

Moduli and Friends seminar IMAR 21 November 2022 28 November 2022

Joint work with Xiaolei Wn (Fudan Univ.)

av Xiv preprints : 2211.07470 2212.(.....)

Plan :

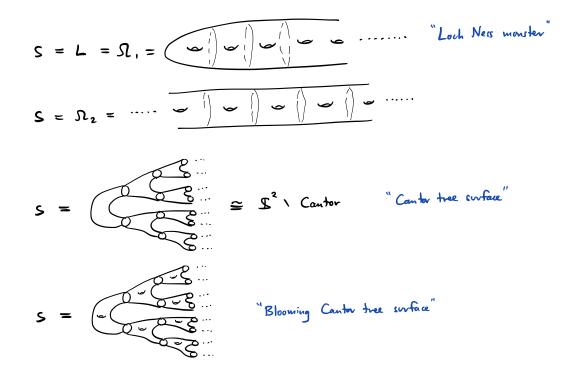
O. Recap

Finite type surfaces S (connected, orientable) are classified:

$$S = \Sigma_{g,b}^{n} =$$

Infinite type surfaces (where $\pi_{1}(S)$ is allowed to be non-finitely generated but we still assume that ∂S is compact) may be much wilder:

Examples:



etc ...

$$\frac{Thm}{Surfaces are completely classified by:} \qquad \begin{bmatrix} von keikjärtö, 1923\\ Richards, 1963 \end{bmatrix}$$

$$\cdot b = \# \text{ of } \partial - components \qquad \in \mathbb{N}$$

$$\cdot g = genus \qquad \qquad \in \mathbb{N} \cup \{\infty\}$$

$$\cdot Ends(S) = space of ends \qquad \qquad \\ \bigcup \qquad \qquad \\ \cdot Ends_{np}(S) = subspace of non-planar \qquad \\ ends \qquad \qquad \\ ends \qquad \qquad \\ \end{pmatrix} = genus \qquad \qquad \\ ends \qquad \qquad \\ ends \qquad \qquad \\ = \int_{-\infty}^{pairs of spaces Y \subseteq X \text{ where:} \\ \cdot X \cong closed in X \\ \cdot X \cong closed subset of the Cantor set } = for a discred by the contor set } = for a$$

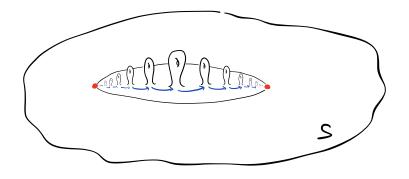
Moreover, every combination of
$$(b, g, \mathcal{E}, \mathcal{E}_{np})$$
 is realised by
some surface S, as long as $g = \infty$ iff $\mathcal{E}_{np} \neq \phi$.

 $\frac{\text{Definition}}{\text{Map}(S)} = \pi_{o}(\text{Homeo}_{g}(S)) = \text{Homeo}_{g}(S)/\text{Homeo}_{g}(S)$ $\int_{id \text{ on } \partial S}(S) = \pi_{o}(S)$

It is called "big" if S has infinite type.

Interesting elements:
• Individe products of Delm twists.
e.g.
$$\prod_{i=1}^{\infty} T_{x_i}$$
 for $S = \bigcup_{i=1}^{\infty} \bigcup_{x_i} \bigcup_{x_i}$

• "Handle slides":



Requires at least 2 non-planar ends

Previous vesults about H* (brg MCGs):

Pure subgroup:

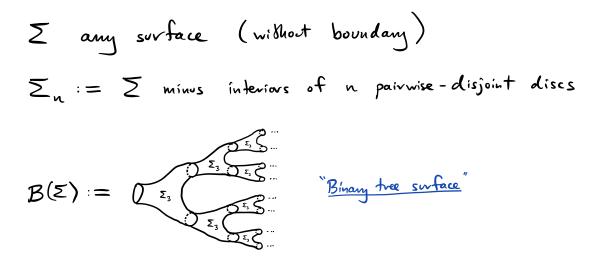
• genus
$$\geq 1$$
 : H'(PMap(S)) \cong H^{sep}(\overline{S}^{plan}) [Avamagona - Patel - Vlamis $g \geq 2$]
 $\int fill in all planer ends of S$

