′n−1), not necessarily 1. We will now make these choices
explicit in the case k = 2.

Explicit orientations and paths to the basepoint. We now specialise to the case k = 2. In
this case, the homology elements under consideration are fundamental classes of embedded surfaces
in the 4-manifold C2(Dn), and come in two kinds: those with ki = 2 for some i and those with
ki = kj = 1 for some i 6= j (and all other kl = 0). In this case, we will make explicit choices, for
each embedded surface in C2(Dn), of an orientation and a path to the basepoint. The chosen paths
to the basepoint are illustrated in Figure 3. The orientations are determined by chosen orientations
of the arcs (also illustrated in Figure 3), together with the paths to the basepoint, as prescribed
by the following convention.

Convention 4.6 Let p = (p1, p2) ∈ C2(Dn) be the endpoint of the path to the basepoint that
lies on the embedded surface in question. We order the two points p1, p2 of this configuration so
that, after following the path to the basepoint (which is a configuration in the bottom edge of
the rectangle), the point p1 ends up being to the left of the point p2. It is enough to specify a
local orientation of the embedded surface at the point p, in other words an ordered pair of linearly
independent tangent vectors to the embedded surface at this point. The points p1 and p2 each
lie on a smooth arc (possibly the same arc, possibly different arcs) with a chosen orientation as
illustrated in Figure 3; this determines a non-zero tangent vector vi at pi in Dn for i = 1, 2. A
tangent vector at p in C2(Dn) is a choice of tangent vectors in Dn at each of p1 and p2; for example
we have (v1, 0) and (0, v2), which are both tangent to the embedded surface. The local orientation
at p of the embedded surface is then the ordered pair ((v1, 0), (0, v2)). Notice that this convention
for choosing an orientation of the embedded surface depends not only on the orientations of the
arcs involved, but also critically on the path to the basepoint: if we introduce a half-twist to this
path, the orientation will be reversed.

General w-classes and v-classes. We will need to consider homology elements of a slightly
more general form. Let α be an arc in M whose endpoints lie on A and whose interior α̊ lies in
M r A = Dn. The fundamental class [C2(α̊)] ∈ HBM

2 (C2(Dn);LRB2) is then well-defined up to a
unit; it becomes well-defined on the nose, by Convention 4.6, after choosing an orientation of the
arc α and a path from some point of C2(α̊) to the basepoint of C2(Dn). Similarly, let α1 and α2
be two disjoint arcs of this form and consider the subsurface (α̊1 × α̊2)/S2 ⊂ C2(Dn) consisting
of configurations with one point in the interior of each arc. Choosing orientations of α1 and α2
and a path from some point of (α̊1 × α̊2)/S2 to the basepoint of C2(Dn), we have a well-defined
fundamental class [(α̊1 × α̊2)/S2] ∈ HBM

2 (C2(Dn);LRB2). We denote these elements (w-classes
and v-classes respectively) by:

w(α) = [C2(α̊)]
v(α1, α2) = [(α̊1 × α̊2)/S2],

where it is implicit that the arcs are oriented and we have chosen an appropriate path to the
basepoint. Finally, we may perform the same construction to arcs α1 and α2 that, instead of having
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Figure 3 – Chosen paths to the basepoint of C2(Dn) for the embedded surfaces L(k1, . . . , kn−1)
(top row) and L(k1, . . . , kn−1)∂ (bottom row) for a tuple (k1, . . . , kn−1) of non-negative integers
summing to 2. On the left is the case when ki = 2 for some i and on the right is the case when
ki = kj = 1 for some i > j. We consider any 2-point configuration contained in the bottom
edge of the rectangle to be the basepoint: this ambiguity does not matter since this subspace
of C2(Dn) is contractible.

their endpoints on A ⊂M , have their endpoints on ∂D2 ⊂M (and lie entirely in M rA = Dn); in
this case we obtain an element v(α1, α2) ∈ H2(C2(Dn), C∂2 (Dn);LRB2). Clearly all of the elements
[L(k1, . . . , kn−1)] and [L(k1, . . . , kn−1)∂ ] considered above are of this form (in Figure 3, the top-left
element is of the form w(α) and the others are all of the form v(α1, α2)).

