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Twisted homology of configuration spaces

Martin Palmer // 20 August 2013

Abstract

Fix a connected open manifoldM and a path-connected spaceX. Then the sequence Cn(M,X)
of configuration spaces of n distinct unordered points in M equipped with labels from X is
known to be homologically stable: in each degree, the integral homology is eventually inde-
pendent of n. In this note we prove that this is also true for homology with twisted coeffi-
cients. Obviously one cannot choose local coefficients randomly for each space in the sequence
and expect stability: what is needed is a so-called finite-degree twisted coefficient system for
{Cn(M,X)}, which we begin by explaining in detail. We then use the untwisted homological
stability result to deduce twisted homological stability in this setting. The result and the
methods are generalisations of those of Betley [Bet02] in the case of the symmetric groups.
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§1. Introduction

For a pair of spaces M and X , the configuration space of n unordered points in M with labels

in X is defined by
Cn(M,X) := (Emb(n,M)×Xn)/Σn.

Here n is the discrete space of cardinality n, so Emb(n,M) is the subspace of Mn where no two
points coincide. The symmetric group Σn acts diagonally, permuting the points and the list of
labels, so an element of Cn(M,X) is a subset of M of cardinality n, together with an element of
X “attached” to each point. More generally, one could define a configuration space associated to
a fibre bundle π : E →M by

Cn(M,π) := {(e1, . . . , en) ∈ En | π(ei) 6= π(ej) for i 6= j}/Σn.

An element of Cn(M,π) is thus a subset of M of cardinality n, together with an element of π−1(p)
“attached” to each point p of this subset. However, in this note we will restrict our attention
to configuration spaces with labels in a fixed label-space X , corresponding to the trivial bundle
M ×X →M .

Assumption 1.1 From now on we always assume that M is an open, connected manifold of
dimension at least 2, and that X is a path-connected space.

Since M is open, there is a well-defined “stabilisation map” Cn(M,X)→ Cn+1(M,X), defined
in §2.2 below, so called because the sequence of spaces {Cn(M,X)} is homologically stable with
respect to it:
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Theorem 1.2 ([Seg73,McD75,Seg79,RW13]) Under the conditions on M and X assumed above,

the map Cn(M,X)→ Cn+1(M,X) induces an isomorphism on integral homology in degrees ∗ 6 n
2 ,

and is split-injective on homology in all degrees.

Twisted coefficients. Several other families of groups or spaces which are homologically stable
are also known to have homological stability for twisted coefficients. For example general linear
groups [Dwy80], mapping class groups of surfaces [Iva93,CM09,Bol12] and the symmetric groups
[Bet02] are known to satisfy this phenomenon.

The minimum data needed for the question of twisted homological stability for a sequence {Yn}
to be defined at all is a functor π1({Yn}) → Ab. By π1({Yn}) we mean the category (groupoid)
where the objects are the natural numbers, all morphisms are automorphisms, and Aut(n) =
π1(Yn). In other words this is just a choice of π1(Yn)-module for each n. Of course there is no
chance of stability with respect to such a general “twisted coefficient system”, since the π1(Yn)-
modules for differing n have absolutely no relation to each other.

To get a notion of twisted coefficient system that has a chance of stability one needs to add
some (non-endo)morphisms to π1({Yn}) and require that the functor from this new category to Ab

satisfy some finiteness conditions defined in terms of the new morphisms. The correct way to do
this depends on the particular context one is working in.

In §§2,3 below we will define a twisted coefficient system of degree d for the sequence {Cn(M,X)}
to be a functor from a certain category B(M,X) to Ab satisfying a certain finiteness condition. To
state the main result, it is enough to mention that it includes the data of a π1Cn(M,X)-module
Tn for each n, and the stabilisation map induces a natural map

H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1). (1.1)

The main result of this note is the following:

Theorem 1.3 Under Assumption 1.1, if T is a twisted coefficient system for {Cn(M,X)} of degree
d, then the map (1.1) is an isomorphism in degrees ∗ 6 n−d

2 , and is split-injective in all degrees.

This is a generalisation of the result of [Bet02], where twisted homological stability is proved
for the symmetric groups {Σn}, which is the case M = R

∞ and X = ∗.

Remark 1.4 The split-injectivity statement of this theorem is fairly easy, and has essentially the
same proof as in the untwisted case. It is proved separately in §7. We remark that it does not in
fact depend on the twisted coefficient system being of finite degree.

Remark 1.5 If T : B(M,X)→ Ab is a rational twisted coefficient system, i.e. its image lies in the
subcategory VectQ < Ab of rational vector spaces, then the stability range in Theorem 1.3 can be
improved to ∗ < n− d, at least when M is either orientable or at least 3-dimensional. See Remark
6.5 after the proof of Theorem 1.3 in §6.

Some special cases of Theorem 1.3 are as follows:

Corollary 1.6 There are isomorphisms

H∗

(
Cn(M,X);Z

[
Σn/(Σk×Σn−k)

])
∼= H∗

(
Cn+1(M,X);Z

[
Σn+1/(Σk×Σn+1−k)

])
,

H∗

(
Cn(M,X);Z

[
Σn/Σn−k

])
∼= H∗

(
Cn+1(M,X);Z

[
Σn+1/Σn+1−k

])
,

H∗

(
Cn(M,X);Hq(Z

n;F )
)
∼= H∗

(
Cn+1(M,X);Hq(Z

n+1;F )
)
,

in degrees ∗ 6 n−d
2 , where d = k and d =

⌊
q

h+1

⌋
respectively. On the third line F is a field and Z

is a based space with H̃i(Z) = 0 for all i 6 h.

Proof. These follow from Theorem 1.3 and the examples of twisted coefficient systems in §4.

Remark 1.7 There is a sequence of π1(Cn(M,X))-modules which does not fit into the frame-
work of this note (it doesn’t even form a twisted coefficient system, let alone a finite-degree one),
but which nevertheless does exhibit homological stability. Every loop in Cn(M,X) induces a per-
mutation of its base configuration, so there is a natural map π1Cn(M,X) → Σn, which we can

2



compose with the sign homomorphism to give a map π1Cn(M,X) → Z/2. This makes Z[Z/2]
into a π1Cn(M,X)-module, and its kernel corresponds to a double cover C+

n (M,X)→ Cn(M,X).
The space C+

n (M,X) is the “oriented configuration space” where each configuration is additionally
equipped with an ordering of its points up to even permutations. One can easily see that

H∗(C
+
n (M,X);Z) ∼= H∗(Cn(M,X);Z[Z/2]). (1.2)

In [Pal13] the author proved that the sequence of spaces C+
n (M,X), with analogous stabilisation

maps, is homologically stable as n→∞, in the range ∗ 6 n−5
3 . Via the identification (1.2) this is

twisted homological stability w.r.t. the sequence of local coefficients Z[Z/2].

A note on terminology. To keep our terminology from becoming ambiguous, we will always
use “local coefficient system” and “twisted coefficient system” as follows. For a space Y , a local

coefficient system for Y will have its usual meaning as a π1(Y )-module (or functor from the
fundamental groupoid of Y to Ab, or a bundle of abelian groups over Y ). The phrase twisted

coefficient system will always be used in the sense of Definition 2.2 below; in particular it applies
to a sequence of spaces.