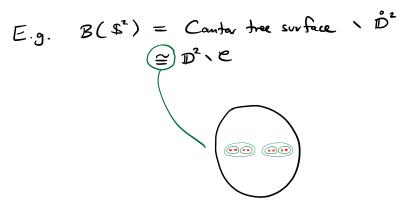
• genus = 0 : H'(PMap(S)) îs un countable. [Downet-Plummer]
•
$$|End_{sp}(S)| \leq 1 : H, (PMap(S)) \supseteq \bigoplus_{c} Q$$
 [Downet]
• $|End_{sp}(S)| \leq 1 : H, (PMap(S)) \supseteq \bigoplus_{c} Q$ [Downet]

Full mapping class group:

- S finite type: H, (Map(S \ e)) = H, (Map(S)) [Cakgari-Chen] • $H_2(Map(s^2, e)) = \mathbb{Z}_2$ { [Makstein - Tao]
- $H_{1}(Map(\mathbb{R}^{2}\setminus\mathbb{N}))\supseteq\bigoplus_{i}\mathbb{Q}$
- $H^{1}(Map(\mathbb{R}^{2}\setminus\mathbb{N})) = O$

Definition:





Theorem: [P. - Wu, arXiv: 2211.07470]

$$\widetilde{H}_{*}(M_{ap}(B(\Sigma))) = O$$

$$\frac{Corollary}{2}: H_{*}\left(Map\left(\mathbb{R}^{2}\times\mathbb{C}\right)\right) \cong \begin{cases} \mathbb{Z} & \text{* even} \\ \mathbb{O} & \text{* odd} \end{cases}$$

$$\frac{proof}{2}: Central extension$$

$$I \rightarrow \mathbb{Z} \longrightarrow Map\left(\mathbb{D}^{2}\times\mathbb{C}\right) \longrightarrow Map\left(\mathbb{R}^{2}\times\mathbb{C}\right) \rightarrow I$$

$$\frac{1}{\mathbb{D}ehn + with around}$$

$$He boundary$$

$$\begin{cases} L_{yudm} \cdot Hoch schild - Serve \\ spechal sequence \end{cases}$$

$$\begin{cases} \mathbb{E}^{2} = \sqrt{\frac{1}{H_{*}\left(Map\left(\mathbb{R}^{2}\times\mathbb{C}\right)\right)}} \\ = \sqrt{\frac{1}{H_{*}\left(Map\left(\mathbb{R}^{2}\times\mathbb{C}\right)\right)}} \\ = \sqrt{\frac{1}{2} + \frac{1}{2} +$$

I dea of proof of Theorem

$$e: Map\left(\underbrace{z_{3}}_{z_{3}}, \underbrace{z_{5}}_{z_{5}}, \underbrace{z_{5}}, \underbrace{z_{5}}, \underbrace{z_{5}}, \underbrace{z_{5}}$$

$$\frac{T_{vo steps}}{(1)} = * : H_{*}(Mop(B(\Sigma))) \longrightarrow H_{*}(Mop(B(\Sigma))) \quad is an isomorphism (2) \quad \widetilde{H}_{*}(Mop(B(\Sigma))) = 0$$

T space S, B C T disjoint closed subspaces $\partial := Sn(\overline{T \setminus S})$

(*)
$$\pi_{o}(Homeo_{\partial}(S)) \xrightarrow{\text{extend by id}} \pi_{o}(Homeo_{B}(T))$$

$$\frac{Thm}{P} \begin{bmatrix} P - Wu \end{bmatrix}$$
Suppose that

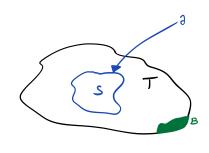
(1) (*) induces \cong on H*

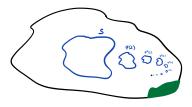
(2) $\exists \Psi \in Homeo_{B}(T)$ such that

(a) $\Psi^{k}(S) \cap S = \emptyset$ for all $k \ge 1$

(b) $\bigcup_{i=k}^{\infty} \Psi^{i}(S)$ is closed in T for all $k \ge 0$

Then $\widetilde{H}_{*}\left(\pi_{o}\left(H_{omeo}_{B}(\tau)\right)\right) = O$.



