
Genus bounds from quantum invariants
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Motivation
A knot K in S3 is a smoothly embedded S1 in S3.

How to distinguish knots up to isotopy? Need topological invariants!

Classical invariants: π1(XK ), H1( covering spaces of XK ), Alexander
polynomial ∆K (t) ∈ Z[t±1], twisted Reidemeister torsion τρ(X ) ∈ C(t),
ρ : π1(X ) → GL(n,C).

Quantum invariants: physics, rep. theory (Jones, Witten,
Reshetikhin-Turaev, 80s-90s). Jones polynomial JK (q) ∈ Z[q±1],
HOMFLY, etc.
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Question: Topological content? Information about the Seifert genus?

Seifert genus: g(K ) := min{g(S) | ortble, connected S ⊂ S3, ∂S = K}.

g(S) = 1

Classical theorem (Alexander): deg∆K (t) ≤ 2g(K ).

Friedl-Kim, 2006: deg τρ⊗h(XK )
n ≤ 2g − 1, ρ : π1 → GL(n,C).
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More precisely:

Theorem (LN-van der Veen, ’22)

For any f.d. Z-graded Hopf algebra H there is a polynomial invariant

PH(K , t) ∈ C[t±1] of knots K ⊂ S3 such that

deg PH(K , t) ≤ 2g(K )|H|

where |H| = difference between highest Z-degree and lowest Z-degree.
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Goal of this talk: find genus bounds with quantum topology techniques
(= rep. theory = Hopf algebra theory for out purposes).

More precisely:

Theorem (LN-van der Veen, ’22)

For any f.d. Z-graded Hopf algebra H there is a polynomial invariant

PH(K , t) ∈ C[t±1] of knots K ⊂ S3 such that

deg PH(K , t) ≤ 2g(K )|H|

where |H| = difference between highest Z-degree and lowest Z-degree.

For H = Λ(Cn) our thm recovers Friedl-Kim’s (in a twisted version
P
ρ
H(K , t) of our knot polynomial, where ρ : π1(S3 \ K ) → Aut(H)).
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In what follows K is a field K = C or C(t).
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of (X ,Y , ρ) is

τρ(X ,Y ) := τ alg (C∗(X̃ ,Y ′)⊗Z[π] K
n) ∈ K

where τ alg= algebraic torsion.

Special case: dim(X ) = 2,X (0) ⊂ Y . Then

τρ(X ,Y ) = det(∂2 ⊗ id : C2(X̃ ,Y ′)⊗K
n → C1(X̃ ,Y ′)⊗K

n) ∈ K

This can be computed easily via Fox calculus given a presentation of π!
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Then (MK , µ) retracts onto a 2-cx (X ,Y ) with the above properties and
we define

τρ(MK , µ) := τρ(X ,Y ) ∈ K.

Now let h : π → C(t), [µ] → t (abelian rep.).
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Daniel López Neumann Genus bounds from quantum invariants 7 / 30



Let h : π → C(t) be H1 → C(t±1), µ → t (m = meridian). Then
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τh(MK , µ) ∈ Z[t±1] is the Alexander polynomial of K :

τh(MK , µ) = ∆K (t).

Now suppose we are given non-abelian ρ : π1(MK ) → GL(n,C). Then ρ
can be combined with h above to get

ρ⊗ h : π1(MK ) → GL(n,C(t)), δ '→ (v '→ tnρ(δ)(v))

where n = h(δ) ∈ Z.
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Let h : π → C(t) be H1 → C(t±1), µ → t (m = meridian). Then
τh(MK , µ) ∈ Z[t±1] is the Alexander polynomial of K :

τh(MK , µ) = ∆K (t).

Now suppose we are given non-abelian ρ : π1(MK ) → GL(n,C). Then ρ
can be combined with h above to get

ρ⊗ h : π1(MK ) → GL(n,C(t)), δ '→ (v '→ tnρ(δ)(v))

where n = h(δ) ∈ Z. Then τρ⊗h(MK , µ) is (essentially) the twisted

Alexander polynomial ∆ρ
K (t) ∈ C[t±1] of K (Lin, Wada, ’90s).
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To summarize:

Reidemeister torsion is an invariant of pairs (X , ρ),
ρ : π1(X ) → GL(n,K).
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To summarize:

Reidemeister torsion is an invariant of pairs (X , ρ),
ρ : π1(X ) → GL(n,K).

The usual Alexander polynomial is torsion at the canonical abelian
representation (the projection π1 → H1 = Z ⊂ C(t)).

