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Functorial Topological Quantum
Field Theories



n-dimensional cobordism category

The n-dimensional cobordism category Cobn has

• closed oriented (n− 1)-dimensional manifolds as objects,
• diffeomorphism classes (relative ∂) of n-dimensional oriented
cobordisms as morphisms.

• ◦ : gluing manifolds along common boundary components

•

x1
x2

x3∈ Cob2 ∈ Cob3
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n-dimensional cobordism category

The n-dimensional cobordism category Cobn has

• closed oriented (n− 1)-dimensional manifolds as objects,
• diffeomorphism classes (relative ∂) of n-dimensional oriented
cobordisms as morphisms.

• ◦ : gluing manifolds along common boundary components

x1
x2

x3∈ Cob2 ∈ Cob3

→ (Cobn,
∐
) is a symmetric monoidal category.
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Functorial topological quantum field theories

The category VectC of complex vector spaces has

• finite dimensional C-complex vector spaces as objects
• linear transformations as morphisms.

→ (VectC,⊗) is a symmetric monoidal category.

Definition (Atiyah)
An n-dimensional topological quantum field theory (TQFT) is a
symmetric monoidal functor

Z : Cobn → VectC.

•

V⊗ V

V

Σ

Z(Σ)
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Functorial TQFTs

The category VectC of complex vector spaces has

• finite dimensional C-complex vector spaces as objects,
• linear transformations as morphisms.

→ (VectC,⊗) is a symmetric monoidal category.

Definition (Atiyah)
An n-dimensional topological quantum field theory (TQFT) is a
symmetric monoidal functor

Z : Cobn → VectC.

C

C

Σ Z(Σ)
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n-dimensional TQFTs produce numerical
diffeomorphism invariants of closed

n-manifolds which are multiplicative with
respect to disjoint union operation and behave

well under cut-paste operations.
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Examples of TQFTs in
Low-dimensions



1-dimensional TQFTs

• Ob(Cob1): closed oriented 0-dimensional manifolds
• Ob(Cob1): finitely many oriented points
• Under the operation

∐
, the collection Ob(Cob1) is generated by

two objects; namely, •+ and •-.

• Mor(Cob1): diffeom. classes of compact oriented 1-manifolds
• Under the operation

∐
, the collection Mor(Cob1) is generated by

•
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1-dimensional TQFTs

Given a 1-dimensional TQFT Z : Cob1 → VectC with the following data

• Z(•+) = V
• Z(•-) = W
• Z(ev) : V⊗W→ C

• Z(coev) : C → W⊗ V.

•
•

•
•
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1-dimensional TQFTs

Given a 1-dimensional TQFT Z : Cob1 → VectC with the following data

• Z(•+) = V
• Z(•-) = W
• Z(ev) : V⊗W→ C

• Z(coev) : C → W⊗ V.

The equivalence of the following cobordisms implies that Z(ev) is a
nondegenerate bilinear pairing, so W ∼= V∗.
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1-dimensional TQFTs

Given a 1-dimensional TQFT Z : Cob1 → VectC with the following data

• Z(•+) = V
• Z(•-) = W
• Z(ev) : V⊗W→ C

• Z(coev) : C → W⊗ V.

Let us compute the numerical invariant associated with connected
closed oriented 1-manifold, namely the circle.

C

C

Z
V⊗ V∗ 3

∑
i ei ⊗ e∗i

1

dim(V)
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2-dimensional TQFTs

• Ob(Cob2): closed oriented 1-dimensional manifolds
• Ob(Cob2): finitely many oriented circles

• Mor(Cob2): diffeom. classes of compact oriented 2-manifolds
• Under the operation

∐
, the collection Mor(Cob2) is generated by

•

•
•
•
•
•
•
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2-dimensional TQFTs

• Ob(Cob2): closed oriented 1-dimensional manifolds
• Ob(Cob2): finitely many oriented circles
• Mor(Cob2): diffeom. classes of compact oriented 2-manifolds
• Under the operation

∐
, the collection Mor(Cob2) is generated by

•
•
•
•
•
•
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2-dimensional TQFTs