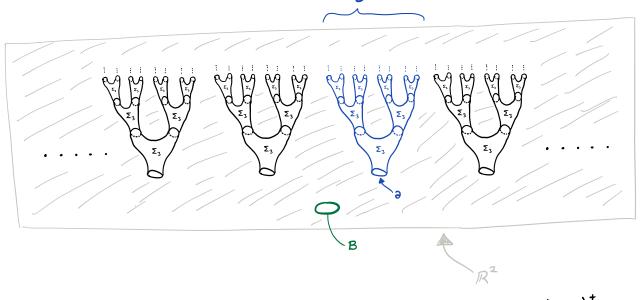


We will apply this to the setting:

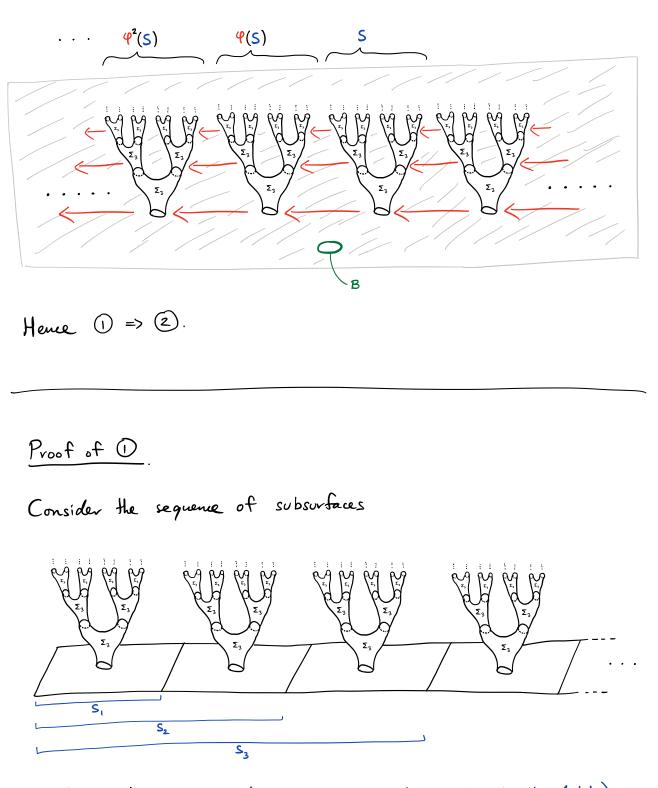
$$\mathcal{T} = \begin{bmatrix} z_3 \\ z_3 \\ z_4 \\ z_5 \\ z_5 \\ z_6 \\ z$$

So assuming step (1), it is enough to construct a homeomorphism φ of $B(\Sigma)$, fixing its boundary, satisfying (a) and (b) above.

Lemma : The following is a homeomorphic picture of $T = B(\Sigma)$:



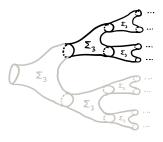
(The proof uses the classification of surfaces and the fact that $\left(\coprod_{i=1}^{\infty} e\right)^{+} \cong e$.)



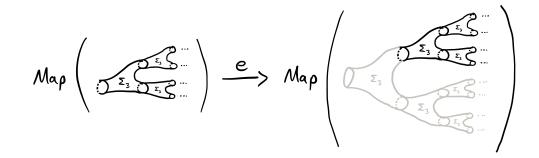
and the homomorphisms (induced by extending homeomorphisms by the identity) $Map(S,) \longrightarrow Map(S_2) \longrightarrow Map(S_3) \longrightarrow \cdots$

In this picture it is obvious how to define φ :

Obs: Each pair of spaces (Sn, Sn-1) is isotopy equivalent to the pair



so each homomorphism Map (Sn-1) -> Map (Sn) is isomorphic to



It therefore suffices to prove:
(**)
$$H_i(Map(S_{n-1})) \longrightarrow H_i(Map(S_n))$$
 is an isomorphism for all $i \le \frac{n-2}{2}$
i.e. homological stability for the sequence ... $\rightarrow Map(S_n) \longrightarrow Map(S_{n+1}) \rightarrow \cdots$

- (A) The homological stability machine of [Randal-Williams-Wahl'17] reduces this to proving that X_n is (n-2)-connected $(X_n = a \text{ certain simplicial complex on which Map(Sn) acts})$
- (B) Gradually simplify Xn and Shen prove Shat it is (n-2) connected. [Many technical substeps!]
- $\frac{\text{Runk}: \text{Skp} (1) \text{ is similar to Skp 1 of the proof of [Szymik-hahl']]}}{\text{Shat} \quad \widetilde{H}_{*}(V) = O. \quad (V = Thompson's group)$
 - But our Step (2) (infinite iteration argument & homologically dissipated graps) is different to their Step 2 (algebraic K-theory).