This polynomial can be twisted with non-abelian
ρ : π1(S3 \ K ) → GL(n,C) (sometimes canonical, e.g. hyperbolic
knots!).

In all the above cases, the target of ρ is infinite (Z for Alex. poly).
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Hopf algebras

Hopf algebra:

Algebra (H,m, 1) over K.

Coproduct ∆ : H → H ⊗ H and counit ε : H → K

Antipode S : H → H + relations.
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Daniel López Neumann Genus bounds from quantum invariants 10 / 30



Hopf algebras

Hopf algebra:

Algebra (H,m, 1) over K.

Coproduct ∆ : H → H ⊗ H and counit ε : H → K

Antipode S : H → H + relations.

Examples:

1 H = Λ(Cn), ∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0,S(v) = −v for v ∈ Cn.

2 Bq = 〈K±1,E | KE = q2EK 〉,∆(E ) = E ⊗ K + 1⊗ E ,∆(K ) =
K ⊗ K , ε(E ) = 0, ε(K ) = 1,S(E ) = −EK−1,S(K ) = K−1.
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Antipode S : H → H + relations.

Examples:

1 H = Λ(Cn), ∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0,S(v) = −v for v ∈ Cn.

2 Bq = 〈K±1,E | KE = q2EK 〉,∆(E ) = E ⊗ K + 1⊗ E ,∆(K ) =
K ⊗ K , ε(E ) = 0, ε(K ) = 1,S(E ) = −EK−1,S(K ) = K−1.

3 If q2p = 1, the quotient Bq/(Ep = 0,K 2p) = 1 is a Hopf algebra.
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The Drinfeld double of a Hopf algebra H is D(H) := H∗ ⊗ H as a
coalgebra
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Why is D(H) interesting? Because R ∈ D(H)⊗2 defined by

R =
∑

(ε⊗ hi)⊗ (hi ⊗ 1) =
∑

hi ⊗ hi ∈ D(H)⊗2

where hi is a basis of H and hi ∈ H∗ is the dual basis, satisfies

(R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1⊗ R)(R ⊗ 1)(1⊗ R)

in D(H)⊗3 (Yang-Baxter eqtn). It is called an R-matrix.
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R =
∑

(ε⊗ hi)⊗ (hi ⊗ 1) =
∑

hi ⊗ hi ∈ D(H)⊗2 where hi is a basis of H
and hi ∈ H∗ is the dual basis, satisfies

(R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1⊗ R)(R ⊗ 1)(1 ⊗ R).

Topologically:
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Here is the proof of this:
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R2 × [0, 1]):
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The above implies that we can define tangle invariants from D(H)
(tangle = 1-submanifold properly embedded in R2 × [0, 1]):

Step 1: Put copies of the R-matrix on all crossings.

Step 2: Follow the orientation of each component and multiply in D(H).

The result is ZH(T ) ∈ D(H)⊗m (m = number of cmpnts. of T ). This is
typically evaluated on tr V , V ∈ D(H)-mod.
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The above story leads to Jones (when H = Bq), HOMFLY.
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The above story leads to Jones (when H = Bq), HOMFLY.

But how does Reidemeister torsion enter this picture if it depends on
additional data ρ : π1(XK ) → GL(n,C)?

Turaev (2000): “group-graded” Hopf algebras ⇒ Invariants of pairs
(T , ρ) where T ⊂ R2 × [0, 1] and ρ : π1(XT ) → G .

Group-graded means:

{Aα}α∈G family of algebras.

∆α,β : Aαβ → Aα ⊗ Aβ.

Sα : Aα → Aα−1 .

Rmk: Recall that we want infinite groups as target. By a theorem of
Etingof-Gelaki-Ostrik we are forced to consider non-semisimple Hopf
algebras (or monoidal categories).
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Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let G = AutHopf (H).
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Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let G = AutHopf (H).

For each α ∈ G let Dα = H∗ ⊗ H with multiplication

∆

m

S−1

m

∆

α−1

This is NOT a Hopf algebra (if α ,= idH) but there is a “coproduct”

∆α,β : Dαβ → Dα ⊗ Dβ

and antipode Sα : Dα → Dα−1 , satisfying graded versions of Hopf axioms.
Thus, it is group-graded in the sense of Turaev.
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What is the twisted Drinfeld double of
H = 〈K±1,E | KE = q2EK ,Ep = 0,K 2p = 1〉 (q primitive 2p-th root of
1)?
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What is the twisted Drinfeld double of
H = 〈K±1,E | KE = q2EK ,Ep = 0,K 2p = 1〉 (q primitive 2p-th root of
1)?