• Ob(Cob2): closed oriented 1-dimensional manifolds
• Ob(Cob2): finitely many oriented circles
• Mor(Cob2): diffeom. classes of compact oriented 2-manifolds
• Under the operation

∐
, the collection Mor(Cob2) is generated by

µ ∆
η

ε

Given a 2-dimensional TQFT Z : Cob2 → VectC, with the following data

• Z(S1) = V
• Z(µ) : V⊗ V→ V
• Z(∆): V→ V⊗ V
• Z(η) : C → V
• Z(ε) : V→ C.
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2-dimensional TQFTs

Definition
Frobenius algebra is a finite dimensional associative, unital algebra
V equipped with a nondegenerate bilinear form σ : V⊗ V→ C
satisfying σ(a · b, c) = σ(a,b · c) for all a,b, c ∈ V.

•

σ :=

•
•
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2-dimensional TQFTs

Definition
Frobenius algebra is a finite dimensional associative, unital algebra
V equipped with a nondegenerate bilinear form σ : V⊗ V→ C
satisfying σ(a · b, c) = σ(a,b · c) for all a,b, c ∈ V.

σ :=

Theorem (Abrams, Kock)
2-dimensional TQFTs are classified by commut. Frobenius algebras. 17



Homotopy Quantum Field
Theories



Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (X, x) (called the target space).
The n-dimensional X-cobordism category XCobn has

• closed oriented pointed (n− 1)-dimensional manifolds
equipped with continuous pointed maps as objects

• diffeomorphism classes of n-dimensional oriented cobordisms
equipped with homotopy classes of maps to X (restricting to
those pointed continuous maps defined boundary manifolds) as
morphisms.

•

∈ XCob2x

X

g1

g2

g ∈ [Σ, X]

Σ

↪→

↪→
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Homotopy quantum field theories

Definition (Turaev)
An n-dimensional homotopy quantum field theory with target X
(X-HQFT) is a symmetric monoidal functor

Z : XCobn → VectC.

• For X = {•}, we have X-HQFT= TQFT.
• For any target X, we have Cobn ↪→ XCobn by introducing points
on connected components and taking constant maps.

• When X ' K(G, 1) for some group G, one can replace continuous
pointed maps on objects of XCobn with pointed homotopy
classes of continuous pointed maps.
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HQFTs

Definition (Turaev)
An n-dimensional homotopy quantum field theory with target X
(X-HQFT) is a symmetric monoidal functor

Z : XCobn → VectC.

x

X

g1

g2

g′ ∈ [Σ′, X]

Σ

V1 ⊗ V2

V3

Z(Σ,g)

C

CΣ′

Z(Σ′,g′)

g ∈ [Σ, X] Z(Σ,g)

21



Cohomological HQFTs

Example (Turaev)
For any cohomology class θ ∈ Hn(X,C∗), there exists an
n-dimensional X-HQFT, called cohomological X-HQFT,

Zθ : XCobn → VectC.

X

x

g ∈ [M, X]

M3
θ ∈ H3(X,C∗) ∂M = ∅

22



Cohomological HQFTs

Example (Turaev)
For any cohomology class θ ∈ Hn(X,C∗), there exists an
n-dimensional X-HQFT, called cohomological X-HQFT,

Zθ : XCobn → VectC.

X

x

g ∈ [M, X]

M3
θ ∈ H3(X,C∗)

〈g∗(θ), [M]〉Zθ

∂M = ∅
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n-dimensional X-HQFTs produce numerical
invariants of homotopy classes of maps
defined from a closed n-manifold to X.
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Results on 3-dimensional TQFTs
and HQFTs



3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

• Turaev-Viro︸ ︷︷ ︸
using repres.
of Uq(sl2)

-Barrett-Westbury︸ ︷︷ ︸
generalizing to spherical

fusion cats

state-sum TQFT

• the rough idea is assigning states to a triangulation of a
3-manifold and summing over all states.

• Witten︸ ︷︷ ︸
QFT-Feynman
path integral

-Reshetikhin-Turaev︸ ︷︷ ︸
repres. of quasi-triangular

Hopf algebras⇝
Modular tensor categories

surgery TQFT

• the rough idea is coloring surgery representation of a 3-manifold
(possibly a knot lying inside) and summing/integrating over all
colorings.

