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Introduction

L alink in R®.
@ '84: Jones polynomial V(L)
@ '00: Khovanov homology Kh'™(L; R)
@ '14: Lipshitz-Sarkar spectrum \/JXJ(L) (independently, Hu-Kriz-Kriz)

*(_.

Euler char.

gr-Top = gr-Sp bigr-R-Mod Z[t]
Links
Corollary

Since Khovanov homology is the cohomology of a spectrum, Khovanov homology with
coefficients in R = Z/2 becomes endowed with an action of the Steenrod algebra.
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Introduction

L alink in R®.
@ '84: Jones polynomial V(L)
@ '00: Khovanov homology Kh'™(L; R)
@ '14: Lipshitz-Sarkar spectrum \/JXJ(L) (independently, Hu-Kriz-Kriz)

*

gr-Top = ar-Sp - bigr-R-Mod —=uereher Z[t]
Links
Corollary

Since Khovanov homology is the cohomology of a spectrum, Khovanov homology with
coefficients in R = Z/2 becomes endowed with an action of the Steenrod algebra.

Question

How to compute this action?
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Khovanov homology (Khovanov '00)

In 2000, Khovanov assigned to each knot diagram D, a Z-bigraded family of cochain
complexes and proved that it was invariant under Reidemeister moves.

c. — CTYX(D) — CYTA(D) — CTYTH(D) — ..
...— C™Y(D) — C¥(D) — CH(D) — ...
oo — CTHYP(D) — CYP(D) — CTT(D) — ...

where i is the homological grading and j is the quantum grading.
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@ Khovanov homology distinguishes the unknot and the trefoil.
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Khovanov homology (Khovanov '00)

In 2000, Khovanov assigned to each knot diagram D, a Z-bigraded family of cochain
complexes and proved that it was invariant under Reidemeister moves.

c. — CTYX(D) — CYTA(D) — CTYTH(D) — ..
...— C™Y(D) — C¥(D) — CH(D) — ...
.. — CTY(D) — CP(D) — CTTA(D) — ...
where i is the homological grading and j is the quantum grading.
@ Khovanov homology distinguishes the unknot and the trefoil.
@ Its Euler characteristic is the Jones polynomial of the knot.

@ Khovanov homology can be used to give a combinatorial proof of the Milnor
conjecture on the slice genus of torus knots (Rassmussen '10).
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Khovanov homology (Khovanov '00)

In 2000, Khovanov assigned to each knot diagram D, a Z-bigraded family of cochain
complexes and proved that it was invariant under Reidemeister moves.

c. — CTYX(D) — CYTA(D) — CTYTH(D) — ..
...— C™Y(D) — C¥(D) — CH(D) — ...
.. — CTY(D) — CP(D) — CTTA(D) — ...
where i is the homological grading and j is the quantum grading.
@ Khovanov homology distinguishes the unknot and the trefoil.
@ Its Euler characteristic is the Jones polynomial of the knot.

@ Khovanov homology can be used to give a combinatorial proof of the Milnor
conjecture on the slice genus of torus knots (Rassmussen '10).

Trefoil (neg.) Hopf link Unknot
J,i|-3|-2|-1|0 iT—2[-i]0
-1 Z
=3 7 0 Z J,i |0
& 7 -2 Z 112

4| 7 —-11|7Z

-7 L —6 | Z
-9 | Z
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Semi-simplicial objects, cubes and their realisations

Semi-simplicial objects

Let C be a model category (Top, Top., Sp, Ch(Z)).
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Semi-simplicial objects, cubes and their realisations

Semi-simplicial objects

Let C be a model category (Top, Top., Sp, Ch(Z)).

o CAi; “category of semi-simplicial objects in C",
...§X2§X1_>_>Xo
@ The realisation of a semi-simplicial object X, in C:

| Xe| := hocolim (X: AP — C)

inj
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Semi-simplicial objects, cubes and their realisations

Semi-simplicial objects

Let C be a model category (Top, Top., Sp, Ch(Z)).

o CAi; “category of semi-simplicial objects in C",
...§X2§X1_>_>Xo
@ The realisation of a semi-simplicial object X, in C:

| Xe| := hocolim (X: AP — C)

inj

~op
@ Chini “category of augmented semi-simplicial objects in C".