Consider the subgroup C∗ of Aut(H) acting by φt(E ) = tE ,φt(K ) = K ,
t ∈ C∗. We can define F , k ∈ H∗ so that the above relations are

EF − FE =
K − t−1k

q − q−1
.
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What is the twisted Drinfeld double of
H = 〈K±1,E | KE = q2EK ,Ep = 0,K 2p = 1〉 (q primitive 2p-th root of
1)?

Consider the subgroup C∗ of Aut(H) acting by φt(E ) = tE ,φt(K ) = K ,
t ∈ C∗. We can define F , k ∈ H∗ so that the above relations are

EF − FE =
K − t−1k

q − q−1
.

But here K 2p = 1. If we set K ′ = t1/2K ,E ′ = t1/2E then get

[E ′,F ] =
K ′ − k ′

q − q−1

and (K ′)2p = tp.
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What is the twisted Drinfeld double of
H = 〈K±1,E | KE = q2EK ,Ep = 0,K 2p = 1〉 (q primitive 2p-th root of
1)?

Consider the subgroup C∗ of Aut(H) acting by φt(E ) = tE ,φt(K ) = K ,
t ∈ C∗. We can define F , k ∈ H∗ so that the above relations are

EF − FE =
K − t−1k

q − q−1
.

But here K 2p = 1. If we set K ′ = t1/2K ,E ′ = t1/2E then get

[E ′,F ] =
K ′ − k ′

q − q−1

and (K ′)2p = tp. So the twisted Drinfeld double is essentially the
semi-restricted Uq(sl2) (after quotient Kk = 1 and t = q2α)!
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G-braiding

The twisted Drinfeld double {Dα = H∗ ⊗ H}α∈Aut(H) is Aut(H)-braided in
the sense that:

There are isomorphisms ϕα : Dβ → Dαβα−1 and R-matrices
Rα,β ∈ Dα ⊗ Dβ:

ϕα(h
∗ ⊗ h) = h∗ ◦ α−1 ⊗ α(h),

Rα,β =
∑

α(hi )⊗ hi ∈ Dα ⊗ Dβ

where hi is a basis of H and hi ∈ H∗ is the dual basis + relations.
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Invariants of G -tangles

Consider a (1, 1)-tangle T equipped with ρ : π1(XT ) → G = Aut(H).

Step 1. Put G -labels on the edges of a planar diagram of T via ρ:
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Invariants of G -tangles

Consider a (1, 1)-tangle T equipped with ρ : π1(XT ) → G = Aut(H).

Step 1. Put G -labels on the edges of a planar diagram of T via ρ:

γe

e

e′
z

α β

αβα−1

α = ρ(γe)α = ρ(γe)
β = ρ(γe′)

e′′

γe′
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Invariants of G -tangles

Consider a (1, 1)-tangle T equipped with ρ : π1(XT ) → G = Aut(H).

Step 1. Put G -labels on the edges of a planar diagram of T via ρ:

γe

e

e′
z

α β

αβα−1

α = ρ(γe)α = ρ(γe)
β = ρ(γe′)

e′′

γe′

Step 2. Put one copy of Rα,β ∈ Dα ⊗ Dβ and ϕα at each crossing (with
labels α,β):

α(hi ) hi
ϕα

α β
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Step 3: Put the group-like g such that S2
D(H) = gxg−1 on right caps/cups:

g−1
g1α

1α

α α

α α
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Step 3: Put the group-like g such that S2
D(H) = gxg−1 on right caps/cups:

g−1
g1α

1α

α α

α α

Example:

β

α

α

α(hi ) hi

αβα−1(hj) hj

β(hk) hk
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Step 3: Put the group-like g such that S2
D(H) = gxg−1 on right caps/cups:

g−1
g1α

1α

α α

α α

Example:

β

α

α

α(hi ) hi

αβα−1(hj) hj

β(hk) hk

Step 4: Multiply the elements encountered while following the orientation
of T + Apply ϕα’s. This results in an element Z ρ

H(T ) ∈ H∗ ⊗ H.
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Step 3: Put the group-like g such that S2
D(H) = gxg−1 on right caps/cups:

g−1
g1α

1α

α α

α α

Example:

β

α

α

α(hi ) hi

αβα−1(hj) hj

β(hk) hk

Step 4: Multiply the elements encountered while following the orientation
of T + Apply ϕα’s. This results in an element Z ρ

H(T ) ∈ H∗ ⊗ H.

Here Z
ρ
H(T ) = ϕβ(hkαβα−1(hj)ϕα(higβ(hk)ϕαβα−1(hjα(hi )))).
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Theorem (Reshetikhin-Turaev, Turaev): Z ρ
H(T ) ∈ H∗ ⊗ H is an invariant

of the pair (T , ρ).
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Theorem (Reshetikhin-Turaev, Turaev): Z ρ
H(T ) ∈ H∗ ⊗ H is an invariant

of the pair (T , ρ).

To get an invariant of (K , ρ): need to apply a Aut(H)-invariant functional.
For instance

P
ρ
H(K ) := εD(H)(Z

ρ
H(T ))

where εD(H)(p ⊗ h) = p(1)ε(h).
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Trefoil example

β

α
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Trefoil example

β

α
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Trefoil example

S−1

α−1

β−1α−1β
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Trefoil example

S−1

α−1

β−1α−1β

Ex: If H = Λ(Cn), Aut(H) = GL(n,C) and the above tensor is

tr (Λ(β−1α−1β − α−1β−1α−1β)) = det(β−1α−1β − α−1β−1α−1β − In)

= det

(
σ

(
∂αβαβ−1α−1β−1

∂β

))

= τρ(MK , µ).
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Trefoil example

S−1

θ−1

θ−1

Ex: If H = Bq/(Ep = 0,K 2p = 1) at p = 4
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Trefoil example

S−1

θ−1

θ−1

Ex: If H = Bq/(Ep = 0,K 2p = 1) at p = 4 and
ρ : H1MK → Aut(H), [µ] → θ where θ(E ) = tE , θ(K ) = K then the above
tensor is

t3 − it2 −
i

t2
−

1

t3
− (1− i)t +

1− i

t
+ (1 + 2i).
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Trefoil example

S−1

θ−1

θ−1

Ex: If H = Bq/(Ep = 0,K 2p = 1) at p = 4 and
ρ : H1MK → Aut(H), [µ] → θ where θ(E ) = tE , θ(K ) = K then the above
tensor is

t3 − it2 −
i

t2
−

1

t3
− (1− i)t +

1− i

t
+ (1 + 2i).

After t = q−2x :ix3 + ix2 + i
x2

+ i
x3

+ (1 + i)x + 1+i
x + (1 + 2i)
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Special cases of Pρ
H(K ):

(LN ’19-22) If H = Λ(Cn), then Aut(H) = GL(n,C) and we get
twisted Reidemeister torsion:

Pρ
Λ(Cn)(K ) = τρ(MK , µ).
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Special cases of Pρ
H(K ):

(LN ’19-22) If H = Λ(Cn), then Aut(H) = GL(n,C) and we get
twisted Reidemeister torsion:

Pρ
Λ(Cn)(K ) = τρ(MK , µ).

(LN-vdV ’22) If q = eπi/p, H = Bq/(Ep = 0,K 2p = 1) and
ρ(E ) = tE then

Pρ
H(K ) = “ADO polynomial”

(Akutsu-Deguchi-Ohtsuki, ’91) also called a “colored” Alexander
invariant.
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Lifting to polynomials
Suppose H is Z-graded and let H ′ = H ⊗ C[t±1]. Then any
ρ : π1(XK ) → Aut(H) extends to ρ⊗ h : π1(XK ) → Aut(H ′) by

ρ⊗ h(δ)(x) = tn|x |ρ(x)

where n = h(δ) in h : π1(XK ) → H1 = Z and x ∈ H.
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Lifting to polynomials
Suppose H is Z-graded and let H ′ = H ⊗ C[t±1]. Then any
ρ : π1(XK ) → Aut(H) extends to ρ⊗ h : π1(XK ) → Aut(H ′) by

ρ⊗ h(δ)(x) = tn|x |ρ(x)

where n = h(δ) in h : π1(XK ) → H1 = Z and x ∈ H.

Thus, we define
Pρ
H(K , t) := Pρ⊗h

H (K ) ∈ C[t±1].
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Lifting to polynomials
Suppose H is Z-graded and let H ′ = H ⊗ C[t±1]. Then any
ρ : π1(XK ) → Aut(H) extends to ρ⊗ h : π1(XK ) → Aut(H ′) by

ρ⊗ h(δ)(x) = tn|x |ρ(x)

where n = h(δ) in h : π1(XK ) → H1 = Z and x ∈ H.

Thus, we define
Pρ
H(K , t) := Pρ⊗h

H (K ) ∈ C[t±1].

This is the “twisted” knot polynomial of our main thm:

Theorem (LN-van der Veen, ’22)

For any f.d. Z-graded Hopf algebra H there is a knot polynomial

Pρ
H(K , t), where ρ : π1(MK ) → Aut(H), such that

deg PH(K , t) ≤ 2g(K )|H|.
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Sketch of proof (g(K ) = 1 case)
Let S be a genus 1 Seifert surface of K . Isotope S to D2 ∪ N(T ) where T
is a 4g -tangle:

Then the invariant of each band is of the form
∆θ,θ−1(x), x ∈ DidH = D(H)! Thus, the θ-twisted invariant of K is
computed as

Z h
H(K ) = m(4)

t P(id⊗ St−1 ◦∆t,t−1)⊗2(ZT ), ZT ∈ DidH .
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Thanks!
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Some computations

Let’s see what happens with the first two knots with ∆K = 1, the
Kinoshita-Terasaka (KT) and the Conway knot. These are “mutants” so
all sl2 invariants coincide!

If H = quantum Borel of sl3 at q = i , and h(E1) = xE1, h(E2) = yE2

Ph(KT , x , y) is:

12x6y6 − 34x6y4 + 34x6y2 − 34x4y6 + 148x4y4 − 228x4y2 − 34x4

y2 +

34x2y6− 228x2y4 +496x2y2 + 228x2

y2 − 34x2

y4 + 228y2

x2
− 34y4

x2
− 34y2

x4
+ 496

x2y2 −
228
x4y2 +

34
x6y2 −

228
x2y4 +

148
x4y4 −

34
x6y4 +

34
x2y6 −

34
x4y6 +

12
x6y6 − 12x6 + 148x4 −

496x2 − 496
x2

+ 148
x4

− 12
x6

− 12y6 + 148y4 − 496y2 − 496
y2 + 148

y4 − 12
y6 + 721

Ugly... but degree is 12 (in x2, y2) and |H| = 4 so our bound is
degP ≤ 8g(K ). Thus, it is g > 1! There is a SS of g = 2 so g(KT ) = 2.
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If H = quantum Borel of sl3 at q = i , and h(E1) = xE1, h(E2) = yE2

Ph(CONWAY , x , y) is:

2y8x12−4y6x12+2y4x12−4y10x10+4y8x10+8y6x10−8y4x10−4y2x10+
4x10 +2y12x8 +4y10x8 − 20y8x8 +8y6x8 +12y4x8 +8y2x8 + 4x8

y2 + 2x8

y4 −

20x8 − 4y12x6 +8y10x6 +8y8x6 − 4y6x6 − 46y4x6 +46y2x6− 8x6

y2 − 8x6

y4 +
4x6

y6 + 4x6 + 2y12x4 − 8y10x4 + 12y8x4 − 46y6x4 + 164y4x4 − 248y2x4 −
46x4

y2 + 12x4

y4 − 8x4

y6 + 2x4

y8 + 164x4 − 4y10x2 + 8y8x2 + 46y6x2 − 248y4x2 +

476y2x2 + 248x2

y2 − 46x2

y4 − 8x2

y6 + 4x2

y8 − 476x2 + 4y10 + 4y8

x2
+ 2y8

x4
− 20y8 +

4y6

x6
+4y6 + 12y4

x4
+ 2y4

x8
+164y4 + 248y2

x2
+ 4y2

x8
− 476y2 − 8y6

x2
− 46y4

x2
− 476

x2
−

8y6

x4
− 46y2

x4
+ 164

x4
− 8y4

x6
− 8y2

x6
+ 4

x6
− 20

x8
+ 4

x10
− 476

y2 + 476
x2y2 −

248
x4y2 +

46
x6y2 +

8
x8y2 −

4
x10y2 +

164
y4 − 248

x2y4 +
164
x4y4 −

46
x6y4 +

12
x8y4 −

8
x10y4 +

2
x12y4 +

4
y6 +

46
x2y6 −

46
x4y6 −

4
x6y6 +

8
x8y6 +

8
x10y6 −

4
x12y6 −

20
y8 +

8
x2y8 +

12
x4y8 +

8
x6y8 −

20
x8y8 +

4
x10y8 +

2
x12y8 +

4
y10 −

4
x2y10 −

8
x4y10 +

8
x6y10 +

4
x8y10 −

4
x10y10 +

2
x4y12 −

4
x6y12 +

2
x8y12 +649

Uglier... but degree is 20 (in x2, y2) and degP ≤ 8g(K ) so g > 2! There
is a SS of g = 3 so g(CONWAY ) = 3.
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