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History of Thompson groups

• [1965] The groups F , T , and V were first -defined by
Richard Thompson. T and V are the first known examples
of finitely presented infinite simple groups.

• [1974] Higman introduced what we call nowdays the
Higman–Thompson groups.

• [70s] Fred–Heller, independtly Dydak, rediscovered F as
the universal group encoding a free homotopy idempotent.
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History of braided Thompson groups

• [2006] Brin and Dehornoy independently defined braided V .

• [2017] Thumann introduced ribbon Thompson groups.

• [¥ 2020] Braided and ribbon version of Higman–Thompson
groups was first studied by Aroca–Cumplido and Skipper-W.
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History of braided Thompson groups

• [2004] Funar–Kapoudjian introduced the asymptotic
mapping class group on an infinite type surface.

• [2006] Brin and Dehornoy independently defined braided V .

• [2017] Thumann introduced the ribbon Thompson groups.

• [¥ 2020] Braided and ribbon version of Higman–Thompson
groups was first studied by Aroca–Cumplido and Skipper-W.
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Define Thompson’s group V using paired tree
diagram

• An element in V is a paired tree diagram [T1, ‡, T2] where
T1 and T2 are two finite rooted binary trees with the same
number of leaves, and ‡ is a bijection from the leaves of T1

to T2.

• Equivalence relation:

• Multiplication:
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F and T as subgroups of V
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Thompson’s group V as a subgroup of
homeomorphisms of the Cantor set
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Higman–Thompson groups
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Why Thompson’s groups

• V contains all finite groups.

• [Brown–Geoghegan 1984] F is of type FŒ. This provides
the first example of a torsion-free group of type FŒ that has
infinite cohomological dimension.

• [Brown 1987] T and V are also of type FŒ.

• V is dense in Homeo(C).

• [Szymik–Wahl 2019] V is acyclic.
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How to show V is acyclic
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Braided V [Brin 2006, Dehornoy 2006]

• An element in bV is a braided paired tree diagram
[T1, b, T2] where T1 and T2 are two finite rooted trees with
the same number of leaves, b is a braid.

• Equivalence relation:

• multiplication:

Similarly, we define braided Higman–Thompson groups

bVd ,r .
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Ribbon braid groups

Definition
An element in the ribbon braid group RBn is

Fact
• Bn can be identified with the mapping class group of a disk

with n punctures.

• PRBn can be identified with the mapping class group of a

n-holed disk.
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Ribbon Higman–Thompson groups

• An element in RVd ,r is a braided paired tree diagram
[F1, r, F2] where F1 and F2 are two finite rooted forests with
the same number of leaves, r is a ribbon braid.

• Equivalence relation:
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Question

Question
Is bV also acyclic? How about RV ?
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Normal subgroups of braided V

Theorem (Zaremsky 18)
Any proper normal subgroup of bV is contained in PBŒ.

Corollary
H1(bV ) = 0.
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How one might prove bV is acyclic?
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Our theorem

Theorem (Skipper–W)
Suppose d Ø 2. Then the inclusion maps induce isomorphisms

ÿú : Hi(RVd ,r ,Z) æ Hi(RVd ,r+1,Z)

in homology in all dimensions i Ø 0, for all r Ø 1.
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A quick review on Homogeneous category

Definition
A monoidal category (C, ü, 0) is called homogeneous

• 0 is initial in C;

• Hom(A, B) is a transitive Aut(B)-set under postcomposi-

tion;

• The map Aut(A) æ Aut(A ü B) taking f to f ü idB is

injective with image

Fix(B) := {„ œ Aut(A ü B) | „ ¶ (ıA ü idB) = ıA ü idB}

where ıA : 0 æ A is the unique map.
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The space Sn(X )

Let X be a object of the homogeneous category (C, ü, 0),
then Sn(X ) denote the simplicial complex

• Vertices: morphisms f : X æ X
ün;

• p-simplices: (p + 1)-sets {f0, . . . , fp} such that there exists
a morphism f : X

üp+1 æ X
ün with f ¶ ij = fj for some order

on the set, where

ij = ıXüj ü idX ü ıXüp≠j : X = 0 ü X ü 0 ≠æ X
üp+1.
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How to prove homological stability?

Theorem (Randal-Williams–Wahl)
Let (C, ü, 0) be a homogeneous category such that the space

Sn(X ) is highly connected, then

Hi(Aut(Xün)) ≠æ Hi(Aut(Xün+1))

induced by the natural inclusion map is an isomorphism if

n >> i .
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An example: braid groups I

Key fact: Bn can be identified with the mapping class group
of a disk with n punctures.

The homogeneous category consists of

• Objects:

• monoid operation:

• morphisms:
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An example: braid groups II

The complex:

• vertices:

• p-simplices:
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Key di�culty

Build a geometric model for the Ribbon Higman–Thompson
groups.
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Asymptotic mapping class group I: rigid
structure
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Asymptotic mapping class group II: paired surface
diagram

An element in BV = BV2,1 is a paired surface diagram

[�1, „, �2]

such that

• �1 and �2 are suited subsurface with the same number of
suited loops.

• „ is a homeomorphism from �1 to �2 which coincides with
the parametrization of the suited loops.

• Equivalence relation:

• Composition:
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Bd ,r for any d and r
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BVd ,r as a subgroup of Map(D \ C)

• An element [�1, „, �2] of BVd ,r naturally represents an
element of Map(D \ C).

• We shall call an element f in Map(D \ C) asymptotic

rigid if it can be written in the form [�1, „, �2]. �1 is called
the support of f .

• More generally, let S1 and S2 be two surface equipped with
rigid structures, then a homeomorphism f : S1 æ S2 is called
asymptotic rigid if it is “rigid” outside a suited subsurface
of S1.
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Isomorphism results

Theorem (Skipper-W)
The groups BVd ,r and RVd ,r are isomorphic in a canonical

way.

Remark
We also proved that BVd ,r is dense inside the big mapping

class group Map(D \ C).
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Homogenous category for asymptotic mapping
class groups

• Objects:

• monoid operation:

• Morphisms:
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The complex Sn

• vertices:

• simplices:
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First reduction

Let Un be the following complex:

• vertices:

• simplices:

Theorem
The forgetful map fi : Sn æ Un is a complete join. In

particular, Un is highly connected i� Sn is.
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Complete join

Definition
A surjective simplicial map fi : Y æ X is called a complete

join if:

• fi is injective on simplices.

• For each p-simplex ‡ = Èv0, · · · , vpÍ of X, fi≠1(‡) is the

join fi≠1(v0) ú fi≠1(v1) · · · ú fi≠1(vp).

Theorem (Hatcher–Wahl)
Let fi : Y æ X be a complete join. Then X is highly

connected if and only if Y is.
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Second reduction

Let U
Œ
n be the following complex:

• vertices:

• p-simplices:

Remark
U

Œ
n and Un share the same (n ≠ 2)-skeleton.
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Third reduction
Definition
An almost admissible loop is a loop – : (I, ˆI) æ (D \ C, 0)
which is freely isotopic to one of the nonbased suited loops.

Let T
Œ
n be the following complex:

• vertices:

• p-simplices:
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The inclusion map is highly connected

Theorem
The inclusion map T

Œ
n Æ U

Œ
n is highly connected.
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Summary

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 07.12.2021 35/40

a-

8- → De

00



Summary continued
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Key gadget: Lollipop

• Let A = [0, 2]/1 ≥ 2.

• L : (A, 0) æ (D \ C, 0) is a lollipop if
¶ L is an embedding.
¶ L |[1,2] is isotopic to a suited loop in D \ C,
¶ L |[0,1] is an arc connecting the base point 0 to
L([1, 2]).
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The Lollipop complex LŒ
n

• vertices: isotopy classes of lollipops;

• L0, L1, · · · , Lp, form a p-simplex if they are pairwise disjoint
outside the base point 0 and there exists at least one suited
loop which does not lie inside the disks bounded by the Lis.
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The Lollipop complex is contractible

Theorem (Skipper-W 2021)
The Lollipop complex is contractible.
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Connectivity of the lollipop complex
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