The intersection form on w-classes and v-classes. There is an explicit description of the
intersection form (38) for homology classes of this kind. Let x be either w(α) or v(α1, α2) and let y
be v(α′1, α′2) for appropriate oriented arcs. Denote by γx, γy the chosen paths to the basepoint for
x, y respectively. Assume that α or α1 t α2 intersects α′1 t α′2 transversely. For each intersection
point p ∈ x∩ y, define a loop `p in C2(Dn) by following γx from the basepoint to the subsurface x,
then following a path in x to the intersection point p, then following a path in y to the endpoint
of γy and then following γy back to the basepoint. This loop induces a permutation of the base
configuration of C2(Dn); denote the sign of this permutation by sgn(`p). It also determines an
element φ(`p) ∈ RB2 via the projection φ : π1(C2(Dn)) � RB2. Finally, write p = {p1, p2} and
denote by sgn(pi) the sign of the intersection of the oriented arcs at pi ∈ Dn. Then we have:

〈x , y〉 =
∑
p∈x∩y

sgn(p1)sgn(p2)sgn(`p)φ(`p) ∈ Z[RB2] = Θ. (40)

(See [Big01, page 475, ten lines above Lemma 2.1] and [BPS21, Appendix C] for an explanation of
the signs appearing in this formula.)

Calculation of the matrices. With this setup, and especially the explicit formula (40) for the
intersection form, we may now begin the proof of Theorem C.

Proof of Theorem C. Let 1 6 i 6 n−1 and let σi be a diffeomorphism of Dn representing σi ∈ Bn.
Using the basis [L(k1, . . . , kn−1)] of VR(2), it follows from the discussion above that the entry of
the matrix for RL2(σi) in the column corresponding to (k1, . . . , kn−1) and the row corresponding
to (k′1, . . . , k′n−1) is 〈

[σi(L(k1, . . . , kn−1))] , [L(k′1, . . . , k′n−1)∂ ]
〉
∈ Z[RB2] = Θ,

which we may calculate using the formula (40). Let us assume for convenience that 2 6 i 6 n− 2
(the edge cases i ∈ {1, n−1} may be dealt with similarly). We order the basis for VR(2) as follows:
• the six basis elements corresponding to the tuple · · ·xyz · · · (where y is in the ith position)

for xyz = 101, 200, 110, 020, 011, 002;
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• i− 2 blocks of three basis elements corresponding to the tuple · · · 1 · · ·xyz · · · (where y is in
the ith position) for xyz = 100, 010, 001;

• n− i− 2 blocks of three basis elements corresponding to the tuple · · ·xyz · · · 1 · · · (where y
is in the ith position) for xyz = 100, 010, 001;

• the
(
n−3

2
)
basis elements with 000 in the (i− 1)st, ith and (i+ 1)st positions, in any order.

Since σi is supported in a punctured subdisc of Dn containing the ith and (i+ 1)st punctures and
no other punctures, it is easy to see that the matrix RL2(σi) is a block matrix with respect to this
partition: in other words, it consists of a 6 × 6 block, then n − 4 = (i − 2) + (n − i − 2) separate
3 × 3 blocks, followed by the identity

(
n−3

2
)
×
(
n−3

2
)
matrix. It remains to show that these 6 × 6

and 3 × 3 blocks are as claimed in Table 1. We will explicitly compute three entries of the 6 × 6
matrix to explain how to do this; the remaining entries follow by exactly the same method.

Let us first compute the intersection〈
[σi(L(· · · 020 · · · ))] , [L(· · · 020 · · · )∂ ]

〉
. (41)

Figure 4 illustrates the two embedded surfaces σi(L(· · · 020 · · · )) and L(· · · 020 · · · )∂ and their
unique intersection point p. The local signs sgn(p1) and sgn(p2) are both −1. The loop `p may be
written as

`p = θ1,i+1θ2,i+1σ, (42)
where we are writing composition in π1(C2(Dn)) from left to right, σ is the element that swaps
the two points anticlockwise and θj,l, for j ∈ {1, 2} and l ∈ {1, . . . , n}, is the element where the
jth point loops once anticlockwise around the lth puncture. Its induced permutation of the base
configuration is non-trivial, so sgn(`p) = −1. The projection φ : π1(C2(Dn))� RB2 sends σ 7→ t,
θ1,l 7→ q1 and θ2,l 7→ q2 for all l, so the image of (42) is q1q2t = q1tq1 = tq2q1 = tq1q2. Thus,
according to the formula (40), we have (41) = (−1)3tq1q2 = −tq1q2, as claimed in Table 1.

Next let us compute the intersection〈
[σi(L(· · · 011 · · · ))] , [L(· · · 020 · · · )∂ ]

〉
. (43)

Figure 5 illustrates the two embedded surfaces σi(L(· · · 011 · · · )) and L(· · · 020 · · · )∂ and their two
intersection points p (the solid dots) and q (the hollow dots). The corresponding two loops may
be written as

`p = θ1,i+1θ2,i+1 `q = θ1,i+1θ2,i+1σ

which have signs sgn(`p) = +1 and sgn(`q) = −1. Taking into account also the local signs, we see
from the formula (40) that

(43) = (−1)(+1)(+1)q1q2 + (−1)(+1)(−1)q1q2t

= −q1q2 + tq1q2

= (t− 1)q1q2,

as claimed in Table 1. As a final example, we compute the intersection〈
[σi(L(· · · 101 · · · ))] , [L(· · · 110 · · · )∂ ]

〉
. (44)

Figure 6 illustrates the relevant embedded surfaces and their unique intersection point p. The
corresponding loop is `p = θ2,i+1, whose image in RB2 is q2 and whose sign is +1. The local signs
sgn(p1) and sgn(p2) are both +1, so we have (44) = q2, as claimed in Table 1.

All of the remaining entries in Table 1 may be verified similarly to these two examples; this
completes the proof of Theorem C.

Remark 4.7 Table 1 in particular gives formulas for the classical Lawrence-Krammer-Bigelow
representation when we set q = q1 = q2 (which then commutes with t). We were not able to find
explicit formulas for the Lawrence-Krammer-Bigelow representation in the literature using the
basis that we describe above. Formulas, in different bases, may be found in [Big01, Theorem 4.1],
[Kra02, §3] and [PP02, §1], but it is not entirely trivial to pass between the different bases. We
also note that the 3× 3 block matrices in Table 1 are, for obvious reasons, the same as the usual
matrices of the Burau representation. Analogous formulas over a non-commutative ground ring
(as is the case for our formulas) have been computed in the context of mapping class groups in
[BPS21, §8].
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Figure 4 – The computation of the intersection (41) = −tq1q2.

Figure 5 – The computation of the intersection (43) = (t− 1)q1q2.

Figure 6 – The computation of the intersection (44) = q2.

Remark 4.8 By construction, we have surjections of Bn-representations

VR(2) −→→ · · · −→→ Vr(2) −→→ Vr−1(2) −→→ · · · −→→ V2(2), (45)

where V•(2) is the pro-nilpotent representation of Bn over Q• from Theorem A and VR(2) is the
ribbon-LKB representation of Bn over Z[RB2] = Z[Q∞] from Theorems B and C. As modules,
these representations are all free of the same (finite) rank over their respective ground rings; the
surjections (45) are induced by surjections of the ground rings. Since V2(2) is faithful, by [Big01;
Kra02], it follows that Vr(2) (for each r > 2) and VR(2) are also faithful.

Remark 4.9 The ribbon-LKB representation VR(2) is the representation over Z[Q∞] associated
to the first row (G = B2,n) of Table 2, where in this case Q∞ = RB2. This is generalised by
the second row of Table 2, where G = B2,k,n for any tuple k of positive integers (the first row
corresponds to the empty tuple). In this more general setting we also have an explicit description
of the group Q∞: see Proposition 5.3 at the end of the next section. With sufficient patience, one
could generalise the matrices of Table 1 to obtain matrices for the Bn-representation over Z[Q∞]
associated to G = B2,k,n, with Q∞ as in Proposition 5.3.

5. Surface braid groups
In this section, we construct the pro-nilpotent representations of Bn and of Bn(S) listed in

Table 2, assuming throughout that n > 3. In each case (i.e. row of Table 2), the input is a split
fibration sequence

X Y Z,i f (46)

whose induced split short exact sequence of fundamental groups is

1 K G Γ 1ϕ (47)

(i.e. inputs (1) and (2) from the beginning of §3), with Γ and G as in the given row of Table 2.
In each setting that we consider in this section, the space X is a configuration space of the form
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Ck(M r A) as in Corollary 3.10. Thus, by Corollaries 3.8 and 3.10, the split fibration sequence
(46) induces a (genuine) pro-nilpotent representation of Γ via the construction of §3 as long as the
inclusion ϕ : K ↪→ G in (47) is eNCP. Recall from Corollary 2.13 and Remark 2.15 that a sufficient
criterion to prove this is to find a quotient G′ of G = K o Γ that is surjective when restricted to
K and zero when restricted to Γ:

1 K G Γ 1

G′
0

(48)

and such that the lower central series of G′ does not stop. We will find such a quotient G′ in each
case using the results of [DPS22].