Acknowledgements. The content of this note appeared, in a slightly different form, as part of
the author’s PhD thesis in 2012, and he would like to thank his supervisor, Ulrike Tillmann, for
her invaluable advice and guidance throughout his PhD.

§2. Twisted coefficient systems

§2.1. Setup. First we fix some data: Let M be the interior of a smooth connected manifold-
with-boundary M of dimension d > 2 and let X be a path-connected space with basepoint x0.
Choose a point a ∈ ∂M , and let U be a coordinate neighbourhood of a with an identification
U ∼= R

d
+ = {x ∈ R

d | x1 > 0} which sends a to 0. Also choose a self-embedding e : M →֒ M
which is isotopic to the identity, is equal to the identity outside U , and such that e(a) ∈M (in the
interior). Moreover, we choose an isotopy I : e ≃ idM . We obtain a sequence of points in M by
defining

a1 := e(a) an := e(an−1) for n > 2.

The isotopy I provides us with canonical paths pn : [0, 1]→M between an and an+1.

§2.2. The configuration space and the stabilisation map. Recall that the configuration
space of n unordered points in M with labels in X is defined to be

Cn(M,X) := ((Mn
r∆)×Xn)/Σn = (Emb(n,M)×Xn)/Σn,

where ∆ = {(p1, . . . , pn) ∈ Mn | pi = pj for some i 6= j} is the so-called fat diagonal of Mn, and
the symmetric group Σn acts diagonally, permuting the points of M along with their labels in X .
Thus a labelled configuration is an unordered set of ordered pairs in M ×X , generically denoted
by {(p1, x1), . . . , (pn, xn)}. When X is a point we will also write Cn(M) = Cn(M, ∗).

Definition 2.1 The stabilisation map sn : Cn(M,X)→ Cn+1(M,X) is defined by

{(p1, x1), . . . , (pn, xn)} 7→ {(e(p1), x1), . . . , (e(pn), xn), (a1, x0)}.

Essentially, the existing configuration is “pushed” further into the interior of the manifold by e,
and the new configuration point a1 added in the newly vacated space. Up to homotopy, the only
“extra data” that this map depends on is the component of M containing a.

§2.3. Twisted coefficient systems. We define the category B(M,X) to have
∐

n>0 X
n as its

set of objects, and a morphism from (x1, . . . , xm) to (y1, . . . , yn) is a choice of k 6 min{m,n}
and a path in Ck(M,X) from a k-element subset of {(a1, x1), . . . , (am, xm)} to a k-element subset
of {(a1, y1), . . . , (am, yn)} up to endpoint-preserving homotopy. The identity is given by k =
m = n and the constant path. Composition of two morphisms is given by concatenating paths

3



and deleting configuration points for which the concatenated path is defined only half-way. For
example (omitting the labels in X):

◦ = (2.1)

Again, when X is a point we will also write B(M) = B(M,X).

Definition 2.2 A twisted coefficient system, associated to the direct system of spaces {Cn(M,X)},
is a functor from B(M,X) to the category Ab of abelian groups.

For each n, take {(a1, x0), . . . , (an, x0)} as the basepoint of Cn(M,X). Then the automor-
phism group of the object (x0)

n = (x0, . . . , x0) (a tuple of length n) in B(M,X) is precisely the
fundamental group π1Cn(M,X). So if we are given a functor T : B(M,X) → Ab this induces an
action of π1Cn(M,X) on Tn := T ((x0)

n), and we can define the local homologyH∗(Cn(M,X);Tn).
For every object x = (x1, . . . , xn) of B(M,X) there is a natural morphism ιx : (x1, . . . , xn)→

(x0, x1, . . . , xn) as follows. It is represented by the path in Cn(M,X) from {(a1, x1), . . . , (an, xn)}
to {(a2, x1), . . . , (an+1, xn)} where each configuration point ai travels along the path pi (see §2.1)
and the labels xi stay constant. Schematically, this may be pictured as:

...

a1

a2

an

a1

a2

an

an+1

x1

x2

xn

(2.2)

When x = (x0)
n we will write ιx =: ιn for this canonical morphism (x0)

n → (x0)
n+1. For any

γ ∈ π1Cn(M,X) = AutB(M,X)((x0)
n) it is easy to check that

ιn ◦ γ = (sn)∗(γ) ◦ ιn,

so for any T the map T ιn : Tn → Tn+1 is equivariant with respect to the group-homomorphism
(sn)∗ : π1Cn(M,X)→ π1Cn+1(M,X). Hence we have an induced map

(sn;T ιn)∗ : H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1).

This is the map (1.1) which induces the isomorphism in Theorem 1.3.

Notation 2.3 From now on, by abuse of notation, we will denote the induced map T ιn : Tn → Tn+1

also by ιn : Tn → Tn+1. Similarly for the left-inverse πn : (x0)
n+1 → (x0)

n of ιn (see §3.1): we
denote its image under T also by πn : Tn+1 → Tn.

§2.4. A special case. Let X = ∗ and assume that M is simply-connected and of dimension
d > 3. Since X is just a point the objects of B(M,X) = B(M) are (in canonical bijection with)
the natural numbers N (including zero). The conditions on M imply that π1Cn(M) ∼= Σn, in other
words a path in Cn(M) from the basepoint {a1, . . . , an} to itself is determined by the permutation
it induces on the set {a1, . . . , an}. More generally, a morphism from {a1, . . . , am} to {a1, . . . , an}
in B(M) is determined by the partially-defined injection {a1, . . . , am} 99K {a1, . . . , an} it induces.
Hence there is a canonical isomorphism of categories B(M) ∼= Σ, where Σ is the category defined as
follows. Its object set is N (including zero), a morphism in Σ(m,n) is a partially-defined injection
m 99K n, and composition is composition of partially-defined functions (where the composite
function is defined exactly where it can be).1

In particular this is true for M = R
∞. Of course, R∞ is not a finite-dimensional manifold,

as was assumed of M , but the definitions make sense for arbitrary spaces M and X , and Cn(R
∞)

is the colimit of the spaces Cn(R
d) under the obvious inclusions. The space Emb(n,R∞) is a

contractible space on which the natural action of Σn is free, so its quotient Cn(R
∞) is a model for

the classifying space BΣn.
Now, every smooth manifold M admits a unique-up-to-isotopy embedding M →֒ R

∞. From
the construction of B(M,X) one can see that this embedding, together with the map X → ∗,

1It is a subcategory of the category with objects N and morphisms partially-defined functions, which is precisely
Γop, (a skeleton of) the category of finite pointed sets.
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induces a canonical functor B(M,X) → B(R∞) ∼= Σ. Another description of this functor is that
it forgets both the labels of the paths and the paths themselves, remembering only the partially-
defined injection induced by the paths.

In particular this means that any twisted coefficient system Σ → Ab canonically induces a
twisted coefficient system B(M,X)→ Σ→ Ab.

