Genus bounds from quantum invariants

Daniel López Neumann

(joint w/ Roland van der Veen)

May 9 2022

3

<□> < ⊇ > < 三 > < 三 >

< 🗆 🕨

Outline

 $\mathcal{A} \mathcal{A} \mathcal{A}$

æ

∃ ▶

< 🗆

合

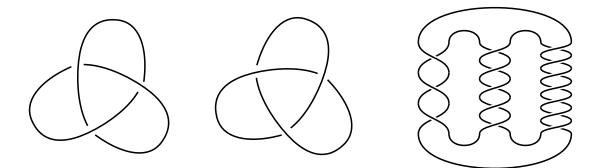
A **knot** K in S^3 is a smoothly embedded S^1 in S^3 .

590

3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ --

A knot K in S^3 is a smoothly embedded S^1 in S^3 .



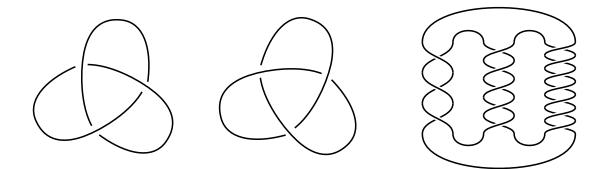
< □ ▶

- 4 日 🕨 - 4 日 🕨 - 4 日 🕨

590

æ

A **knot** K in S^3 is a smoothly embedded S^1 in S^3 .



How to distinguish knots up to isotopy? Need topological invariants!

SQQ

Э

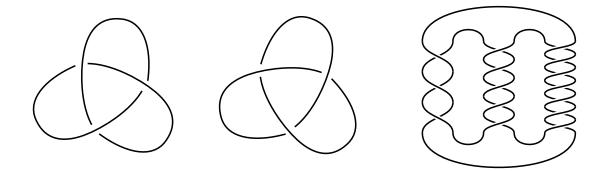
.∃

< D

A 🕨

-∢∃≯

A knot K in S³ is a smoothly embedded S¹ in S³. $X_{\kappa} = S^{2} \setminus K$

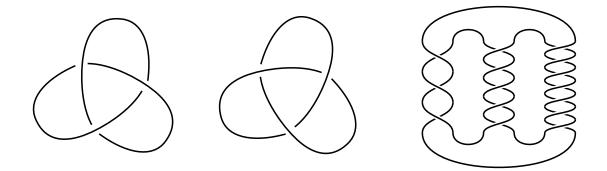


How to distinguish knots up to isotopy? Need topological invariants! **Classical invariants**: $\pi_1(X_K)$, $H_1($ covering spaces of $X_K)$, Alexander

polynomial $\Delta_{\mathcal{K}}(t)\in\mathbb{Z}[t^{\pm1}]$,

SQA

A **knot** K in S^3 is a smoothly embedded S^1 in S^3 .

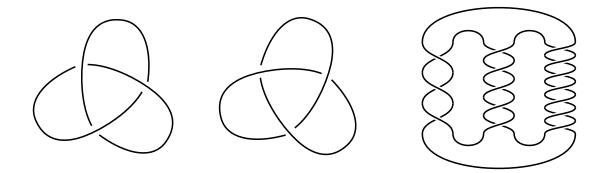


How to distinguish knots up to isotopy? Need topological invariants!

Classical invariants: $\pi_1(X_K)$, $H_1($ covering spaces of X_K), Alexander polynomial $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$, twisted Reidemeister torsion $\tau^{\rho}(X) \in \mathbb{C}(t)$, $\rho : \pi_1(X) \to GL(n, \mathbb{C})$.

SQA

A **knot** K in S^3 is a smoothly embedded S^1 in S^3 .



How to distinguish knots up to isotopy? Need topological invariants!

Classical invariants: $\pi_1(X_K)$, $H_1($ covering spaces of X_K), Alexander polynomial $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$, twisted Reidemeister torsion $\tau^{\rho}(X) \in \mathbb{C}(t)$, $\rho : \pi_1(X) \to GL(n, \mathbb{C})$.

Quantum invariants: physics, rep. theory (Jones, Witten, Reshetikhin-Turaev, 80s-90s). Jones polynomial $J_{\mathcal{K}}(q) \in \mathbb{Z}[q^{\pm 1}]$, HOMFLY, etc.

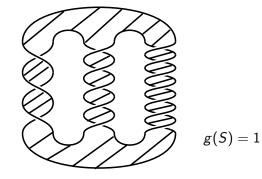
SQA

Question: Topological content? Information about the Seifert genus?

590

3

Question: Topological content? Information about the Seifert genus? **Seifert genus**: $g(K) := \min\{g(S) \mid \text{ortble, connected } S \subset S^3, \partial S = K\}.$



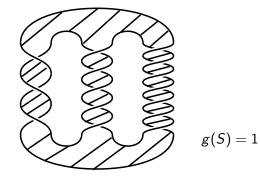
5900

3

- (四) - (三) - (Ξ) - (Ξ)

< 🗆 🕨

Question: Topological content? Information about the Seifert genus? **Seifert genus**: $g(K) := \min\{g(S) \mid \text{ortble, connected } S \subset S^3, \partial S = K\}.$

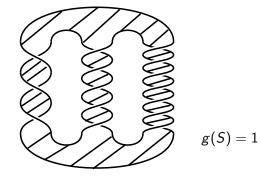


Classical theorem (Alexander): $deg\Delta_{\mathcal{K}}(t) \leq 2g(\mathcal{K})$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

Question: Topological content? Information about the Seifert genus? **Seifert genus**: $g(K) := \min\{g(S) \mid \text{ortble, connected } S \subset S^3, \partial S = K\}.$



Classical theorem (Alexander): $\deg \Delta_{\mathcal{K}}(t) \leq 2g(\mathcal{K})$. Friedl-Kim, 2006: $\deg \frac{\tau^{\rho \otimes h}(X_{\mathcal{K}})}{n} \leq 2g - 1, \ \rho : \pi_1 \to GL(n, \mathbb{C})$.

- ▲ □ ▶ ▲ □ ▶ - □ □

990

3

< □ > < □ > < □ > < □ > < □ > .

Goal of this talk: find genus bounds with quantum topology techniques (= rep. theory = Hopf algebra theory for out purposes).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

< 🗆 🕨

Goal of this talk: find genus bounds with quantum topology techniques (= rep. theory = Hopf algebra theory for out purposes).

More precisely:

Theorem (LN-van der Veen, '22)

For any f.d. \mathbb{Z} -graded Hopf algebra H there is a polynomial invariant $P_H(K, t) \in \mathbb{C}[t^{\pm 1}]$ of knots $K \subset S^3$ such that

 $deg P_H(K,t) \leq 2g(K)|H|$

where |H| = difference between highest \mathbb{Z} -degree and lowest \mathbb{Z} -degree.

SQA

3

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Goal of this talk: find genus bounds with quantum topology techniques (= rep. theory = Hopf algebra theory for out purposes).

More precisely:

Theorem (LN-van der Veen, '22)

For any f.d. \mathbb{Z} -graded Hopf algebra H there is a polynomial invariant $P_H(K, t) \in \mathbb{C}[t^{\pm 1}]$ of knots $K \subset S^3$ such that

 $deg P_H(K,t) \leq 2g(K)|H|$

where |H| = difference between highest \mathbb{Z} -degree and lowest \mathbb{Z} -degree.

For $H = \Lambda(\mathbb{C}^n)$ our thm recovers Friedl-Kim's (in a twisted version $P^{\rho}_{H}(K, t)$ of our knot polynomial, where $\rho : \pi_1(S^3 \setminus K) \to \operatorname{Aut}(H)$).

SQ Q

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

590

æ

< □ > < □ > < □ > < □ > < □ > .

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

Let X be a CW cx., $\pi = \pi_1(X)$ and $\rho : \pi \to GL(n, \mathbb{K})$ an homomorphism. Let $Y \subset X$ be a subcx. with $\chi(X, Y) = 0$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

æ

< 🗆 🕨

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

Let X be a CW cx., $\pi = \pi_1(X)$ and $\rho : \pi \to GL(n, \mathbb{K})$ an homomorphism. Let $Y \subset X$ be a subcx. with $\chi(X, Y) = 0$.Let $p : \widetilde{X} \to X$ be the universal

covering space of X and $Y' = p^{-1}(Y) \subset \widetilde{X}$. Then $\pi \curvearrowright (\widetilde{X}, Y')$, hence $\mathbb{Z}[\pi] \curvearrowright C_*(\widetilde{X}, Y')$. But also $Z[\pi] \curvearrowright \mathbb{K}^n$ via ρ .

SQ Q

э

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

Let X be a CW cx., $\pi = \pi_1(X)$ and $\rho : \pi \to GL(n, \mathbb{K})$ an homomorphism. Let $Y \subset X$ be a subcx. with $\chi(X, Y) = 0$.Let $p : \widetilde{X} \to X$ be the universal

covering space of X and $Y' = p^{-1}(Y) \subset \widetilde{X}$. Then $\pi \curvearrowright (\widetilde{X}, Y')$, hence $\mathbb{Z}[\pi] \curvearrowright C_*(\widetilde{X}, Y')$. But also $Z[\pi] \curvearrowright \mathbb{K}^n$ via ρ . The **Reidemeister torsion** of (X, Y, ρ) is

$$au^{
ho}(X,Y) := au^{alg}(C_*(\widetilde{X},Y')\otimes_{\mathbb{Z}[\pi]}\mathbb{K}^n) \in \mathbb{K}$$

where τ^{alg} = algebraic torsion.

SQ Q

3

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

Let X be a CW cx., $\pi = \pi_1(X)$ and $\rho : \pi \to GL(n, \mathbb{K})$ an homomorphism. Let $Y \subset X$ be a subcx. with $\chi(X, Y) = 0$.Let $p : \widetilde{X} \to X$ be the universal

covering space of X and $Y' = p^{-1}(Y) \subset \widetilde{X}$. Then $\pi \curvearrowright (\widetilde{X}, Y')$, hence $\mathbb{Z}[\pi] \curvearrowright C_*(\widetilde{X}, Y')$. But also $Z[\pi] \curvearrowright \mathbb{K}^n$ via ρ . The **Reidemeister torsion** of (X, Y, ρ) is

$$au^{
ho}(X,Y) := au^{alg}(C_*(\widetilde{X},Y')\otimes_{\mathbb{Z}[\pi]}\mathbb{K}^n) \in \mathbb{K}$$

where τ^{alg} = algebraic torsion.

Special case: dim $(X) = 2, X^{(0)} \subset Y$. Then

 $\tau^{\rho}(X,Y) = \det(\partial_2 \otimes \mathsf{id} : C_2(\widetilde{X},Y') \otimes \mathbb{K}^n \to C_1(\widetilde{X},Y') \otimes \mathbb{K}^n) \in \mathbb{K}$

SQ Q

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■ □

In what follows \mathbb{K} is a field $\mathbb{K} = \mathbb{C}$ or $\mathbb{C}(t)$.

Let X be a CW cx., $\pi = \pi_1(X)$ and $\rho : \pi \to GL(n, \mathbb{K})$ an homomorphism. Let $Y \subset X$ be a subcx. with $\chi(X, Y) = 0$.Let $p : \widetilde{X} \to X$ be the universal

covering space of X and $Y' = p^{-1}(Y) \subset \widetilde{X}$. Then $\pi \curvearrowright (\widetilde{X}, Y')$, hence $\mathbb{Z}[\pi] \curvearrowright C_*(\widetilde{X}, Y')$. But also $Z[\pi] \curvearrowright \mathbb{K}^n$ via ρ . The **Reidemeister torsion** of (X, Y, ρ) is

$$au^{
ho}(X,Y) := au^{alg}(C_*(\widetilde{X},Y')\otimes_{\mathbb{Z}[\pi]}\mathbb{K}^n) \in \mathbb{K}$$

where τ^{alg} = algebraic torsion. Special case: dim $(X) = 2, X^{(0)} \subset Y$. Then $\tau^{\rho}(X, Y) = \det(\partial_2 \otimes \operatorname{id} : C_2(\widetilde{X}, Y') \otimes \mathbb{K}^n \to C_1(\widetilde{X}, Y') \otimes \mathbb{K}^n) \in \mathbb{K}$

This can be computed easily via **Fox calculus** given a presentation of π !

SQ Q

 $\tau^{\rho}(X,Y) = \det(\partial_2 \otimes \mathsf{id} : C_2(\widetilde{X},Y') \otimes \mathbb{K}^n \to C_1(\widetilde{X},Y') \otimes \mathbb{K}^n).$

SQ (~

$$au^
ho(X,Y) = \det(\partial_2 \otimes \mathsf{id}: C_2(\widetilde{X},Y') \otimes \mathbb{K}^n o C_1(\widetilde{X},Y') \otimes \mathbb{K}^n).$$

Now let $K \subset S^3$ be a knot, $M_K = S^3 \setminus N(K)$ and μ a meridian in ∂M_K Then (M_K, μ) retracts onto a 2-cx (X, Y) with the above properties and we define

$$au^{
ho}(M_{\kappa},\mu) := au^{
ho}(X,Y) \in \mathbb{K}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$$au^{
ho}(X,Y) = \det(\partial_2 \otimes \operatorname{id} : C_2(\widetilde{X},Y') \otimes \mathbb{K}^n \to C_1(\widetilde{X},Y') \otimes \mathbb{K}^n).$$

Now let $K \subset S^3$ be a knot, $M_K = S^3 \setminus N(K)$ and μ a meridian in ∂M . Then (M_K, μ) retracts onto a 2-cx (X, Y) with the above properties and we define

$$\tau^{\rho}(M_{K},\mu) := \tau^{\rho}(X,Y) \in \mathbb{K}.$$

$$\Pi_{\eta} M_{K} - \Pi_{\eta} = 2$$

Now let $h : \overset{\mathbb{I}}{\pi} \to \mathbb{C}(t), [\mu] \to t$ (abelian rep.).

SQ Q

$$au^{
ho}(X,Y) = \det(\partial_2 \otimes \mathsf{id} : C_2(\widetilde{X},Y') \otimes \mathbb{K}^n o C_1(\widetilde{X},Y') \otimes \mathbb{K}^n).$$

Now let $K \subset S^3$ be a knot, $M_K = S^3 \setminus N(K)$ and μ a meridian in ∂M . Then (M_K, μ) retracts onto a 2-cx (X, Y) with the above properties and we define

$$au^{
ho}(M_{\kappa},\mu) := au^{
ho}(X,Y) \in \mathbb{K}.$$

Now let $h: \pi \to \mathbb{C}(t), [\mu] \to t$ (abelian rep.).

Then $\tau^h(M_K, \mu) \in \mathbb{Z}[t^{\pm 1}]$ is the **Alexander polynomial of** K:

$$\tau^h(M_K,\mu)=\Delta_K(t).$$

SQ Q

Let $h: \pi \to \mathbb{C}(t)$ be $H_1 \to \mathbb{C}(t^{\pm 1}), \mu \to t$ (m = meridian). Then $\tau^h(M_K, \mu) \in \mathbb{Z}[t^{\pm 1}]$ is the Alexander polynomial of K:

$$\tau^h(M_K,\mu)=\Delta_K(t).$$

(日)

Let $h: \pi \to \mathbb{C}(t)$ be $H_1 \to \mathbb{C}(t^{\pm 1}), \mu \to t$ (m = meridian). Then $\tau^h(M_K, \mu) \in \mathbb{Z}[t^{\pm 1}]$ is the Alexander polynomial of K:

$$\tau^h(M_K,\mu)=\Delta_K(t).$$

Now suppose we are given non-abelian $\rho : \pi_1(M_K) \to GL(n, \mathbb{C})$. Then ρ can be combined with h above to get

$$\rho \otimes h : \pi_1(M_{\mathcal{K}}) \to GL(n, \mathbb{C}(t)), \delta \mapsto (v \mapsto t^n \rho(\delta)(v))$$

where $n = h(\delta) \in \mathbb{Z}$.

SQ Q

Let $h: \pi \to \mathbb{C}(t)$ be $H_1 \to \mathbb{C}(t^{\pm 1}), \mu \to t$ (m = meridian). Then $\tau^h(M_K, \mu) \in \mathbb{Z}[t^{\pm 1}]$ is the Alexander polynomial of K:

$$\tau^h(M_K,\mu) = \Delta_K(t).$$

Now suppose we are given non-abelian $\rho : \pi_1(M_K) \to GL(n, \mathbb{C})$. Then ρ can be combined with h above to get

$$\rho \otimes h : \pi_1(M_K) \to GL(n, \mathbb{C}(t)), \delta \mapsto (v \mapsto t^n \rho(\delta)(v))$$

where $n = h(\delta) \in \mathbb{Z}$. Then $\tau^{\rho \otimes h}(M_{\kappa}, \mu)$ is (essentially) the **twisted** Alexander polynomial $\Delta_{\kappa}^{\rho}(t) \in \mathbb{C}[t^{\pm 1}]$ of κ (Lin, Wada, '90s).

• Reidemeister torsion is an invariant of pairs (X, ρ) , $\rho : \pi_1(X) \to GL(n, \mathbb{K}).$

• Reidemeister torsion is an invariant of pairs (X, ρ) , $\rho : \pi_1(X) \to GL(n, \mathbb{K}).$

• The usual Alexander polynomial is torsion at the canonical abelian representation (the projection $\pi_1 \to H_1 = \mathbb{Z} \subset \mathbb{C}(t)$).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■

• Reidemeister torsion is an invariant of pairs (X, ρ) , $\rho : \pi_1(X) \to GL(n, \mathbb{K}).$

- The usual Alexander polynomial is torsion at the canonical abelian representation (the projection $\pi_1 \to H_1 = \mathbb{Z} \subset \mathbb{C}(t)$).
- This polynomial can be twisted with non-abelian
 ρ: π₁(S³ \ K) → GL(n, C) (sometimes canonical, e.g. hyperbolic knots!).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Reidemeister torsion is an invariant of pairs (X, ρ) , $\rho : \pi_1(X) \to GL(n, \mathbb{K}).$

- The usual Alexander polynomial is torsion at the canonical abelian representation (the projection $\pi_1 \to H_1 = \mathbb{Z} \subset \mathbb{C}(t)$).
- This polynomial can be twisted with non-abelian
 ρ: π₁(S³ \ K) → GL(n, C) (sometimes canonical, e.g. hyperbolic knots!).
- In all the above cases, the target of ρ is infinite (\mathbb{Z} for Alex. poly).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Hopf algebras

Hopf algebra:

- Algebra (H, m, 1) over \mathbb{K} .
- Coproduct $\Delta: H \to H \otimes H$ and counit $\epsilon: H \to \mathbb{K}$
- Antipode $S: H \rightarrow H +$ relations.

SQ (?

3

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

< 🗆 🕨

Hopf algebras

Hopf algebra:

- Algebra (H, m, 1) over \mathbb{K} .
- Coproduct $\Delta: H \to H \otimes H$ and counit $\epsilon: H \to \mathbb{K}$
- Antipode $S: H \rightarrow H +$ relations.

Examples:

SQ (?

3

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

< 🗆 .

Hopf algebras

Hopf algebra:

- Algebra (H, m, 1) over \mathbb{K} .
- Coproduct $\Delta : H \to H \otimes H$ and counit $\epsilon : H \to \mathbb{K}$
- Antipode $S: H \rightarrow H +$ relations.

Examples:

•
$$H = \Lambda(\mathbb{C}^n), \ \Delta(v) = 1 \otimes v + v \otimes 1, \epsilon(v) = 0, S(v) = -v \text{ for } v \in \mathbb{C}^n.$$

2 $B_q = \langle K^{\pm 1}, E \mid KE = q^2 EK \rangle, \Delta(E) = E \otimes K + 1 \otimes E, \Delta(K) = K \otimes K, \epsilon(E) = 0, \epsilon(K) = 1, S(E) = -EK^{-1}, S(K) = K^{-1}.$

SQA

3

Hopf algebras

Hopf algebra:

- Algebra (H, m, 1) over \mathbb{K} .
- Coproduct $\Delta : H \to H \otimes H$ and counit $\epsilon : H \to \mathbb{K}$
- Antipode $S: H \rightarrow H +$ relations.

Examples:

•
$$H = \Lambda(\mathbb{C}^n), \ \Delta(v) = 1 \otimes v + v \otimes 1, \epsilon(v) = 0, S(v) = -v \text{ for } v \in \mathbb{C}^n.$$

• $B_v = \langle K^{\pm 1} | F | KF = a^2 FK \rangle \ \Lambda(F) = F \otimes K + 1 \otimes F \ \Lambda(K) =$

If
$$q^{2p} = 1$$
, the quotient $B_q/(E^p = 0, K^{2p}) = 1$ is a Hopf algebra.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

The **Drinfeld double** of a Hopf algebra H is $D(H) := H^* \otimes H$ as a coalgebra

1

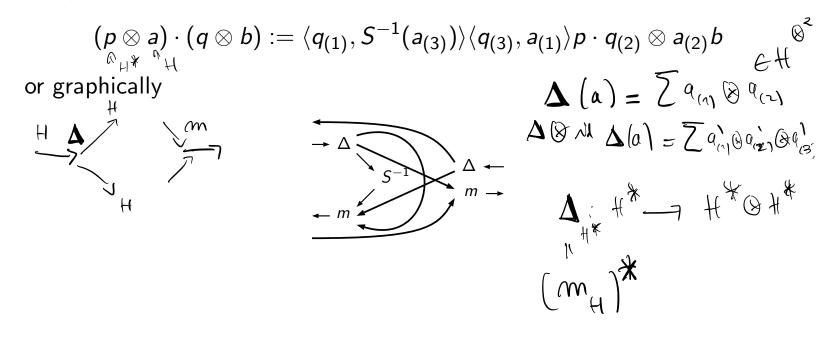
< ロ > < 団 > < 豆 > < 豆 > <</p>

$$(p\otimes a)\cdot (q\otimes b):=\langle q_{(1)},S^{-1}(a_{(3)})
angle\langle q_{(3)},a_{(1)}
angle p\cdot q_{(2)}\otimes a_{(2)}b$$

590

æ

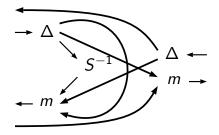
<ロト < 同ト < ヨト < ヨト



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$$(p \otimes a) \cdot (q \otimes b) := \langle q_{(1)}, S^{-1}(a_{(3)}) \rangle \langle q_{(3)}, a_{(1)} \rangle p \cdot q_{(2)} \otimes a_{(2)} b$$

or graphically



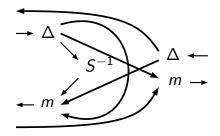
Why is D(H) interesting? Because $R \in D(H)^{\otimes 2}$ defined by $R = \sum_{\substack{\mathcal{H} \in \mathcal{H} \\ h_i \\ \mathcal{H}}} (\epsilon \otimes h_i) \otimes (h^i \otimes 1)_{H} = \sum_{\substack{\mathcal{H} \in \mathcal{H} \\ h_i \\ \mathcal{H}}} h_i \otimes h^i \in D(H)^{\otimes 2}$

where h_i is a basis of H and $h^i \in H^*$ is the dual basis, satisfies

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$$(p \otimes a) \cdot (q \otimes b) := \langle q_{(1)}, S^{-1}(a_{(3)}) \rangle \langle q_{(3)}, a_{(1)} \rangle p \cdot q_{(2)} \otimes a_{(2)} b$$

or graphically



Why is D(H) interesting? Because $R \in D(H)^{\otimes 2}$ defined by

$$R = \sum (\epsilon \otimes h_i) \otimes (h^i \otimes 1) = \sum h_i \otimes h^i \in D(H)^{\otimes 2}$$

where h_i is a basis of H and $h^i \in H^*$ is the dual basis, satisfies

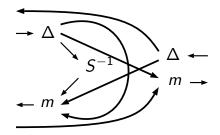
 $(R \otimes 1)(1 \otimes R)(R \otimes 1) = (1 \otimes R)(R \otimes 1)(1 \otimes R)$

in $D(H)^{\otimes 3}$ (Yang-Baxter eqtn).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$$(p \otimes a) \cdot (q \otimes b) := \langle q_{(1)}, S^{-1}(a_{(3)}) \rangle \langle q_{(3)}, a_{(1)} \rangle p \cdot q_{(2)} \otimes a_{(2)} b$$

or graphically



Why is D(H) interesting? Because $R \in D(H)^{\otimes 2}$ defined by

$$R = \sum (\epsilon \otimes h_i) \otimes (h^i \otimes 1) = \sum h_i \otimes h^i \in D(H)^{\otimes 2}$$

where h_i is a basis of H and $h^i \in H^*$ is the dual basis, satisfies

 $(R\otimes 1)(1\otimes R)(R\otimes 1)=(1\otimes R)(R\otimes 1)(1\otimes R)$

in $D(H)^{\otimes 3}$ (Yang-Baxter eqtn). It is called an *R*-matrix.

SQA

 $R = \sum (\epsilon \otimes h_i) \otimes (h^i \otimes 1) = \sum h_i \otimes h^i \in D(H)^{\otimes 2}$ where h_i is a basis of H and $h^i \in H^*$ is the dual basis, satisfies

 $(R \otimes 1)(1 \otimes R)(R \otimes 1) = (1 \otimes R)(R \otimes 1)(1 \otimes R).$

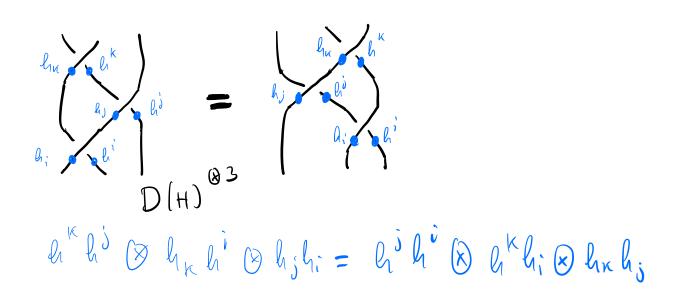
SQ (~

3

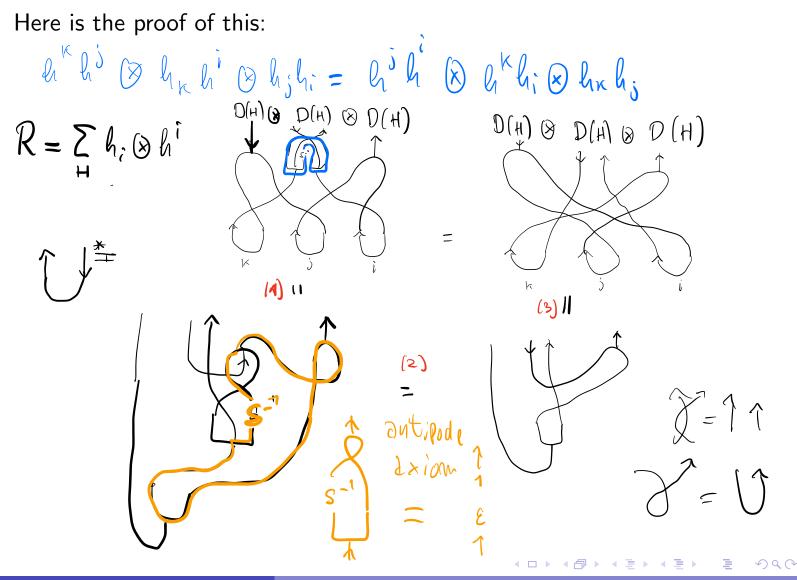
 $R = \sum (\epsilon \otimes h_i) \otimes (h^i \otimes 1) = \sum h_i \otimes h^i \in D(H)^{\otimes 2}$ where h_i is a basis of H and $h^i \in H^*$ is the dual basis, satisfies

 $(R\otimes 1)(1\otimes R)(R\otimes 1)=(1\otimes R)(R\otimes 1)(1\otimes R).$

Topologically:



 $\mathcal{O} \mathcal{Q} \mathcal{O}$



 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

< 🗆 🕨

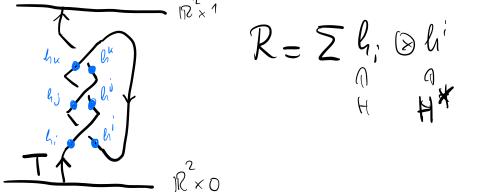
Step 1: Put copies of the *R*-matrix on all crossings.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

æ

< 🗆 🕨

Step 1: Put copies of the *R*-matrix on all crossings.

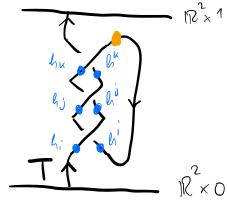


Step 2: Follow the orientation of each component and multiply in D(H).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

B b

Step 1: Put copies of the *R*-matrix on all crossings.



Step 2: Follow the orientation of each component and multiply in D(H).

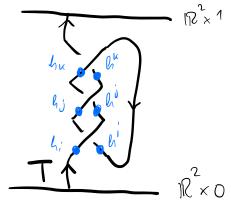
$$h^{k} h_{j} \cdot h^{j} \cdot h_{k} \cdot h^{j} \cdot h_{j} \in \mathbb{D}(H)$$

The result is $Z_H(T) \in D(H)^{\otimes m}$ (m = number of cmpnts. of T).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

B b

Step 1: Put copies of the *R*-matrix on all crossings.



Step 2: Follow the orientation of each component and multiply in D(H).

$$h^{k} h_{j} \cdot h^{j} \cdot h_{k} \cdot h^{j} \cdot h_{j} \in \mathbb{D}(H)$$

The result is $Z_H(T) \in D(H)^{\otimes m}$ (m = number of cmpnts. of T). This is typically evaluated on tr_V, $V \in D(H)$ -mod.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

590

æ

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho : \pi_1(X_K) \to GL(n, \mathbb{C})$?

3

< 🗆 🕨

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho : \pi_1(X_K) \to GL(n, \mathbb{C})$?

Turaev (2000): "group-graded" Hopf algebras \Rightarrow Invariants of pairs (\mathcal{T}, ρ) where $\mathcal{T} \subset \mathbb{R}^2 \times [0, 1]$ and $\rho : \pi_1(X_{\mathcal{T}}) \to G$.

SQ Q

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho : \pi_1(X_K) \to GL(n, \mathbb{C})$?

Turaev (2000): "group-graded" Hopf algebras \Rightarrow Invariants of pairs (T, ρ) where $T \subset \mathbb{R}^2 \times [0, 1]$ and $\rho : \pi_1(X_T) \to G$.

Group-graded means:

• $\{A_{\alpha}\}_{\alpha\in G}$ family of **algebras**.

SQ Q

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho : \pi_1(X_K) \to GL(n, \mathbb{C})$?

Turaev (2000): "group-graded" Hopf algebras \Rightarrow Invariants of pairs (T, ρ) where $T \subset \mathbb{R}^2 \times [0, 1]$ and $\rho : \pi_1(X_T) \to G$.

Group-graded means:

- $\{A_{\alpha}\}_{\alpha\in G}$ family of **algebras**.
- $\Delta_{\alpha,\beta}: A_{\alpha\beta} \to A_{\alpha} \otimes A_{\beta}.$

SQ Q

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ■ 目

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho: \pi_1(X_K) \to GL(n, \mathbb{C})$?

Turaev (2000): "group-graded" Hopf algebras \Rightarrow Invariants of pairs (T, ρ) where $T \subset \mathbb{R}^2 \times [0, 1]$ and $\rho : \pi_1(X_T) \to G$.

Group-graded means:

- {A_α}_{α∈G} family of algebras.
 Δ_{α,β} : A_{αβ} → A_α ⊗ A_β.
 S_α : A_α → A_{α⁻¹}.

SQ Q

But how does Reidemeister torsion enter this picture if it depends on additional data $\rho: \pi_1(X_K) \to GL(n, \mathbb{C})$?

Turaev (2000): "group-graded" Hopf algebras \Rightarrow Invariants of pairs (T, ρ) where $T \subset \mathbb{R}^2 \times [0, 1]$ and $\rho : \pi_1(X_T) \to G$.

Group-graded means: • $\{A_{\alpha}\}_{\alpha\in G}$ family of algebras. • $A_{\alpha} \leftrightarrow A_{\alpha} \otimes A_{\beta}$.

•
$$\Delta_{\alpha,\beta}: A_{\alpha\beta} \to A_{\alpha} \otimes A_{\beta}.$$

•
$$S_{\alpha}: A_{\alpha} \to A_{\alpha^{-1}}.$$

$$\operatorname{Rep}(A_{\alpha})$$

G(V

Rmk: Recall that we want infinite groups as target. By a theorem of Etingof-Consider non-semisimple Hopf algebras (or monoidal categories).

SQA

Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let $G = Aut_{Hopf}(H)$.

< □ ▶

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

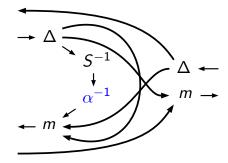
590

æ

Twisted Drinfeld double (Vivelizier, '03)

Let H be a f.d. Hopf algebra and let $G = Aut_{Hopf}(H)$.

For each $\alpha \in G$ let $D_{\alpha} = H^* \otimes H$ with multiplication



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

-∢∃►

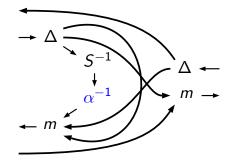
.∃

э

Twisted Drinfeld double

Let H be a f.d. Hopf algebra and let $G = Aut_{Hopf}(H)$.

For each $\alpha \in G$ let $D_{\alpha} = H^* \otimes H$ with multiplication



This is NOT a Hopf algebra (if $\alpha \neq id_H$) but there is a "coproduct"

$$\Delta_{lpha,eta}: D_{lphaeta} o D_{lpha} \otimes D_{eta}$$

and antipode $S_{\alpha}: D_{\alpha} \to D_{\alpha^{-1}}$, satisfying graded versions of Hopf axioms. Thus, it is group-graded in the sense of Turaev.

SQA

/╗▶ ◀ ᆿ▶ ◀ ᆿ▶

SQ (~

(日)

Consider the subgroup \mathbb{C}^* of Aut(H) acting by $\phi_t(E) = tE, \phi_t(K) = K$, $t \in \mathbb{C}^*$. We can define $F, k \in H^*$ so that the above relations are

$$\mathsf{EF}-\mathsf{FE}=rac{\mathsf{K}-\mathsf{t}^{-1}\mathsf{k}}{q-q^{-1}}.$$

SQ Q

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

Consider the subgroup \mathbb{C}^* of Aut(H) acting by $\phi_t(E) = tE, \phi_t(K) = K$, $t \in \mathbb{C}^*$. We can define $F, k \in H^*$ so that the above relations are

$$\mathsf{EF}-\mathsf{FE}=rac{\mathsf{K}-\mathsf{t}^{-1}\mathsf{k}}{q-q^{-1}}.$$

But here $K^{2p} = 1$. If we set $K' = t^{1/2}K$, $E' = t^{1/2}E$ then get

$$[E',F] = \frac{K'-k'}{q-q^{-1}}$$

and $(K')^{2p} = t^p$.

SQA

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Consider the subgroup \mathbb{C}^* of Aut(H) acting by $\phi_t(E) = tE, \phi_t(K) = K$, $t \in \mathbb{C}^*$. We can define $F, k \in H^*$ so that the above relations are

$$\mathsf{EF}-\mathsf{FE}=rac{\mathsf{K}-\mathsf{t}^{-1}\mathsf{k}}{\mathsf{q}-\mathsf{q}^{-1}}.$$

But here $K^{2p} = 1$. If we set $K' = t^{1/2}K$, $E' = t^{1/2}E$ then get

$$K'_{\mu}^{2\rho} = q^{2\rho q} \qquad [E', F] = \frac{K' - k'}{q - q^{-1}}$$

and $(K')^{2p} = t^p$. So the twisted Drinfeld double is essentially the semi-restricted $U_q(\mathfrak{sl}_2)$ (after quotient Kk = 1 and $t = q^{2\alpha}$)!

SQA

G-braiding

The twisted Drinfeld double $\{D_{\alpha} = H^* \otimes H\}_{\alpha \in Aut(H)}$ is Aut(H)-braided in the sense that:

There are isomorphisms $\varphi_{\alpha} : D_{\beta} \to D_{\alpha\beta\alpha^{-1}}$ and R-matrices $R_{\alpha,\beta} \in D_{\alpha} \otimes D_{\beta}$:

$$\varphi_{\alpha}(h^*\otimes h)=h^*\circ \alpha^{-1}\otimes \alpha(h),$$

$${\it R}_{lpha,eta} = \sum lpha({\it h}_i) \otimes {\it h}^i \in {\it D}_lpha \otimes {\it D}_eta$$

where h_i is a basis of H and $h^i \in H^*$ is the dual basis + relations.

Invariants of G-tangles

Consider a (1,1)-tangle T equipped with $\rho : \pi_1(X_T) \to G = \operatorname{Aut}(H)$.

