Homological stability for the ribbon Higman–Thompson groups

Xiaolei Wu

J.w. Rachel Skipper

Shanghai Center for Mathematical Sciences

07.12.2021

History of Thompson groups

• [1965] The groups F, T, and V were first -defined by Richard Thompson. T and V are the first known examples of finitely presented infinite simple groups.

• [1974] Higman introduced what we call nowdays the Higman–Thompson groups.

• [70s] Fred-Heller, independtly Dydak, rediscovered F as the universal group encoding a free homotopy idempotent.

History of braided Thompson groups

• [2006] Brin and Dehornoy independently defined braided V.

• [2017] Thumann introduced ribbon Thompson groups.

• [\approx 2020] Braided and ribbon version of Higman–Thompson groups was first studied by Aroca–Cumplido and Skipper-W.

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 2/40

History of braided Thompson groups

[2004] Funar-Kapoudjian introduced the asymptotic mapping class group on an infinite type surface.
 Map(\$ \C)
 [2006] Brin and Dehornoy independently defined braided V.

- [2017] Thumann introduced the ribbon Thompson groups.
- [\approx 2020] Braided and ribbon version of Higman–Thompson groups was first studied by Aroca–Cumplido and Skipper-W.

Define Thompson's group V using paired tree diagram

• An element in V is a paired tree diagram $[T_1, \sigma, T_2]$ where T_1 and T_2 are two finite rooted binary trees with the same number of leaves, and σ is a bijection from the leaves of T_1 to T_2 .

F and T as subgroups of V

Thompson's group V as a subgroup of homeomorphisms of the Cantor set

Why Thompson's groups

V contains all finite groups.

$$[T, \sigma, T]$$

• [Brown–Geoghegan 1984] F is of type F_{∞} . This provides the first example of a torsion-free group of type F_{∞} that has infinite cohomological dimension. A grap is of the transformer is a much k(c, 1)st. if line is a much k(c, 1) finity may cents in orth (Brown 1987) T and V are also of type F_{∞} .

- V is dense in Homeo(C).
- [Szymik–Wahl 2019] V is acyclic.

H(V, 2) = 0.

Homological stability for the ribbon Higman-Thompson groups 07.12.2021 8/40 Xiaolei Wu

How to show V is acyclic

Braided V [Brin 2006, Dehornoy 2006]

• An element in bV is a braided paired tree diagram $[T_1, b, T_2]$ where T_1 and T_2 are two finite rooted trees with the same number of leaves, b is a braid.

multiplication:

Similarly, we define braided Higman–Thompson groups $bV_{d,r}$.

Ribbon braid groups

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 11/40

• An element in $RV_{d,r}$ is a braided paired tree diagram $[F_1, \mathfrak{r}, F_2]$ where F_1 and F_2 are two finite rooted forests with the same number of leaves, \mathfrak{r} is a ribbon braid.

Bn(6)

G BmilG)

• Equivalence relation:

Question

Is bV also acyclic? How about RV?

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 13/40

Normal subgroups of braided V

$$\begin{array}{c}
\rho_{b_{1}} \in \rho_{b_{2}} \in \rho_{b_{4}} \leq \cdots \geq \rho_{b_{2}}, \\
(\Rightarrow \rho_{b_{0}} \rightarrow bV \rightarrow V \\
(\neg \rho_{b_{0}$$

How one might prove bV is acyclic?

identity State Anify ! rtepz

Theorem (Skipper–W) Suppose $d \ge 2$. Then the inclusion maps induce isomorphisms $\iota_* : \underline{H_i(RV_{d,r}, \mathbb{Z})} \to \underline{H_i(RV_{d,r+1}, \mathbb{Z})}$ in homology in all dimensions $i \ge 0$, for all $r \ge 1$.

A quick review on Homogeneous category $G_1 \leq \cdots \leq G_n$

Definition

A monoidal category $(\mathcal{C},\oplus,0)$ is called homogeneous

• 0 is initial in C;

• Hom(A, B) is a transitive Aut(B)-set under postcomposition;

• The map $\operatorname{Aut}(A) \to \operatorname{Aut}(A \oplus B)$ taking f to $f \oplus \operatorname{id}_B$ is injective with image

 $\underbrace{\mathsf{Fix}(B)}_{\Box} := \{ \phi \in \operatorname{Aut}(A \oplus B) \mid \phi \circ (\imath_A \oplus \operatorname{id}_B) = \imath_A \oplus \operatorname{id}_B \}$ where $\imath_A : 0 \to A$ is the unique map.

The space $S_n(X)$

Let X be a object of the homogeneous category $(\mathcal{C}, \oplus, 0)$, then $S_n(X)$ denote the simplicial complex

• Vertices: morphisms $f: X \to X^{\oplus n}$;

• *p*-simplices: (p + 1)-sets $\{f_0, \ldots, f_p\}$ such that there exists a morphism $f: X^{\oplus p+1} \to X^{\oplus n}$ with $f \circ i_j = f_j$ for some order on the set, where

$$i_j = \imath_{X^{\oplus j}} \oplus \operatorname{id}_X \oplus \imath_{X^{\oplus p-j}} \colon X = 0 \oplus X \oplus 0 \longrightarrow X^{\oplus p+1}$$

Theorem (Randal-Williams–Wahl)

Let $(C, \oplus, 0)$ be a homogeneous category such that the space $S_n(X)$ is highly connected, then

$$H_i(\operatorname{Aut}(X^{\oplus n})) \longrightarrow H_i(\operatorname{Aut}(X^{\oplus n+1}))$$

induced by the natural inclusion map is an isomorphism if n >> i.

An example: braid groups I

Key fact: B_n can be identified with the mapping class group of a disk with *n* punctures.

An example: braid groups II

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 21/40

Build a geometric model for the Ribbon Higman–Thompson groups.

Asymptotic mapping class group II: paired surface diagram

An element in $\mathcal{BV} = \mathcal{BV}_{2,1}$ is a paired surface diagram

$$[\Sigma_1, \phi, \Sigma_2]$$

such that

 \bullet Σ_1 and Σ_2 are suited subsurface with the same number of suited loops.

• ϕ is a homeomorphism from Σ_1 to Σ_2 which coincides with the parametrization of the suited loops.

- Equivalence relation: ~ Iroty
- Composition:

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 24/40

$\mathcal{B}_{d,r}$ for any d and r

• An element $[\Sigma_1, \phi, \Sigma_2]$ of $\mathcal{B}V_{d,r}$ naturally represents an element of $\operatorname{Map}(D \setminus C)$.

• We shall call an element f in $Map(D \setminus C)$ asymptotic rigid if it can be written in the form $[\Sigma_1, \phi, \Sigma_2]$. Σ_1 is called the support of f.

• More generally, let S_1 and S_2 be two surface equipped with rigid structures, then a homeomorphism $f : S_1 \rightarrow S_2$ is called **asymptotic rigid** if it is "rigid" outside a suited subsurface of S_1 .

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 26/40

Isomorphism results

Remark

We also proved that $\mathcal{B}V_{d,r}$ is dense inside the big mapping class group $\operatorname{Map}(D \setminus \overline{C})$.

Homogenous category for asymptotic mapping class groups

Homological stability for the ribbon Higman–Thompson groups 07.12.1

07.12.2021 28/40

The complex S_n

First reduction

Let U_n be the following complex:

• vertices:

• simplices:

Theorem

The forgetful map $\pi : S_n \to U_n$ is a complete join. In particular, U_n is highly connected iff S_n is.

Let $\pi : Y \to X$ be a complete join. Then X is highly connected if and only if Y is.

Second reduction

Let U_n^{∞} be the following complex:

• *p*-simplices: derig ainays left

Third reduction

Definition

An almost admissible loop is a loop $\alpha : (I, \partial I) \rightarrow (D \setminus C, 0)$ which is freely isotopic to one of the nonbased suited loops.

Let T_n^{∞} be the following complex:

• vertices:

The inclusion map is highly connected

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 36/40

Key gadget: Lollipop

• Let
$$A = [0, 2]/1 \sim 2$$
.

•
$$L : (A, 0) \rightarrow (D \setminus C, 0)$$
 is a lollipop if
• L is an embedding.
• $L \mid_{[1,2]}$ is isotopic to a suited loop in $D \setminus C$,
• $L \mid_{[0,1]}$ is an arc connecting the base point 0 to
 $L([1,2])$.

The Lollipop complex L_n^{∞}

• vertices: isotopy classes of lollipops;

• L_0, L_1, \dots, L_p , form a *p*-simplex if they are pairwise disjoint outside the base point 0 and there exists at least one suited loop which does not lie inside the disks bounded by the L_i s.

The Lollipop complex is contractible

Theorem (Skipper-W 2021)

The Lollipop complex is contractible.

Connectivity of the lollipop complex

