State-sum homotopy invariants of maps from 3-manifolds to 2-types

Moduli and Friends Seminar

Kürşat Sözer (joint with Alexis Virelizier)

McMaster University

Contents

- 1. Functorial Topological Quantum Field Theories
- 2. Examples of TQFTs in Low-dimensions
- 3. Homotopy Quantum Field Theories
- 4. Results on 3-dimensional TQFTs and HQFTs
- 5. Homotopy *n*-types and Main Theorem
- 6. Spherical Fusion Categories
- 7. State-sum Homotopy Invariants of Maps

Functorial Topological Quantum Field Theories

n-dimensional cobordism category

The *n*-dimensional cobordism category Cob_n has

- \cdot closed oriented (n-1)-dimensional manifolds as objects,
- diffeomorphism classes (relative ∂) of *n*-dimensional oriented cobordisms as morphisms.
- $\cdot \, \circ$: gluing manifolds along common boundary components

n-dimensional cobordism category

The *n*-dimensional cobordism category Cob_n has

- closed oriented (n 1)-dimensional manifolds as objects,
- diffeomorphism classes (relative ∂) of *n*-dimensional oriented cobordisms as morphisms.
- $\cdot \, \circ$: gluing manifolds along common boundary components

 \rightarrow (Cob_n, \coprod) is a symmetric monoidal category.

Functorial topological quantum field theories

The category $\mathsf{Vect}_\mathbb{C}$ of complex vector spaces has

- \cdot finite dimensional C-complex vector spaces as objects
- linear transformations as morphisms.
- \rightarrow (Vect_{\mathbb{C}},\otimes) is a symmetric monoidal category.

Definition (Atiyah)

An *n*-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

Functorial TQFTs

The category $\mathsf{Vect}_\mathbb{C}$ of complex vector spaces has

- \cdot finite dimensional C-complex vector spaces as objects,
- linear transformations as morphisms.
- \rightarrow (Vect_{\mathbb{C}},\otimes) is a symmetric monoidal category.

Definition (Atiyah)

An *n*-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

Functorial TQFTs

The category $\mathsf{Vect}_\mathbb{C}$ of complex vector spaces has

- \cdot finite dimensional C-complex vector spaces as objects,
- linear transformations as morphisms.
- \rightarrow (Vect_{\mathbb{C}},\otimes) is a symmetric monoidal category.

Definition (Atiyah)

An *n*-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

Functorial TQFTs

The category $\mathsf{Vect}_\mathbb{C}$ of complex vector spaces has

- \cdot finite dimensional C-complex vector spaces as objects,
- linear transformations as morphisms.
- \rightarrow (Vect_{\mathbb{C}},\otimes) is a symmetric monoidal category.

Definition (Atiyah)

An *n*-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

n-dimensional TQFTs produce numerical diffeomorphism invariants of closed *n*-manifolds which are multiplicative with respect to disjoint union operation and behave well under cut-paste operations.

Examples of TQFTs in Low-dimensions

- Ob(Cob₁): closed oriented 0-dimensional manifolds
- Ob(Cob₁): finitely many oriented points
- Under the operation ∐, the collection Ob(Cob₁) is generated by two objects; namely, ●+ and ●-.

- Ob(Cob₁): closed oriented 0-dimensional manifolds
- Ob(Cob₁): finitely many oriented points
- Under the operation ∐, the collection Ob(Cob₁) is generated by two objects; namely, ●+ and ●-.
- Mor(Cob₁): diffeom. classes of compact oriented 1-manifolds
- \cdot Under the operation \coprod , the collection $\mathsf{Mor}(\mathsf{Cob}_1)$ is generated by

Given a 1-dimensional TQFT Z: $\mathsf{Cob}_1 \to \mathsf{Vect}_\mathbb{C}$ with the following data

- $Z(\bullet^+) = V$
- $Z(\bullet -) = W$
- $Z(ev): V \otimes W \to \mathbb{C}$
- $Z(\operatorname{coev}) \colon \mathbb{C} \to W \otimes V.$

Given a 1-dimensional TQFT Z: $\mathsf{Cob}_1 \to \mathsf{Vect}_\mathbb{C}$ with the following data

- $Z(\bullet^+) = V$
- $Z(\bullet -) = W$
- $Z(ev): V \otimes W \to \mathbb{C}$
- $Z(\operatorname{coev}) \colon \mathbb{C} \to W \otimes V.$

The equivalence of the following cobordisms implies that Z(ev) is a nondegenerate bilinear pairing, so $W \cong V^*$.

Given a 1-dimensional TQFT Z: $\mathsf{Cob}_1 \to \mathsf{Vect}_\mathbb{C}$ with the following data

- · $Z(\bullet^+) = V$
- $Z(\bullet -) = W$
- $Z(ev) \colon V \otimes W \to \mathbb{C}$
- $Z(\operatorname{coev}) \colon \mathbb{C} \to W \otimes V.$

Let us compute the numerical invariant associated with connected closed oriented 1-manifold, namely the circle.

- Ob(Cob₂): closed oriented 1-dimensional manifolds
- Ob(Cob₂): finitely many oriented circles

- Ob(Cob₂): closed oriented 1-dimensional manifolds
- Ob(Cob₂): finitely many oriented circles
- Mor(Cob₂): diffeom. classes of compact oriented 2-manifolds
- Under the operation \coprod , the collection Mor(Cob₂) is generated by

- Ob(Cob₂): closed oriented 1-dimensional manifolds
- Ob(Cob₂): finitely many oriented circles
- Mor(Cob₂): diffeom. classes of compact oriented 2-manifolds
- Under the operation \coprod , the collection Mor(Cob₂) is generated by

Given a 2-dimensional TQFT Z: $Cob_2 \rightarrow Vect_{\mathbb{C}}$, with the following data

- $\cdot Z(S^1) = V$
- $Z(\mu) \colon V \otimes V \to V$
- $Z(\Delta) \colon V \to V \otimes V$
- $\cdot Z(\eta) \colon \mathbb{C} \to V$
- $Z(\varepsilon): V \to \mathbb{C}.$

Definition

Frobenius algebra is a finite dimensional associative, unital algebra V equipped with a nondegenerate bilinear form $\sigma: V \otimes V \to \mathbb{C}$ satisfying $\sigma(a \cdot b, c) = \sigma(a, b \cdot c)$ for all $a, b, c \in V$.

Definition

Frobenius algebra is a finite dimensional associative, unital algebra V equipped with a nondegenerate bilinear form $\sigma: V \otimes V \to \mathbb{C}$ satisfying $\sigma(a \cdot b, c) = \sigma(a, b \cdot c)$ for all $a, b, c \in V$.

Theorem (Abrams, Kock)

2-dimensional TQFTs are classified by commut. Frobenius algebras.

17

Homotopy Quantum Field Theories

Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (*X*, *x*) (called the *target space*). The *n*-dimensional *X*-cobordism category XCob_n has

- closed oriented pointed (n 1)-dimensional manifolds equipped with continuous pointed maps as objects
- diffeomorphism classes of *n*-dimensional oriented cobordisms equipped with homotopy classes of maps to X (restricting to those pointed continuous maps defined boundary manifolds) as morphisms.

Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (*X*, *x*) (called the *target space*). The *n*-dimensional *X*-cobordism category XCob_n has

- closed oriented pointed (n 1)-dimensional manifolds equipped with continuous pointed maps as objects
- diffeomorphism classes of *n*-dimensional oriented cobordisms equipped with homotopy classes of maps to X (restricting to those pointed continuous maps defined boundary manifolds) as morphisms.

Definition (Turaev)

An *n*-dimensional homotopy quantum field theory with target X (X-HQFT) is a symmetric monoidal functor

```
Z : \mathsf{XCob}_n \to \mathsf{Vect}_{\mathbb{C}}.
```

- For $X = \{\bullet\}$, we have X-HQFT= TQFT.
- For any target X, we have $Cob_n \hookrightarrow XCob_n$ by introducing points on connected components and taking constant maps.
- When $X \simeq K(G, 1)$ for some group G, one can replace continuous pointed maps on objects of $XCob_n$ with pointed homotopy classes of continuous pointed maps.

HQFTs

Definition (Turaev)

An *n*-dimensional homotopy quantum field theory with target X (X-HQFT) is a symmetric monoidal functor

Cohomological HQFTs

Example (Turaev)

For any cohomology class $\theta \in H^n(X, \mathbb{C}^*)$, there exists an *n*-dimensional X-HQFT, called *cohomological X-HQFT*,

 $Z^{\theta} : \mathsf{XCob}_n \to \mathsf{Vect}_{\mathbb{C}}.$

Cohomological HQFTs

Example (Turaev)

For any cohomology class $\theta \in H^n(X, \mathbb{C}^*)$, there exists an *n*-dimensional X-HQFT, called *cohomological X-HQFT*,

 $Z^{\theta} : \mathsf{XCob}_n \to \mathsf{Vect}_{\mathbb{C}}.$

n-dimensional X-HQFTs produce numerical invariants of homotopy classes of maps defined from a closed *n*-manifold to X.

Results on 3-dimensional TQFTs and HQFTs

There are two main constructions of 3-dimensional TQFTs:

• Turaev-Viro-Barrett-Westbury state-sum TQFT

using repres. generalizing to spherical $of U_q(sl_2)$ fusion cats

 the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.

There are two main constructions of 3-dimensional TQFTs:

• Turaev-Viro-Barrett-Westbury state-sum TQFT

using repres. generalizing to spherical $f(u_q(sl_2))$ fusion cats

- the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.
- Witten -Reshetikhin-Turaey surgery TQFT

QFT-Feynman path integral repres. of quasi-triangular Hopf algebras ↔ Modular tensor categories

• the rough idea is coloring surgery representation of a 3-manifold (possibly a knot lying inside) and summing/integrating over all colorings.

There are two main constructions of 3-dimensional TQFTs:

• Turaev-Viro-Barrett-Westbury state-sum TQFT τ_{TV} : Cob₃ \rightarrow Vect_C

using repres. generalizing to spherical fusion cats $U_q(sl_2)$

- the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.
- Witten -Reshetikhin-Turaev surgery TQFT τ_{RT} : Cob₃ \rightarrow Vect_C

QFT-Feynman path integral repres. of quasi-triangular Hopf algebras ↔ Modular tensor categories

- the rough idea is coloring surgery representation of a 3-manifold (possibly a knot lying inside) and summing/integrating over all colorings.
- <u>Turaev-Virelizier</u>: these two TQFTs are related by the center construction. More precisely, the center Z(C) of a spherical fusion category C is a modular tensor category and for a closed oriented 3-manifold M, we have $\tau_{RI}^{Z(C)}(M) = \tau_{TV}^{C}(M)$.

In 3d, surgery and state-sum TQFTs are related by the center construction on the corresponding algebraic notions.

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

• Turaev-Virelizier state-sum X-HQFT τ_{TV}^{Δ} : XCob₃ \rightarrow Vect_C

using spherical G-fusion categories

• the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.
3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

• Turaev-Virelizier state-sum X-HQFT τ_{TV}^{Δ} : XCob₃ \rightarrow Vect_C

using spherical G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.
- Turaev-Virelizier surgery X-HQFT τ_{TV} : XCob₃ \rightarrow Vect_C

Modular G-tensor categories

• the colorings assigned to a surgery representation of a 3-manifold (possibly a knot lying inside) are required to be coherent with respect to the homotopy class of a map.

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

• Turaev-Virelizier state-sum X-HQFT τ_{TV}^{Δ} : XCob₃ \rightarrow Vect_C

using spherical G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.
- Turaev-Virelizier surgery X-TQFT au_{TV} : XCob₃ \rightarrow Vect_C

Modular G-tensor categories

- the colorings assigned to a surgery representation of a 3-manifold (possibly a knot lying inside) are required to be coherent with respect to the homotopy class of a map.
- <u>Turaev-Virelizier</u>: these two X-HQFTs are related by the *G*-center construction. More precisely, the *G*-center $Z^G(\mathcal{C})$ of a spherical *G*-fusion category \mathcal{C} is a modular *G*-tensor category and for a morphism $\emptyset \xrightarrow{(M,g)}{\emptyset} \emptyset$ in XCob₃ we have $\tau_{TV}^{Z^G(\mathcal{C})}(M,g) = (\tau_{TV}^{\Delta})^{\mathcal{C}}(M,g)$.

The relationship between 3d TQFTs extends to 3d surgery and state-sum HQFTs with aspherical targets.

Homotopy *n*-types and Main Theorem

Homotopy *n*-types

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

Homotopy *n*-types; *n* = 1

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

• 1-types are precisely *K*(*G*, 1)-spaces. Equivalently, groups model homotopy 1-types.

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

- 1-types are precisely *K*(*G*, 1)-spaces. Equivalently, groups model homotopy 1-types.
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

- 1-types are precisely *K*(*G*, 1)-spaces. Equivalently, groups model homotopy 1-types.
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Definition

A crossed module is a group homomorphism $\chi : E \to H$ with H acts on E (denoted $h \cdot e = {}^{h}e$ for $h \in H$ and $e \in E$) such that

- χ is *H*-equivariant (*H* acts on itself by conjugation) i.e. $\chi({}^{h}e) = h\chi(e)h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. $\chi(e)e' = ee'e^{-1}$ for all $e, e' \in E$.

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model homotopy 1-types. $G \mapsto BG \simeq K(G, 1) \otimes X \simeq K(G, 1) \mapsto \pi_1(X, X) = G$
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Definition

A crossed module is a group homomorphism $\chi : E \to H$ with H acts on E (denoted $h \cdot e = {}^{h}e$ for $h \in H$ and $e \in E$) such that

- χ is *H*-equivariant (*H* acts on itself by conjugation) i.e. $\chi({}^{h}e) = h\chi(e)h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. $\chi(e)e' = ee'e^{-1}$ for all $e, e' \in E$.

Definition

A homotopy *n*-type is a top. space X with $\pi_i(X, x) = 0$ for all i > n.

- 1-types are precisely K(G, 1)-spaces. Equivalently, groups model homotopy 1-types. $G \mapsto BG \simeq K(G, 1) \& X \simeq K(G, 1) \mapsto \pi_1(X, X) = G$
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types. For any homotopy 2-type X, there exists a crossed module $\chi : E \to H$ such that $X \simeq B\chi$ where $\pi_1(B\chi, x) = \operatorname{coker}(\chi)$ and $\pi_2(B\chi, x) = \ker(\chi)$.

Definition

A crossed module is a group homomorphism $\chi : E \to H$ with H acts on E (denoted $h \cdot e = {}^{h}e$ for $h \in H$ and $e \in E$) such that

- χ is *H*-equivariant (*H* acts on itself by conjugation) i.e. $\chi({}^{h}e) = h\chi(e)h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. $\chi(e)e' = ee'e^{-1}$ for all $e, e' \in E$.

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)

Let $\chi: E \to H$ be a crossed module. Then any spherical χ -fusion category \mathcal{C} gives rise to a 3-dimensional HQFT $\tau_{\mathcal{C}}^{\Delta}$ with target $B\chi$.

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)

Let $\chi: E \to H$ be a crossed module. Then any spherical χ -fusion category \mathcal{C} gives rise to a 3-dimensional HQFT $\tau_{\mathcal{C}}^{\Delta}$ with target $B\chi$.

This result generalizes the state-sum TQFT/HQFT results as follows:

- $\chi = id_H \implies \tau_{\chi}^{\Delta}$ is equivalent to 3d state-sum TQFT τ_{TV} .
- $\chi: E \hookrightarrow H \implies \tau_{\chi}^{\Delta}$ is equivalent to τ_{TV}^{Δ} with $B\chi \simeq K(\operatorname{coker}\chi, 1)$.

What type of invariant such an HQFT yield?

Given a spherical χ -fusion category \mathcal{C} over \mathbb{C} . Then for any pair (M,g) where M is a closed oriented 3-manifold and $g \in [M, B\chi]$ is a homotopy class, the $B\chi$ -HQFT $\tau_{\mathcal{C}}^{\Delta}$ yields a numerical invariant $\tau_{\mathcal{C}}^{\Delta}(M,g) \in \mathbb{C}$ which is multiplicative with respect to disjoint union operation.

Our main goal is to explain how this number is derived.

Spherical Fusion Categories

$$id_X = \begin{vmatrix} Y \\ f : X \to Y \end{pmatrix} = \int_X \begin{vmatrix} Y \\ f \\ X \end{vmatrix}$$

$$id_{X} = \begin{vmatrix} & & Y \\ X & & Y \end{pmatrix} = \begin{pmatrix} Y & & & Z \\ f & & g \circ f = \begin{pmatrix} Z \\ g \\ Y \\ X & & f \otimes h = \begin{pmatrix} Y & V \\ f \\ f \\ X & & U \end{pmatrix}$$

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, 1)$ by planar diagrams.

A monoidal category (\mathcal{C}, \otimes) is \mathbb{C} -linear if for any two objects X, Y of \mathcal{C} ,

- Hom_C(X, Y) is a \mathbb{C} -vector space,
- $\boldsymbol{\cdot} \, \circ \, \text{and} \otimes \text{are } \mathbb{C}\text{-bilinear.}$

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

$$\{X^*, ev_X : X^* \otimes X \to \mathbb{1}, \widetilde{ev}_X : X \otimes X^* \to \mathbb{1}\}_{X \in \mathcal{C}}.$$

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

$$\{X^*, ev_X : X^* \otimes X \to \mathbb{1}, \widetilde{ev}_X : X \otimes X^* \to \mathbb{1})\}_{X \in \mathcal{C}}.$$
$$id_{X^*} = \bigvee_{X^*} = \bigvee_{X^*} X$$

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

$$\{X^*, ev_X : X^* \otimes X \to \mathbb{1}, \widetilde{ev}_X : X \otimes X^* \to \mathbb{1}\}_{X \in \mathcal{C}}.$$
$$id_{X^*} = \bigvee_{X^*} = \bigvee_X \begin{array}{c} |A | B | C \\ \downarrow & \downarrow \\ X \\ \downarrow & \downarrow \\ X \end{array} = \bigvee_{Y^*} \begin{array}{c} |A | B | C \\ \downarrow & \downarrow \\ X \\ \downarrow & \downarrow \\ X \end{array} = \bigvee_{Y^*} \begin{array}{c} |A | B^* | C \\ \downarrow & \downarrow \\ X^* \\ \downarrow & \downarrow \\ X^* \\ \downarrow \\ X^* \\ \downarrow \\ Y \end{array}$$

A *rigid* category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\{({}^{\vee}X, ev_X : {}^{\vee}X \otimes X \to \mathbb{1})\}_{X \in \mathcal{C}}$ and a right duality $\{(X^{\vee}, \widetilde{ev}_X : X \otimes X^{\vee} \to \mathbb{1})\}_{X \in \mathcal{C}}$.

$$\{X^*, ev_X : X^* \otimes X \to \mathbb{1}, \widetilde{ev}_X : X \otimes X^* \to \mathbb{1}\}_{X \in \mathcal{C}}.$$
$$id_{X^*} = \bigvee_{X^*} = \bigvee_{X} \begin{array}{c} A & B & C \\ \hline j \\ X & Y \end{array} = \begin{array}{c} A & B^* & C \\ \hline j \\ X & Y \end{array} = \begin{array}{c} A & B^* & C \\ \hline j \\ X & Y \end{array} = \begin{array}{c} ev_X \\ F \\ X & Y \end{array} = \begin{array}{c} ev_X \\ F \\ X & Y \end{array}$$

An object *i* of C is called *simple* if Hom_C(*i*, *i*) $\cong \mathbb{C}$.

Fusion categories

An object *i* of C is called simple if Hom_C $(i, i) \cong \mathbb{C}$.

Definition

A fusion \mathbb{C} -category is a monoidal \mathbb{C} -linear category \mathcal{C} such that there exists a <u>finite</u> set *I* of simple objects of \mathcal{C} satisfying the conditions

- · $1 \in I$,
- Hom_C(*i*,*j*) = 0 for any distinct *i*,*j* \in *I*,
- $\cdot\,$ every object of ${\cal C}$ is a direct sum of finitely many elements of I.

Fusion categories

An object *i* of C is called simple if Hom_C $(i, i) \cong \mathbb{C}$.

Definition

A fusion \mathbb{C} -category is a monoidal \mathbb{C} -linear category \mathcal{C} such that there exists a <u>finite</u> set *I* of simple objects of \mathcal{C} satisfying the conditions

- · $1 \in I$,
- Hom_C(*i*,*j*) = 0 for any distinct *i*,*j* \in *I*,
- $\cdot\,$ every object of ${\cal C}$ is a direct sum of finitely many elements of I.

Example Representations of a finite group. **Example** Representations of quantum groups. **Example** Given a finite group *G*, we have a category *G*; $Ob(\mathcal{G}) = G$ and $Hom_{\mathcal{G}}(g, h) = \delta_{g,h}\mathbb{C}$ for all $g, h \in G$ where $g \otimes h = gh$ for all $g, h \in G$ and $k \otimes l = kl$ for all $k, l \in \mathbb{C}$.

Spherical categories and graphical calculus on a sphere

A *spherical* category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $tr_l(f) = tr_r(f)$.

Spherical categories and graphical calculus on a sphere

A *spherical* category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $tr_l(f) = tr_r(f)$.

The graphical calculus extends from \mathbb{R}^2 to S^2 when the monoidal category is spherical. In other words, the representation of a morphism by a graph *P* is invariant under the isotopies of *P* in S^2 .

Spherical categories and graphical calculus on a sphere

A *spherical* category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $tr_l(f) = tr_r(f)$.

The graphical calculus extends from \mathbb{R}^2 to S^2 when the monoidal category is spherical. In other words, the representation of a morphism by a graph *P* is invariant under the isotopies of *P* in S^2 .

Let \mathcal{C} be a pivotal fusion cat. and I be a repres. of simple objects;

- left dimension of an object $X \in C$: dim_l $(X) = tr_l(id_X) \in \mathbb{C}$,
- right dimension of an object $X \in C$: dim_r $(X) = tr_r(id_X) \in \mathbb{C}$,
- dimension of C: dim $(C) = \sum_{i \in I} \dim_l(i) \dim_r(i)$.

Crossed module graded monoidal categories

Let $\chi: E \to H$ be a crossed module. A χ -graded category is a \mathbb{C} -linear monoidal category (\mathcal{C}, \otimes) which is

- E-Hom graded, i.e. $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \bigoplus_{e \in E} \operatorname{Hom}_{\mathcal{C}}^{e}(X,Y)$ for all $X, Y \in \mathcal{C}$.
- endowed with a subclass \mathcal{C}_{hom} and a degree map $|\cdot|: \mathcal{C}_{hom} \to H$ such that
 - $\cdot X = \bigoplus_{i=1}^{n} X_i$ where $X_i \in \mathcal{C}_{hom}$.
 - For $X, Y \in \mathcal{C}_{hom}$, we have $Hom_{\mathcal{C}}^{e}(X, Y) = 0$ if $|Y| \neq \chi(e)|X|$,
 - For $X, Y \in \mathcal{C}_{hom}$, we have $X \otimes Y = \bigoplus_{i=1}^{n} Z_i$ with $|Z_i| = |X||Y|$,
 - $\cdot |\mathbb{1}| = 1 \in H$,
 - For any homogeneous morphisms α, β with $s(\alpha) \in C_{hom}$, we have $|\alpha \otimes \beta| = |\alpha| \left([|s(\alpha)||\beta|] \right) \in E,$ $\cdot |a_{X,Y,Z}| = |l_X| = |r_X| = 1 \in E \text{ for all } X, Y, Z \in C.$

Crossed module graded monoidal categories

Let $\chi : E \to H$ be a crossed module. A χ -graded category is a \mathbb{C} -linear monoidal category (\mathcal{C}, \otimes) which is

- *E*-Hom graded, i.e. $\operatorname{Hom}_{\mathcal{C}}(X, Y) = \bigoplus_{e \in E} \operatorname{Hom}_{\mathcal{C}}^{e}(X, Y)$ for all $X, Y \in \mathcal{C}$.
- endowed with a subclass \mathcal{C}_{hom} and a degree map $|\cdot|:\mathcal{C}_{hom}\to H$ such that
 - $X = \bigoplus_{i=1}^{n} X_i$ where $X_i \in \mathcal{C}_{hom}$,
 - For $X, Y \in \mathcal{C}_{hom}$, we have $\operatorname{Hom}^{e}_{\mathcal{C}}(X, Y) = 0$ if $|Y| \neq \chi(e)|X|$,
 - For $X, Y \in \mathcal{C}_{hom}$, we have $X \otimes Y = \bigoplus_{i=1}^{n} Z_i$ with $|Z_i| = |X||Y|$,
 - $\cdot |\mathbb{1}| = 1 \in H$,
 - For any homogeneous morphisms α, β with $s(\alpha) \in C_{\text{hom}}$, we have $|\alpha \otimes \beta| = |\alpha| (|s(\alpha)|\beta|) \in E$,
 - $|a_{X,Y,Z}| = |l_X| = |r_X| = 1 \in E \text{ for all } X, Y, Z \in \mathcal{C}.$

A *pivotal structure* on a χ -graded monoidal category C is a pivotal duality where all evaluation morphisms ev_X and \widetilde{ev}_X are homogeneous of degree $1 \in E$.

A pivotal χ -graded monoidal category C is *spherical* if for any degree 1 endomorphism $f \in \text{Hom}_{C}^{1_{E}}(X, X)$, left and right traces coincide.

61
Spherical χ -fusion categories

Definition (S.-Virelizier)

A spherical χ -fusion category (over \mathbb{C}) is a spherical χ -graded category (\mathcal{C}, \otimes) such that

- C is *E*-semisimple, i.e. for any $e \in E$ and $X \in C$, we have $X = \bigoplus_{i \in J}^{e} X_i$ where each X_i is simple (i.e. $\operatorname{End}^1(X_i) \cong \mathbb{C}$),
- 1 is simple,
- For any $h \in H$, the set I_h of 1-isomorphism classes of degree h homogeneous simple objects is finite and nonempty.

Spherical χ -fusion categories

Definition (S.-Virelizier)

A spherical χ -fusion category (over \mathbb{C}) is a spherical χ -graded category (\mathcal{C}, \otimes) such that

- C is *E*-semisimple, i.e. for any $e \in E$ and $X \in C$, we have $X = \bigoplus_{i \in J}^{e} X_i$ where each X_i is simple (i.e. $\operatorname{End}^1(X_i) \cong \mathbb{C}$),
- 1 is simple,
- For any $h \in H$, the set of 1-isomorphism classes of degree h homogeneous simple objects is finite and nonempty.

Example: Consider the category $\mathbb{C}\mathcal{G}_{\chi}$ whose

- $Ob(\mathbb{C}\mathcal{G}_{\chi}) = H$
- Hom_{$\mathbb{C}G_{\chi}$} $(x, y) = \{e \in E \mid y = \chi(e)x\}\mathbb{C}$ for $x, y \in H$.
- monoidal product of objects $x \otimes y = xy$
- monoidal product of morphisms $(x \xrightarrow{e} y) \otimes (z \xrightarrow{f} t) = xy \xrightarrow{e^{x}f} zt$.

A Hopf χ -coalgebra is a family $\{A_x\}_{x\in H}$ of \mathbb{C} -algebras endowed with

- coassociative algebra homoms. $\{\Delta_{x,y} : A_{xy} \to A_x \otimes A_y\}_{x,y \in H}$
- counitary algebra homomorphism $\varepsilon \colon A_1 \to \mathbb{C}$
- bijective \mathbb{C} -linear homoms. $S = \{S_x : A_{x^{-1}} \to A_x\}_{x \in H}$ [antipode].
- algebra isomorphisms $\{\phi_{x,e} \colon A_x \to A_{\chi(e)x}\}_{x \in H, e \in E}$

satisfying certain conditions.

A Hopf χ -coalgebra is a family $\{A_x\}_{x\in H}$ of \mathbb{C} -algebras endowed with

- coassociative algebra homoms. $\{\Delta_{x,y} : A_{xy} \to A_x \otimes A_y\}_{x,y \in H}$
- + counitary algebra homomorphism $\varepsilon\colon A_1\to \mathbb{C}$
- bijective \mathbb{C} -linear homoms. $S = \{S_x : A_{x^{-1}} \to A_x\}_{x \in H}$ [antipode].
- algebra isomorphisms $\{\phi_{x,e} \colon A_x \to A_{\chi(e)x}\}_{x \in H, e \in E}$

satisfying certain conditions.

Theorem (S.-Virelizier)

The category mod(A) of representations of a Hopf χ -coalgebra $A = \{A_x\}_{x \in H}$ is χ -fusion if A_1 is semisimple and each A_x is nonzero and finite dimensional.

Hopf χ -coalgebras: Graphical definition

State-sum Homotopy Invariants of Maps

Let *M* be a closed oriented 3-manifold and $g \in [M, B\chi]$ be a homotopy class of a map.

- Given a triangulation Δ of M with oriented 2-faces $\Delta^{(2)} \subset \Delta$.
- Encode the data of g by specifying a χ -labeling (α, β) where

$$(\alpha: \Delta^{(2)} \to H, \beta: \Delta^{(1)} \to E)$$

Question: How do we specify a χ -labeling? **Step 1:** Choose a representative \overline{g} of g mapping centers of 3-simplices to the basepoint $x \in B\chi$.

Let *M* be a closed oriented 3-manifold and $g \in [M, B\chi]$ be a homotopy class of a map.

- Given a triangulation Δ of M with oriented 2-faces $\Delta^{(2)} \subset \Delta$.
- Encode the data of g by specifying a χ -labeling (α, β) where

$$(\alpha: \Delta^{(2)} \to H, \beta: \Delta^{(1)} \to E)$$

Question: How do we specify a χ -labeling? **Step 1:** Choose a representative \overline{g} of g mapping centers of 3-simplices to the basepoint $x \in B\chi$.

χ -labeling of a triangulation

- **Step 2:** Choose arcs connecting central points and orient each arc using the orientation of the corresponding 2-face and the orientation of *M*.
- **Step 3:** Label an arc γ by an element of H which corresponds to the homotopy class of a loop $\bar{g}(\gamma) \subset (B\chi)^1 \subset B\chi$.
- **Step 4:** $\alpha : \Delta^{(2)} \to H$ maps a 2-face to the *H*-label of the corresponding arc.

χ -labeling of a triangulation

- **Step 5:** Around an oriented edge k of Δ form a disk δ_k whose boundary is the concatenation of the arcs obtained above.
- **Step 6:** For a central point *a* adjacent to *k*, label the pair (*k*, *a*) by an element of *E* which corresponds to the relative homotopy class of $\bar{g}|_{\delta_R} \subset B\chi$ in $\pi_2(B\chi, (B\chi)^1, x) = E$.

• Lemma: $\{\chi$ -labelings of $\Delta^{(2)}\}/\text{Gauge group} \cong [M, B\chi].$

The state-sum invariant

Given a spherical χ -fusion category C and a set $I = \sqcup_{h \in H} I_h$ of representatives of simple objects.

A coloring is a map $c : \Delta^{(2)} \to I$ such that $c(r) \in I_{\alpha(r)}$ for all $r \in \Delta^{(2)}$.

Given a spherical χ -fusion category C and a set $I = \bigsqcup_{h \in H} I_h$ of representatives of simple objects.

A coloring is a map $c : \Delta^{(2)} \to I$ such that $c(r) \in I_{\alpha(r)}$ for all $r \in \Delta^{(2)}$.

Given a coloring $c : \Delta^{(2)} \to I$, we obtain a scalar $|c| \in \mathbb{C}$ as follows.

• To each pair (*k*, *a*) of an oriented edge *k* and a central point *a* adjacent to *k*, we assign a vector space

 $H_{c}(k,a) = \operatorname{Hom}_{\mathcal{C}}^{\beta(k,a)}(\mathbb{1}, c(r_{1})^{\varepsilon_{1}} \otimes c(r_{2})^{\varepsilon_{2}} \otimes \cdots \otimes c(r_{n})^{\varepsilon_{n}}).$

• Doing this assignment for all oriented edges, we obtain a finite-dimensional C-vector space

$$H_c = \bigotimes_{\substack{\text{oriented}\\ \text{edges } k}} H_c(k, a_k).$$

• Lemma: $H_c(k, a_k)$ and $H_c(-k, a_k)$ are dual to each other. This yields a vector $*_k \in H_c(k, a_k) \otimes H_c(-k, a_k)$.

 $f \in H_c(k, a) = \operatorname{Hom}_{\mathcal{C}}^{\beta(k,a)}(\mathbb{1}, c(r_1) \otimes c(r_2)^* \otimes c(r_3)^* \otimes c(r_4))$ $g \in H_c(-k, a) = \operatorname{Hom}_{\mathcal{C}}^{-\beta(k,a)}(\mathbb{1}, c(r_4)^* \otimes c(r_3) \otimes c(r_2) \otimes c(r_1)^*)$

- Doing this assignment for all oriented edges, we obtain a finite-dimensional $\mathbb{C}\text{-vector space}$

$$H_c = \bigotimes_{\substack{\text{oriented} \\ \text{edges } k}} H_c(k, a_k).$$

• Lemma: $H_c(k, a_k)$ and $H_c(-k, a_k)$ are dual to each other. This yields a vector $*_k \in H_c(k, a_k) \otimes H_c(-k, a_k)$.

• Each coloring c produces a vector $*_c = \bigotimes_{\substack{\text{unoriented} * \tilde{k} \\ edges \tilde{k}}} \in H_c.$

The next step involves vertices:

- For any vertex v of Δ , choose a 3-ball neighborhood B_v^3 of v.
- The intersection $\partial B_v^3 \cap \Delta^{(2)}$ yields a graph Γ_v on ∂B_v^2 .

- A coloring c assigns to each vertex of Γ_{ν} a Hom-vector space in $\mathcal{C}.$
- The assigned vector space is precisely $H_c(k_1, a)$ where k_1 is the corresponding edge and oriented away from v.

 \cdot Then each vertex v of Δ and a coloring c yields a dual vector

$$F_{\mathcal{C}}(\Gamma_{v}^{c}):\underbrace{H_{c}(k_{1},a)\otimes H_{c}(k_{2},a)\otimes \cdots \otimes H_{c}(k_{n},a)}_{H_{c}(\Gamma_{v}^{c})}\to \mathbb{C}$$

where k_i 's are the edges incident to v and oriented away from v.

• Repeating this process for all vertices, we obtain

 $\otimes_{v \in \Delta} H(\Gamma_v^c)^* \cong \otimes_v \otimes_{k_v} H_c(k_v, a_v)^* \cong \bigotimes_{\substack{\text{oriented} \\ edges \ k}} H_c(k, a_k)^* = H_c^*$

- Denote the image of $\bigotimes_{v \in \Delta} \mathbb{F}_{\mathcal{C}}(\Gamma_v^c) \in \bigotimes_{v \in \Delta} H(\Gamma_v^c)^*$ under these isomorphisms by $V_c \in H_c^*$.
- Lastly, the scalar |c| is obtained by the evaluation $V_c(*_c) \in \mathbb{C}$.

The state-sum invariant

The state-sum invariant of a pair (M, g) is defined as

$$\tau_{\mathcal{C}}^{\Delta}(M,g) = (\dim \mathcal{C}_{1}^{1})^{-(\# 3 \text{-simplices of } \Delta)} \sum_{\substack{\text{colorings}\\ c: \Delta^{(2)} \to I}} \left(\prod_{r \in \Delta^{(2)}} \dim(c(r)) \right) |c| \in \mathbb{C}.$$

where C_1^1 is the fusion subcategory of C consisting of degree 1 objects and degree 1 morphisms.

Recall that the inputs for $\tau^{\Delta}_{\mathcal{C}}(M,g)$ are

- \cdot triangulation Δ of *M*,
- χ -labeling (α, β) of Δ associated to g.
- spherical χ -fusion category \mathcal{C} ,
- \cdot representative set *I* of simple objects of \mathcal{C} ,

Theorem (S.-Virelizier)

 $\tau^{\Delta}_{\mathcal{C}}(M,g)$ is independent of the choices of Δ , (α,β) , and *I*.

Thanks for your attention!