§2.5. A more general case. Rather than configuration spaces of points, one can consider more
generally configuration spaces of embedded submanifolds, for example as follows. Fix an open
connected manifold M as before, and also a closed manifold P . Choose an embedding e : M →֒M
which is isotopic to the identity and not surjective, so that we can choose an embedding ι1 : P →֒
M r e(M). We then get a sequence of embeddings of P by defining ιn := en−1 ◦ ι1 : P →֒ M .
Writing the disjoint union P ⊔ · · · ⊔ P of n copies of P as nP for short, define CnP (M) to be
the path-component of Emb(nP,M)/Diff(nP ) containing [ι1 ⊔ · · · ⊔ ιn]. The stabilisation map
CnP (M)→ C(n+1)P (M) can then be defined by sending [φ1⊔· · ·⊔φn] to [(e◦φ1)⊔· · ·⊔(e◦φn)⊔ι1].

Everything in this note generalises to this setting, including an analogous notion of twisted
coefficient system for {CnP (M,X)} (one can also define labelled configuration spaces of submani-
folds). In a forthcoming paper [Pal] we will prove (untwisted) homological stability for these more
general kinds of configuration spaces, and the arguments in this note therefore immediately give a
twisted homological stability result for these spaces too.

§3. Height and degree of a twisted coefficient system

§3.1. Degree. First we will define the degree of a functor T : B(M,X) → Ab. Recall from §2.3
the natural morphisms ιx : x → (x0, x). The adjective “natural” suggests that they should form
a natural transformation, and in fact they do: For every morphism φ of B(M,X) we have a
commutative square

(x1, . . . , xm) (x0, x1, . . . , xm)

(y1, . . . , yn) (x0, y1, . . . , yn)

ιx̄

ιȳ

φ Sφ (3.1)

where the morphism Sφ is defined as follows: if φ is represented by a path p in Ck(M,X) for
some k 6 min{m,n}, then Sφ is represented by the path sk ◦ p in Ck+1(M,X). Thus we have
an endofunctor S : B(M,X)→ B(M,X) (which could be called the stabilisation endofunctor) and
a natural transformation ι : id ⇒ S. Note that each ιx has an obvious left-inverse πx, and these
morphisms fit together to form a left-inverse π : S ⇒ id for ι.

So, given any T : B(M,X)→ Ab we get a natural transformation T ◦ ι : T ⇒ T ◦S, or in other

words a morphism in the abelian category Ab
B(M,X). Denote its cokernel by ∆T : B(M,X)→ Ab.

Definition 3.1 The degree of a functor T : B(M,X)→ Ab is defined recursively by

deg(0) = −1 deg(T ) = deg(∆T ) + 1,

where 0 is the identically-zero functor.

Example 3.2 The degree of T is 6 0 exactly when ∆T = 0, i.e. when T ιx : Tx→ T (x0, x) is an
isomorphism for all x ∈ B(M,X). But the category B(M,X) is generated by the morphisms ιx,
their left-inverses πx and isomorphisms. Hence deg(T ) 6 0 if and only if T is constant in the sense
that it sends every morphism to an isomorphism.

See §4 for some less trivial examples.

§3.2. Height. Denote the homomorphism π1Cn(M,X)→ Σn which only remembers the permu-
tation of the basepoint configuration by u (this is part of the canonical functor B(M,X) → Σ
from §2.4). Write Gn := π1Cn(M,X) and define Gk

n := u−1(Σn−k × Σk). To define the height of
a functor T : B(M,X)→ Ab we need the following decomposition result:

5



Proposition 3.3 Let T : B(M,X)→ Ab be any functor, and recall that we write Tn := T ((x0)
n).

Then for k = 0, . . . , n there is a direct summand (as abelian groups) T k
n of Tn such that the action

of Gk
n 6 Gn on Tn preserves it : so it is also a direct summand as a Gk

n-module. Moreover, there

is a decomposition of Tn as a Gn-module:

Tn
∼=

n⊕

k=0

(
ZGn ⊗ZGk

n
T k
n

)
. (3.2)

This identification is natural in the sense that ιn : Tn → Tn+1 sends T k
n into T k

n+1, and the map of

the right-hand side induced by ιn and (sn)∗ corresponds under (3.2) to ιn on the left-hand side.

This is very similar to the cross-effect decomposition of a functor from a pointed monoidal
category2 to an abelian category, which was proved in this generality in [HPV12, Proposition 2.4],
and goes back to Eilenberg and MacLane [EML54, §9]. However, our category B(M,X) is not in
general monoidal (although it is when M is of the form R×N), so we will give a complete proof
of this decomposition in our case here.3 This is a little technical, so the reader may wish to skip
directly to Definition 3.10 at this point.

Definition 3.4 For S ⊆ {1, . . . , n} =: n let fS : (x0)
n → (x0)

n be the endomorphism in B(M,X)
given by the constant path in C|S|(M,X) on the configuration {(ai, x0) | i ∈ nrS}. So this is the
endomorphism which “forgets” the points ai for i ∈ S and is the identity elsewhere.

Definition 3.5 For p > 0 and {S1, . . . , Sp} a partition of S ⊆ n define

Tn[S1|· · ·|Sp] := im(TfnrS) ∩

p⋂

i=1

ker(TfSi
).

Note that the induced maps TfS : Tn → Tn are not in general Gn-module homomorphisms, so
these are subgroups but not sub-Gn-modules.

We will write Sδ for the discrete partition of S, and define

T k
n := Tn[{n−k+1, . . . , n}δ].

Remark 3.6 A few immediate observations are the following: Each TfS : Tn → Tn is idempotent.
The composition of TfS1

and TfS2
is TfS1∪S2

, so in particular the TfS for S ⊆ n all pairwise
commute. By definition Tn[ ] = im(Tfn), and since f∅ = id we also have Tn[n] = im(Tf∅) ∩
ker(Tfn) = ker(Tfn), so:

Tn = im(Tfn)⊕ ker(Tfn) = Tn[ ]⊕ Tn[n]. (3.3)

The following lemma is less immediate but can be proved by some diagram-chasing and draw-
ing little cartoons like (2.1) and (2.2). We will give a proof in symbols.

Lemma 3.7 For k 6 m 6 n, the map

ιnm := ιn−1 ◦ · · · ◦ ιm : Tm → Tn

is split-injective and sends T k
m into T k

n . Moreover, its restriction to a map T k
m → T k

n is a bijection.

Hence any left-inverse for ιnm restricts to a bijection T k
n → T k

m.

Proof. As mentioned in §3.1, each ιx has a natural left-inverse πx – these compose to give a left-
inverse πn

m for ιnm. Just as for ιn and πn, by an abuse of notation we will denote the induced map
TfS : Tn → Tn also by fS .

We now show that ιm(T k
m) ⊆ T k

m+1, and hence by induction that ιnm(T k
m) ⊆ T k

n . Suppose x =
ιm(y) for y ∈ T k

m. Then by definition y = f{1,...,m−k}(z) for some z ∈ Tm. Since πm : Tm+1 → Tm

is split-surjective we have z = πm(w) for some w ∈ Tm+1. Hence

x = ιm ◦ f{1,...,m−k} ◦ πm(w) = f{1,...,m−k+1}(w). (3.4)

2A monoidal category whose unit object is also initial and terminal.
3The proof we give here was informed in part by reading [CDG11].
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For any m− k + 2 6 i 6 m+ 1 we have

f{i}(x) = f{i} ◦ ιm(y) = ιm ◦ f{i−1}(y) = ιm(0) = 0, (3.5)

since y ∈ T k
m. The two properties (3.4) and (3.5) verify that x ∈ T k

m+1.
Now we show that the restriction of ιm to T k

m → T k
m+1 is a bijection, and hence by induction

that the restriction of ιnm to T k
m → T k

n is a bijection. Suppose x ∈ T k
m+1, and define z := πm(x) ∈

Tm. Then
ιm(z) = ιm ◦ πm(x) = f{1}(x).

But note that x = f{1,...,m−k+1}(y) for some y ∈ Tm+1, so

f{1}(x) = f{1} ◦ f{1,...,m−k+1}(y)

= f{1,...,m−k+1}(y) (by Remark 3.6 and since k 6 m)

= x.

So it remains to prove that z ∈ T k
m. Firstly,

z = πm ◦ f{1,...,m−k+1}(y) = f{1,...,m−k} ◦ πm(y).

Secondly, for any m− k + 1 6 i 6 m, we have

ιm ◦ f{i}(z) = f{i+1} ◦ ιm(z) = f{i+1}(x) = 0,

since x ∈ T k
m+1. But ιm is split-injective, so f{i}(z) = 0. These two facts verify that z ∈ T k

m.

The following lemma will allow us to construct the required decomposition by induction:

Lemma 3.8 For all {S1, . . . , Sp} partitioning S ⊆ n with p > 2, there is a split short exact

sequence

0→ Tn[S1|· · ·|Sp] →֒ Tn[S1⊔S2|· · ·|Sp] ։ Tn[S1|S3|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp]→ 0.

The first map is the inclusion, and a section of the second map is given by the inclusion of each of

the two factors. So in other words we have a decomposition

Tn[S1⊔S2|· · ·|Sp] = Tn[S1|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp] ⊕ Tn[S1|S3|· · ·|Sp].

Proof. One can check from the definitions that the following facts are true:

1. TfS2
restricts to a map Tn[S1⊔S2|· · ·|Sp]→ Tn[S1|S3|· · ·|Sp],

and similarly TfS1
restricts to a map Tn[S1⊔S2|· · ·|Sp]→ Tn[S2|· · ·|Sp].

2. Tn[S1|S3|· · ·|Sp] and Tn[S2|· · ·|Sp] are contained in Tn[S1⊔S2|· · ·|Sp].

3. For {i, j} ⊆ {1, 2} if x ∈ Tn[Si|S3|· · ·|Sp], then TfSj
(x) is x when i 6= j and 0 when i = j.

These facts imply that the map (TfS2
, T fS1

) restricts to the required split surjection (with a section
given by inclusion of each factor). The kernel of this is

Tn[S1⊔S2|S3|· · ·|Sp] ∩ ker(TfS1
) ∩ ker(TfS2

)

= im(TfnrS) ∩

p⋂

i=3

ker(TfSi
) ∩ ker(TfS1⊔S2

) ∩ ker(TfS1
) ∩ ker(TfS2

)

= Tn[S1|· · ·|Sp],

since ker(TfS1
) ⊆ ker(TfS1⊔S2

).

We can now use this to inductively prove a more general decomposition:
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Lemma 3.9 For any ∅ 6= S ⊆ n and R ⊆ nr S there is a decomposition

Tn[S|R
δ] =

⊕

∅ 6=Q⊆S

Tn[(Q⊔R)δ]. (3.6)

As before, Qδ denotes the discrete partition of the set Q, so for example Tn[{1, 2}|{3, 4, 5}
δ] means

Tn[{1, 2}|{3}|{4}|{5}]. Note that this decomposition is an equality of subgroups, not just an abstract

isomorphism of groups.

Proof. The |S| = 1 case is obvious, so we assume that |S| > 2 and assume the theorem for smaller
values of |S| by induction. Pick an element s ∈ S. Then by Lemma 3.8,

Tn[S|R
δ] = Tn[Sr{s}|(R⊔{s})

δ] ⊕ Tn[Sr{s}|R
δ] ⊕ Tn[{s}|R

δ].

Apply the inductive hypothesis to the right-hand side. The proposition then follows from the
observation that for ∅ 6= Q ⊆ S, exactly one of the following holds: (i) s ∈ Q but Q 6= {s}; (ii)
s /∈ Q; (iii) Q = {s}.

We can now use this to deduce the decomposition we want:

Proof of Proposition 3.3. Combining (3.6) (setting R := ∅ and S := n) with (3.3) we obtain:

Tn =

n⊕

k=0

⊕

Q⊆n
|Q|=k

Tn[Q
δ]. (3.7)

The action of Gn on Tn permutes the summands via the projection Gn → Σn and the obvious
action of Σn on subsets of n. So:

· T k
n = Tn[{n−k+1, . . . , n}δ] is preserved by the action of Gk

n 6 Gn on Tn.

· The Gn-action on Tn preserves the outer direct sum.

· The inner direct sum is the induced module IndGn

Gk
n

T k
n = ZGn ⊗ZGk

n
T k
n .

This proves the decomposition of Gn-modules (3.2). We proved in Lemma 3.7 above that ιn : Tn →
Tn+1 sends T k

n into T k
n+1, and the naturality statement is clear.

Having established this decomposition we can now define the height of a twisted coefficient
system:

Definition 3.10 The height of a functor T : B(M,X) → Ab is the height at which the decom-
position (3.2) is truncated. More precisely, we define height(T ) by: height(T ) 6 h if and only if
T k
n = 0 for all k > h and all n. (So in particular height(T ) = −1 if and only if T = 0.)

§3.3. Height and degree. These two notions are related as follows:

Lemma 3.11 For any functor T : B(M,X)→ Ab, height(T ) 6 deg(T ).

This inequality is useful because having an upper bound on the height of a twisted coefficient
system is what is needed to prove Theorem 1.3, whereas it is often easier to find an upper bound
on the degree in examples.

Proof. We will use induction on d to prove the statement

deg(T ) 6 d ⇒ height(T ) 6 d (IHd)

for all d > −1, using the decomposition (3.7) above, which we restate as:

Tn =
⊕

S⊆n

Tn[S
δ]. (3.8)

In this notation the height of T is determined by height(T ) 6 d if and only if Tn[S
δ] = 0 for all

|S| > d and all n.
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When d = −1 the definitions of height and degree coincide. This deals with the base case,
so let d > 0 and assume that (IHd−1) holds. For all n we have a split short exact sequence
0→ Tn → Tn+1 → ∆Tn → 0. Applying (3.8), this is

0→
⊕

S⊆n

Tn[S
δ] −→

⊕

R⊆n+1

Tn+1[R
δ] −→

⊕

Q⊆n

∆Tn[Q
δ]→ 0.

Analysing the maps carefully we see that

(a) Tn[S
δ] is sent isomorphically onto Tn+1[(S + 1)δ] by the first map.

(b) Tn+1[(Q ⊔ {1})
δ] is sent isomorphically onto ∆Tn[(Q− 1)δ] by the second map.

Suppose that deg(T ) 6 d. Then deg(∆T ) 6 d − 1 by the definition of degree, and so by the
inductive hypothesis (IHd−1), height(∆T ) 6 d− 1. By fact (b) above this implies that

Tn+1[R
δ] = 0 whenever |R| > d and 1 ∈ R. (3.9)

For any fixed k, the subgroups {Tn+1[R
δ] | |R| = k} are all abstractly isomorphic via the action of

Gn+1 on Tn+1. Also note that d > 0, so that |R| > 0, i.e. R 6= ∅. Hence:

Tn+1[R
δ] = 0 for all |R| > d. (3.10)

Therefore by (a), Tn[S
δ] = 0 for all |S| > d; in other words, height(T ) 6 d.

Remark 3.12 To prove that height(T ) = deg(T ), one could try to reverse the argument above
to get the other inequality. This goes wrong in one place though: Above we were able to deduce
(3.10) from (3.9) because for every |R| > d, there is an R′ of the same cardinality which contains
1. However, for the converse we would need to deduce (3.10) from:

Tn+1[R
δ] = 0 whenever |R| > d and 1 /∈ R. (3.11)

Now there is a subset R ⊆ n+1 for which there does not exist R′ ⊆ n+1 of the same cardinality
and not containing 1 – namely n+1 itself. This is the basic asymmetry which prevented us from
proving an equality between height and degree.

Remark 3.13 The notion of height in this chapter is the same as the notion of degree in [Bet02]
(for twisted coefficient systems for symmetric groups) and [Dwy80] (for general linear groups),
whereas the notion of degree in this chapter is in the same spirit as the notion of degree in [Iva93],
[CM09] and [Bol12] (for mapping class groups of surfaces). Hence Lemma 3.11 provides a link
between these two notions of degree.

We finish this section with a few immediate facts about the degree of a twisted coefficient
system.

Lemma 3.14 For twisted coefficient systems T, T ′ : B(M,X)→ Ab and a fixed abelian group A,

(a) deg(T ⊕ T ′) = max{deg(T ), deg(T ′)},

(b) deg(T ⊗A) 6 deg(T ),

and more generally, for deg(T ) and deg(T ′) non-negative,

(c) deg(T ⊗ T ′) 6 deg(T ) + deg(T ′),

where ⊕ and ⊗ are defined objectwise.

Proof. Fact (a) follows by induction from the fact that ∆(T ⊕ T ′) = ∆T ⊕∆T ′. Fact (b) follows
from the fact that ∆(T ⊗A) = ∆T ⊗A, which is true because tensoring a split short exact sequence
with A preserves split-exactness. Fact (c) is proved by induction with base case (b), and inductive
step using the fact that

∆(T ⊗ T ′) = (T ⊗∆T ′)⊕ (∆T ⊗ T ′)⊕ (∆T ⊗∆T ′).
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§4. Examples of twisted coefficient systems

Recall that the category Σ has objects the natural numbers including zero, and morphisms
the partially-defined injections. We will give some examples of functors T : Σ → Ab, which are
twisted coefficient systems for the special case M = R

∞ and X = ∗ (since B(R∞) ∼= Σ). However,
recall (§2.4) that there is a canonical functor U : B(M,X)→ Σ for each (M,X), so these examples
also give twisted coefficient systems in general. Moreover, one can check (see §3 for notation)
that ∆(T ◦ U) = ∆T ◦ U , so by induction deg(T ◦ U) = deg(T ), and also (T ◦ U)kn = T k

n , so
height(T ◦ U) = height(T ).

Example 4.1 Fix a path-connected based space (Z, ∗), an integer q > 0 and a field F . The
functor T̂Z : Σ → Top is defined on objects by n 7→ Zn, and on morphisms as follows: given a
partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n} in Σ, define T̂Z(j) : Z

m → Zn to be the
map

(z1, . . . , zm) 7→ (zj−1(1), . . . , zj−1(n)),

where z∅ is taken to mean the basepoint ∗, for example

: (z1, z2, z3) 7→ (∗, z1, ∗, z2).

The functor TZ,q,F : Σ→ Ab is then the composite functor Hq(−;F ) ◦ T̂Z.

Lemma 4.2 The twisted coefficient system TZ,q,F has degree at most ⌊ q
h+1⌋, where for a path-

connected space Z,

h = hconnF (Z) := max{k > 0 | H̃i(Z;F ) = 0 for all i 6 k} > 0.

Proof. First note that the Künneth theorem gives us natural split short exact sequences

0→ Hq(Z
n;F ) −→ Hq(Z

n+1;F ) −→

q⊕

i=1

Hq−i(Z
n;F )⊗Hi(Z;F )→ 0,

which together with the fact that Hi(Z;F ) = 0 for 1 6 i 6 h implies that

∆TZ,q,F =

q⊕

i=h+1

TZ,q−i,F ⊗Hi(Z;F ).

So by Lemma 3.14 above, deg(TZ,q,F ) 6 1 + max{deg(TZ,q−i,F ) | h + 1 6 i 6 q}. Abbreviating
deg(TZ,q,F ) to tq, we have the recurrence inequality

tq 6 1 + max{t0, . . . , tq−h−1}. (4.1)

Note that H0(Z
n;F ) → H0(Z

n+1;F ) is the identity map F → F for all n, so ∆TZ,0,F = 0, and
hence deg(TZ,0,F ) = 0. Also note that for 1 6 q 6 h, hconnF (Z) > q implies that hconnF (Z

n) > q
for all n (by the Künneth theorem), so TZ,q,F (n) = Hq(Z

n;F ) = 0, and hence deg(TZ,q,F ) = −1 6

0. So we also have the initial conditions

t0, t1, . . . , th 6 0. (4.2)

It now remains to prove that the recurrence inequality (4.1) and the initial conditions (4.2) imply
that tq 6 ⌊ q

h+1⌋ for all q > 0. This will be done by induction on q. The base case is 0 6 q 6 h
which is covered by the initial conditions (4.2). Assume that q > h+ 1. Then:

tq 6 1 + max{t0, . . . , tq−h−1}

6 1 + ⌊ q−h−1
h+1 ⌋

= ⌊ q
h+1⌋

Remark 4.3 See also [Han09a, Proposition 12], where it is proved (in the terminology of this
note) that the height of TZ,q,F is at most q.
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Example 4.4 Let fSet∗ be the category of finite sets and partially-defined functions, equivalently
the category of finite pointed sets. There is a free functor Z− : fSet∗ → Ab taking S to ZS and
taking j : S 99K R to the homomorphism

∑
s∈S nss 7→

∑
s∈S nsj(s), where j(s) means 0 ∈ ZR if j

is undefined on s. So any functor Σ→ fSet∗ gives a twisted coefficient system for Σ by composing
with Z−.

For example one can just take Σ →֒ fSet∗ to be the inclusion as a subcategory. More generally,
for 0 6 a 6 b one can take the functor Pa,b : Σ→ fSet∗ which on objects is

n 7→ Pa,b(n) = {S ⊆ n | a 6 |S| 6 b}

and which takes j : {1, . . . ,m} 99K {1, . . . , n} to

S 7→

{
j(S) if a 6 |j(S)| 6 b
undefined otherwise.

Denote the composite functor Σ → Ab by ZPa,b. Note that ZPb,b(n) ∼= Z
[
Σn/(Σb × Σn−b)

]
as

Σn-modules.
From the definitions one can check that ∆ZP0,0 = 0, ∆ZP0,b = ZP0,b−1 for b > 1, and

∆ZPa,b = ZPa−1,b−1 for a > 1. Hence by induction,

deg(ZPa,b) = b.

(With a bit more work, one can check directly that the height of ZPa,b is also exactly b.)

There is also an ordered version of this. The functor P̃a,b : Σ → fSet∗ takes n to the ordered

subsets of n with cardinality between a and b, and it is defined on morphisms as above, where j(S)

inherits its ordering from S. Again, denote the composite functor Σ → Ab by ZP̃a,b. Note that

ZP̃b,b(n) ∼= Z
[
Σn/Σn−b

]
as Σn-modules.

To find the degree of ZP̃a,b we need to consider something slightly more general. For 0 6 a 6 b

and a finite set R disjoint from {1, 2, 3, . . .}, let P̃R
a,b be the functor Σ → fSet∗ which takes n to

the set of subsets S ⊆ n of cardinality between a and b, each equipped with an ordering of S ⊔R.

Then one can check from the definitions that ∆ZP̃R
0,0 = 0, ∆ZP̃R

0,b = ZP̃
R+

0,b−1 for b > 1, and

∆ZP̃R
a,b = ZP̃

R+

a−1,b−1 for a > 1, where R+ = R ⊔ {∗}. Hence by induction on b,

deg(ZP̃R
a,b) = b.

§5. A twisted Serre spectral sequence

To prove Theorem 1.3 we will need a generalisation of the basic Serre spectral sequence,
allowing the base space to be equipped with a local coefficient system. It is a special case of (the
homology version of) an equivariant generalisation of the Serre spectral sequence constructed by
Moerdijk and Svensson in [MS93]. This section gives a brief description of their spectral sequence
and deduces the particular case that we will need.

We start by describing an alternative basepoint-independent viewpoint on (co)homology with
local coefficients (in the non-equivariant setting).

Definition 5.1 For a space Y let ∆(Y ) be the category whose objects are all singular simplices
in Y , and whose morphisms are simplicial operations (generated by face and degeneracy maps).
Denote the fundamental groupoid of Y by π(Y ), and the standard n-simplex by ∆n. There is a
canonical functor vY : ∆(Y ) → π(Y ) which takes a singular simplex ∆n → Y to the image of its

barycentre bn. A morphism ∆k α
−→ ∆n → Y is taken to the image of the straight-line path in ∆n

from α(bk) to bn.
A covariant (resp. contravariant) functor ∆(Y ) → Ab is a coefficient system for homology

(resp. cohomology); it is a local coefficient system if it factors up to natural isomorphism through
vY .

The functor vY : ∆(Y ) → π(Y ) encapsulates most of the combinatorics needed to define
(co)homology with local coefficients. The definition makes sense for any (not necessarily local)
coefficient system, but it is only homotopy-invariant for local coefficient systems.
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Definition 5.2 (Homology) Given a space Y and coefficient systemM : ∆(Y )→ Ab, the homology
H∗(Y ;M) is the homology of the chain complex C∗(∆(Y );M):

∂n+1

−−−−−−−→
⊕

σ∈Nn∆(Y )

M(σ0)
∂n−−−−−→

⊕

τ∈Nn−1∆(Y )

M(τ0)
∂n−1

−−−−−−−→

where N•∆(Y ) denotes the nerve of the category ∆(Y ), and for a chain of singular simplices
σ = (∆k0 → ∆k1 → · · · → ∆kn → Y ) of Nn∆(Y ), the 0th one ∆k0 → Y is denoted by σ0. The
map ∂n is the alternating sum of maps ∂i

n which are defined using the ith face map of N•∆(Y ).4

Definition 5.3 (Cohomology) Given a space Y and coefficient system M : ∆(Y )op → Ab, the
cohomology H∗(Y ;M) is the homology of the cochain complex C∗(∆(Y );M):

δn−1

−−−−−−−→
∏

σ∈Nn∆(Y )

M(σ0)
δn−−−−−→

∏

τ∈Nn+1∆(Y )

M(τ0)
δn+1

−−−−−−−→

where the map δn is the alternating sum of maps δin which are defined using the ith face map of
N•∆(Y ).5

This reduces to ordinary (untwisted) homology and cohomology when M is constant. (Al-
though it does not reduce to the usual singular (co)chain complex, one can show that it does
compute the same homology as it; cf. [MS93, Theorem 2.2].)

In [MS93] the above is generalised to the equivariant setting: they define vY : ∆G(Y ) →
πG(Y ) for a G-space Y , and equivariant twisted cohomology H∗

G(Y ;M) for any coefficient system
∆G(Y )op → Ab. Again a coefficient system is local if it factors up to natural isomorphism through
vY . Cohomology with respect to local coefficient systems is G-homotopy invariant [MS93, Theorem
2.3]. Their main theorem is the existence of a twisted equivariant Serre spectral sequence:

Theorem 5.4 ([MS93, Theorem 3.2]) For any G-fibration f : Y → X (i.e. Y H → XH is a

fibration for all H 6 G) and any local coefficient system M on Y , there is a local coefficient system

Hq
G(f ;M) on X for each q > 0 and a spectral sequence

Ep,q
2 = Hp

G

(
X ;Hq

G(f ;M)
)
⇒ H∗

G(Y ;M) (5.1)

with the usual cohomological grading.

Remark 5.5 We will describe the local coefficient system Hq(f ;M) in the non-equivariant case.

As a functor ∆(X)op → Ab it does the following. A singular simplex ∆k σ
−→ X is taken to the

cohomology Hq(σ∗(Y );M), where σ∗(Y ) is the pullback of σ and f , and we denote any pullback

of the coefficients M also by M . A morphism ∆l α
−→ ∆k σ

−→ X induces a map of pullbacks
(σ ◦ α)∗(Y )→ σ∗(Y ) and hence a map on cohomology.

It is a local coefficient system since it factors up to natural isomorphism through vX by the
following functor π(X)op → Ab. A point x ∈ X is taken to Hq(f−1(x);M). Given a homotopy

class [I
p
−→ X ] of paths from x to y, there are induced maps of pullbacks f−1(x) →֒ p∗(Y ) ←֓ f−1(y).

These induce maps on cohomology, and since they are isomorphisms6 the first one can be inverted
to get a composite map Hq(f−1(x);M) → Hq(f−1(y);M). One can check that this map is
independent of the choice of representing path p.

In [MS93] the authors point out that there is an analogous version of the spectral sequence
(5.1) for homology. We will only need the non-equivariant (but twisted) version, which is:7

4For σ ∈ Nn∆(Y ), let τ be its ith face. There is a canonical map σ0 → τ0 (which is the identity except when
i = 0) inducing a map M(σ0) → M(τ0). The direct sum of these maps is ∂i

n.
5Given an element {gσ ∈ M(σ0) | σ ∈ Nn∆(Y )}, we need to choose an element of M(τ0) for each τ ∈ Nn+1∆(Y ).

Let σ be the ith face of τ , which has a canonical map τ0 → σ0 (which is the identity except when i = 0). Apply M

to get a map M(σ0) → M(τ0) and take the image of gσ under this map.
6The inclusion {0} →֒ [0, 1] is an acyclic cofibration, so its pullback along the fibration f is again an acyclic

cofibration, in particular a weak equivalence.
7This was also stated (referencing [MS93]) as Theorem 4.1 of [Han09b].
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Theorem 5.6 For any fibration f : Y → X and any local coefficient system M on Y , there is a

local coefficient system Hq(f ;M) on X for each q > 0 and a spectral sequence

E2
p,q = Hp

(
X ;Hq(f ;M)

)
⇒ H∗(Y ;M) (5.2)

with the usual homological grading.

The description of the local coefficient systems Hq(f ;M) is the same as above, replacing
cohomology with homology. When the local coefficient system M on Y is pulled back from the
base X , they are built out of the untwisted homology of each fibre.

We now return to the viewpoint of local coefficient systems as an action of the fundamental
group on an abelian group. In the special case where the local coefficient system on Y is a pullback
of one on X the above can be rephrased as:

Corollary 5.7 For any fibration f : Y → X with fibre F over the basepoint x0 ∈ X, and any

π1(X)-module M , there is a spectral sequence

E2
p,q = Hp

(
X ;Hq(F ;M)

)
⇒ H∗(Y ;M) (5.3)

with the usual homological grading. Here the action of π1(Y ) on M is pulled back from that of

π1(X) via f∗ and the action of π1(F ) on M is trivial. The action of π1(X) on Hq(F ;M) is induced
by its diagonal action on the chain complex S∗(X)⊗Z M .

This is natural for maps of fibrations in the obvious way:

Proposition 5.8 Suppose we have a map of fibrations (the vertical maps are fibrations, and the

square commutes on the nose):

Y Y ′

X X ′

and a π1(X
′)-module M . Denote the fibres over the basepoints by F and F ′ respectively. Then

there is a map of spectral sequences (5.3) where:

◦ The map F → F ′ induces a map of untwisted homology Hq(F ;M) → Hq(F
′;M), which

is equivariant w.r.t. the homomorphism π1(X) → π1(X
′), so it induces a map of twisted

homology Hp(X ;Hq(F ;M))→ Hp(X
′;Hq(F

′;M)). This is the map on the E2 pages.

◦ The action of π1(Y ) on M is the pullback of the action of π1(Y
′) on M , so the map Y → Y ′

induces a map of twisted homology H∗(Y ;M)→ H∗(Y
′;M). This is the map in the limit.

§6. Proof of twisted homological stability

We now use the twisted Serre spectral sequence of the previous section to prove Theorem 1.3.
We first record another fact we will use:

Lemma 6.1 (Shapiro for covering spaces) Suppose we have a based space X which is locally nice

enough to have a universal cover, a subgroup H of π1(X) and an H-module A. Let X̂ be the

(based) covering space corresponding to H. Then

H∗(X̂;A) ∼= H∗(X ;Zπ1(X)⊗ZH A). (6.1)

Moreover, given a map of the above data, namely a (based) map f : X → X ′ such that f∗(H) ⊆ H ′

(so that there is a unique based lift f̂ : X̂ → X̂ ′) and a map φ : A→ A′ which is equivariant w.r.t.

f∗, the identification (6.1) is natural in the sense that

H∗(X ;Zπ1(X)⊗ZH A) H∗(X
′;Zπ1(X

′)⊗ZH′ A′)

H∗(X̂;A) H∗(X̂
′;A′)

∼= ∼=

(6.2)

commutes.
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Proof. Denote the singular chain complex functor by S∗( ) and the universal cover of X by X̃.
Then we have an isomorphism of chain complexes

S∗(X̃)⊗ZH A −→ S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A

given by σ ⊗ a 7→ σ ⊗ [cx] ⊗ a, where cx is the constant loop at the basepoint x of X . Taking

homology gives the identification (6.1). Let f̃ denote the unique (based) lift of f to X̃ → X̃ ′. The
diagram (6.2) is induced by

S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A S∗(X̃
′)⊗Zπ1(X′) Zπ1(X

′)⊗ZH′ A′

S∗(X̃)⊗ZH A S∗(X̃
′)⊗ZH′ A′

∼= ∼=

and one can check that both routes around the square send σ ⊗ a to f̃♯(σ)⊗ [cx′ ]⊗ φ(a).

This will be applied to the following covering spaces of configuration spaces:

Definition 6.2 The configuration space C(k,n−k)(M,X) of k red and n − k green points in M
with labels in X is defined to be

(Emb(n,M)×Xn)/(Σn−k × Σk),

and we give it the basepoint {(a1, x0), . . . , (an, x0)} with the points a1, . . . , an−k coloured green and
the points an−k+1, . . . , an coloured red. There is also a stabilisation map skn : C(k,n−k)(M,X) →
C(k,n−k+1)(M,X), which is defined exactly as in §2.2, and adds a new green point to the configu-
ration.

Definition 6.3 Let f : C(k,n−k)(M,X) → Ck(M,X) be the map which forgets the green points.
We will also need the following two maps for technical reasons: Define p : Ck(M,X)→ Ck(M,X) to
be the self-homotopy-equivalence induced by the self-embedding e|M : M →֒M (see §2.1). Choose
a self-diffeomorphism of M which is isotopic to the identity and which takes ai to ai+n−k+1 for
i = 1, . . . , k. Denote by φ the self-homeomorphism Ck(M,X)→ Ck(M,X) induced by this.

The forgetful maps f are locally trivial fibre bundles, so we have a map of fibrations:

C(k,n−k)(M,X) C(k,n−k+1)(M,X)

Ck(M,X) Ck(M,X)

skn

φ−1 ◦ p

f φ−1 ◦ f (6.3)

The p is there to ensure that it commutes on the nose, and the φ−1 is there to deal with basepoints:
on the bottom-left we have to give Ck(M,X) the basepoint {(an−k+1, x0), . . . , (an, x0)}, but on
the bottom-right we can give it its usual basepoint of {(a1, x0), . . . , (ak, x0)}.

The map skn restricted to the fibres over the basepoints is a map

Cn−k(M r {an−k+1, . . . , an}, X)→ Cn−k+1(M r {an−k+2, . . . , an+1}, X),

but this can be identified, up to homeomorphism, with the stabilisation map sn−k : Cn−k(Mk, X)→
Cn−k+1(Mk, X), where Mk is M with a subset of M rU of size k removed (see §2.1 for notation).

Finally, before beginning the proof proper, we mention how a certain local coefficient system
pulls back along the maps in (6.3). The covering space C(k,n−k)(M,X)→ Cn(M,X) corresponds

to the subgroup Gk
n 6 Gn = π1Cn(M,X). Recall from Proposition 3.3 that T k

n is a Gk
n-module (it

is a sub-Gk
n-module of Tn), so it is a local coefficient system for C(k,n−k)(M,X).

Lemma 6.4 The local coefficient system T k
k on the right-hand base space pulls back to the local

coefficient systems T k
n and T k

n+1 on the total spaces of (6.3).

14



Proof. By Lemma 3.7, the left-inverse πn
k of ιnk : Tk → Tn restricts to a bijection T k

n → T k
k . So

this is an isomorphism of abelian groups, and it is enough to check that it is equivariant w.r.t. the
map on π1 induced by the composite φ−1 ◦ p ◦ f in (6.3). This is true because both e|M : M →֒M
(which induces p) and the diffeomorphism which induces φ are isotopic to the identity. Exactly
the same argument works for the right-hand side.

Proof of Theorem 1.3 (except the split-injectivity claim). We need to show that the map

H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1) (6.4)

induced by sn and ιn is an isomorphism in the range ∗ 6
n−d
2 . By the decomposition (3.2) of

Proposition 3.3, and the fact that T has degree d, this is the same as the map

d⊕

k=0

H∗(Cn(M,X);ZGn ⊗ZGk
n
T k
n ) −→

d⊕

k=0

H∗(Cn+1(M,X);ZGn+1 ⊗ZGk
n+1

T k
n+1) (6.5)

induced by sn, ιn and (sn)∗. By Shapiro’s Lemma for covering spaces (Lemma 6.1) this is isomor-
phic to the map

d⊕

k=0

H∗(C(k,n−k)(M,X);T k
n ) −→

d⊕

k=0

H∗(C(k,n−k+1)(M,X);T k
n+1) (6.6)

induced by skn and ιn. The map of fibrations (6.3) gives the following map of twisted Serre spectral
sequences (Corollary 5.7, Proposition 5.8 and Lemma 6.4):

E2
p,q = Hp(Ck(M,X);Hq(Cn−k(Mk, X);T k

k )) H∗(C(k,n−k)(M,X);T k
n )

E2
p,q = Hp(Ck(M,X);Hq(Cn−k+1(Mk, X);T k

k )) H∗(C(k,n−k+1)(M,X);T k
n+1).

⇒

⇒

(6.7)

The map in the limit is the kth summand of (6.6), and the map on E2 pages is induced by the
stabilisation map sn−k on the fibres and the homotopy-equivalence φ−1 ◦ p on the base. Note that
T k
k is a constant coefficient system once it has been pulled back to the fibres Cn−k(Mk, X) and

Cn−k+1(Mk, X), since it was originally pulled back from the base.
Hence, by untwisted homological stability for configuration spaces (Theorem 1.2) and the

universal coefficient theorem, the map on E2 pages is an isomorphism for q 6
n−k
2 (and all p > 0).

By the Zeeman comparison theorem8 it is therefore an isomorphism in the limit for ∗ 6 n−k
2 . So

in the range ∗ 6 n−d
2 each summand in (6.6) is an isomorphism, so (6.4) is an isomorphism.

Remark 6.5 WhenM is orientable [Chu12, Corollary 3] or at least 3-dimensional [RW13, Theorem
B], the stabilisation map Cn(M,X) → Cn+1(M,X) is an isomorphism on rational homology in
the larger range ∗ < n. If T : B(M,X) → VectQ is a rational twisted coefficient system of degree
d, then the constant coefficients T k

k appearing in (6.7) above are rational vector spaces, and hence
the same proof tells us that the map

H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1)

is an isomorphism in the range ∗ < n− d.

§7. Split-injectivity

To prove the split-injectivity part of Theorem 1.3 we will use the following lemma which was
used implicitly by Nakaoka in [Nak60] and later written down explicitly by Dold in [Dol62]:

8The required implication is contained in the proof of Theorem 1 of [Zee57], although stronger hypotheses are
stated there. An explicit statement of the comparison theorem which applies to our case is Theorem 1.2 of [Iva93].
It is also written in Remarque 1.8 of [CDG11].
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Lemma 7.1 ([Dol62, Lemma 2]) Given a sequence 0 → A1
φ1
−→ A2

φ2
−→ · · · of abelian groups and

homomorphisms, the following is sufficient to imply that each of the maps φi is split-injective:
There exist maps τk,n : An → Ak for 1 6 k 6 n with τn,n = id such that

im(τk,n − τk,n+1 ◦ φn) 6 im(φk−1). (7.1)

Let Un(M,X) be the universal cover of Cn(M,X). One can think of its elements as n-strand
“open-ended braids” in M × [0, 1] (n pairwise disjoint paths in M × [0, 1] which are the identity
in the second coordinate and start at {(a1, 0), . . . , (an, 0)}, up to endpoint-preserving homotopy)
with each strand labelled by the based path space PX . Let s̃n : Un(M,X)→ Un+1(M,X) be the
lift of the stabilisation map which applies e|M × id[0,1] to the braid and adds a vertical strand at
a1 labelled by the constant path cx0

.
As before, denote π1Cn(M,X) by Gn, and denote the singular chain complex of a space by

S∗( ). Let T : B(M,X) → Ab be any twisted coefficient system (we do not assume finite-degree
in this section). Then the map

(sn; ιn)∗ : H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1). (7.2)

is induced by the map of chain complexes

(s̃n)♯ ⊗ ιn : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Un+1(M,X))⊗ZGn+1

Tn+1.

Proof of Theorem 1.3 (split-injectivity claim). We want to prove that (7.2) is split-injective for all
∗ and n. By Dold’s Lemma 7.1, it is sufficient to construct chain maps

tk,n : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Uk(M,X))⊗ZGk

Tk

for 1 6 k 6 n such that tn,n = id and

tk,n ≃ tk,n+1 ◦ ((s̃n)♯ ⊗ ιn)− ((s̃k−1)♯ ⊗ ιk−1) ◦ tk−1,n. (7.3)

Let S ⊆ {1, . . . , n}. There is a unique partially-defined injection {1, . . . , n} 99K {1, . . . , |S|}
which is order-preserving and is defined precisely on S. This is a morphism n→ |S| in the category
Σ. Let πS,n be the lift along B(M,X) → Σ to a morphism (x0)

n → (x0)
|S| given by travelling

along the paths pi (see §2.1) and keeping the labels constant. By our standard abuse of notation
we will denote its image under T also by πS,n : Tn → T|S|.

We also define a map pS,n : Un(M,X) → U|S|(M,X) as follows. Given an open-ended braid
in Un(M,X), forget the strands which start at (ai, 0) for i ∈ {1, . . . , n}r S, and then concatenate
this with the reverse of πS,n : (x0)

n → (x0)
|S| to get an open-ended braid in U|S|(M,X).

Directly from these definitions one can check (where the notation (S−1) means {s−1 | s ∈ S}):

(a) If 1 /∈ S then πS,n+1 ◦ ιn = π(S−1),n and pS,n+1 ◦ s̃n ≃ p(S−1),n.

(b) If 1 ∈ S then πS,n+1 ◦ ιn = ι|S|−1 ◦ π(Sr{1}−1),n and pS,n+1 ◦ s̃n = s̃|S|−1 ◦ p(Sr{1}−1),n.

We now define tk,n to be the following chain map:

σ ⊗ x 7→
∑

S⊆{1,...,n}, |S|=k

(pS,n)♯(σ) ⊗ πS,n(x).

Clearly tn,n = id, so we just need to check the identity (7.3). The right-hand side of this is:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k

(
(pS,n+1)♯ ◦ (s̃n)♯(σ)

)
⊗
(
πS,n+1 ◦ ιn(x)

)

−
∑

R⊆{1,...,n}, |R|=k−1

(
(s̃k−1)♯ ◦ (pR,n)♯(σ)

)
⊗
(
ιk−1 ◦ πR,n(x)

)
.

(7.4)

Using (a) and (b) above, we see that the top line of this decomposition is chain-homotopic to:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k, 1∈S

(
(s̃k−1)♯ ◦ (p(Sr{1}−1),n)♯(σ)

)
⊗
(
ιk−1 ◦ π(Sr{1}−1),n(x)

)

+
∑

S⊆{1,...,n+1}, |S|=k, 1/∈S

(p(S−1),n)♯(σ) ⊗ π(S−1),n(x).
(7.5)

16



The first line of (7.5) cancels with the second line of (7.4), leaving just the second line of (7.5),
which is precisely tk,n, as required.
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