Proof of Theorem D for classical and surface braid groups. We begin with the case of G = B2,k,n,
namely the second row of Table 2, which generalises Theorem A (which corresponds to the first
row of Table 2). Let k = (k1, . . . , kl) be a tuple of integers with ki > 3 for each 1 6 i 6 l. There
is a split fibration sequence

C2,k(Dn) C2,k,n(D2) Cn(D2),i f (49)

given by forgetting all blocks of points except for the last block of size n; the section is given by
pushing in a new block of n points near the boundary. The fundamental group of the middle space
is G = B2,k,n. By [DPS22, Proposition 3.11], we have

B2,k,n/Γ∞ ∼= Z(l+2
2 ) × (Z2(l+1) o Z), (50)

where the generators of the last Z factor act on the Z2(l+1) factor by swapping its coordinates in
l+1 pairs. We may then quotient further onto Z2(l+1)oZ by killing the Z(l+2

2 ) factor and projecting
the Z factor onto Z/2 = S2, since it acts by involutions. Finally, we may quotient Z2(l+1) onto Z2

by sending half of the generators to (1, 0) and the other half to (0, 1) respecting the involution by
which S2 acts. The result is a quotient onto G′ = Z2 o S2, whose lower central series does not
stop by [DPS22, Proposition B.26]. It remains to check that this fits into a diagram of the form
(48), i.e.:
• that B2,k(Dn) surjects onto G′ and
• that the homomorphism Bn 99K B2,k,n → G′ is zero.

From the proof of [DPS22, Proposition 3.11] one sees that the standard generator of B2,k(Dn) ⊂
B2,k,n that swaps the two points in the first block of the partition is sent to the generator of
S2 ⊂ G′. Similarly, one sees that the standard generator of B2,k(Dn) ⊂ B2,k,n that fixes all points
except for the first one (in the first block of 2), which loops once around one of the n punctures,
is sent to (1, 0) ∈ Z2 ⊂ G′. These two elements generate G′, so we have established the first claim
above. For the second claim, one sees from the proof of [DPS22, Proposition 3.11] that, under the
identification (50), each standard generator of Bn is sent to one of the copies of Z in the Z(l+2

2 )
factor, and hence to zero in G′. By Corollary 2.13 (and Remark 2.15) it follows that the inclusion
ϕ : B2,k(Dn) ↪→ B2,k,n is eNCP. Thus by Corollary 3.8 (and Corollary 3.10) we obtain from (49) a
(genuine) pro-nilpotent representation of Bn.

All of the other rows of Table 2 concerning classical or surface braid groups may be proven in
the same way. Recall that S is a surface with non-empty boundary (but it may have infinite type;
no additional complexity arises if we allow this). Let λ be a tuple of positive integers and consider
the split fibration sequence

Cλ(Sn) Cλ,n(S) Cn(S),i f (51)

given by forgetting all blocks of points except for the last block of size n. Here Sn denotes S minus
n interior points and the section is given by pushing in a new block of n points near the boundary.
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We may then consider the following diagram:

1 Bλ(Sn) Bλ,n(S) Bn(S) 1

Bλ(S),
0

(52)

where the vertical quotient is given by forgetting the last block of strands of size n. Notice that
the left-hand diagonal map is clearly surjective: without loss of generality we may assume that
the n punctures are contained in a collar neighbourhood of S and then every λ-braid on S may be
lifted to a λ-braid on Sn by pushing it away from this collar neighbourhood. Also, the right-hand
diagonal map is obviously zero. Thus, by the discussion at the beginning of this section, it suffices
to check that the lower central series of the group Bλ(S) does not stop. This is the case for:
• B1,1,1,k(D2), by [DPS22, Lemma 3.7];
• B2,2,k(D2), by [DPS22, Corollary 3.14];
• B1,2,k(D2), by [DPS22, Corollary 3.17];
• B2,k(S) for S 6= D2, by [DPS22, Proposition 6.40];
• B1,k(S) for S /∈ {D2,Ann,Möb}, by [DPS22, Proposition 6.40];
• B1,k(Möb) for k 6= ∅, by [DPS22, Proposition 6.40, Corollary 6.45 and Proposition 6.46];
• B1,1,k(Ann), by [DPS22, Lemma 6.41].

These cases correspond precisely to the rows in Table 2 concerning classical or surface braid groups
(except for the top two rows, which were dealt with above). This completes the proof of Theorem D
in these cases.

To finish this section, we describe, for each row of Table 2 concerning classical or surface braid
groups, the ground ring of the bottom (r = 2) layer of the pro-nilpotent representation that we
have constructed. This amounts to calculating the abelian group A = Q2, since the ground ring
of the bottom layer is Z[Q2]. By construction (see diagram (23)), this is the kernel of the (split)
surjection Gab � Γab induced by the given (split) surjection G� Γ.

Proposition 5.1 In the first (Bn) block of Table 2, the group A is free abelian of rank
(
l+2
2
)

+ l + 1 when G = B2,k,n (with each ki > 3)(
l+4
2
)

+ l′ when G = B1,1,1,k,n(
l+3
2
)

+ l′ + 2 when G = B2,2,k,n(
l+3
2
)

+ l′ + 1 when G = B1,2,k,n

where l is the number of blocks of k and l′ is the number of blocks of k of size at least 2.

Proof. In each case, Γ is Bn, whose abelianisation is Z, so A is Gab minus one Z summand. The
abelianisation Gab in each of the four cases may be read off from [DPS22, Proposition 3.4].

Proposition 5.2 In the second (Bn(S)) block of Table 2, the group A is isomorphic to

H1(S)l+1 × Zl′+1 × Z(l+2
2 ) when G = B2,k,n(S) with S planar

H1(S)l+1 × (Z/2)l′+1 when G = B2,k,n(S) with S non-planar
H1(S)l+1 × Zl′ × Z(l+2

2 ) when G = B1,k,n(S) with S planar
H1(S)l+1 × (Z/2)l′ when G = B1,k,n(S) with S non-planar
Zl+1 × (Z/2)l′ when G = B1,k,n(Möb)
Zl+2 × Zl′ × Z(l+3

2 ) when G = B1,1,k,n(Ann)

where l is the number of blocks of k and l′ is the number of blocks of k of size at least 2.

Proof. In each case, we have Gab ∼= A ⊕ Γab, so we may compute A from the abelianisations of
Γ = Bn(S) and of G = Bλ,n(S), which are computed explicitly in [DPS22, Proposition 6.11] and
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[DPS22, Proposition 6.26] respectively. Precisely, if t denotes the number of blocks of λ and t′

denotes the number of blocks of λ of size at least 2, the split surjection Gab � Γab is

H1(S)t+1 × Zt
′+1 × Z(t+1

2 ) −→→ H1(S)× Z

when S is planar and
H1(S)t+1 × (Z/2)t

′+1 −→→ H1(S)× Z/2

when S is non-planar. The specific computations of the proposition follow from these computations,
specialising λ and S as appropriate.

For the first two rows of the table, we may also compute the ground ring of the limit of the
pro-nilpotent tower of representations. As we will explain, this essentially amounts to computing
the residually nilpotent group Q∞. By construction (see diagram (23)), this is the kernel of the
(split) surjection G/Γ∞ � Γ/Γ∞ induced by the given (split) surjection G � Γ. In the example
in question, we have G = B2,k,n and Γ = Bn, for which

B2,k,n/Γ∞ ∼= Z(l+2
2 ) × (Z2(l+1) o Z) and Bn/Γ∞ = Bab

n
∼= Z,

by [DPS22, Example 2.3 and Proposition 3.11]. Thus we have:

1 B2,k(Dn) B2,k,n Bn 1

1 Q∞ Z(l+2
2 ) × (Z2(l+1) o Z) Z 1.

(53)

From the explicit presentation of B2,k,n/Γ∞ given in the proof of [DPS22, Proposition 3.11], we
see that the split surjection on the bottom row of (53) is the projection onto one of the copies of
Z in the direct Z(l+2

2 ) factor. As a consequence, just as we observed at the beginning of §4.2, the
induced Bn-action on Q∞ is trivial. This means, by definition, that Qu

∞ = Q∞ and thus Qu
• = Q•.

The Bn-representation over Z[Q∞] associated to the projection B2,k(Dn)� Q∞ may be thought
of as the limit of the pro-nilpotent tower of representations associated to the tower Q•. (This is
explained more precisely in Lemma 3.5, but note that the situation in this case is simpler, due to
the fact that Qu

∞ = Q∞ and Qu
• = Q•.) To summarise:

Proposition 5.3 The inverse limit of the pro-nilpotent representation of Bn corresponding to the
second row of Table 2 is defined over the group ring Z[Q∞], for

Q∞ = Z(l+2
2 )−1 × (Z2(l+1) o Z),

where 1 ∈ Z acts on Z2(l+1) by swapping its coordinates in l + 1 pairs.

In the special case k = ∅, corresponding to the first row of Table 2 (and Theorem A), we have
l = 0 and so Q∞ = Z2 oZ = RB2, as we already observed in this particular case at the beginning
of §4.2.

Corollary 5.4 In the second row of Table 2, for r > 2 we have

Qr = Z(l+2
2 )−1 × ((Z2/2r−2∆̄)l+1 o Z),

where ∆̄ = (1,−1) ∈ Z2 and 1 ∈ Z acts on each copy of Z2/2r−2∆̄ by swapping coordinates.

Proof. To obtain Qr, we may start with the bottom row of (53), quotient the middle and right-
hand groups by Γr and then take the kernel. (This uses the fact that quotienting by Γ∞ and then
by Γr is the same as simply quotienting by Γr.) Clearly quotienting by Γr does not affect the
right-hand group Z or the direct Z(l+2

2 ) factor in the middle group. We therefore just have to show
that (Z2(l+1) o Z)/Γr ∼= (Z2/2r−2∆̄)l+1 o Z. This follows from [DPS22, Proposition B.10].
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6. Loop braid groups
For n > 1 we may consider the configuration space CnS1(D3) of n-component unlinks in the

closed 3-ball D3. Formally this is constructed from the space Emb(nS1,D3) of smooth embeddings
of nS1 =

⊔
n S

1 into D3 with the Whitney topology by restricting to the path-component containing
the standard unlink and taking the quotient by the action of Diff(nS1):

CnS1(D3) = Embunl(nS1,D3)/Diff(nS1).

By a theorem of Brendle and Hatcher [BH13], this space deformation retracts onto the subspace
consisting of all embedded unlinks each of whose components are dilations, rotations and transla-
tions of the standard embedded circle in D3. This subspace has the advantage of being a finite-
dimensional manifold – hence in particular locally compact – allowing one to apply Borel-Moore
homology to it and its variants. We will implicitly make this replacement whenever we apply
Borel-Moore homology. The fundamental group of this space is the nth extended loop braid group:

w̃Bn = π1(CnS1(D3)).

If we quotient only by the orientation-preserving diffeomorphisms of nS1, we obtain the space of
oriented n-component unlinks in D3, whose fundamental group in the nth loop braid group:

C+
nS1(D3) = Embunl(nS1,D3)/Diff+(nS1) wBn = π1(C+

nS1(D3)).

The space C+
nS1(D3) is a 2n-fold covering of CnS1(D3), so wBn is an index-2n subgroup of w̃Bn.

In fact, there is a split projection w̃Bn � (Z/2)n whose kernel is wBn, given by recording for each
component of the base configuration whether the given loop of configurations preserves or reverses
the orientation of that component. More generally, we may consider the space

C(nP , nS+ , nS) = Embunl(nP t (nS+ + nS)S1,D3)/
(
SnP

×Diff+(nS+S
1)×Diff(nSS1)

)
of configurations of nP points, nS+ oriented circles and nS unoriented circles (forming an unlink)
in D3, whose fundamental group is by definition the tripartite loop braid group wB(nP , nS+ , nS).
As special cases, we have

wB(n, 0, 0) = Sn,

wB(0, n, 0) = wBn,

wB(0, 0, n) = w̃Bn.

Finally, if λP , λS+ , λS are partitions of nP , nS+ , nS respectively, we may also consider the sub-
group wB(λP , λS+ , λS) ⊆ wB(nP , nS+ , nS) of those loops whose induced permutation of the base
configuration preserves the given partition. This is the fundamental group of the corresponding
covering space C(λP , λS+ , λS) of C(nP , nS+ , nS). For more details, see [DPS22, §4.4 and §5].

Notation 6.1 Loop braid groups (and their variations) are often also known as welded braid
groups, and the corresponding notation LB is synonymous with wB. We adopt the slightly
dissonant convention of using the name loop braid groups, since we use their interpretation as loops
of configurations of loops in an essential way, but the notation wB instead of LB, since this is the
notation used in the key reference [DPS22] for our proofs.

In this section, we construct the pro-nilpotent representations of the loop braid groups wBn

and extended loop braid groups w̃Bn listed in Table 2. As in §5, the input in each case is a split
fibration sequence (46) whose induced split short exact sequence of fundamental groups is the top
row of diagram (54) below. By Lemma 3.3, this induces a weakly pro-nilpotent representation of
Γ via the construction of §3 as long as the inclusion ϕ : K ↪→ G is eNCP. By Corollary 2.13 and
Remark 2.15, a sufficient criterion for this is the existence of a quotient G′ of G = K o Γ that is
surjective when restricted to K and zero when restricted to Γ:

1 K G Γ 1

G′

ϕ

0
(54)
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and such that the lower central series of G′ does not stop. As in §5, we will find such a quotient
G′ in each case using the results of [DPS22].

Proof of Theorem D for loop braid groups. In each case, we have G = wB(λP , λS+ , λS), assuming
that the triple of partitions (λP , λS+ , λS) contains a certain triple of sub-partitions.

For the wBn block of Table 2, we have λS+ = (n, µS+) and the split fibration sequence (46)
in each case will be

X C(λP , λS+ , λS) C(∅, n,∅),i f

where f forgets all blocks of strands except for a block of size n in λS+ . We choose not to introduce
additional notation for the fibre X of f , since it will not be needed. The induced split short exact
sequence of fundamental groups is then

1 K = π1(X) G = wB(λP , λS+ , λS) Γ = wBn 1.ϕ

We first consider the 5th row of the wBn block of Table 2, where we assume that λS+ contains
a block of size n and λS contains a block of size 1. Under this assumption, there is a quotient map
G � wB(∅, n, 1) given by forgetting all blocks of strands except for these two. A generating set
for the group wB(∅, n, 1) is described in [DPS22, Lemma 5.6] and consists of:
• n− 1 elements σα for 2 6 α 6 n that swap two circles in the block of size n while one passes

through the other,
• n − 1 elements τα for 2 6 α 6 n that swap two circles in the block of size n without either
passing through the other,

• an element ρ1 that rotates the unoriented circle (in the block of size 1) by 180 degrees about
an axis lying the plane of the circle,

• n − 1 elements χ1α for 2 6 α 6 n + 1 where the circle in the block of size 1 follows a loop
that passes once through the αth circle in the block of size n,

• n − 1 elements χα1 for 2 6 α 6 n + 1 where the circle in the block of size 1 follows a loop
that passes once around the αth circle in the block of size n (such that, in another frame of
reference, the αth circle passes through the circle from the block of size 1).

(For notational convenience, we have numbered the n+ 1 circles in the base configuration so that
the first one corresponds to the block of size 1.) The proof of [DPS22, Proposition 5.13] constructs
a quotient map

wB(∅, n, 1) −→→ Z o (Z/2)

that sends χα1 7→ (1, 0) for each α, ρ1 7→ (0, 1) and all other generators to (0, 0). The right-hand
side is the non-trivial semi-direct product of Z with Z/2, where the generator of Z/2 acts on Z by
inversion. Composing these two quotient maps we obtain a surjection G� G′ := Z o (Z/2). The
lower central series of Z o (Z/2) does not stop by [DPS22, Corollary B.8]. The elements χα1 and
ρ1 become trivial under the projection onto wBn, so they lie in K. Since their images generate
Z o (Z/2), it follows that the restriction of G� Z o (Z/2) to K is surjective. Finally, we have to
check that the restriction of G � Z o (Z/2) to Γ via the section is trivial. This follows since the
image of Γ under the section is generated by the elements σα and τα, which are all sent to (0, 0)
in Z o (Z/2).

We next consider the 4th row of the wBn block of Table 2, where we assume that λS+ contains
a block of size n and λP contains a block of size 2. Under this assumption, there is a quotient map
G � wB(2, n,∅) given by forgetting all blocks of strands except for these two. A generating set
for wB(2, n,∅) consists of:
• elements σα and τα for 3 6 α 6 n+ 1 as above,
• an element τ1 that swaps the two points,
• n− 1 elements χ1α for 3 6 α 6 n+ 2 where the first point loops through the αth circle,
• n− 1 elements χ2α for 3 6 α 6 n+ 2 where the second point loops through the αth circle.

The proof of [DPS22, Proposition 5.14] constructs a quotient map

wB(2, n,∅) −→→ Z2 oS2
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that sends χ1α 7→ (1, 0) ∈ Z2, χ2α 7→ (0, 1) ∈ Z2, τ1 to the generator of S2 and each σα, τα to
the trivial element. Composing the two quotient maps we obtain a surjection G� G′ := Z2 oS2.
The lower central series of Z2oS2 does not stop by [DPS22, Proposition B.26]. The elements χ1α,
χ2α and τ1 become trivial under the projection onto wBn, so they lie in K. Since their images
generate Z2oS2, it follows that the restriction of G� Z2oS2 to K is surjective. Finally, the fact
that the elements σα and τα are sent to the trivial element in Z2 oS2 implies that the restriction
of G� Z2 oS2 to Γ via the section is trivial.

We now consider simultaneously the first three rows of the wBn block of Table 2. There is
a quotient map G � wB(λP , µS+ , λS) given by forgetting a block of size n in λS+ (remember
that we have λS+ = (n, µS+) by assumption). Its restriction to K ⊂ G is surjective since any
loop braid in wB(λP , µS+ , λS) may be lifted to a loop braid in G = wB(λP , λS+ , λS) by adding
a stationary block of n oriented circles near the boundary of D3 and this lift lies in K ⊂ G
since it projects to the trivial element of wBn. Its restriction to Γ via the section is trivial since
Γ ⊂ G consists of braids that are trivial except on the block of circles that is forgotten under
the projection to wB(λP , µS+ , λS). We therefore only need to verify that the lower central series
of wB(λP , µS+ , λS) does not stop. By assumption, the tuple of partitions (λP , µS+ , λS) contains
either (∅, b,∅), (∅,∅, b) or (∅, {1, 1},∅) as a tuple of sub-partitions, where b ∈ {2, 3}. Hence the
lower central series of wB(λP , µS+ , λS) does not stop by [DPS22, Theorem 4.22].

For the w̃Bn block of Table 2, we have λS = (n, µS) and the split fibration sequence (46) in
each case will be

X C(λP , λS+ , λS) C(∅,∅, n),i f

where f forgets all blocks of strands except for a block of size n in λS . The induced split short
exact sequence of fundamental groups is then

1 K = π1(X) G = wB(λP , λS+ , λS) Γ = w̃Bn 1.ϕ

We first consider the 5th row of the w̃Bn block of Table 2, where we assume that λS contains
a block of size n and a block of size 1. Under this assumption, there is a quotient map G �
wB(∅,∅, {n, 1}) given by forgetting all blocks of strands except for these two. A generating set
for the group wB(∅,∅, {n, 1}) consists of the five families of elements described above for the
group wB(∅, n, 1), together with an additional family of n elements ρα for 2 6 α 6 n+ 1, where
ρα rotates the αth circle by 180 degrees about an axis lying the plane of the circle. Similarly to
the case of wB(∅, n, 1), the proof of [DPS22, Proposition 4.28] constructs a quotient map

wB(∅,∅, {n, 1}) −→→ Z o (Z/2)

that sends χα1 7→ (1, 0) for each α, ρ1 7→ (0, 1) and all other generators to (0, 0). Composing
these two quotient maps we obtain a surjection G� G′ := Z o (Z/2). The lower central series of
Z o (Z/2) does not stop by [DPS22, Corollary B.8]. The generators (1, 0) and (0, 1) of Z o (Z/2)
lift to χα1 and ρ1 respectively, which lie in K since their projections to w̃Bn are trivial, so the
restriction of G� Zo (Z/2) to K is surjective. Its restriction to Γ = w̃Bn via the section is trivial
since the image of w̃Bn under the section is generated by the elements σα, τα and ρα, which are
all sent to (0, 0) in Z o (Z/2).

Finally, we consider simultaneously the first four rows of the w̃Bn block of Table 2. The proof
in this case is very similar to the proof in the case of the first three rows of the wBn block of
Table 2. There is a quotient map G � wB(λP , λS+ , µS) given by forgetting a block of size n in
λS (remember that we have λS = (n, µS) by assumption). Its restriction to K ⊂ G is surjective
since any loop braid in wB(λP , λS+ , µS) may be lifted to a loop braid in G = wB(λP , λS+ , λS)
by adding a stationary block of n unoriented circles near the boundary of D3 and this lift lies in
K ⊂ G since it projects to the trivial element of w̃Bn. Its restriction to Γ via the section is trivial
since Γ ⊂ G consists of braids that are trivial except on the block of circles that is forgotten under
the projection to wB(λP , λS+ , µS). We therefore only need to verify that the lower central series
of wB(λP , λS+ , µS) does not stop. By assumption, the tuple of partitions (λP , λS+ , µS) contains
either (∅, b,∅), (∅,∅, b), (∅, {1, 1},∅) or (2, i,∅) with i > 1 as a tuple of sub-partitions, where
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b ∈ {2, 3}. Then by [DPS22, Theorem 4.22] in the first three cases and by [DPS22, Proposition 5.14]
in the fourth case the lower central series of wB(λP , µS+ , λS) does not stop.

To finish this section, we describe, for each row of Table 2 concerning wBn or w̃Bn, the ground
ring of the bottom (r = 2) layer of the pro-nilpotent representation that we have constructed. In
other words, we calculate the abelian group A = Q2, since the ground ring of the bottom layer is
Z[Q2]. By construction (see diagram (23)), this is the kernel of the (split) surjection Gab � Γab

induced by the given (split) surjection G� Γ.

Proposition 6.2 For n > 2, in the wBn and w̃Bn blocks of Table 2, the group A is isomorphic
to {

ZN−1 × (Z/2)M−1 for Γ = wBn,

ZN−1 × (Z/2)M−2 for Γ = w̃Bn,

where for ? ∈ {P, S+, S} we write l? for the number of blocks of the partition λ? and l′? for the
number of blocks of the partition λ? of size at least 2, we set l = lP + lS+ + lS and l′ = l′P + l′S+

+ l′S
and we define

N = l′S+
+ lS+(l − 1) and M = l′ + l′S + lSl.

Proof. By [DPS22, Proposition 5.7], we haveGab = wB(λP , λS+ , λS)ab ∼= ZN×(Z/2)M . The result
then follows since A is the kernel of the split surjection Gab � Γab and we have Γab ∼= Z×Z/2 for
Γ = wBn and Γab ∼= Z× (Z/2)2 for Γ = w̃Bn.
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