• These two constructions are related by the center construction.
More precisely, the center Z(C) of a spherical fusion category C
is a modular tensor category and for a closed oriented
3-manifold M, we have τ

Z(C)
RT (M) = τCTVBW(M).
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3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

• Turaev-Viro︸ ︷︷ ︸
using repres.
of Uq(sl2)

-Barrett-Westbury︸ ︷︷ ︸
generalizing to spherical

fusion cats

state-sum TQFT τTV : Cob3 → VectC

• the rough idea is assigning states to a triangulation of a
3-manifold and summing over all states.

• Witten︸ ︷︷ ︸
QFT-Feynman
path integral

-Reshetikhin-Turaev︸ ︷︷ ︸
repres. of quasi-triangular

Hopf algebras⇝
Modular tensor categories

surgery TQFT τRT : Cob3 → VectC

• the rough idea is coloring surgery representation of a 3-manifold
(possibly a knot lying inside) and summing/integrating over all
colorings.

• Turaev-Virelizier: these two TQFTs are related by the center
construction. More precisely, the center Z(C) of a spherical
fusion category C is a modular tensor category and for a closed
oriented 3-manifold M, we have τ

Z(C)
RT (M) = τCTV(M). 26



In 3d, surgery and state-sum TQFTs are related
by the center construction on the
corresponding algebraic notions.
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3-dimensional HQFTs with aspherical targets

Let X ' K(G, 1) for some group G. Then, state-sum and surgery TQFTs
extend to X-HQFTs:

• Turaev-Virelizier︸ ︷︷ ︸
using spherical

G-fusion categories

state-sum X-HQFT τ∆TV : XCob3 → VectC

• the states assigned to a triangulation of a 3-manifold are required
to be coherent with the homotopy class of a map.

• Turaev-Virelizier︸ ︷︷ ︸
Modular G-tensor

categories

surgery X-TQFT τTV : XCob3 → VectC

• the colorings assigned to a surgery representation of a 3-manifold
(possibly a knot lying inside) are required to be coherent with
respect to the homotopy class of a map.

• Turaev-Virelizier: these two X-HQFTs are related by the G-center
construction. More precisely, the G-center ZG(C) of a spherical
G-fusion category C is a modular G-tensor category and for a
morphism ∅ (M,g)−−−→ ∅ in XCob3 we have τ

ZG(C)
TV (M,g) = (τ∆TV)

C(M,g).
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The relationship between 3d TQFTs extends to
3d surgery and state-sum HQFTs with

aspherical targets.
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Homotopy n-types and Main
Theorem



Homotopy n-types

Definition
A homotopy n-type is a top. space X with πi(X, x) = 0 for all i > n.

• 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types. G 7→ BG ' K(G, 1) & X ' K(G, 1) 7→ π1(X, x) = G

• Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types. For any homotopy 2-type X, there exists a
crossed module χ : E→ H such that X ' Bχ where
π1(Bχ, x) = coker(χ) and π2(Bχ, x) = ker(χ).

Definition
A crossed module is a group homomorphism χ : E→ H with H acts
on E (denoted h · e = he for h ∈ H and e ∈ E) such that

• • χ is H-equivariant (H acts on itself by conjugation) i.e.
χ(he) = hχ(e)h−1 for all h ∈ H and e ∈ E

• χ satisfies Peiffer identity, i.e. χ(e)e′ = ee′e−1 for all e, e′ ∈ E.
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Homotopy n-types; n = 1

Definition
A homotopy n-type is a top. space X with πi(X, x) = 0 for all i > n.

• 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

• Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types. For any homotopy 2-type X, there exists a
crossed module χ : E→ H such that X ' Bχ where
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Homotopy n-types; n = 1 and n = 2

Definition
A homotopy n-type is a top. space X with πi(X, x) = 0 for all i > n.

• 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

• Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types.