 $R(\Sigma) := (\Sigma_1 \cup \Sigma_2 \cup \Sigma_2 \cup \Sigma_2) \Sigma_2 \dots \mathbb{R}_{ay surface}^{"}$

Examples:
$$R(T^2) = Loch$$
 Ness Monster surface
 $R(R^2) = R(S^2 \lor p^{\dagger}) \cong R^2 \lor N$ ("Flute surface")

Definition:
$$x \in X$$
 is topologically distinguished if it is not
locally homeomorphic to any other point of X.
(If $x \in X$ has open ubbd U
 $y \in X$ has open ubbd V
with $(U, x) \cong (V, y)$ then $y = x$.)

E.g.: Spaces that have topologically distinguished points:

$$\cdot \{*\}$$

 $\cdot [0, w] \cong \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\} \subseteq \mathbb{R}$
 $\cdot [0, w^{K}]$ (closed interval of ordinals in the order topology)
 $\cdot C \amalg (any of the above)$

Theorem $[P_{-}W_{n}, a_{x}X_{i_{x}: 2212: \dots}]$ If genus $(\mathcal{Z}) = O$ Ends (\mathcal{Z}) has a topologically distinguished point

Hen

$$H_i(Map(R(\Sigma)))$$
 is uncountable for all $i \ge 1$

in fact :

$$\Lambda^{*}(\bigoplus_{\mathbb{Z}}\mathbb{Z}) \longrightarrow H_{*}(Map(R(\Sigma)))$$

I dea of proof:
$$\left(\begin{array}{c} \text{for } \Sigma = \mathbb{R}^2, \\ \text{so } \mathbb{R}(\Sigma) = \underbrace{(\circ \cdot) \circ \cdot} \circ \cdot \underbrace{(\circ \cdot) \circ \cdot} \cdots \cong \mathbb{R}^2 \setminus \mathbb{N} \end{array}\right)$$

- ① Prove that ∧*(⊕Z) → H*(Map(L)) adapting methods of [Domat]
 Loch Ness Monster surface
- ② Deduce that ∧*(⊕Z) → H*(Map(R² \N)) adapting methods of EMalestein - Tao]

$$\frac{P_{\text{roof of Skp}}}{L' = L \cdot p^{\dagger}} \cong \frac{-1}{N_1} \oplus \frac{1}{N_2} \oplus$$

For an infinite subset AGN, consider

$$\prod_{\alpha \in A} \left(\mathcal{T}_{\mathfrak{F}_{\alpha}} \right)^{n_{\alpha}} \in \mathsf{Map}(\mathsf{L}')$$

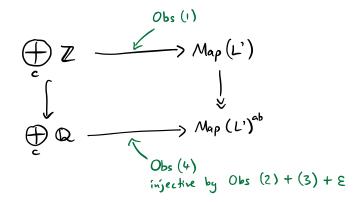
The [Domat] If $\{n_a \mid a \in A\}$ is unbounded then this element is $\neq 0$ in Map $(L')^{ab}$.

Consider

$$f_{A} = \prod_{a \in A} (T_{y_{a}})^{a!} \in Map(L')^{ab} \qquad for infinite A \subseteq N$$

<u>Obs</u> (1) These pairwise commute (already in Map(L')).
(2) f_A ≠ 0
(3) if AnB is finite then f_Afg ≠ 0
(4) f_A is <u>divisible</u>:
f_{An Nan} is divisible by n
f_{An Nan} f_A⁻¹ = finite product of Delin twists, supported on a subsurface ≅ Z_{3,2} for some finite g≥3.
[Birman, Powell] => product of commutators.

(continuum) Choose an uncountable family of infinite $\subseteq \mathbb{N}$ whose pairwise intersections are finite. (E.g. $\mathbb{N} \cong \mathbb{Q}$ and choose a sequence in \mathbb{Q} converging to each a $\in \mathbb{R}$.)



Coro [Domat] H, (Map (L')) is un countable.

But one can deduce more:

Proof of Skp 2

- Every injection A -> B of abelian groups splits if A is divisible.
- . Hence the inclusion $\bigoplus \mathbb{Z} \longrightarrow \bigoplus \mathbb{Q}$ factors through Map (L').
- The induced map $H_*(\bigoplus \mathbb{Z}) \longrightarrow H_*(\bigoplus \mathbb{Q})$ is injective. IIS IIS $\wedge^*(\bigoplus \mathbb{Z}) \longrightarrow \wedge^*(\bigoplus \mathbb{Q})$ $H_*(Map(L'))$

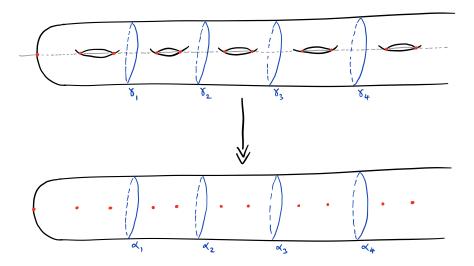
Thus $\Lambda^*(\bigoplus \mathbb{Z})$ injects into $H_*(Map(L'))$.

Applying the Birman exact sequence $| \rightarrow \pi_{1}(L) \rightarrow Map(L') \rightarrow Map(L) \rightarrow Map($

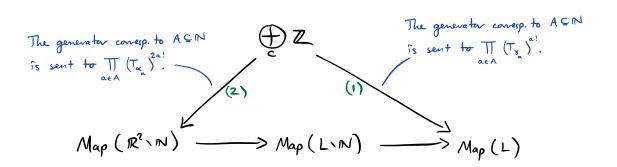
- Double covering: $\begin{bmatrix} Makstein - Tao \end{bmatrix}$ $= L \cdot N$ \downarrow $= R^{2} \cdot N$
- Lemma: The action $Map(\mathbb{R}^2 \cdot \mathbb{N}) \longrightarrow \pi_1(\mathbb{R}^2 \cdot \mathbb{N})$ preserves the index-2 subgroup corresponding to this double covering.

Thus we have homomorphisms

Note that $(T_{\alpha_i})^2 \longrightarrow T_{\alpha_i}$



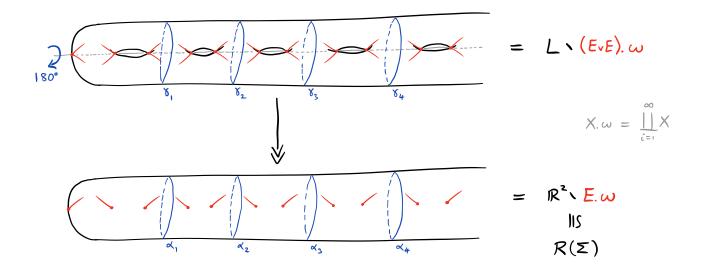
Hence me have a lift:



By the previous step, the map (1) is injective on Hx. Hence so is (2).

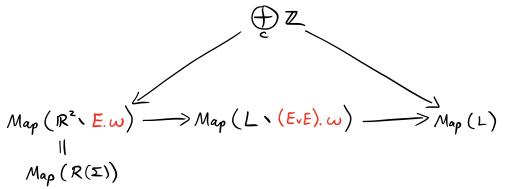
 $\frac{BONUS}{E} = Ends(\Sigma) \text{ has a topologically distinguished point.}$

We only have to modify Step 2.



The proof uses in an essential way the fact that E has a topologically distinguished point (and we have arranged that each embedding $E \longrightarrow \mathbb{R}^2$ sends this point to a branch point of the branched double covering $L \longrightarrow \mathbb{R}^2$).

Then we have :



 $\frac{R_{mk}}{H_{at}}$ The theorem becomes $\frac{false}{false}$ if we remove the hypothesis that Ends (Ξ) has a topologically distinguished point.

For example, if
$$\Sigma = Cantor$$
 tree surface
then $R(\Sigma) \cong Cantor$ tree surface
 $H_i(Map(R(\Sigma)))$ is not uncountable for $i = 1, 2$.
IS
 $H_i(Map(Cantor tree surface)) \cong \begin{cases} 0 & i = 1 & [Cakgari] \\ Z_{/2} & i = 2 & [Cakgari-Chen] \end{cases}$

Rink The proof may be generalised slightly to prove that:

$$\Lambda^* \left(\bigoplus_{z} \mathbb{Z} \right) \longrightarrow H_*(Map(R(z)\#S)),$$

whenever: