Genus bounds from quantum invariants

Daniel Léopez Neumann

(joint w/ Roland van der Veen)

May 9 2022

Daniel Lépez Neumann Genus bounds from quantum invariants



Outline

@ Motivation and main theorem
© Reidemeister torsion
© Quantum invariants

@ Invariants from twisted Drinfeld doubles

m = = = E HA®
Daniel Lépez Neumann

Genus bounds from quantum invariants



Motivation
A knot K in S3 is a smoothly embedded S! in S3.
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A knot K in S3 is a smoothly embedded S! in S3.
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Motivation
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A knot K in S3 is a smoothly embedded S! in S3. X\, = 8 \ K
\
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How to distinguish knots up to isotopy? Need topological invariants!
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Classical invariants: 71(Xk), Hi( covering spaces of Xk), Alexander
polynomial Ak(t) € Z[t*1],
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Motivation
A knot K in S3 is a smoothly embedded S! in S3.

A &

How to distinguish knots up to isotopy? Need topological invariants!
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Classical invariants: 71(Xk), Hi( covering spaces of Xk), Alexander
polynomial Ak(t) € Z[t*!], twisted Reidemeister torsion 7(X) € C(t),

p:m(X)— GL(n,C).
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Motivation
A knot K in S3 is a smoothly embedded S*! in S3.

A &

How to distinguish knots up to isotopy? Need topological invariants!

o\

"

Classical invariants: 71(Xk), Hi( covering spaces of Xk), Alexander
polynomial Ax(t) € Z[t*?], twisted Reidemeister torsion 77(X) € C(t),
p:m(X)— GL(n,C).

Quantum invariants: physics, rep. theory (Jones, Witten,
Reshetikhin-Turaev, 80s-90s). Jones polynomial Jk(q) € Z[q™],
HOMELY, etc.
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Question: Topological content? Information about the Seifert genus?
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Question: Topological content? Information about the Seifert genus?

Seifert genus: g(K) := min{g(S) | ortble, connected S C S3,0S5 = K}.
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Question: Topological content? Information about the Seifert genus?

Seifert genus: g(K) := min{g(S) | ortble, connected S C S3,0S5 = K}.

Classical theorem (Alexander): degAk(t) < 2g(K).
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Question: Topological content? Information about the Seifert genus?

Seifert genus: g(K) := min{g(S) | ortble, connected S C S3,0S5 = K}.

Classical theorem (Alexander): degAk(t) < 2g(K).
Friedl-Kim, 2006: deg %) < 25— 1 p: 1 — GL(n,C).
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But genus bounds for quantum invariants? No analogue.
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But genus bounds for quantum invariants? No analogue.

Goal of this talk: find genus bounds with quantum topology techniques
(= rep. theory = Hopf algebra theory for out purposes).
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But genus bounds for quantum invariants? No analogue.

Goal of this talk: find genus bounds with quantum topology techniques
(= rep. theory = Hopf algebra theory for out purposes).

More precisely:

Theorem (LN-van der Veen, '22)

For any f.d. Z-graded Hopf algebra H there is a polynomial invariant
Pu(K,t) € (C[til] of knots K C S3 such that

deg Pr(K,t) < 2g(K)|H|

where |H| = difference between highest Z-degree and lowest Z-degree.
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But genus bounds for quantum invariants? No analogue.

Goal of this talk: find genus bounds with quantum topology techniques
(= rep. theory = Hopf algebra theory for out purposes).

More precisely:

Theorem (LN-van der Veen, '22)

For any f.d. Z-graded Hopf algebra H there is a polynomial invariant
Pu(K,t) € (C[til] of knots K C S3 such that

deg Pr(K,t) < 2g(K)|H|

where |H| = difference between highest Z-degree and lowest Z-degree.

For H= A(C") our thm recovers Friedl-Kim's (in a twisted version
Pf,(K, t) of our knot polynomial, where p : m1(S>\ K) — Aut(H)).
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Reidemeister torsion

In what follows K is a field K = C or C(t).
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Reidemeister torsion

In what follows K is a field K = C or C(t).

Let X be a CW cx. , m = m1(X) and p : m — GL(n,K) an homomorphism.
Let Y C X be a subcx. with x(X,Y) =0.
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Reidemeister torsion

In what follows K is a field K = C or C(t).

Let X be a CW cx. , 7 = m1(X) and p : # — GL(n,K) an homomorphism.
Let Y C X be a subcx. with x(X, Y) =0.Let p: X — X be the universal

covering space of X and Y’ = p~}(Y) C X. Then m ~ (X, Y'), hence
Z|r] ~ Ci(X,Y'). But also Z[r] ~ K" via p.
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Reidemeister torsion

In what follows K is a field K = C or C(t).

Let X be a CW cx. , 7 = m1(X) and p : # — GL(n,K) an homomorphism.
Let Y C X be a subcx. with x(X,Y) =0.Let p: X — X be the universal

covering space of X and Y’ = p~}(Y) C X. Then m ~ (X, Y'), hence
Z|r] ~ Ci(X,Y’). But also Z[r] ~ K" via p. The Reidemeister torsion

of (X,Y,p)is

(X, Y) = 17%8(C.(X,Y') @z, K") € K

where 78 = algebraic torsion.
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Reidemeister torsion

In what follows K is a field K = C or C(t).

Let X be a CW cx. , 7 = m1(X) and p : # — GL(n,K) an homomorphism.
Let Y C X be a subcx. with x(X,Y) =0.Let p: X — X be the universal

covering space of X and Y’ = p~}(Y) C X. Then m ~ (X, Y'), hence
Z|r] ~ Ci(X,Y’). But also Z[r] ~ K" via p. The Reidemeister torsion

of (X,Y,p)is

(X, Y) = T8(C(X, Y) @z, K") € K
where 728 = algebraic torsion.
Special case: dim(X) =2,X© c Y. Then

(X, Y) =det(d @id : G(X,Y)QK" = G (X, Y)9K") e K
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Reidemeister torsion

In what follows K is a field K = C or C(t).

Let X be a CW cx. , 7 = m1(X) and p : # — GL(n,K) an homomorphism.
Let Y C X be a subcx. with x(X,Y) =0.Let p: X — X be the universal

covering space of X and Y’ = p~}(Y) C X. Then 7 ~ (X, Y’), hence
Z|r] ~ Ci(X,Y’). But also Z[r] ~ K" via p. The Reidemeister torsion

of (X,Y,p)is
(X, Y) = T8(C(X, Y) @z, K") € K
where 78 = algebraic torsion. DiC, ¥ o c. (>\</
Special case: dim(X) =2,X© c Y. Then
P(X,Y) =det(d, @id : G(X, YY) K" = G(X,Y)oK") e K

This can be computed easily via Fox calculus given a presentation of 7!
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Special case: dim(X) =2,X© c Y. Then

P(X,Y) =det(d, @id : G(X, YY) K" = G (X, Y') @K").
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Special case: dim(X) =2,X© c Y. Then

P(X,Y) =det(d, @id : G(X, YY) K" = G (X, Y') @K").

Now let K C S be a knot, Mk = 53\ N(K) and p a meridian in OM,
Then (M, i) retracts onto a 2-cx (X, Y') with the above properties and

we define
TP(Mk, 1) = 1°(X,Y) € K.
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Special case: dim(X) =2,X© c Y. Then
P(X,Y) =det(d, @id : G(X, YY) K" = G (X, Y') @K").

Now let K C S3 be a knot, Mk = S3\ N(K) and u a meridian in OM.
Then (M, i) retracts onto a 2-cx (X, Y') with the above properties and

we define
TP(Mk, 1) = 1°(X,Y) € K.

T, M“ - H,. =%
[ K
Now let h: ™ — C(t),[u] — t (abelian rep.).
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Special case: dim(X) =2,X© c Y. Then

P(X,Y) =det(d, @id : G(X, YY) K" = G (X, Y') @K").

Now let K C S3 be a knot, Mk = S3\ N(K) and u a meridian in OM.
Then (M, i) retracts onto a 2-cx (X, Y') with the above properties and

we define
TP(Mk, 1) = 1°(X,Y) € K.

Now let h: ™ — C(t), [u] — t (abelian rep.).
Then 7"(Mk, 1) € Z[t*!] is the Alexander polynomial of K:

" (Mk, p) = Dk(t).
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Let h: m — C(t) be H; — C(t*1), u — t (m = meridian). Then
Th(/\/lK,,u) c Z[tﬂ] is the Alexander polynomial of K:

"My, 1) = Dk (t).
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Let h: m — C(t) be H; — C(t*1), u — t (m = meridian). Then
Th(/\/lK,,u) c Z[tﬂ] is the Alexander polynomial of K:

"Mk, 1) = Dx(t).

Now suppose we are given non-abelian p : m1(Mgk) — GL(n,C). Then p
can be combined with h above to get

p @ h:m(Mk) — GL(n,C(t)),8 — (v t"p(6)(v))

where n = h(6) € Z.
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Let h: m — C(t) be H; — C(t*1), u — t (m = meridian). Then
Th(/\/lK,,u) c Z[til] is the Alexander polynomial of K:

"Mk, 1) = Dx(t).

Now suppose we are given non-abelian p : m1(Mgk) — GL(n,C). Then p
can be combined with h above to get

p @ h:m(Mk) — GL(n,C(t)),8 — (v t"p(6)(v))

where n = h(§) € Z. Then 77" (M, 1) is (essentially) the twisted
Alexander polynomial A% (t) € C[t*!] of K (Lin, Wada, '90s).
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To summarize:

@ Reidemeister torsion is an invariant of pairs (X, p),
p:m(X)— GL(n,K).
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To summarize:
@ Reidemeister torsion is an invariant of pairs (X, p),
p:m(X)— GL(n,K).
@ The usual Alexander polynomial is torsion at the canonical abelian
representation (the projection m; — Hy = Z C C(t)).
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To summarize:

@ Reidemeister torsion is an invariant of pairs (X, p),
p:m(X)— GL(n,K).

@ The usual Alexander polynomial is torsion at the canonical abelian
representation (the projection m; — Hy = Z C C(t)).

@ This polynomial can be twisted with non-abelian
p:m(S3\ K) — GL(n,C) (sometimes canonical, e.g. hyperbolic
knots!).
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To summarize:
@ Reidemeister torsion is an invariant of pairs (X, p),
p:m(X)— GL(n,K).
@ The usual Alexander polynomial is torsion at the canonical abelian
representation (the projection m; — Hy = Z C C(t)).
@ This polynomial can be twisted with non-abelian

p:m(S53\ K) = GL(n,C) (sometimes canonical, e.g. hyperbolic
knots!).

@ In all the above cases, the target of p is infinite (Z for Alex. poly).
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Hopf algebras

Hopf algebra:
@ Algebra (H, m, 1) over K.
@ Coproduct A: H—- H® H and counite: H — K
@ Antipode S : H — H —+ relations.
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Hopf algebras

Hopf algebra:
@ Algebra (H, m, 1) over K.
@ Coproduct A: H—- H® H and counite: H — K
@ Antipode S : H — H —+ relations.

Examples:
QO H=AC"), A(v)=1v+vRlev)=0,Sv)=—vforveC
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Hopf algebras

Hopf algebra:
@ Algebra (H, m, 1) over K.
@ Coproduct A: H—- H® H and counite: H — K
@ Antipode S : H — H —+ relations.

Examples:
QO H=AC"), A(v)=1v+vRlev)=0,Sv)=—vforveC
Q B, = (KT E| KE=q¢*EK),A(E)=E®@K+1® E,A(K) =
K®K,e(E)=0,e(K)=1,S(E) = —EK71,S(K) = K 1.
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Hopf algebras

Hopf algebra:
@ Algebra (H, m, 1) over K.
@ Coproduct A: H—- H® H and counite: H — K
@ Antipode S : H — H —+ relations.

Examples:
QO H=AC"), A(v)=1v+vRlev)=0,Sv)=—vforveC
Q B, = (KT E| KE=q¢*EK),A(E)=E®@K+1® E,A(K) =
K®K,e(E)=0,e(K)=1,S(E) = —EK71,S(K) = K 1.
Q If g°P = 1, the quotient B,/(EP =0, K?P) = 1)is a Hopf algebra.
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra with multiplication

(p®a)-(q® b) = (qa), S (a3)))(a3)> 21))P - 92) @ a2)b
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra with multiplication

L
(lg%i) (g ® b) :==(q1), S~ (a)))(a), a))P - G(2) @ a)b 65&®
SITR S
or graphically A (‘Q - qu B Xy
om > \ \
L8N IS, AR AR Zowel
N, 7 5 o

AM_;;\J(@M

W‘H\
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra with multiplication

(p®a)-(q®b) :={qu),S *(a3))){a@) a1))P - q2) © a(2)b
or graphically

N —

m —

f |
3 >
N/
4

Why is D(H) interesting? Because R € D(H)®? defined by

e

R = Z(é@h;)@(hi®1l)‘:2hi®hi e D(H)®?
N o '
Q) .
where h; is a basis of H and h' € H* is the dual basis, satisfies
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra with multiplication

(p®a)-(q®b) :={qu),S *(a3))){a@) a1))P - q2) © a(2)b
or graphically

N —

m —

f |
3 >
N/
4

Why is D(H) interesting? Because R € D(H)®? defined by
R=> (e@h)®(h@l)=) hoh € D(H)
where h; is a basis of H and h' € H* is the dual basis, satisfies

(RIDVIXR)(R®1)=(1R)(R®1)(1®R)
in D(H)®3 (Yang-Baxter eqtn).
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The Drinfeld double of a Hopf algebra H is D(H) := H* ® H as a
coalgebra with multiplication

(p®a)-(q®b) :={qu),S *(a3))){a@) a1))P - q2) © a(2)b
or graphically

N —

m —

f |
3 >
N/
4

Why is D(H) interesting? Because R € D(H)®? defined by
R=> (e@h)®(h@l)=) hoh € D(H)
where h; is a basis of H and h' € H* is the dual basis, satisfies

(RIDVIXR)(R®1)=(1R)(R®1)(1®R)

in D(H)®3 (Yang-Baxter eqtn). It is called an R-matrix.
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R=>(e®h)®(h®1)=> h ®@h' € D(H)®? where h; is a basis of H
and h' € H* is the dual basis, satisfies

(Ro1)(1®R)R®1) = (12 R)(R21)(1R).
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R=>(e®h)®(h®1)=> h ®@h' € D(H)®? where h; is a basis of H
and h' € H* is the dual basis, satisfies

(Ro1)(1®R)R®1) = (12 R)(R21)(1R).

Topologically:

,{
0 /N0
\

&&O&%®m
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Here is the proof of this:

AR AR R ) B 0% © bl
Q=§Q®W

Ok\G D) © (H) )& D e D(H

L,




The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R? x [0, 1]):
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R? x [0, 1]):

Step 1: Put copies of the R-matrix on all crossings.
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R? x [0, 1]):

Step 1: Put copies of the R-matrix on all crossings.

R x 1 2 Z@ D{A

q

" H*

i x0

Step 2: Follow the orientation of each component and multiply in D(H).
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R? x [0, 1]):

Step 1: Put copies of the R-matrix on all crossings.
. Q1

2

<o
Step 2: Follow the orientation of each component and multiply in D(H).

bbb gh € Diy)

The result is Zy(T) € D(H)®™ (m = number of cmpnts. of T).
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R? x [0, 1]):

Step 1: Put copies of the R-matrix on all crossings.
2 x

1 xo
Step 2: Follow the orientation of each component and multiply in D(H).

hobebt b2, e Diy)

The result is Zy(T) € D(H)®™ (m = number of cmpnts. of T). This is
typically evaluated on try, V € D(H)-mod.
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(?)

The above story leads to Jones (when H = B;), HOMFLY.
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras = Invariants of pairs
(T,p) where T C R* x [0,1] and p : my(X7) = G.
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras = Invariants of pairs
(T,p) where T C R® x [0,1] and p : mi(X7) = G.
Group-graded means:

@ {A,}acc family of algebras.
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras = Invariants of pairs
(T,p) where T C R? x [0,1] and p : m1(XT) — G.
Group-graded means:

o {A.}acc family of algebras.

@ Ayp:Ang — Ay ® Ag.
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras = Invariants of pairs
(T,p) where T C R* x [0,1] and p : my(X7) = G.

bio )
® {A,}aec family of algebras. G- Gosed (. (ded

© Nyp:Aug — Aa ® Ag. womordal AL
@ So Ay — A 1.

Group-graded means:
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The above story leads to Jones (when H = B;), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data p : m1(Xx) — GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras = Invariants of pairs
(T,p) where T C R* x [0,1] and p : my(X7) = G.

Group-graded means:
Ao )
@ {A,}acc family of algebras. RQ’? [ =
@ Ayp:Ang — Ay ® Ag. G' (v

o Sa : Aa — Aa—1.

Rmk: Recall that we want infinite groups as target. By a theorem of

Etingof-@QW-Ostrik we are forced to consider non-semisimple Hopf
algebras (or monoidal categories).

V\/?K%&\{cu\ '0S
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Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let G = Autpopr(H).
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Twisted Drinfeld double (vmm;wl \O’b)

Let H be a f.d. Hopf algebra and let G = Autpopr(H).
For each a € G let D, = H* ® H with multiplication
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Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let G = Autpopr(H).
For each a € G let D, = H* ® H with multiplication

This is NOT a Hopf algebra (if a # idy) but there is a “coproduct”
Aa,ﬁ : Dag — D, ® Dﬁ

and antipode S, : D, — D, -1, satisfying graded versions of Hopf axioms.
Thus, it is group-graded in the sense of Turaev.
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What is the twisted Drinfeld double of
H= (Kt E | KE = q?EK,EP = 0, K?P = 1) (q primitive 2p-th root of
1)?
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What is the twisted Drinfeld double of

H= (Kt E | KE = q?EK,EP = 0, K?P = 1) (q primitive 2p-th root of
1)?

Consider the subgroup C* of Aut(H) acting by ¢:(E) = tE, ¢+(K) = K,
t € C*. We can define F, k € H* so that the above relations are
K—t 1k

EF — FE = .
q-q

Daniel Lépez Neumann Genus bounds from quantum invariants



What is the twisted Drinfeld double of
H= (Kt E | KE = q?EK,EP = 0, K?P = 1) (q primitive 2p-th root of
1)?

Consider the subgroup C* of Aut(H) acting by ¢:(E) = tE, ¢+(K) = K,
t € C*. We can define F, k € H* so that the above relations are
K—t 1k

EF — FE = .
q-q

But here K2P = 1. If we set K/ = t1/2K, E' = tY/2E then get

K' — K
qg—q!

[E/aF] =

and (K')?P = tP.
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What is the twisted Drinfeld double of

H= (Kt E | KE = q?EK,EP = 0, K?P = 1) (q primitive 2p-th root of
1)?

Consider the subgroup C* of Aut(H) acting by ¢:(E) = tE, ¢+(K) = K,
t € C*. We can define F, k € H* so that the above relations are

K —t 1k

EF — FE = .
q-q

But here K2P = 1. If we set K/ = t1/2K, E' = tY/2E then get
(L) l?q / K' — K
_ E' F|=

and (K')?P = tP. So the twisted Drinfeld double is essentially the
semi-restricted Ug(sly) (after quotient Kk = 1 and t = ¢g°%)
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G-braiding

The twisted Drinfeld double {D, = H* ® H}caut(H) is Aut(H)-braided in
the sense that:

There are isomorphisms ¢, : Dg — D,5,-1 and R-matrices
Ra,ﬁ eD,® Dﬁi

wa(h* @ h)=h"o a e a(h),

Rag = o(h)®h € Dy ® Dy

where h; is a basis of H and h' € H* is the dual basis + relations.
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Invariants of G-tangles
Consider a (1,1)-tangle T equipped with p : m(X7) — G = Aut(H).
Step 1. Put G-labels on the edges of a planar diagram of T via p:
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Invariants of G-tangles
Consider a (1,1)-tangle T equipped with p : m(X7) — G = Aut(H).

Step 1. Put G-labels on the edges of a planar diagram of T via p:

afBa!

Y . y a = p(7ve) \
. Q} B =p(e) \
Yer 7 =

-~
(5
e

\

e
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Invariants of G-tangles
Consider a (1,1)-tangle T equipped with p : m(X7) — G = Aut(H).
Step 1. Put G-labels on the edges of a planar diagram of T via p:

Ve y g P ’Ye) /
F N

Step 2. Put one copy of R, 3 € Dy, ® Dg and ¢, at each crossing (with

labels «, 3):
Pay
a(h,-) hi
a 8
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Step 3: Put the group-like g such that SE)(H) — gxg ! on right caps/cups:

LA U e U
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! on right caps/cups:

Step 3: Put the group-like g such that SE)(H) = gxg~

LA U e U

Example:
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1

Step 3: Put the group-like g such that SE)(H) — gxg ! on right caps/cups:

o a\/laga(’\ e (P(b

Example:

Step 4: Multiply the elements encountered while following the orientation
of T + Apply ¢,'s. This results in an element Z[,(T) € H* @ H.
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! on right caps/cups:

Step 3: Put the group-like g such that SE)(H) = gxg~

LA U e U

Example:

Step 4: Multiply the elements encountered while following the orientation
of T + Apply ¢,'s. This results in an element Z[,(T) € H* @ H.

Here Z{(T) = pp(hkaBat(h)pa(h'gB(hk)Pasa—1 (Wa(hi)))).
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Theorem (Reshetikhin-Turaev, Turaev): Z/(T) € H* ® H is an invariant
of the pair (T, p).

Daniel Lépez Neumann Genus bounds from quantum invariants



Theorem (Reshetikhin-Turaev, Turaev): Z/(T) € H* ® H is an invariant
of the pair (T, p).

To get an invariant of (K, p): need to apply a Aut(H)-invariant functional.

For instance
PL(K) = epm)(Z4(T)) & d:
where epy(p @ h) = p(1)e(h).
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Trefoil example
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Trefoil example
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Trefoil example
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Trefoil example

Ex: If H= A(C"), Aut(H) = GL(n,C) and the above tensor is

tr(A(F a0 — a7 lg a7 ) = det(5Ta 15— oL e B — 1)

— det (0 (8&&165;4 5 ))

= 7°(Mk, ).
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Trefoil example

Ex: IfH:Bq/(EP:O,K2P:1) at p=4
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Trefoil example

0—1
; |
5—1
9—1
N

Ex: If H= By/(EP = 0,K2" = 1) at p = 4 and
p: HiMyk — Aut(H), [u] — 0 where 0(E) = tE,0(K) = K then the above
tensor is

s i o1 |
t_It_ﬁ___(l_l)t+T+(1+21)'
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Trefoil example

9-1
\__/
Ex: If H=By/(EP =0,K?’ =1) at p=4 and

p: HiMyk — Aut(H), [u] — 0 where 0(E) = tE,0(K) = K then the above
tensor is

s i o1 |
t—/t—p———(l—l)t+T+(1+2/).

After t = g 2x:ibx3 + ix? + & + 5 + (14 i)x + B 4+ (1 + 2i)
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Special cases of P (K):

@ (LN "19-22) If H = A(C"), then Aut(H) = GL(n,C) and we get
twisted Reidemeister torsion: Ul
oSt )

N

PR cny (K) = 7(Mic, 1)
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Special cases of P (K):

@ (LN "19-22) If H = A(C"), then Aut(H) = GL(n,C) and we get
twisted Reidemeister torsion:

PR ey (K) = 7(Mic, 1)

o (LN-vdV '22) If g = ¢™/P, H= B,/(EP = 0, K?’ = 1) and
p(E) = tE then

P (K) = “ADO polynomial”

(Akutsu-Deguchi-Ohtsuki, '91) also called a “colored” Alexander
Invariant.
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Lifting to polynomials
Suppose H is Z-graded and let H' = H @ C[t*!]. Then any
p: m1(Xk) = Aut(H) extends to p ® h : w1 (Xk) — Aut(H’) by

p® h(5)(x) = " p(x)

where n = h(6) in h: m(Xkx) - H1 =Z and x € H.
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Lifting to polynomials
Suppose H is Z-graded and let H' = H ® C[t™!]. Then any
p: m1(Xk) = Aut(H) extends to p ® h : w1 (Xk) — Aut(H’) by

P =1 @ h(6)(x) = "™
PO =) oy
where n = h(6) in h: m(Xkx) - H1 =Z and x € H.
Thus, we define
Pl(K,t) = PP (K) € C[tT].

h &
=Py ()
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Lifting to polynomials
Suppose H is Z-graded and let H' = H ® C[t™!]. Then any
p: m1(Xk) = Aut(H) extends to p ® h : w1 (Xk) — Aut(H’) by

p® h(5)(x) = " p(x)

where n = h(6) in h: m(Xkx) - H1 =Z and x € H.

Thus, we define
PP(K, t) == PPER(K) e C[tHY.

This is the “twisted” knot polynomial of our main thm:

Theorem (LN-van der Veen, '22)

For any f.d. Z-graded Hopf algebra H there is a knot polynomial
PL(K,t), where p: m1(Mk) — Aut(H), such that .| ADQ

deg Py(K, t) < 2g(K)@T=@
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Sketch of proof (g(K) = 1 case)
Let S be a genus 1 Seifert surface of K. Isotope S to D? U N(T) where T
is a &g-tangle:

— Do&@ ®0\‘(

W\

Then the invariant of each band is of the form D CH\
Dy p-1(x),x € Dig,, = D(H)! Thus, the 0-twisted invariant of K is

computed as A
W |€=
_ Ol [£*]

ZIIJI(K) - m§48’P(id ® S¢-10 At,t_1)®2&ZT)? Z1 € Digy-
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Thanks!

Daniel Lépez Neumann Genus bounds fr ntum invariants



Some computations

lLet's see what happens with the first two knots with Ak = 1, the
Kinoshita-Terasaka (KT) and the Conway knot. These are “mutants” so
all sl> invariants coincide!

If H = quantum Borel of sl3 at ¢ =/, and h(E1) = xE1, h(E2) = yE>
P'"KT,x,y)iss —  ——

12x%y% — 34xPy* 4 34x0y2 — 34x%y® 4 148x*y* — 228x%y? — 3;—)2‘4 +

34x2y0 228x2y4+496x2y2+22;32x B 2y T Sy 4%

x2 x4

228 228 148 34 34 34 6
2 + X6 2 X2y4 + xAy7 — X6y4 + X2y6 — X4y6 + X6y6 — 12x -+ 148X —

196x2 496+@—%—12y6+148y —496y* — VP + M2 — 2 721
E. \E«m/Ev\ [ (=Y
Ugly... but degree is 12 (in x°, y?) and |H| = 4 so our bound is

degP < 8g(K). Thus, itis g > 1! Thereis a SS of g =2 so g(KT) = 2.
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If H = quantum Borel of sl3 at g =i, and h(E1) = xE1, h(E2) = yE>
Ph'(CONWAY , x,y) is:

2y8 12 4y X124—2y4 12 4y10X104—4y8x104—8y6 10 8y4 10 4y2X10%—

4x10 42y 1258 1 41058 _20),8x8 + 8y X8—|—12y x8 + 8y X8—|—M+2yi48—
20x8 — 4y12x6 — 8y10X6 — 8y8x6 — 4y 46y4x6 +46y x0 — % — 8)16 +

4X + 4x5 + 2y2x% — 8y 10x* + 12y8x% — 46y0x* + 164y*x* — 248y2x4 —

4)6/)5 + 1)2/2( 8yX6 + 2yX84 + 164x% — 4y10x? 4+ 8y8x? + 46y°x? — 248y*x? +
476y2x2 + MBS 408 BC L 0 47652 +4y10 4 2 4 200 00)8 +
U+ ay® + BE 4 25 164yt 20 4 U 4767 — By S 4
8y®  46y? + 164 8y*  8y? 44 20 XZ{O . 476 + 2 476 248 462 4

o X4 %0 %0 %0 x4y
8 164 248 164 46 12 4
Xsyz_xloz‘l' 4"‘ 4‘|‘ X104+X124‘|’)7+X
46 4 20 20 4
x4y6 6‘|' 6‘|‘X1o T X126 8+ 8‘|’ 8+ 8+X10 g T
2 4 4 8 8 4 4 2
x12)/8 + yI0 7 %210 T 34,10 + 610 T x8y10 — 510,10 + xAyT2 12 ‘|' Y12 + 649

Uglier... but degree is 20 (in x2, y?) and degP < 8g(K) so g > 2! There
is a SS of g = 3 so g(CONWAY') = 3.
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