Definition
A crossed module is a group homomorphism χ : E→ H with H acts
on E (denoted h · e = he for h ∈ H and e ∈ E) such that

• • χ is H-equivariant (H acts on itself by conjugation) i.e.
χ(he) = hχ(e)h−1 for all h ∈ H and e ∈ E

• χ satisfies Peiffer identity, i.e. χ(e)e′ = ee′e−1 for all e, e′ ∈ E.
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Homotopy n-types; n = 1 and n = 2

Definition
A homotopy n-type is a top. space X with πi(X, x) = 0 for all i > n.

• 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

• Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types.

• a
• b

Definition
A crossed module is a group homomorphism χ : E→ H with H acts
on E (denoted h · e = he for h ∈ H and e ∈ E) such that

• χ is H-equivariant (H acts on itself by conjugation) i.e.
χ(he) = hχ(e)h−1 for all h ∈ H and e ∈ E

• χ satisfies Peiffer identity, i.e. χ(e)e′ = ee′e−1 for all e, e′ ∈ E.
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Homotopy n-types; n = 1 and n = 2

Definition
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Main theorem

Question: Can we generalize Turaev-Virelizier results from 1-type
targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)
Let χ : E→ H be a crossed module. Then any spherical χ-fusion
category C gives rise to a 3-dimensional HQFT with target Bχ.

• This result generalizes the state-sum TQFT/HQFT results as
follows:

• χ = idH =⇒ (Bχ)-HQFT is equivalent to 3d state-sum TQFT τTV.
• χ : E ↪→ H =⇒ (Bχ)-HQFT is equiv. to τ∆

TV with Bχ ≃ K(cokerχ, 1).
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Main theorem

Question: Can we generalize Turaev-Virelizier results from 1-type
targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)
Let χ : E→ H be a crossed module. Then any spherical χ-fusion
category C gives rise to a 3-dimensional HQFT τ∆C with target Bχ.

This result generalizes the state-sum TQFT/HQFT results as follows:

• χ = idH =⇒ τ∆χ is equivalent to 3d state-sum TQFT τTV.
• χ : E ↪→ H =⇒ τ∆χ is equivalent to τ∆TV with Bχ ' K(cokerχ, 1).
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What type of invariant such an HQFT yield?

Given a spherical χ-fusion category C over C. Then for any pair (M,g)
where M is a closed oriented 3-manifold and g ∈ [M,Bχ] is a
homotopy class, the Bχ-HQFT τ∆C yields a numerical invariant
τ∆C (M,g) ∈ C which is multiplicative with respect to disjoint union
operation.

Bχ

x

g ∈ [M, Bχ]

1 ∈ C

τ∆C (M,g) ∈ C

τ∆C

M3

Our main goal is to explain how this number is derived.
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Spherical Fusion Categories



Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in a monoidal category (C,⊗, 1) by planar diagrams.

idX=

X

f

X

Y

(f : X→ Y)=

A monoidal category (C,⊗) is C-linear if for any two objects X, Y of C,

• HomC(X, Y) is a C-vector space,
• ◦ and ⊗ are C-bilinear.
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in a monoidal category (C,⊗, 1) by planar diagrams.
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• ◦ and ⊗ are C-bilinear.
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in a monoidal category (C,⊗, 1) by planar diagrams.
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A monoidal category (C,⊗) is C-linear if for any two objects X, Y of C,

• HomC(X, Y) is a C-vector space,
• ◦ and ⊗ are C-bilinear.
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in a monoidal category (C,⊗, 1) by planar diagrams.
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A monoidal category (C,⊗) is C-linear if for any two objects X, Y of C,

• HomC(X, Y) is a C-vector space,
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in a monoidal category (C,⊗, 1) by planar diagrams.
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A monoidal category (C,⊗) is C-linear if for any two objects X, Y of C,

• HomC(X, Y) is a C-vector space,
• ◦ and ⊗ are C-bilinear.
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Rigid and pivotal categories

A rigid category is a monoidal category (C,⊗) which admits both a
left duality {(∨X, evX : ∨X⊗ X→ 1)}X∈C and a right duality
{(X∨, ẽvX : X⊗ X∨ → 1)}X∈C .

coevX
X

X

X

∨X =

evX
X

∨X

evX

coevX

∨X

=

∨X

A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X∗, evX : X∗ ⊗ X→ 1, ẽvX : X⊗ X∗ → 1)}X∈C .

idX∗=

X∗
j

X

A

Y

B C

=

X

j

X∗

A

Y

B∗ C

= = =

X X X

evX ẽvX
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Rigid and pivotal categories
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Rigid and pivotal categories

A rigid category is a monoidal category (C,⊗) which admits both a
left duality {(∨X, evX : ∨X⊗ X→ 1)}X∈C and a right duality
{(X∨, ẽvX : X⊗ X∨ → 1)}X∈C .

coevX
X

X

X

∨X =

evX
X

∨X

evX

coevX

∨X

=

∨X

A pivotal category is a rigid category with distinguished (pivotal)
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Rigid and pivotal categories

A rigid category is a monoidal category (C,⊗) which admits both a
left duality {(∨X, evX : ∨X⊗ X→ 1)}X∈C and a right duality
{(X∨, ẽvX : X⊗ X∨ → 1)}X∈C .
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A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X∗, evX : X∗ ⊗ X→ 1, ẽvX : X⊗ X∗ → 1)}X∈C .

idX∗=

X∗
=

X

j

X

A

Y

B C

X∗

A

Y

B∗ C

= j

52



Rigid and pivotal categories

A rigid category is a monoidal category (C,⊗) which admits both a
left duality {(∨X, evX : ∨X⊗ X→ 1)}X∈C and a right duality
{(X∨, ẽvX : X⊗ X∨ → 1)}X∈C .
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duality such that the objects of left and right dualities coincide:

{X∗, evX : X∗ ⊗ X→ 1, ẽvX : X⊗ X∗ → 1)}X∈C .
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Fusion categories

An object i of C is called simple if HomC(i, i) ∼= C.

Definition
A fusion C-category is a monoidal C-linear category C such that
there exists a finite set I of simple objects of C satisfying the
conditions

• 1 ∈ I,
• HomC(i, j) = 0 for any distinct i, j ∈ I,
• every object of C is a direct sum of finitely many elements of I.

Example Representations of a finite group.
Example Representations of quantum groups.
Example Given a finite group G, we have a category G;

Ob(G) = G and HomG(g,h) = δg,hC for all g,h ∈ G
where g⊗ h = gh for all g,h ∈ G and k⊗ l = kl for all
k, l ∈ C.
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Fusion categories

An object i of C is called simple if HomC(i, i) ∼= C.

Definition
A fusion C-category is a monoidal C-linear category C such that
there exists a finite set I of simple objects of C satisfying the
conditions

• 1 ∈ I,
• HomC(i, j) = 0 for any distinct i, j ∈ I,
• every object of C is a direct sum of finitely many elements of I.

Example Representations of a finite group.
Example Representations of quantum groups.
Example Given a finite group G, we have a category G;

Ob(G) = G and HomG(g,h) = δg,hC for all g,h ∈ G
where g⊗ h = gh for all g,h ∈ G and k⊗ l = kl for all
k, l ∈ C. 56



Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
coincide. That is, for any endomorphism f, we have trl(f) = trr(f).

f Xf=X

The graphical calculus extends from R2 to S2 when the monoidal
category is spherical. In other words, the representation of a
morphism by a graph P is invariant under the isotopies of P in S2.

Let C be a pivotal fusion cat. and I be a repres. of simple objects;

• left dimension of an object p ∈ C: diml(p) = trl(idp) ∈ C,
• right dimension of an object p ∈ C: dimr(p) = trr(idp) ∈ C,
• dimension of C: dim(C) =

∑
i∈I diml(i)dimr(i).
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Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
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Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
coincide. That is, for any endomorphism f, we have trl(f) = trr(f).

f Xf=X fX = Xf

The graphical calculus extends from R2 to S2 when the monoidal
category is spherical. In other words, the representation of a
morphism by a graph P is invariant under the isotopies of P in S2.

Let C be a pivotal fusion cat. and I be a repres. of simple objects;

• left dimension of an object X ∈ C: diml(X) = trl(idX) ∈ C,
• right dimension of an object X ∈ C: dimr(X) = trr(idX) ∈ C,
• dimension of C: dim(C) =

∑
i∈I diml(i)dimr(i).
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Crossed module graded monoidal categories

Let χ : E→ H be a crossed module. A χ-graded category is a C-linear
monoidal category (C,⊗) which is

• E-Hom graded, i.e. HomC(X, Y) = ⊕e∈EHome
C(X, Y) for all X, Y ∈ C.

• endowed with a subclass Chom and a degree map | · | : Chom → H
such that

• X = ⊕n
i=1Xi where Xi ∈ Chom,

• For X, Y ∈ Chom, we have Home
C(X, Y) = 0 if |Y| ̸= χ(e)|X|,

• For X, Y ∈ Chom, we have X⊗ Y = ⊕n
i=1Zi with |Zi| = |X||Y|,

• |1| = 1 ∈ H,
• For any homogeneous morphisms α, β with s(α) ∈ Chom, we have
|α⊗ β| = |α|

(
|s(α)||β|

)
∈ E,

• |aX,Y,Z| = |lX| = |rX| = 1 ∈ E for all X, Y, Z ∈ C.

• A pivotal structure on a χ-graded monoidal category C is a
pivotal duality where all evaluation morphisms evX and ẽvX are
homogeneous of degree 1 ∈ E.
A pivotal χ-graded monoidal category C is spherical if for any
degree 1 endomorphism f ∈ Hom1E

C (X, X), left and right traces
coincide.
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Crossed module graded monoidal categories

Let χ : E→ H be a crossed module. A χ-graded category is a C-linear
monoidal category (C,⊗) which is
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(
|s(α)||β|

)
∈ E,

• |aX,Y,Z| = |lX| = |rX| = 1 ∈ E for all X, Y, Z ∈ C.

A pivotal structure on a χ-graded monoidal category C is a pivotal
duality where all evaluation morphisms evX and ẽvX are
homogeneous of degree 1 ∈ E.
A pivotal χ-graded monoidal category C is spherical if for any degree
1 endomorphism f ∈ Hom1E

C (X, X), left and right traces coincide. 61



Spherical χ-fusion categories

Definition (S.-Virelizier)
A spherical χ-fusion category (over C) is a spherical χ-graded
category (C,⊗) such that

• C is E-semisimple, i.e. for any e ∈ E and X ∈ C, we have X = ⊕e
i∈JXi

where each Xi is simple (i.e. End1(Xi) ∼= C),
• 1 is simple,
• For any h ∈ H, the set Ih of 1-isomorphism classes of degree h
homogeneous simple objects is finite and nonempty.

• Example: Consider the category CGχ whose
• objects are elements of H,
• morphisms are HomGχ(x, y) = {e ∈ E | y = χ(e)x}C for x, y ∈ H.
• monoidal product of objects x⊗ y = xy and morphisms
(x e−→ y)⊗ (z f−→ t) = exf : xy→ zt.
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Spherical χ-fusion categories

Definition (S.-Virelizier)
A spherical χ-fusion category (over C) is a spherical χ-graded
category (C,⊗) such that

• C is E-semisimple, i.e. for any e ∈ E and X ∈ C, we have X = ⊕e
i∈JXi

where each Xi is simple (i.e. End1(Xi) ∼= C),
• 1 is simple,
• For any h ∈ H, the set of 1-isomorphism classes of degree h
homogeneous simple objects is finite and nonempty.

Example: Consider the category CGχ whose

• Ob(CGχ) = H
• HomCGχ

(x, y) = {e ∈ E | y = χ(e)x}C for x, y ∈ H.
• monoidal product of objects x⊗ y = xy
• monoidal product of morphisms (x e−→ y)⊗ (z f−→ t) = xy exf−→ zt.
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Hopf χ-coalgebras and their representations

A Hopf χ-coalgebra is a family {Ax}x∈H of C-algebras endowed with

• coassociative algebra homoms. {∆x,y : Axy → Ax ⊗ Ay}x,y∈H
• counitary algebra homomorphism ε : A1 → C

• bijective C-linear homoms. S = {Sx : Ax−1 → Ax}x∈H [antipode].
• algebra isomorphisms {φx,e : Ax → Aχ(e)x}x∈H,e∈E

satisfying certain conditions.

Theorem (S.-Virelizier)
The category mod(A) of representations of a Hopf χ-coalgebra
A = {Ax}x∈H is χ-fusion if A1 is semisimple and each Ax is nonzero
and finite dimensional.
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Hopf χ-coalgebras: Graphical definition
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=
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=
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State-sum Homotopy Invariants
of Maps



χ-labeling of a triangulation

Let M be a closed oriented 3-manifold and g ∈ [M,Bχ] be a
homotopy class of a map.

• Given a triangulation ∆ of M with oriented 2-faces ∆(2) ⊂ ∆.
• Encode the data of g by specifying a χ-labeling (α, β) where

(α : ∆(2) → H, β : ∆(1) → E)

Question: How do we specify a χ-labeling?
Step 1: Choose a representative ḡ of g mapping centers of

3-simplices to the basepoint x ∈ Bχ.

Bχ

x

ḡ
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χ-labeling of a triangulation

Let M be a closed oriented 3-manifold and g ∈ [M,Bχ] be a
homotopy class of a map.

• Given a triangulation ∆ of M with oriented 2-faces ∆(2) ⊂ ∆.
• Encode the data of g by specifying a χ-labeling (α, β) where

(α : ∆(2) → H, β : ∆(1) → E)

Question: How do we specify a χ-labeling?
Step 1: Choose a representative ḡ of g mapping centers of

3-simplices to the basepoint x ∈ Bχ.

Bχ

x

ḡ
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χ-labeling of a triangulation

Step 2: Choose arcs connecting central points and orient each
arc using the orientation of the corresponding 2-face
and the orientation of M.

Step 3: Label an arc γ by an element of H which corresponds
to the homotopy class of a loop ḡ(γ) ⊂ (Bχ)1 ⊂ Bχ.

Step 4: α : ∆(2) → H maps a 2-face to the H-label of the
corresponding arc.

x1
x2

x3

h

Bχ

x

ḡ
γ

ḡ(γ)
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χ-labeling of a triangulation

Step 5: Around an oriented edge k of ∆ form a disk δk whose
boundary is the concatenation of the arcs obtained
above.

Step 6: For a central point a adjacent to k, label the pair (k,a)
by an element of E which corresponds to the relative
homotopy class of ḡ|δk ⊂ Bχ in π2(Bχ, (Bχ)1, x) = E.

e
e′h1

h2
h3

χ(e) = h1h2h3h−14
χ(e′) = h2h3h−14 h1

h4

k
Bχ

ḡ(δk)

ḡ

x

δk

• Lemma: {χ-labelings of ∆(2)}/Gauge group ∼= [M,Bχ].
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The state-sum invariant

Given a spherical χ-fusion category C and a set I = th∈HIh of
representatives of simple objects.
A coloring is a map c : ∆(2) → I such that c(r) ∈ Iα(r) for all r ∈ ∆(2).

• Given a coloring c : ∆(2) → I

• To each pair (k,a) of an oriented edge k and a central point a
adjacent to k, we assign a vector space

Hc(k,a) = Homβ(k,a)
C (1, c(r1)ε1 ⊗ c(r2)ε2 ⊗ · · · ⊗ c(rn)εn).

•

k

r1

r2r3

r4

Hc(k,a)

a

x1
x2

x3
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Assigning scalar |c| to a coloring c

Given a spherical χ-fusion category C and a set I = th∈HIh of
representatives of simple objects.
A coloring is a map c : ∆(2) → I such that c(r) ∈ Iα(r) for all r ∈ ∆(2).

Given a coloring c : ∆(2) → I, we obtain a scalar |c| ∈ C as follows.

• To each pair (k,a) of an oriented edge k and a central point a
adjacent to k, we assign a vector space

Hc(k,a) = Homβ(k,a)
C (1, c(r1)ε1 ⊗ c(r2)ε2 ⊗ · · · ⊗ c(rn)εn).

k

r1

r2r3

r4

Hc(k,a)

a

x1
x2

x3
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Assigning scalar |c| to a coloring c

• Doing this assignment for all oriented edges, we obtain a
finite-dimensional C-vector space

Hc = ⊗oriented
edges k

Hc(k,ak).

• Lemma: Hc(k,ak) and Hc(−k,ak) are dual to each other. This
yields a vector ∗k ∈ Hc(k,ak)⊗ Hc(−k,ak).

f ∈ Hc(k,a) = Homβ(k,a)
C (1, c(r1)⊗ c(r2)∗ ⊗ c(r3)∗ ⊗ c(r4))

f

c(r1) c(r2) c(r3) c(r4)

g ∈ Hc(−k,a) = Hom−β(k,a)
C (1, c(r4)∗ ⊗ c(r3)⊗ c(r2)⊗ c(r1)∗)

g

c(r4) c(r3) c(r2) c(r1)
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Assigning scalar |c| to a coloring c

• Doing this assignment for all oriented edges, we obtain a
finite-dimensional C-vector space

Hc = ⊗oriented
edges k

Hc(k,ak).

• Lemma: Hc(k,ak) and Hc(−k,ak) are dual to each other. This
yields a vector ∗k ∈ Hc(k,ak)⊗ Hc(−k,ak).

f

c(r1)
c(r2)
c(r3)

c(r4)

g

g f

c(r4)
c(r3)
c(r2)

c(r1)

1 ∈ C

∗k

• Each coloring c produces a vector ∗c = ⊗unoriented
edges k̃

∗k̃ ∈ Hc.
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Assigning scalar |c| to a coloring c

The next step involves vertices:

• For any vertex v of ∆, choose a 3-ball neighborhood B3v of v.
• The intersection ∂B3v ∩∆(2) yields a graph Γv on ∂B2v.

v vB3v
∂B3v

Γv

r1

r2
c(r1) c(r2)

Hc(k1, a)

Homβ(k1,a)
C (1, c(r1)⊗ c(r2))

k1
a

Γcv

• A coloring c assigns to each vertex of Γv a Hom-vector space in C.
• The assigned vector space is precisely Hc(k1,a) where k1 is the
corresponding edge and oriented away from v.
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Assigning scalar |c| to a coloring c

• Then each vertex v of ∆ and a coloring c yields a dual vector

FC(Γ
c
v) : Hc(k1,a)⊗ Hc(k2,a)⊗ · · · ⊗ Hc(kn,a)︸ ︷︷ ︸

Hc(Γcv)

→ C

where ki’s are the edges incident to v and oriented away from v.

∼=
Hc(k1, a)

Hc(k3, a) Hc(k2, a)⇝ c(r1)
c(r2)

c(r3)

• Repeating this process for all vertices, we obtain

⊗v∈∆H(Γcv)∗ ∼= ⊗v ⊗kv Hc(kv,av)∗ ∼= ⊗oriented
edges k

Hc(k,ak)∗ = H∗
c

• Denote the image of ⊗v∈∆FC(Γ
c
v) ∈ ⊗v∈∆H(Γcv)∗ under these

isomorphisms by Vc ∈ H∗
c .

• Lastly, the scalar |c| is obtained by the evaluation Vc(∗c) ∈ C.
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The state-sum invariant

The state-sum invariant of a pair (M,g) is defined as

τ∆C (M,g) = (dimC11)−(# 3-simplices of ∆)
∑

colorings
c:∆(2)→I

 ∏
r∈∆(2)

dim(c(r))

 |c| ∈ C.

where C11 is the fusion subcategory of C consisting of degree 1 objects
and degree 1 morphisms.

Recall that the inputs for τ∆C (M,g) are

• triangulation ∆ of M,
• χ-labeling (α, β) of ∆ associated to g.
• spherical χ-fusion category C,
• representative set I of simple objects of C,

Theorem (S.-Virelizier)
τ∆C (M,g) is independent of the choices of ∆, (α, β), and I.
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Thanks for your attention!

77


	Functorial Topological Quantum Field Theories
	Examples of TQFTs in Low-dimensions
	Homotopy Quantum Field Theories
	Results on 3-dimensional TQFTs and HQFTs
	Homotopy n-types and Main Theorem
	Spherical Fusion Categories
	State-sum Homotopy Invariants of Maps