=== X ——> X1
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Semi-simplicial objects, cubes and their realisations

Semi-simplicial objects

Let C be a model category (Top, Top., Sp, Ch(Z)).

@ Chini “category of semi-simplicial objects in C",
...%ng)ﬁﬂgxo

@ The realisation of a semi-simplicial object X, in C:

| Xe| := hocolim (X: AP — C)

inj

~op
@ Chin; “category of augmented semi-simplicial objects in C".

§X2§X1 3)(0%)(_1

@ The relative realisation of an augmented semi-simplicial set X,:

| Xe| := hocofib (| X>o0| — X_1)

Federico Cantero Moran (UAM) Steenrod squares on Khovanov homology January 11, 2022 4/13



Cubes and semi-simplicial objects

Let 2° be the cube poset {0 — 1}°.

(2)” 1
{
0
(25)* 11
7N
01 10
N
00
(23)% 111

RN

011 101 110

000
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Let 2° be the cube poset {1 — 0}*. There is a functor (2°)°° — Af’]f’j given by

1 — [0] c
\LBO Y Uy ...Uec —> —1+Zu;:|
0 [-1] i=1
11 [1] uy...Uc
— i = Ogj-1
N i TN TR
01 10 [0] 4
AV v
00 [-1]
111 —  [2]
N
Pl AV RN M
011 101 110 [1]
'8 Ve \, Ve
B0 G I
001\ 010 /001 [0]
% AV) P ¢
000 [-1]
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1 —  [0]
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There is a functor (2°)°° — Af’rf} given by

-1+ zc: Ui:|
i=1

up...Uc —

uy...Uc
\L = 821:—1 u

A i=1 "/

E c\op
Left Kan extension (2°) —/;C
op — -
inj
Defines a functor
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Let 2° be the cube poset {1 — 0}€.

1

jo

111
/5\
LN
011 101 110

001 010 001

\9"\ Av‘) %a(’/
000
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—  [0] <
! “14D u
[-1]
uip...Uc
— 1] i} = Os-1,
A~ i=1 i
W up...0j...uc
(0]
v
[-1] Left Kan extension (2°)® ———=C
— 2] A%~
M Defines a functor
(1] .
W S Fs F
] \ -
[71] TotF := hocofib (hocolim (F|2"\{6}) — F(ﬁ)) ec
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There is a functor (2°)°P — A% given by

inj




Khovanov homology (Khovanov '00)

@ D a knot diagram with n negative crossings.
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Khovan mology (Khovanov '00)

@ D a knot diagram with n negative crossings.

/0 \/ 1
— =
@ M / )C the 0-smoothing and the 1-smoothing
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Khovan mology (Khovanov '00)

@ D a knot diagram with n negative crossings.

/0 \/ 1
~ =
e / )C the 0-smoothing and the 1-smoothing

D ~~—~> ADZ 2¢ — Cob1+1(]R2)

Dql g ‘i 001] i %011
3 1 Q
@ v{i} %y Vevi{2 «
W & oo
000) @bmo O 107, O 11
O | 2 QD |4 QO
vV 8V {0} . vig |, evy vevev @)
% o
% b V
100 &; 510
V{1} VvV oV {2}
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Khovan mology (Khovanov '00)

@ D a knot diagram with n negative crossings.

/0 \/ 1
~ =
e / )C the 0-smoothing and the 1-smoothing

D~~~ Ap: 2¢ — Coby1(R?) ~~~= Fp: 2° 22 Coby,1(R?)

Dql g ‘i 001] i %011
3 1 Q
@ v{i} %y Vevi{2 «
W & oo
000) @bmo O 107, O 11
O | 2 QD |4 QO
vV 8V {0} . vig |, evy vevev @)
% o
% b V
100 &; 510
V{1} VvV oV {2}
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Khovan mology (Khovanov '00)
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Khovan mology (Khovanov '00)

@ D a knot diagram with n negative crossings.

= X5 (C
o /’\ the 0-smoothing and the 1-smoothing

D~~~ Ap: 2¢ =5 Coby;1(R2) ~~~>= Fp: 2¢ 22 Coby1(R?) C Cobri; 2 Ab

’;/@b @m don Q%Ou TQFT (circle) = V := Z{xy, x_)
Vil |g, veviz
2 & 2, X.
PP « )
000 @DOIO D 101] D 111 X4 X—
dl»l
C ) | s QD | B . x:
v oV {0} . vig |, veviy Vevev )
% "\ y’
kS 110 (!ig
diso D
V{1} VvV oV {2}
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Khovanov homology (Khovanov '0

@ D a knot diagram with n negative crossings.
e / the 0-smoothing and the 1-smoothing g

D~~~ Ap: 2¢ =5 Coby;1(R2) ~~~>= Fp: 2¢ 22 Coby1(R?) C Cobys; "2 Ab C Ch(Z)

’;/@b @m don Q%Ou TQFT (circle) = V := Z{xy, x_)
Vi g, Weviy
2 2 4, X
W % N * X4
000 @DOIO D 101] P D 111 X4 X—
(ii) Loy QD = QO X+ X X4
v oV {0} viy |, veviy Vevev ) N
- % Re — X
o0 110 X_(!ig x
diso D -
g 0
V{1} VvV oV {2}
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Khovan mology (Khovanov '00)

@ D a knot diagram with n negative crossings.

/1, Y ~"TotFp € Ch(Z)
[ /°\ \ )C the 0-smoothing and the 1-smoothing g
D ~~—> Ap: 2¢ — C0b1+1(R2) ~~~> Fp: 2¢ —) C0b1+1(R2) C C0b1+1 Ab C Ch(Z)
Z/@l @"1 don Q%‘m TQFT (circle) = V := Z(xy, x_)
\) Vil g, ,Vevi{z
3 Lo <
b % S
r:ooo @bom oo S 1t X4 X—
v oV {0} . Vit |, Veviy vevevs
o o
) 100 & 110 / (!ig
d‘l»ﬂ
TN D
V{1} VvV oV {2}

Kh(D) := H/(£~"TotFp). It splits along the quantum grading Kh'(D) = @), Kh(D). It is
homotopy invariant under Reidemeister moves. J

= = = — Tyt
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = @, Kh™(L)? J

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2° — Ab ~~> Tot (Fp: 2° — Ab)
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = P, Kh™(L)? J

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets

Set
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = P, Kh™(L)? J

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets

Set ——— Top

FD/1\L l
/
/

2¢ —— Ab —— Ch(Z)
D
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = P, Kh™(L)? J

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets
Set ——— Top

Fp 7
< l l ~~~ Tot(2° — Top) € Top

7

2" > Ab—> Ch(Z)
D
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = P, Kh™(L)?

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets
Set ——— Top

Fp 7
< l l ~~~ Tot(2° — Top) € Top

7

2" > Ab—> Ch(Z)
D

we would obtain a space whose cohomology coincides with the n-suspension of
Khovanov homology Tot(Fp).
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a topological space with H*(X) = @, Kh™(L)?

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2° — Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets
Set —— Top

Fp 7
< l L ~~~> Tot(2° — Top) € Top

7

2"~ Ab—> Ch(Z)
D

we would obtain a space whose cohomology coincides with the n-suspension of
Khovanov homology Tot(Fp).

Problem: Afterwards we would have to desuspend n times this space!!!
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a spectrum with H*(X) = @ Kh*9(L)?

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~~> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the category of sets
Set —— Sp

iy 7
Fo l l ~~~ Tot(2° — Sp) € Sp

7

22"~ Ab—> Ch(Z)
D

we would obtain a spectrum whose cohomology coincides with the n-suspension
of Khovanov homology Tot(Fp).

Afterwards we desuspend n times this spectrum
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a spectrum with H*(X) = @ Kh*9(L)?

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~—> Tot (Fp: 2° — Ab)

@ If we could lift this functor to the Burnside category

Set B Sp
ty 7
fo l | o Tot(2° — Sp) € Sp
7
2¢ ——> Ab—— Ch(Z)
D

we would obtain a spectrum whose cohomology coincides with the n-suspension
of Khovanov homology Tot(Fp).

Afterwards we desuspend n times this spectrum
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a spectrum with H*(X) = @ Kh*9(L)?

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2°— Ab ~~—> Tot (Fp: 2° — Ab)

@ If we could lift this functor to the Burnside category

Set > B Sp
o /l/ - l ~~~ Tot(2° — Sp) € Sp
2° % Ab — > Ch(Z)

D

we would obtain a spectrum whose cohomology coincides with the n-suspension
of Khovanov homology Tot(Fp).

Afterwards we desuspend n times this spectrum
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Lipshitz and Sarkar (and Lawson) spectrum (2014)

How can we assign to each link L a spectrum with H*(X) = @, Kh™9(L)? J

@ Khovanov homology is computed as the cohomology of a chain complex obtained
as the cohomology of the totalisation of a functor

Fp:2° — Ab ~~—> Tot (Fp: 2° — Ab)
@ If we could lift this functor to the Burnside category
Set — B
-7 2 /

2° — > Cob; ;1 (R?) == Cob;;; —> R-Mod

we would obtain a spectrum whose cohomology coincides with the n-suspension of
Khovanov homology Tot(Fp).

Afterwards we desuspend n times this spectrum )
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The Burnside category

Let B be the Burnside 2-category for the trivial group whose objects are finite sets,
whose morphisms are spans

with composition Q"

Q t Qj’/ \{QI
¥ X
Pz
X Y X \Y/ \Z

and whose 2-morphisms are bijections between spans. Q
PN

| o Y
AN 4 el

X
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The Burnside category

Let B be the Burnside 2-category for the trivial group whose objects are finite sets,
whose morphisms are spans
with composition Q"
e \{
2 S
X Y VN N
X Y V4
and whose 2-morphisms are bijections between spans. Q
I N\G
X | Y
\ (;, /
y

A morphism f in the Burnside category can be interpreted as a linear map between sets

with coefficients in sets:
Fx)=>_ s ' x)Nt(y)-y
yeyY
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From Burnside to Abelian groups

There is a functor L: B — Ab that sends
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From Burnside to Abelian groups

There is a functor L: B — Ab that sends
@ A finite set X to the free abelian group Z(X),
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From Burnside to Abelian groups

There is a functor L: B — Ab that sends
@ A finite set X to the free abelian group Z(X),

o AspanX(iQ—t>Yto

Z(X) & Z(Q) = Z{Y)
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From Burnside to Abelian groups

There is a functor L: B — Ab that sends
@ A finite set X to the free abelian group Z(X),

o AspanX(iQ—t>Yto

and then to
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From Burnside to Abelian groups

There is a functor L: B — Ab that sends
@ A finite set X to the free abelian group Z(X),

o AspanX(iQ—t>Yto

Z(X) & Z(Q) = Z{Y)

and then to
Z{X) 7Z(Q) ——=Z(Y)
XV ——=7Z(Q)*
@ a fibrewise bijection Q . amounts to the induced maps
I
X (= Y
AN QV/ 7

L(X < Q = Y) and L(X + Q — Y) being the same.
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From Burnside to Spectra

There is a lax functor L: B — Sp that sends
@ A finite set X to the free abelian group Z(X),

o AspanX(iQ—t>Yto

Z(X) & Z(Q) = Z{Y)

and then to
Z{X) 7Z(Q) ——=Z(Y)
XV ——=7Z(Q)*
@ a fibrewise bijection Q . amounts to the induced maps
I
X (= Y
AN QV/ 7

L(X < Q = Y) and L(X + Q — Y) being the same.
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From Burnside to Spectra

There is a lax functor L: B — Sp that sends
@ A finite set X to the wedge \/, S,

) AspanX@Q#Yto

Z(X) < Z(Q) = Z{Y)

and then to
Z({X) Z(Q) ——=7Z(Y)
ZX) ——7Z(Q)*
@ a fibrewise bijection Q amounts to the induced maps
I
X =] Y
\ Y /

L(X < Q = Y) and L(X + @ — Y) being the same.
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From Burnside to Spectra

There is a lax functor L: B — Sp that sends
@ A finite set X to the wedge \/, S,

/s« \/s-\/s
X Q Y

) AspanX(iQ—t>Yto

and then to
Z{X) 7Z(Q) ——=Z(Y)

.

*

ZAX) —— 7(Q)*

@ a fibrewise bijection amounts to the induced maps

Q
/ :g\y

X

L(X+ Q= Y)and L(X + Q" — Y) being the same.
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From Burnside to Spectra

There is a lax functor L: B — Sp that sends
@ A finite set X to the wedge \/, S,

\/Sé\/sé\/s
X Q Y

o AspanX(S—Q—t>Yto

and then to
Vx S \/Q S —— \/Y S
VxS* ——=V,S*
@ a fibrewise bijection Q amounts to the induced maps
| \
X =] Y
S~y 7

Q

L(X < Q = Y) and L(X + @ — Y) being the same.
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From Burnside to Spectra

There is a lax functor L: B — Sp that sends
@ A finite set X to the wedge \/, S,

\/Sé\/sé\/s
X Q Y

o AspanX(S—Q—t>Yto

and then to
Vx S \/Q S —— \/Y S
VxS* ——=V,S*
@ a fibrewise bijection Q amounts to the induced maps
| \
X =] Y
S~y 7

Q

L(X < Q = Y) and L(X + @ — Y) being homotopic.
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Steenrod squares in Khovan mology

There are Steenrod operations

SaP: Kh'(K; Zp) — KhitPI(K; Z,)
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Steenrod squares in Khova mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).
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Steenrod squares in Khova mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).

@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.
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Steenrod squares in Khova mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).

@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.

@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

Federico Cantero Moran (UAM) Steenrod squares on Khovanov homology January 11, 2022 11/13



Steenrod squares in Khova mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).

@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.

@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

@ They proved that for every k > 1 there is a knot with non-trivial Sq¥ (together with
Lawson (2020)).
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Steenrod squares in Khovan mology

There are Steenrod operations
SqP: KhJ(K; Zy) — KhPd(K; Zy)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).

@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.

@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

@ They proved that for every k > 1 there is a knot with non-trivial Sq¥ (together with
Lawson (2020)).

@ By the Adem formulae, Sq® = Sq' 0 Sq?.

Federico Cantero Moran (UAM) Steenrod squares on Khovanov homology January 11, 2022 11/13



Steenrod squares in Khovan mology

There are Steenrod operations
SqP: KhJ(K; Zy) — KhPd(K; Zy)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.
@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along
Ch(Z) — Ch(F3).
@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.
@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

@ They proved that for every k > 1 there is a knot with non-trivial Sq¥ (together with
Lawson (2020)).

@ By the Adem formulae, Sq® = Sq' 0 Sq?.

@ Jones, Lobb, Orson, Shuetz (2017-2020) developed a “calculus” of framed flow categories
that computes more efficiently Sq? and Sq3 using the formulae of Lipshitz and Sarkar.
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Steenrod squares in Khovan mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along

Ch(Z) — Ch(F3).
@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.
@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

@ They proved that for every k > 1 there is a knot with non-trivial Sq¥ (together with
Lawson (2020)).

@ By the Adem formulae, Sq® = Sq' 0 Sq?.

@ Jones, Lobb, Orson, Shuetz (2017-2020) developed a “calculus” of framed flow categories
that computes more efficiently Sq? and Sq3 using the formulae of Lipshitz and Sarkar.

@ Cantero (2020) found formulae for all Steenrod squares using cup-i products.
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Steenrod squares in Khovan mology

There are Steenrod operations
SqP: Khi¥(K; Zy) — KhiTPY(K; Z5)

As the spectrum was built using the Burnside category, it is not clear how to compute these
operations.

@ The first Steenrod square is the Bockstein homomorphism, which only requires a lift along

Ch(Z) — Ch(F3).
@ Lipshitz and Sarkar (2014) found formulae for the second Steenrod square.
@ They found knots and links with isomorphic Khovanov homology, but different
Steenrod squares (also Seed (2012*), Lobb-Orson-Shiitz,...).

@ They proved that for every k > 1 there is a knot with non-trivial Sq¥ (together with
Lawson (2020)).

@ By the Adem formulae, Sq® = Sq' 0 Sq?.

@ Jones, Lobb, Orson, Shuetz (2017-2020) developed a “calculus” of framed flow categories
that computes more efficiently Sq? and Sq3 using the formulae of Lipshitz and Sarkar.

@ Cantero (2020) found formulae for all Steenrod squares using cup-i products.

@ Bodish (2020) proved that for every k > 1 there is a prime knot with non-trivial Sq*.
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Formulas

Remark

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,
which in turn is a particular case of a functor 2¢ — B:

A
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Formulas

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,
which in turn is a particular case of a functor 2° — B: If K is a simplicial complex with

c ordered vertices, | can define

Fie: 2 — Set o {*} ?fa?safaceofK
0 if o is not a face of K.
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Formulas

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,
which in turn is a particular case of a functor 2° — B: If K is a simplicial complex with

c ordered vertices, | can define

{{*} if o is a face of K
o—

Fi:2° — Set . .
) if o is not a face of K.
y
@ The Steenrod formulas for —;-products are valid for functors 2 — Set.
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Formulas

Remark

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,

which in turn is a particular case of a functor 2° — B: If K is a simplicial complex with
c ordered vertices, | can define

Fie: 2 — Set o {*} !fafsafaceofK
) if o is not a face of K.

@ The Steenrod formulas for —;-products are valid for functors 2 — Set.

@ Strategy: Adapt the classical —j-products of Steenrod to functors 2° — B.
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Formulas

Remark

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,

which in turn is a particular case of a functor 2° — B: If K is a simplicial complex with
c ordered vertices, | can define

0 if o is not a face of K.

Fi:2° s Set ar—>{{*} if o is a face of K

@ The Steenrod formulas for —;-products are valid for functors 2 — Set.
@ Strategy: Adapt the classical —;-products of Steenrod to functors 2¢ — B.

@ Use an improved presentation of the classical —;-products given by
Medina-Mardones (2020).
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Formulas

An ordered simplicial complex with ¢ vertices is a particular case of a functor 2 — Set,
which in turn is a particular case of a functor 2° — B: If K is a simplicial complex with
c ordered vertices, | can define

Fie: 2 — Set o {*} !fafsafaceofK
) if o is not a face of K.

A

@ The Steenrod formulas for —;-products are valid for functors 2 — Set.
@ Strategy: Adapt the classical —;-products of Steenrod to functors 2¢ — B.

@ Use an improved presentation of the classical —;-products given by
Medina-Mardones (2020).

Theorem (Cantero, 2021)

The Khovanov chain complex admits explicit stable —;-products, which give rise to
formulae for the Steenrod squares.
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Stable —;-products

@ (C*,d) a cochain complex of Z/2-modules,
@ T:C"®C"— C"® C* the twist homomorphism T(a® b) = b® a,
@ 1: C"®C" — C"® C” the identity map
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Stable —;-products

@ (C*,d) a cochain complex of Z/2-modules,
@ T:C"®C"— C"® C* the twist homomorphism T(a® b) = b® a,
@ 1: C"®C" — C"® C” the identity map

A unstable —-product on (C*,d) is a family of homomorphisms

—i:C"C"— C*

with / € Z, such that —; has degree i and
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Stable —;-products

@ (C*,d) a cochain complex of Z/2-modules,
@ T:C"®C"— C"® C* the twist homomorphism T(a® b) = b® a,
@ 1: C"®C" — C"® C” the identity map

A unstable —-product on (C*,d) is a family of homomorphisms

—:C"RC — C*
with / € Z, such that —; has degree i and
@ —jod=do—;+(1+T)—j_1
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Stable —;-products

@ (C*,d) a cochain complex of Z/2-modules,
@ T:C"®C"— C"® C* the twist homomorphism T(a® b) = b® a,
@ 1: C"®C" — C"® C” the identity map

A unstable —-product on (C*,d) is a family of homomorphisms

—:C"RC — C*
with / € Z, such that —; has degree i and
@ —jod=do—;+(1+T)—j_1
@ —=0fori<O0.
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Stable —;-products

@ (C*,d) a cochain complex of Z/2-modules,
@ T:C"®C"— C"® C* the twist homomorphism T(a® b) = b® a,
@ 1: C"®C" — C"® C” the identity map

A unstable —-product on (C*,d) is a family of homomorphisms

—:C"RC — C*
with / € Z, such that —; has degree i and
@ —jod=do—;+(1+T)—j_1
@ —=0fori<O0.

4

Steenrod squares J

Sq'([x]) = [x —n—i x] if x € C" is a cocycle.
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