Step 1. Put *G*-labels on the edges of a planar diagram of *T* via ρ :

JQ (~

3

Invariants of G-tangles

Consider a (1,1)-tangle T equipped with $\rho : \pi_1(X_T) \to G = \operatorname{Aut}(H)$. **Step 1**. Put *G*-labels on the edges of a planar diagram of T via ρ :



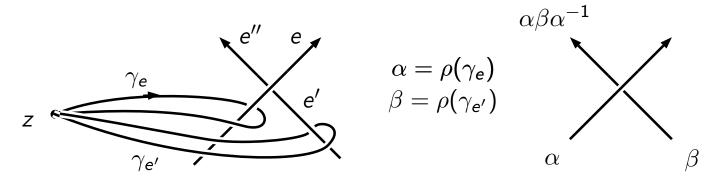
SQ (?

Э

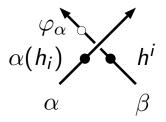
-∃->-

Invariants of G-tangles

Consider a (1,1)-tangle T equipped with $\rho : \pi_1(X_T) \to G = \operatorname{Aut}(H)$. **Step 1**. Put *G*-labels on the edges of a planar diagram of T via ρ :



Step 2. Put one copy of $R_{\alpha,\beta} \in D_{\alpha} \otimes D_{\beta}$ and φ_{α} at each crossing (with labels α, β):



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

э

向 ト イヨト イヨト

Step 3: Put the group-like g such that $S_{D(H)}^2 = gxg^{-1}$ on right caps/cups:

$$1_{\alpha} \bigcap_{\alpha} \qquad \stackrel{\alpha}{\bigvee} 1_{\alpha} \quad g \bigcap_{\alpha} \qquad \stackrel{\alpha}{\bigvee} g^{-1}$$

590

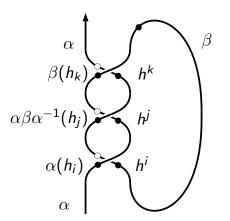
12

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Step 3: Put the group-like g such that $S_{D(H)}^2 = gxg^{-1}$ on right caps/cups:

$$1_{\alpha} \bigcap_{\alpha} \qquad \bigvee^{\alpha} 1_{\alpha} \quad g \bigcap_{\alpha} \qquad \bigvee^{\alpha} g^{-1}$$

Example:



5900

.⊒ ▶

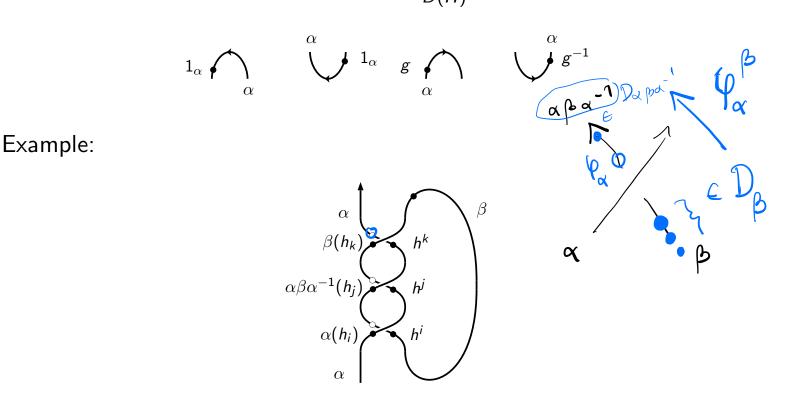
æ

< 🗆

э.

æ

Step 3: Put the group-like g such that $S_{D(H)}^2 = g x g^{-1}$ on right caps/cups:



Step 4: Multiply the elements encountered while following the orientation of T + Apply φ_{α} 's. This results in an element $Z_{H}^{\rho}(T) \in H^* \otimes H$.

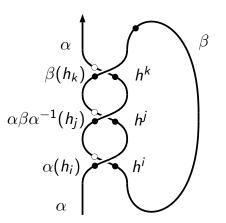
 $\mathcal{O} \mathcal{Q} \mathcal{O}$

∃►

Step 3: Put the group-like g such that $S_{D(H)}^2 = gxg^{-1}$ on right caps/cups:

$$1_{\alpha} \bigcap_{\alpha} \qquad \bigvee^{\alpha} \qquad 1_{\alpha} \qquad g \bigcap_{\alpha} \qquad \bigvee^{\alpha} g^{-1}$$

Example:



Step 4: Multiply the elements encountered while following the orientation of T + Apply φ_{α} 's. This results in an element $Z_{H}^{\rho}(T) \in H^{*} \otimes H$. Here $Z_{H}^{\rho}(T) = \varphi_{\beta}(h_{k}\alpha\beta\alpha^{-1}(h_{j})\varphi_{\alpha}(h^{i}g\beta(h_{k})\varphi_{\alpha\beta\alpha^{-1}}(h^{j}\alpha(h_{i}))))$. **Theorem** (Reshetikhin-Turaev, Turaev): $Z_{H}^{\rho}(T) \in H^* \otimes H$ is an invariant of the pair (T, ρ) .

590

▲ @ ▶ ▲ 말 ▶ ▲ 말 ▶ ... 말

< <p>Image: Image: Imag

Theorem (Reshetikhin-Turaev, Turaev): $Z_H^{\rho}(T) \in H^* \otimes H$ is an invariant of the pair (T, ρ) .

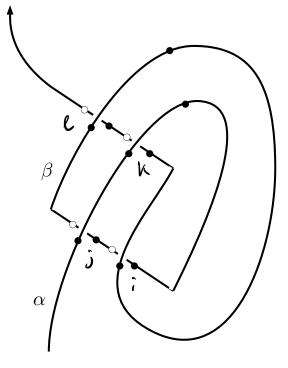
To get an invariant of (K, ρ) : need to apply a Aut(H)-invariant functional. For instance

 $P_{H}^{\rho}(K) := \epsilon_{D(H)}(Z_{H}^{\rho}(T)) \in \Box$

where $\epsilon_{D(H)}(p \otimes h) = p(1)\epsilon(h)$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

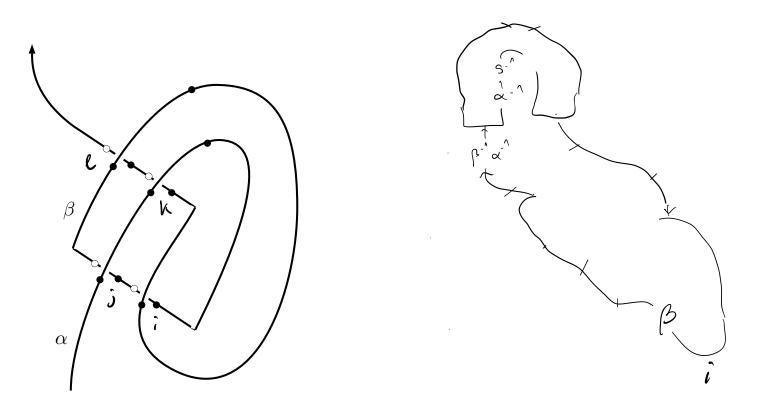
▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □



590

æ

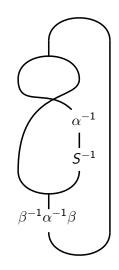
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



5900

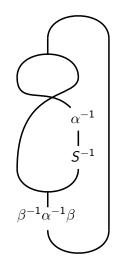
æ

<ロト < 団 > < 巨 > < 巨 >



5900

æ



Ex: If $H = \Lambda(\mathbb{C}^n)$, $Aut(H) = GL(n, \mathbb{C})$ and the above tensor is

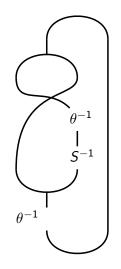
$$\operatorname{tr}\left(\Lambda(\beta^{-1}\alpha^{-1}\beta - \alpha^{-1}\beta^{-1}\alpha^{-1}\beta)\right) = \operatorname{det}\left(\beta^{-1}\alpha^{-1}\beta - \alpha^{-1}\beta^{-1}\alpha^{-1}\beta - I_{n}\right)$$
$$= \operatorname{det}\left(\sigma\left(\frac{\partial\alpha\beta\alpha\beta^{-1}\alpha^{-1}\beta^{-1}}{\partial\beta}\right)\right)$$
$$= \tau^{\rho}(M_{K},\mu).$$

5900

æ

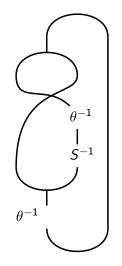
- 4 回 ト 4 回 ト 4 回 ト

< <p>Image: Image: Imag



Ex: If
$$H = B_q/(E^p = 0, K^{2p} = 1)$$
 at $p = 4$

5900



Ex: If $H = B_q/(E^p = 0, K^{2p} = 1)$ at p = 4 and $\rho: H_1M_K \to \operatorname{Aut}(H), [\mu] \to \theta$ where $\theta(E) = tE, \theta(K) = K$ then the above tensor is

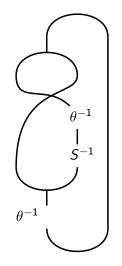
$$t^{3}-it^{2}-\frac{i}{t^{2}}-\frac{1}{t^{3}}-(1-i)t+\frac{1-i}{t}+(1+2i).$$

JQ (~

Э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

< □ ▶



Ex: If $H = B_q/(E^p = 0, K^{2p} = 1)$ at p = 4 and $\rho: H_1M_K \to \operatorname{Aut}(H), [\mu] \to \theta$ where $\theta(E) = tE, \theta(K) = K$ then the above tensor is

$$t^{3}-it^{2}-\frac{i}{t^{2}}-\frac{1}{t^{3}}-(1-i)t+\frac{1-i}{t}+(1+2i).$$

After $t = q^{-2}x$: $ix^3 + ix^2 + \frac{i}{x^2} + \frac{i}{x^3} + (1+i)x + \frac{1+i}{x} + (1+2i)$

500

э

Special cases of $P_H^{\rho}(K)$:

• (LN '19-22) If $H = \Lambda(\mathbb{C}^n)$, then $\operatorname{Aut}(H) = GL(n, \mathbb{C})$ and we get twisted Reidemeister torsion:

$$P^{
ho}_{\Lambda(\mathbb{C}^n)}(K) = au^{
ho}(M_K,\mu).$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

3

< 🗆 🕨

Special cases of $P_H^{\rho}(K)$:

(LN '19-22) If H = ∧(ℂⁿ), then Aut(H) = GL(n, ℂ) and we get twisted Reidemeister torsion:

$$P^{\rho}_{\Lambda(\mathbb{C}^n)}(K) = \tau^{\rho}(M_K, \mu).$$

• (LN-vdV '22) If
$$q = e^{\pi i/p}$$
, $H = B_q/(E^p = 0, K^{2p} = 1)$ and $\rho(E) = tE$ then

$$P_{H}^{\rho}(K) =$$
 "ADO polynomial"

(Akutsu-Deguchi-Ohtsuki, '91) also called a "**colored**" Alexander invariant.

SQ Q

3

Lifting to polynomials

Suppose *H* is \mathbb{Z} -graded and let $H' = H \otimes \mathbb{C}[t^{\pm 1}]$. Then any $\rho : \pi_1(X_K) \to \operatorname{Aut}(H)$ extends to $\rho \otimes h : \pi_1(X_K) \to \operatorname{Aut}(H')$ by

$$ho\otimes h(\delta)(x)=t^{n|x|}
ho(x)$$

where $n = h(\delta)$ in $h : \pi_1(X_K) \to H_1 = \mathbb{Z}$ and $x \in H$.

SQA

3

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ →

Lifting to polynomials

Suppose *H* is \mathbb{Z} -graded and let $H' = H \otimes \mathbb{C}[t^{\pm 1}]$. Then any $\rho : \pi_1(X_K) \to \operatorname{Aut}(H)$ extends to $\rho \otimes h : \pi_1(X_K) \to \operatorname{Aut}(H')$ by

where $n = h(\delta)$ in $h: \pi_1(X_K) \to H_1 = \mathbb{Z}$ and $x \in H$.

Thus, we define

$$P_{H}^{\rho}(K,t) := P_{H}^{\rho \otimes h}(K) \in \mathbb{C}[t^{\pm 1}].$$
$$= \mathcal{P}_{H}^{h}(\kappa)^{\ell}$$

SQA

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Lifting to polynomials

Suppose *H* is \mathbb{Z} -graded and let $H' = H \otimes \mathbb{C}[t^{\pm 1}]$. Then any $\rho : \pi_1(X_K) \to \operatorname{Aut}(H)$ extends to $\rho \otimes h : \pi_1(X_K) \to \operatorname{Aut}(H')$ by

$$ho\otimes h(\delta)(x)=t^{n|x|}
ho(x)$$

where $n = h(\delta)$ in $h : \pi_1(X_K) \to H_1 = \mathbb{Z}$ and $x \in H$.

Thus, we define

$$P^{\rho}_{H}(K,t) := P^{\rho \otimes h}_{H}(K) \in \mathbb{C}[t^{\pm 1}].$$

This is the "twisted" knot polynomial of our main thm:

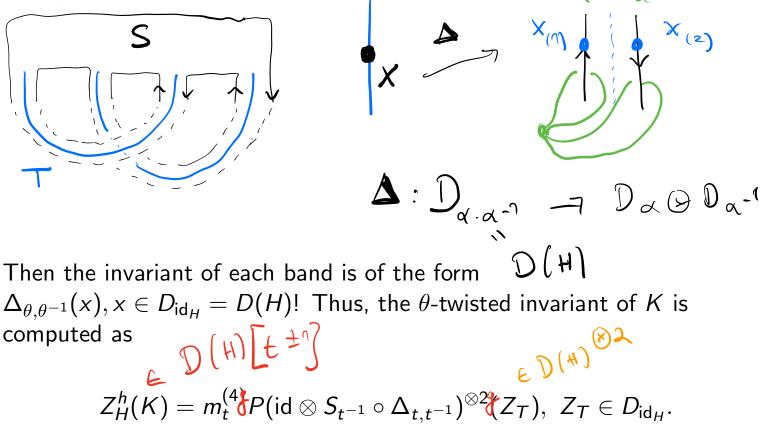
Theorem (LN-van der Veen, '22)

For any f.d. \mathbb{Z} -graded Hopf algebra H there is a knot polynomial $P_{H}^{\rho}(K,t)$, where $\rho: \pi_{1}(M_{K}) \to Aut(H)$, such that $\mathcal{A}_{\mathcal{A}} \to \mathcal{A}_{\mathcal{A}}$

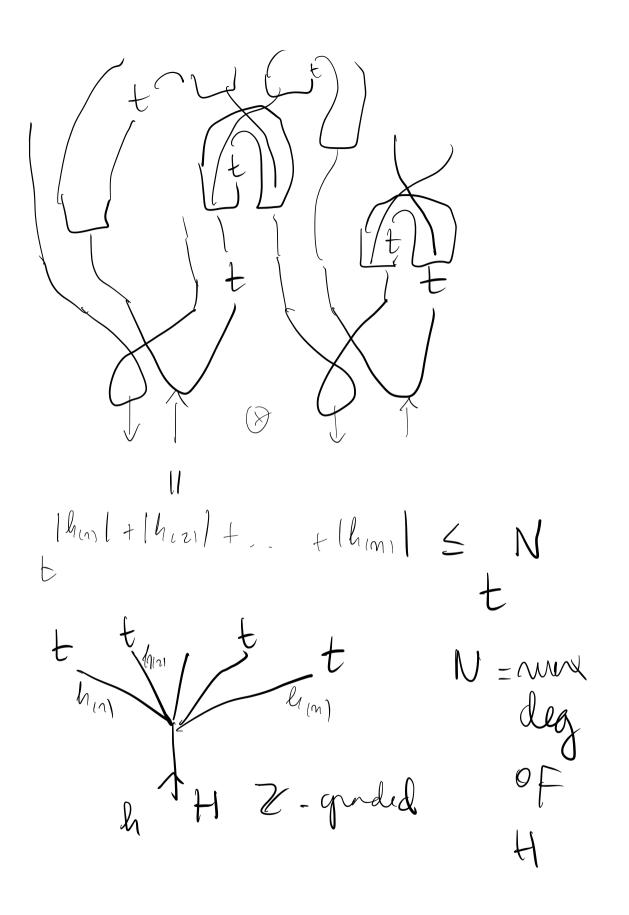
$$\deg P_H(K,t) \leq 2g(K) |H| = P - 1$$

Sketch of proof (g(K) = 1 case)

Let S be a genus 1 Seifert surface of K. Isotope S to $\mathbb{D}^2 \cup N(T)$ where T is a $\mathbb{Z}g$ -tangle:



 $\mathcal{A} \mathcal{A} \mathcal{A}$



Thanks!

Daniel López Neumann Genus bounds from quantum invariants

990

æ

Some computations

Let's see what happens with the first two knots with $\Delta_{\mathcal{K}} = 1$, the Kinoshita-Terasaka (KT) and the Conway knot. These are "mutants" so all \mathfrak{sl}_2 invariants coincide!

If H = quantum Borel of \mathfrak{sl}_3 at q = i, and $h(E_1) = xE_1$, $h(E_2) = yE_2$ $P^h(KT, x, y)$ is:

SQ Q

If H = quantum Borel of \mathfrak{sl}_3 at q = i, and $h(E_1) = xE_1$, $h(E_2) = yE_2$ $P^h(CONWAY, x, y)$ is:

 $2y^8x^{12} - 4y^6x^{12} + 2y^4x^{12} - 4y^{10}x^{10} + 4y^8x^{10} + 8y^6x^{10} - 8y^4x^{10} - 4y^2x^{10} + 9y^6x^{10} - 8y^4x^{10} - 4y^2x^{10} + 9y^6x^{10} +$ $4x^{10} + 2y^{12}x^8 + 4y^{10}x^8 - 20y^8x^8 + 8y^6x^8 + 12y^4x^8 + 8y^2x^8 + \frac{4x^8}{v^2} + \frac{2x^8}{v^4} - \frac{2x^8}{v^4} + \frac$ $20x^8 - 4y^{12}x^6 + 8y^{10}x^6 + 8y^8x^6 - 4y^6x^6 - 46y^4x^6 + 46y^2x^6 - \frac{8x^6}{v^2} - \frac{8x^6}{v^4} +$ $\frac{4x^{6}}{x^{6}} + 4x^{6} + 2y^{12}x^{4} - 8y^{10}x^{4} + 12y^{8}x^{4} - 46y^{6}x^{4} + 164y^{4}x^{4} - 248y^{2}x^{4} -$ $\frac{46x^4}{v^2} + \frac{12x^4}{v^4} - \frac{8x^4}{v^6} + \frac{2x^4}{v^8} + 164x^4 - 4y^{10}x^2 + 8y^8x^2 + 46y^6x^2 - 248y^4x^2 +$ $476y^{2}x^{2} + \frac{248x^{2}}{v^{2}} - \frac{46x^{2}}{v^{4}} - \frac{8x^{2}}{v^{6}} + \frac{4x^{2}}{v^{8}} - 476x^{2} + 4y^{10} + \frac{4y^{8}}{x^{2}} + \frac{2y^{8}}{x^{4}} - 20y^{8} + \frac{4x^{2}}{v^{6}} - 476x^{2} + 4y^{10} + \frac{4y^{8}}{x^{2}} + \frac{2y^{8}}{x^{4}} - 20y^{8} + \frac{4x^{2}}{v^{6}} - 476x^{2} + 4y^{10} + \frac{4y^{8}}{x^{2}} + \frac{2y^{8}}{x^{4}} - 20y^{8} + \frac{4x^{2}}{v^{6}} - \frac{46x^{2}}{v^{6}} - \frac{46x^{2}}{v^{6}} - \frac{46x^{2}}{v^{6}} - \frac{46x^{2}}{v^{6}} - \frac{46x^{2}}{v^{6}} - \frac{4x^{2}}{v^{6}} - \frac{4x^{2}$ $\frac{4y^{6}}{y^{6}} + 4y^{6} + \frac{12y^{4}}{y^{4}} + \frac{2y^{4}}{y^{8}} + 164y^{4} + \frac{248y^{2}}{y^{2}} + \frac{4y^{2}}{y^{8}} - 476y^{2} - \frac{8y^{6}}{x^{2}} - \frac{46y^{4}}{x^{2}} - \frac{476}{x^{2}} - \frac{47$ $\frac{8y^6}{x^4} - \frac{46y^2}{x^4} + \frac{164}{x^4} - \frac{8y^4}{x^6} - \frac{8y^2}{x^6} + \frac{4}{x^6} - \frac{20}{x^8} + \frac{4}{x^{10}} - \frac{476}{y^2} + \frac{476}{x^2y^2} - \frac{248}{x^4y^2} + \frac{46}{x^6y^2} + \frac{46}{x^6$ $\frac{8}{x^8 v^2} - \frac{4}{x^{10} v^2} + \frac{164}{v^4} - \frac{248}{x^2 v^4} + \frac{164}{x^4 v^4} - \frac{46}{x^6 v^4} + \frac{12}{x^8 v^4} - \frac{8}{x^{10} v^4} + \frac{2}{x^{12} v^4} + \frac{4}{v^6} + \frac{46}{x^2 v^6} - \frac{16}{x^2 v^6} - \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} - \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} - \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} - \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} + \frac{16}{x^2 v^6} - \frac{16}{x^2 v^6} + \frac{16}$ $\frac{46}{x^4v^6} - \frac{4}{x^6v^6} + \frac{8}{x^8v^6} + \frac{8}{x^{10}v^6} - \frac{4}{x^{12}v^6} - \frac{20}{v^8} + \frac{8}{x^2v^8} + \frac{12}{x^4v^8} + \frac{8}{x^6v^8} - \frac{20}{x^8v^8} + \frac{4}{x^{10}v^8} + \frac{12}{x^4v^8} + \frac{12}{x^4v^8}$ $\frac{2}{x^{12}y^8} + \frac{4}{y^{10}} - \frac{4}{x^2y^{10}} - \frac{8}{x^4y^{10}} + \frac{8}{x^6y^{10}} + \frac{4}{x^8y^{10}} - \frac{4}{x^{10}y^{10}} + \frac{2}{x^4y^{12}} - \frac{4}{x^6y^{12}} + \frac{2}{x^8y^{12}} + 649$ Uglier... but degree is 20 (in x^2, y^2) and deg $P \le 8g(K)$ so g > 2! There is a SS of g = 3 so g(CONWAY) = 3. ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ���