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n-dimensional cobordism category

The n-dimensional cobordism category Cob, has

- closed oriented (n — 1)-dimensional manifolds as objects,

- diffeomorphism classes (relative 8) of n-dimensional oriented
cobordisms as morphisms.

- o: gluing manifolds along common boundary components
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Functorial topological quantum field theories

The category Vecte of complex vector spaces has

- finite dimensional C-complex vector spaces as objects
- linear transformations as morphisms.

— (Vecte, ®) is a symmetric monoidal category.
Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a
symmetric monoidal functor

Z : Cob, — Vecte.
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Functorial TQFTs

The category Vecte of complex vector spaces has

- finite dimensional C-complex vector spaces as objects,
- linear transformations as morphisms.

— (Vecte, ®) is a symmetric monoidal category.
Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a
symmetric monoidal functor

Z : Cob, — Vecte.
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n-dimensional TQFTs produce numerical
diffeomorphism invariants of closed
n-manifolds which are multiplicative with
respect to disjoint union operation and behave
well under cut-paste operations.



Examples of TQFTs in
Low-dimensions



1-dimensional TQFTs

- Ob(Coby): closed oriented 0-dimensional manifolds
- Ob(Coby): finitely many oriented points

- Under the operation [], the collection Ob(Cob,) is generated by
two objects; namely, e+ and e-.



1-dimensional TQFTs

- Ob(Coby): closed oriented 0-dimensional manifolds
- Ob(Coby): finitely many oriented points

- Under the operation [], the collection Ob(Coby) is generated by
two objects; namely, e+ and e-.

- Mor(Coby): diffeom. classes of compact oriented 1-manifolds
- Under the operation [], the collection Mor(Coby) is generated by

tnoVYX



1-dimensional TQFTs

Given a 1-dimensional TQFT Z: Coby — Vecte with the following data



1-dimensional TQFTs

Given a 1-dimensional TQFT Z: Coby — Vecte with the following data

The equivalence of the following cobordisms implies that Z(ev) is a
nondegenerate bilinear pairing, so W = V*.

+ + +
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1-dimensional TQFTs

Given a 1-dimensional TQFT Z: Coby — Vecte with the following data

Let us compute the numerical invariant associated with connected
closed oriented 1-manifold, namely the circle.
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2-dimensional TQFTs

- Ob(Cob,): closed oriented 1-dimensional manifolds
- Ob(Cob,): finitely many oriented circles



2-dimensional TQFTs

- Ob(Cob,): closed oriented 1-dimensional manifolds

- Ob(Cob,): finitely many oriented circles

- Mor(Cob,): diffeom. classes of compact oriented 2-manifolds

- Under the operation [, the collection Mor(Cob,) is generated by

e XX
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2-dimensional TQFTs

- Ob(Cob,): closed oriented 1-dimensional manifolds
- Ob(Cob,): finitely many oriented circles
- Mor(Cob,): diffeom. classes of compact oriented 2-manifolds
- Under the operation [, the collection Mor(Cob,) is generated by

e XX

Given a 2-dimensional TQFT Z: Cob, — Vecte, with the following data
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2-dimensional TQFTs

Definition

Frobenius algebra is a finite dimensional associative, unital algebra
V equipped with a nondegenerate bilinear formo: V@V — C
satisfying o(a- b,c) =o(a,b-c) forall a,b,c e V.




2-dimensional TQFTs

Definition

Frobenius algebra is a finite dimensional associative, unital algebra
V equipped with a nondegenerate bilinear formo: V@V — C
satisfying o(a- b,c) =o(a,b-c) forall a,b,c e V.

Theorem (Abrams, Kock)
2-dimensional TQFTs are classified by commut. Frobenius algebras. 17



Homotopy Quantum Field
Theories



Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (X, x) (called the target space).
The n-dimensional X-cobordism category XCob, has

- closed oriented pointed (n — 1)-dimensional manifolds
equipped with continuous pointed maps as objects

- diffeomorphism classes of n-dimensional oriented cobordisms
equipped with homotopy classes of maps to X (restricting to

those pointed continuous maps defined boundary manifolds) as
morphisms.



Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (X, x) (called the target space).
The n-dimensional X-cobordism category XCob, has

- closed oriented pointed (n — 1)-dimensional manifolds
equipped with continuous pointed maps as objects

- diffeomorphism classes of n-dimensional oriented cobordisms
equipped with homotopy classes of maps to X (restricting to
those pointed continuous maps defined boundary manifolds) as
morphisms.
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Homotopy quantum field theories

Definition (Turaev)
An n-dimensional homotopy quantum field theory with target X
(X-HQFT) is a symmetric monoidal functor

Z : XCob, — Vecte.

- For X = {e}, we have X-HQFT= TQFT.

- For any target X, we have Cob, — XCob, by introducing points
on connected components and taking constant maps.

- When X ~ K(G, 1) for some group G, one can replace continuous
pointed maps on objects of XCob, with pointed homotopy
classes of continuous pointed maps.

20



HQFTs

Definition (Turaev)

An n-dimensional homotopy quantum field theory with target X
(X-HQFT) is a symmetric monoidal functor

Z : XCob, — Vecte.
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Cohomological HQFTs

Example (Turaev)

For any cohomology class 6 € H"(X, C*), there exists an
n-dimensional X-HQFT, called cohomological X-HQFT,

7% : XCob, — Vecte.

0 € H3(X,C*) M

g€MX
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Cohomological HQFTs

Example (Turaev)

For any cohomology class 6 € H"(X, C*), there exists an
n-dimensional X-HQFT, called cohomological X-HQFT,

7% : XCob, — Vecte.

6 € H3(X,C*) M3

6
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n-dimensional X-HQFTs produce numerical
invariants of homotopy classes of maps
defined from a closed n-manifold to X.



Results on 3-dimensional TQFTs
and HQFTs



3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

- Turaev-Viro-Barrett-Westbury state-sum TQFT
———

using repres.  generalizing to spherical
of Ug(slz) fusion cats

- the rough idea is assigning states to a triangulation of a
3-manifold and summing over all states.
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———

using repres.  generalizing to spherical
of Ug(slz) fusion cats

- the rough idea is assigning states to a triangulation of a
3-manifold and summing over all states.
Witten -Reshetikhin-Turaev surgery TQFT
N——

QFT-Feynman repres. of quasi-triangular
path integral Hopf algebras ~
Modular tensor categories

- the rough idea is coloring surgery representation of a 3-manifold
(possibly a knot lying inside) and summing/integrating over all
colorings.
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3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

- Turaev-Viro-Barrett-Westbury state-sum TQFT 7y, : Cob; — Vecte
N———

using repres.  generalizing to spherical
of Ug(slz) fusion cats

- the rough idea is assigning states to a triangulation of a
3-manifold and summing over all states.
Witten -Reshetikhin-Turaev surgery TQFT 757 : Cobs — Vect,
———

QFT-Feynman repres. of quasi-triangular
path integral Hopf algebras ~
Modular tensor categories

- the rough idea is coloring surgery representation of a 3-manifold
(possibly a knot lying inside) and summing/integrating over all
colorings.

- Turaev-Virelizier: these two TQFTs are related by the center
construction. More precisely, the center Z(C) of a spherical
fusion category C is a modular tensor category and for a closed
oriented 3-manifold M, we have 7' (M) = 7<,(M).

26



In 3d, surgery and state-sum TQFTs are related
by the center construction on the
corresponding algebraic notions.



3-dimensional HQFTs with aspherical targets

Let X ~ K(G, 1) for some group G. Then, state-sum and surgery TQFTs
extend to X-HQFTs:
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3-dimensional HQFTs with aspherical targets

Let X ~ K(G, 1) for some group G. Then, state-sum and surgery TQFTs
extend to X-HQFTs:
- Turaev-Virelizier state-sum X-HQFT 74 : XCob; — Vectc

using spherical
G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required
to be coherent with the homotopy class of a map.
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Let X ~ K(G, 1) for some group G. Then, state-sum and surgery TQFTs
extend to X-HQFTs:

- Turaev-Virelizier state-sum X-HQFT 74 : XCob; — Vectc

using spherical
G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required
to be coherent with the homotopy class of a map.
- Turaev-Virelizier surgery X-HQFT 7, : XCobs — Vectg
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Modular G-tensor
categories

- the colorings assigned to a surgery representation of a 3-manifold
(possibly a knot lying inside) are required to be coherent with
respect to the homotopy class of a map.
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3-dimensional HQFTs with aspherical targets

Let X ~ K(G, 1) for some group G. Then, state-sum and surgery TQFTs
extend to X-HQFTs:

- Turaev-Virelizier state-sum X-HQFT 74 : XCob; — Vecte

using spherical
G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required
to be coherent with the homotopy class of a map.
- Turaev-Virelizier surgery X-TQFT 77, : XCobs — Vecte
~—_—————

Modular G-tensor
categories

- the colorings assigned to a surgery representation of a 3-manifold
(possibly a knot lying inside) are required to be coherent with
respect to the homotopy class of a map.

- Turaev-Virelizier: these two X-HQFTs are related by the G-center
construction. More precisely, the G-center Z°(C) of a spherical
G-fusion category C is @ modular G-tensor category and for a

morphism 9. 4 in XCobs we have 7O M, g) = (FB)E(M, g).
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The relationship between 3d TQFTs extends to
3d surgery and state-sum HQFTs with
aspherical targets.



Homotopy n-types and Main
Theorem



Homotopy n-types

Definition
A is a top. space X with 7;(X,x) = 0 for all i > n.
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Homotopy n-types; n =1

Definition
A homotopy n-type is a top. space X with m;j(X,x) = 0 for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.
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Homotopy n-types; n =1and n =2

Definition
A homotopy n-type is a top. space X with (X, x) = 0 for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

- Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types.
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Homotopy n-types; n =1and n =2

Definition

A is a top. space X with 7;(X,x) = 0 for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

- Theorem (MacLane-Whitehead): Crossed modules model
homotopy 2-types.

Definition
A is a group homomorphism x : E — H with H acts
on E (denoted h-e ="eforh e Hand e € E) such that
- x is H-equivariant (H acts on itself by conjugation) i.e.
x("e) = hx(e)h~"forallh e Hand e € E
- x satisfies Peiffer identity, i.e. X(®)¢’ = ee’e~" for all e, e’ € E.
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Homotopy n-types; n =1and n =2

Definition

A is a top. space X with 7;(X,x) = 0 for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model
homotopy 1-types.

- Theorem (MacLane-Whitehead): Crossed modules model
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Definition
A is a group homomorphism x : E — H with H acts
on E (denoted h-e ="efor h e Hand e € E) such that
- x is H-equivariant (H acts on itself by conjugation) i.e.
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Question: Can we generalize Turaev-Virelizier results from 1-type
targets to 2-type targets?
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Question: Can we generalize Turaev-Virelizier results from 1-type
targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)

Let x: E — H be a crossed module. Then any spherical y-fusion
category C gives rise to a 3-dimensional HQFT 74 with target By.
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Question: Can we generalize Turaev-Virelizier results from 1-type
targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)
Let x: E — H be a crossed module. Then any spherical y-fusion
category C gives rise to a 3-dimensional HQFT 74 with target By.

This result generalizes the state-sum TQFT/HQFT results as follows:

+ x =idy = 72 is equivalent to 3d state-sum TQFT 7.

* x:E—H = 72 isequivalent to rfy with By ~ K(cokery,1).

39



What type of invariant such an HQFT yield?

Given a spherical x-fusion category C over C. Then for any pair (M, g)
where M is a closed oriented 3-manifold and g € [M, Bx] is a
homotopy class, the Bx-HQFT 7£ yields a numerical invariant

78(M, g) € C which is multiplicative with respect to disjoint union
operation.

" 1eC

TA
g € [M,Bx] ,_>C
N

Our main goal is to explain how this number is derived.

TCA(M, g)eC
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Spherical Fusion Categories




Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

Y

idy= F:X—="=(f]
X X
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

idy= (f:X—Y)= + gof= Y f®h= +

XIH
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

idy= (f:X—=Y)= + gof= Y f®h= . -

s

|A|B|C |A |B®C
— 7

b Iy ey
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

idy= (f:X—=Y)= + gof= Y f®h= . -

|A|B|C |A|B®C v
L J=04]

I [ Koy uiioy

s
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

idy= (f:X—=Y)= + gof= Y f®h= +
|A |B |C |A |B®C 14 % 14 %
|x |Y |X®Y U-ﬂ—”/ U X

XIE
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Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent
morphisms in @ monoidal category (C, ®,1) by planar diagrams.

idy= (f:X—=Y)= + gof= |¥ f®h= +
[f)
X
|A |B |C |A |B®C v 14 % 14 1%
Ci =077
|X |y |X®Y u:1—Y U X U

A monoidal category (C,®) is C-linear if for any two objects X, Y of C,

- Home(X,Y) is a C-vector space,
- oand ® are C-bilinear.
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evx: VX ® X — 1)}xec and a right duality
{(XV,eVx : X XY = 1) }xec.
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evx: VX ® X — 1)}xec and a right duality
{(XV,eVx : X XY = 1) }xec.

X

coevy

evy
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evyx : YX® X — 1)}xec and a right duality
{(XV,@X XXV — ﬂ)}xec.
X evy

VX _

coevy

X X

A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X*,GVX XX — IL,@VX XX — ]]-)}XGC-
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evyx : YX® X — 1)}xec and a right duality
X\/ ax X®X\/ — ﬂ }XEC

L |

A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X*,GVX XX — IL,@VX XX — ]]-)}XGC-
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evx: VX ® X — 1)}xec and a right duality
X\/ ax X®X\/ — ﬂ }XEC

L |

A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X*,GVX:X*®X—>H,6\7)<ZX®X*—>]1)}Xec-
A
= L J=0J J
o Y A
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Rigid and pivotal categories

A rigid category is a monoidal category (C, ®) which admits both a
left duality {(VX,evx: VX ® X — 1)}xec and a right duality
X\/ ax X®X\/ — ﬂ }XEC

L |

A pivotal category is a rigid category with distinguished (pivotal)
duality such that the objects of left and right dualities coincide:

{X* evx : X* @ X — 1,evy : X@X* — 1) }xec-
*A lB *C *A *B* ¢C evy évy
=0 )

XX TX TY TX* TY X X X
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Fusion categories

An object i of C is called simple if Home(i, i) = C.
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Fusion categories

An object i of C is called if Home(i,1) = C.

Definition
A is a monoidal C-linear category C such that
there exists a finite set | of simple objects of C satisfying the

conditions

- 1el,
- Home(i,j) = 0 for any distinct 1,/ € |,
- every object of C is a direct sum of finitely many elements of |.
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Fusion categories

An object i of C is called if Home(i,1) = C.

Definition

A is a monoidal C-linear category C such that
there exists a finite set | of simple objects of C satisfying the
conditions

- 1el,
- Home(i,j) = 0 for any distinct 1,/ € |,
- every object of C is a direct sum of finitely many elements of |.

Example Representations of a finite group.
Example Representations of quantum groups.
Example Given a finite group G, we have a category G;
and forallg,heG

where g@ h = gh forall g,h € Gand k® [ = Rl for all
kR, L € C. 56



Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
coincide. That is, for any endomorphism f, we have tr(f) = tr.(f).

x4 (F)=0f) &
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Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
coincide. That is, for any endomorphism f, we have tr(f) = tr.(f).

The graphical calculus extends from R? to S? when the monoidal
category is spherical. In other words, the representation of a
morphism by a graph P is invariant under the isotopies of P in S2.
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Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces
coincide. That is, for any endomorphism f, we have tr(f) = tr.(f).

The graphical calculus extends from R? to S? when the monoidal
category is spherical. In other words, the representation of a
morphism by a graph P is invariant under the isotopies of P in S2.

Let C be a pivotal fusion cat. and | be a repres. of simple objects;

- left dimension of an object X € C: dim(X) = tri(idx) € C,
- right dimension of an object X € C: dim.(X) = tr(idx) € C,
- dimension of C: dim(C) = ), dim(i)dim,(i).
59



Crossed module graded monoidal categories

Let x : E — H be a crossed module. A y-graded category is a C-linear
monoidal category (C,®) which is

- E-Hom graded, i.e. Home(X, Y) = @eceHomE (X, Y) for all X, Y € C.

- endowed with a subclass Cnom and a degree map | - | : Chom — H
such that

- X=X, where X; € Chom,
- For X, Y € Chom, We have Homg (X, Y) = 0 if |Y| # x(e)|X|,

- For X, Y € Chom, We have X ® Y = @[.,Z; with |Z;| = |X]|Y],
- |1l =1€H,

- For any homogeneous morphisms «, 8 with s(a) € Chom, We have
la® Bl = |af (F|6]) € E

0 ‘nyyyz‘ = |l)<‘ = |I’x| =1e¢ Efor allX, Y,Z € C.
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Crossed module graded monoidal categories

Let x : E — H be a crossed module. A y-graded category is a C-linear
monoidal category (C,®) which is

- E-Hom graded, i.e. Home(X, Y) = @eceHomE (X, Y) for all X, Y € C.
- endowed with a subclass Cnom and a degree map | - | : Chom — H
such that

X =@l X where X; € Chom,

- For X, Y € Chom, We have Homg (X, Y) = 0 if |Y| # x(e)|X|,

- For X, Y € Chom, We have X ® Y = @[.,Z; with |Z;| = |X]|Y],

- |1l =1€H,

- For any homogeneous morphisms «, 8 with s(a) € Chom, We have
la @ 8] = || ()|8]) € E,

. ‘nyyyz‘ = |[x‘ = |I’x| =1TekEforallX,Y,ZeC.

A pivotal structure on a y-graded monoidal category C is a pivotal
duality where all evaluation morphisms evy and evy are

homogeneous of degree 1 € E.

A pivotal y-graded monoidal category C is spherical if for any degree

1 endomorphism f € Homgf(X,X), left and right traces coincide. c



Spherical y-fusion categories

Definition (S.-Virelizier)
A (over C) is a spherical x-graded
category (C, ®) such that
- Cis E-semisimple, i.e. forany e € Eand X € C, we have X = D Xi
where each X; is simple (i.e. End'(X;) = C),
- 1is simple,

- For any h € H, the set I, of 1-isomorphism classes of degree h
homogeneous simple objects is finite and nonempty.
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Spherical y-fusion categories

Definition (S.-Virelizier)

A (over C) is a spherical x-graded
category (C, ®) such that

* Cis E-semisimple, i.e. forany e € Eand X € C, we have X = ®f_X;
where each X; is simple (i.e. End'(X;) = C),

- 1is simple,

- For any h € H, the set of 1-isomorphism classes of degree h
homogeneous simple objects is finite and nonempty.

Example: Consider the category CG, whose
- Ob(CGy) =H
* Homeg, (x,¥) ={e € E|y = x(e)x}C for x,y € H.

- monoidal product of objects x® y = xy

- monoidal product of morphisms (x 5 y)® (z R t) = xy ﬂ zt.
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Hopf y-coalgebras and their representations

A Hopf y-coalgebra is a family {Ax}xen Of C-algebras endowed with

- coassociative algebra homoms. {Axy: Ay — Ac @Ayt yen
- counitary algebra homomorphisme: A; — C
- bijective C-linear homoms. S = {Sy: A1 — Ay }xen [antipodel].

- algebra isomorphisms {¢xe: Ax = Ay(e)xtxeH,eck

satisfying certain conditions.
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Hopf y-coalgebras and their representations

A Hopf y-coalgebra is a family {Ax}xen Of C-algebras endowed with

- coassociative algebra homoms. {Axy: Ay — Ac @Ayt yen
- counitary algebra homomorphisme: A; — C
- bijective C-linear homoms. S = {Sy: A1 — Ay }xen [antipodel].

- algebra isomorphisms {¢xe: Ax = Ay(e)xtxeH,eck
satisfying certain conditions.

Theorem (S.-Virelizier)

The category mod(A) of representations of a Hopf y-coalgebra
A = {Ax}xen is x-fusion if Ay is semisimple and each Ay is nonzero
and finite dimensional.
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Hopf y-coalgebras: Graphical definition
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State-sum Homotopy Invariants
of Maps




x-labeling of a triangulation

Let M be a closed oriented 3-manifold and g € [M, Bx] be a
homotopy class of a map.

- Given a triangulation A of M with oriented 2-faces A® c A.
- Encode the data of g by specifying a y-labeling (a, 8) where

(a: AP 5 H B: AN )

Question: How do we specify a x-labeling?
Step 1: Choose a representative g of g mapping centers of
3-simplices to the basepoint x € By.

> f>-a
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x-labeling of a triangulation

Let M be a closed oriented 3-manifold and g € [M, Bx] be a
homotopy class of a map.

- Given a triangulation A of M with oriented 2-faces A® c A.
- Encode the data of g by specifying a y-labeling (a, 8) where
(a: AP 5 H B: AN )

Question: How do we specify a x-labeling?
Step 1: Choose a representative g of g mapping centers of
3-simplices to the basepoint x € By.
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x-labeling of a triangulation

Step 2: Choose arcs connecting central points and orient each
arc using the orientation of the corresponding 2-face
and the orientation of M.

Step 3: Label an arc by an element of H which corresponds
to the homotopy class of a loop g(v) € (Bx)' C Bx.

Step 4: o : A® — H maps a 2-face to the H-label of the
corresponding arc.
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x-labeling of a triangulation

Step 5: Around an oriented edge k of A form a disk §, whose
boundary is the concatenation of the arcs obtained
above.

Step 6: For a central point a adjacent to k, label the pair (k, a)
by an element of £ which corresponds to the relative
homotopy class of g|s, € By in m(Bx, (Bx)', x) = E.

Bx

x(e) = hhyhsh,”
X(el) = h2h3h;1h1

- Lemma: {x-labelings of A®}/Gauge group = [M, By].
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The state-sum invariant

Given a spherical x-fusion category C and a set | = Upenlp Of
representatives of simple objects.
A coloring is a map ¢ : A® — | such that ¢(r) € Iy for all r € A@.
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Assigning scalar |c| to a coloring ¢

Given a spherical x-fusion category C and a set | = Upenlp Of
representatives of simple objects.
A coloring is a map ¢ : A® — | such that ¢(r) € Iy for all r € A@.

Given a coloring ¢ : A® — |, we obtain a scalar |c| € C as follows.

- To each pair (k,a) of an oriented edge k and a central point a
adjacent to kR, we assign a vector space

He(k, a) = Hom2® (1, c(r) & ()7 @ - - @ c(rn)™).
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Assigning scalar |c| to a coloring ¢

- Doing this assignment for all oriented edges, we obtain a
finite-dimensional C-vector space

Hc - ®orientedHC(ka ak)'

edges kR

- Lemma: Hc(k, ax) and Hc(—R, ag) are dual to each other. This
yields a vector x, € Hc(R, ar) ® He(—R, ag).

c(r)|c(ry)|c(rs)|c(rs) c(ra)|c(r3)|c(r2)|c(r)
m

f € He(k, a) = Hom2® D (1, c(r) @ c(r)* ® c(rs)* @ c(r4))

g € He(—k, a) = Homz?®9 (1, ¢(r,)* @ c(r3) ® ¢(r2) ® c(r)*)
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Assigning scalar |c| to a coloring ¢

- Doing this assignment for all oriented edges, we obtain a
finite-dimensional C-vector space

He = ®orientedHc(I?a ak)'

edges kR

- Lemma: Hc(k, ax) and Hc(—R, ag) are dual to each other. This
yields a vector x, € Hc(R, ar) @ Hc(—R, ag).

*k

1eC

- Each coloring ¢ produces a vector *c = ®unoriented*; € He-
edges k
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Assigning scalar |c| to a coloring ¢

The next step involves vertices:

- For any vertex v of A, choose a 3-ball neighborhood B of v.
- The intersection 9B; N A®@ yields a graph I, on 9B2.

% B} a
3

\ c(r)]c(ry)
2,
1

Hom,(c'?(h’ha)(ﬂ’ C(I’1) ® C(rZ))

- A coloring c assigns to each vertex of I, a Hom-vector space in C.

- The assigned vector space is precisely Hc(kq, a) where ky is the
corresponding edge and oriented away from v.
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Assigning scalar |c| to a coloring ¢

- Then each vertex v of A and a coloring c yields a dual vector
Fe(TS) : He(ki,a) ® He(Ry,a) ® -+ - @ He(Rn, a) — €

He(T)

where k;'s are the edges incident to v and oriented away from v.

- Repeating this process for all vertices, we obtain

®veAH(r6)* = ®y Rk, He(ky,a))* = ®ordienteSHc(kvak)* = H;
edges

- Denote the image of @yeale(l5) € ®veaH(MS)* under these
isomorphisms by V. € H?.

- Lastly, the scalar |c| is obtained by the evaluation V((x.) € C. .



The state-sum invariant

The state-sum invariant of a pair (M, g) is defined as

& (M, g) = (dimy)~(# Fsimplices of &) -3 = ( IT dim(c ) Ic| e C.

colorings \reA®
cA® )

where C] is the fusion subcategory of C consisting of degree 1 objects
and degree 1 morphisms.
Recall that the inputs for 7&(M, g) are

- triangulation A of M,
x-labeling («, 8) of A associated to g.
- spherical x-fusion category C,
- representative set | of simple objects of C,
Theorem (S.-Virelizier)
78(M, g) is independent of the choices of A, («, 3), and .
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Thanks for your attention!
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