State-sum homotopy invariants of maps from 3-manifolds to 2-types

Moduli and Friends Seminar

Kürşat Sözer (joint with Alexis Virelizier)

McMaster University

Contents

1. Functorial Topological Quantum Field Theories

2. Examples of TQFTs in Low-dimensions
3. Homotopy Quantum Field Theories
4. Results on 3-dimensional TQFTs and HQFTs
5. Homotopy n-types and Main Theorem
6. Spherical Fusion Categories
7. State-sum Homotopy Invariants of Maps

Functorial Topological Quantum Field Theories

n-dimensional cobordism category

The n-dimensional cobordism category Cob_{n} has

- closed oriented ($n-1$)-dimensional manifolds as objects,
- diffeomorphism classes (relative ∂) of n-dimensional oriented cobordisms as morphisms.
- ○ : gluing manifolds along common boundary components

n-dimensional cobordism category

The n-dimensional cobordism category Cob_{n} has

- closed oriented ($n-1$)-dimensional manifolds as objects,
- diffeomorphism classes (relative ∂) of n-dimensional oriented cobordisms as morphisms.
- : gluing manifolds along common boundary components

$\rightarrow\left(\right.$ Cob $\left._{n}, \amalg\right)$ is a symmetric monoidal category.

Functorial topological quantum field theories

The category Vect $\mathbb{C}_{\mathbb{C}}$ of complex vector spaces has

- finite dimensional \mathbb{C}-complex vector spaces as objects
- linear transformations as morphisms.
$\rightarrow\left(\right.$ Vect $\left._{\mathrm{C}}, \otimes\right)$ is a symmetric monoidal category.

Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

$$
z: \operatorname{Cob}_{n} \rightarrow \text { Vect }_{\mathrm{c}} .
$$

Functorial TQFTs

The category Vect ${ }_{\mathbb{C}}$ of complex vector spaces has

- finite dimensional \mathbb{C}-complex vector spaces as objects,
- linear transformations as morphisms.
$\rightarrow\left(\right.$ Vect $\left._{\mathrm{C}}, \otimes\right)$ is a symmetric monoidal category.

Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

$$
z: \text { Cob }_{n} \rightarrow \text { Vect }_{\mathrm{c}} .
$$

Functorial TQFTs

The category Vect ${ }_{\mathbb{C}}$ of complex vector spaces has

- finite dimensional \mathbb{C}-complex vector spaces as objects,
- linear transformations as morphisms.
$\rightarrow\left(\right.$ Vect $\left._{\mathrm{C}}, \otimes\right)$ is a symmetric monoidal category.

Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

$$
z: \text { Cob }_{n} \rightarrow \text { Vect }_{\mathrm{c}} .
$$

Functorial TQFTs

The category Vect $\mathbb{C}_{\mathbb{C}}$ of complex vector spaces has

- finite dimensional \mathbb{C}-complex vector spaces as objects,
- linear transformations as morphisms.
$\rightarrow\left(\right.$ Vect $\left._{\mathrm{C}}, \otimes\right)$ is a symmetric monoidal category.

Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

$$
z: \text { Cob }_{n} \rightarrow \text { Vect }_{\mathrm{c}} .
$$

n-dimensional TQFTs produce numerical diffeomorphism invariants of closed
n-manifolds which are multiplicative with respect to disjoint union operation and behave well under cut-paste operations.

Examples of TQFTs in
 Low-dimensions

1-dimensional TQFTs

- Ob(Cob ${ }_{1}$): closed oriented 0-dimensional manifolds
- Ob(Cob ${ }_{1}$): finitely many oriented points
- Under the operation \amalg, the collection $\mathrm{Ob}\left(\mathrm{Cob}_{1}\right)$ is generated by two objects; namely, •+ and •-.

1-dimensional TQFTs

- Ob(Cob ${ }_{1}$): closed oriented 0-dimensional manifolds
- Ob(Cob ${ }_{1}$): finitely many oriented points
- Under the operation \amalg, the collection $\operatorname{Ob}\left(\mathrm{Cob}_{1}\right)$ is generated by two objects; namely, •+ and •-.
- Mor($C_{1} b_{1}$): diffeom. classes of compact oriented 1-manifolds
- Under the operation \amalg, the collection $\operatorname{Mor}\left(\operatorname{Cob}_{1}\right)$ is generated by

1-dimensional TQFTs

Given a 1-dimensional TQFT $Z: \mathrm{Cob}_{1} \rightarrow$ Vect $_{\mathbb{C}}$ with the following data

- $Z(\bullet+)=V$
- $Z(\bullet-)=W$
- $Z(\mathrm{ev}): V \otimes W \rightarrow \mathbb{C}$
- $Z(c o e v): \mathbb{C} \rightarrow W \otimes V$.

1-dimensional TQFTs

Given a 1-dimensional TQFT $Z: \mathrm{Cob}_{1} \rightarrow$ Vect $_{\mathbb{C}}$ with the following data

- $Z(\bullet+)=V$
- $Z(\bullet-)=W$
- $Z(e v): V \otimes W \rightarrow \mathbb{C}$
- $Z($ coev $): \mathbb{C} \rightarrow W \otimes V$.

The equivalence of the following cobordisms implies that $Z(\mathrm{ev})$ is a nondegenerate bilinear pairing, so $W \cong V^{*}$.

1-dimensional TQFTs

Given a 1-dimensional TQFT Z: $\mathrm{Cob}_{1} \rightarrow$ Vect $_{\mathbb{C}}$ with the following data

- $Z(\bullet+)=V$
- $Z(\bullet-)=W$
- $Z(e v): V \otimes W \rightarrow \mathbb{C}$
- $Z($ coev $): \mathbb{C} \rightarrow W \otimes V$.

Let us compute the numerical invariant associated with connected closed oriented 1-manifold, namely the circle.

2-dimensional TQFTs

- Ob(Cob ${ }_{2}$): closed oriented 1-dimensional manifolds
- Ob(Cob_{2}): finitely many oriented circles

2-dimensional TQFTs

- Ob(Cob ${ }_{2}$): closed oriented 1-dimensional manifolds
- Ob(Cob_{2}): finitely many oriented circles
- Mor(Cob_{2}): diffeom. classes of compact oriented 2-manifolds
- Under the operation \amalg, the collection $\operatorname{Mor}\left(\mathrm{Cob}_{2}\right)$ is generated by

2-dimensional TQFTs

- Ob(Cob_{2}): closed oriented 1-dimensional manifolds
- $\mathrm{Ob}\left(\mathrm{Cob}_{2}\right)$: finitely many oriented circles
- Mor(Cob_{2}): diffeom. classes of compact oriented 2-manifolds
- Under the operation \amalg, the collection $\operatorname{Mor}\left(\mathrm{Cob}_{2}\right)$ is generated by

Given a 2-dimensional TQFT $Z: \mathrm{Cob}_{2} \rightarrow$ Vect $_{\mathrm{C}}$, with the following data

- $Z\left(S^{1}\right)=V$
- $Z(\mu): V \otimes V \rightarrow V$
- $Z(\Delta): V \rightarrow V \otimes V$
- $Z(\eta): \mathbb{C} \rightarrow V$
- $Z(\varepsilon): V \rightarrow \mathbb{C}$.

2-dimensional TQFTs

Definition

Frobenius algebra is a finite dimensional associative, unital algebra V equipped with a nondegenerate bilinear form $\sigma: V \otimes V \rightarrow \mathbb{C}$ satisfying $\sigma(a \cdot b, c)=\sigma(a, b \cdot c)$ for all $a, b, c \in V$.

2-dimensional TQFTs

Definition

Frobenius algebra is a finite dimensional associative, unital algebra V equipped with a nondegenerate bilinear form $\sigma: V \otimes V \rightarrow \mathbb{C}$ satisfying $\sigma(a \cdot b, c)=\sigma(a, b \cdot c)$ for all $a, b, c \in V$.

Theorem (Abrams, Kock)
2-dimensional TQFTs are classified by commut. Frobenius algebras.

Homotopy Quantum Field
Theories

Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (X, x) (called the target space).
The n-dimensional X-cobordism category $X^{\text {Cob }}{ }_{n}$ has

- closed oriented pointed ($n-1$)-dimensional manifolds equipped with continuous pointed maps as objects
- diffeomorphism classes of n-dimensional oriented cobordisms equipped with homotopy classes of maps to X (restricting to those pointed continuous maps defined boundary manifolds) as morphisms.

Endowing cobordism category with continuous maps

Fix a connected pointed CW complex (X, x) (called the target space).
The n-dimensional X-cobordism category X Cob $_{n}$ has

- closed oriented pointed ($n-1$)-dimensional manifolds equipped with continuous pointed maps as objects
- diffeomorphism classes of n-dimensional oriented cobordisms equipped with homotopy classes of maps to X (restricting to those pointed continuous maps defined boundary manifolds) as morphisms.

Homotopy quantum field theories

Definition (Turaev)

An n-dimensional homotopy quantum field theory with target X (X-HQFT) is a symmetric monoidal functor

$$
Z: \text { XCob }_{n} \rightarrow \text { Vect }_{C} .
$$

- For $X=\{\bullet\}$, we have X-HQFT= TQFT.
- For any target X, we have $\mathrm{Cob}_{n} \hookrightarrow \mathrm{XCob}_{n}$ by introducing points on connected components and taking constant maps.
- When $X \simeq K(G, 1)$ for some group G, one can replace continuous pointed maps on objects of XCob_{n} with pointed homotopy classes of continuous pointed maps.

HQFTs

Definition (Turaev)

An n-dimensional homotopy quantum field theory with target X (X-HQFT) is a symmetric monoidal functor

$$
Z: \text { XCob }_{n} \rightarrow \text { Vect }_{C} .
$$

Cohomological HQFTs

Example (Turaev)

For any cohomology class $\theta \in H^{n}\left(X, \mathbb{C}^{*}\right)$, there exists an n-dimensional X-HQFT, called cohomological X-HQFT,

$$
z^{\theta}: \mathrm{XCob}_{n} \rightarrow \text { Vect }_{c}
$$

Cohomological HQFTs

Example (Turaev)

For any cohomology class $\theta \in H^{n}\left(X, \mathbb{C}^{*}\right)$, there exists an n-dimensional X-HQFT, called cohomological X-HQFT,

$$
z^{\theta}: \mathrm{XCob}_{n} \rightarrow \text { Vect }_{c}
$$

n-dimensional X-HQFTs produce numerical invariants of homotopy classes of maps defined from a closed n-manifold to X.

Results on 3-dimensional TQFTs and HQFTs

3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

- $\underbrace{\text { Turaev-Viro }}_{\begin{array}{c}\text { using repres. } \\ \text { of } U_{q}\left(s l_{2}\right)\end{array}} \underbrace{\text { Barrett-Westbury }}_{\begin{array}{c}\text { generalizing to spherical } \\ \text { fusion cats }\end{array}}$ state-sum TQFT
- the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.

3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

- $\underbrace{\text { Turaev-Viro }}_{\begin{array}{c}\text { using repres. } \\ \text { of } U_{q}\left(s l_{2}\right)\end{array}} \underbrace{\text { Barrett-Westbury }}_{\begin{array}{c}\text { generalizing to spherical } \\ \text { fusion cats }\end{array}}$ state-sum TQFT
- the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.
- $\underbrace{\text { Witten }}_{\begin{array}{c}\text { QFT-Feynman } \\ \text { path integral }\end{array}}-\underbrace{\text { Reshetikhin-Turaev }}_{\begin{array}{c}\text { repres. of quasi-triangular } \\ \text { Hopf algebras } \\ \text { Modular tensor categories }\end{array}}$ surgery TQFT
- the rough idea is coloring surgery representation of a 3-manifold (possibly a knot lying inside) and summing/integrating over all colorings.

3-dimensional TQFTs

There are two main constructions of 3-dimensional TQFTs:

- $\underbrace{\text { Turaev-Viro }}_{\begin{array}{c}\text { using repres. } \\ \text { of } U_{q}\left(s l_{2}\right)\end{array}}-\underbrace{\text { Barrett-Westbury }}_{\begin{array}{c}\text { generalizing to spherical } \\ \text { fusion cats }\end{array}}$ state-sum TQFT $\tau_{T V}: \mathrm{Cob}_{3} \rightarrow$ Vect $_{\mathbb{C}}$
- the rough idea is assigning states to a triangulation of a 3-manifold and summing over all states.
- $\underbrace{\text { Witten }}$ - $\underbrace{\text { Reshetikhin-Turaev }}$ surgery TQFT $\tau_{R T}:$ Cob $_{3} \rightarrow$ Vect $_{\mathbb{C}}$

QFT-Feynman repres. of quasi-triangular
path integral Hopf algebras \rightsquigarrow
Modular tensor categories

- the rough idea is coloring surgery representation of a 3-manifold (possibly a knot lying inside) and summing/integrating over all colorings.
- Turaev-Virelizier: these two TQFTs are related by the center construction. More precisely, the center $Z(\mathcal{C})$ of a spherical fusion category \mathcal{C} is a modular tensor category and for a closed oriented 3-manifold M, we have $\tau_{R T}^{Z(C)}(M)=\tau_{T V}^{C}(M)$.

In 3d, surgery and state-sum TQFTs are related by the center construction on the corresponding algebraic notions.

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X -HQFTs:

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

- $\underbrace{\text { Turaev-Virelizier }}_{\begin{array}{c}\text { using spherical } \\ G \text {-fusion categories }\end{array}}$ state-sum X-HQFT $\tau_{T V}^{\Delta}:$ XCob $_{3} \rightarrow$ Vect $_{\mathbb{C}}$
- the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X -HQFTs:

- $\underbrace{\text { Turaev-Virelizier }}$ state-sum X-HQFT $\tau_{T V}^{\Delta}:$ XCob $_{3} \rightarrow$ Vect $_{\mathbb{C}}$
using spherical
G-fusion categories
- the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.
- $\underbrace{\text { Turaev-Virelizier }}$ surgery X-HQFT $\tau_{T V}:$ XCob $_{3} \rightarrow$ Vect $_{\mathbb{C}}$

Modular G-tensor categories

- the colorings assigned to a surgery representation of a 3-manifold (possibly a knot lying inside) are required to be coherent with respect to the homotopy class of a map.

3-dimensional HQFTs with aspherical targets

Let $X \simeq K(G, 1)$ for some group G. Then, state-sum and surgery TQFTs extend to X-HQFTs:

- $\underbrace{\text { Turaev-Virelizier }}_{\text {using spherical }}$ state-sum X-HQFT $\tau_{T V}^{\Delta}: \mathrm{XCob}_{3} \rightarrow$ Vect $_{\mathbb{C}}$

G-fusion categories

- the states assigned to a triangulation of a 3-manifold are required to be coherent with the homotopy class of a map.
- $\underbrace{\text { Turaev-Virelizier }}$ surgery X-TQFT $\tau_{T V}:$ XCob $_{3} \rightarrow$ Vect $_{\mathbb{C}}$

Modular G-tensor
categories

- the colorings assigned to a surgery representation of a 3-manifold (possibly a knot lying inside) are required to be coherent with respect to the homotopy class of a map.
- Turaev-Virelizier: these two X-HQFTs are related by the G-center construction. More precisely, the G-center $Z^{G}(\mathcal{C})$ of a spherical G-fusion category \mathcal{C} is a modular G-tensor category and for a morphism $\emptyset \xrightarrow{(M, g)} \emptyset$ in XCob 3 we have $\tau_{T V}^{Z^{G}(\mathcal{C})}(M, g)=\left(\tau_{T V}\right)^{\mathcal{C}}(M, g)$.

The relationship between 3d TQFTs extends to 3d surgery and state-sum HQFTs with aspherical targets.

Homotopy n-types and Main
Theorem

Homotopy n-types

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

Homotopy n-types; $n=1$

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

- 1-types are precisely $K(G, 1)$-spaces. Equivalently, groups model homotopy 1 -types.

Homotopy n-types; $n=1$ and $n=2$

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

- 1-types are precisely $K(G, 1)$-spaces. Equivalently, groups model homotopy 1-types.
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Homotopy n-types; $n=1$ and $n=2$

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

- 1-types are precisely $K(G, 1)$-spaces. Equivalently, groups model homotopy 1-types.
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Definition

A crossed module is a group homomorphism $\chi: E \rightarrow H$ with H acts on E (denoted $h \cdot e={ }^{h} e$ for $h \in H$ and $e \in E$) such that

- χ is H-equivariant (H acts on itself by conjugation) i.e. $\chi\left({ }^{h} e\right)=h \chi(e) h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. ${ }^{\chi(e)} e^{\prime}=e e^{\prime} e^{-1}$ for all $e, e^{\prime} \in E$.

Homotopy n-types; $n=1$ and $n=2$

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

- 1-types are precisely $K(G, 1)$-spaces. Equivalently, groups model homotopy 1-types. $G \mapsto B G \simeq K(G, 1) \& X \simeq K(G, 1) \mapsto \pi_{1}(X, X)=G$
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types.

Definition

A crossed module is a group homomorphism $\chi: E \rightarrow H$ with H acts on E (denoted $h \cdot e={ }^{h} e$ for $h \in H$ and $e \in E$) such that

- χ is H-equivariant (H acts on itself by conjugation) i.e. $\chi\left({ }^{h} e\right)=h \chi(e) h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. ${ }^{\chi(e)} e^{\prime}=e e^{\prime} e^{-1}$ for all $e, e^{\prime} \in E$.

Homotopy n-types; $n=1$ and $n=2$

Definition

A homotopy n-type is a top. space X with $\pi_{i}(X, x)=0$ for all $i>n$.

- 1-types are precisely $K(G, 1)$-spaces. Equivalently, groups model homotopy 1-types. $G \mapsto B G \simeq K(G, 1) \& X \simeq K(G, 1) \mapsto \pi_{1}(X, x)=G$
- Theorem (MacLane-Whitehead): Crossed modules model homotopy 2-types. For any homotopy 2-type X, there exists a crossed module $\chi: E \rightarrow H$ such that $X \simeq B \chi$ where $\pi_{1}(B \chi, x)=\operatorname{coker}(\chi)$ and $\pi_{2}(B \chi, x)=\operatorname{ker}(\chi)$.

Definition

A crossed module is a group homomorphism $\chi: E \rightarrow H$ with H acts on E (denoted $h \cdot e={ }^{h} e$ for $h \in H$ and $e \in E$) such that

- χ is H-equivariant (H acts on itself by conjugation) i.e. $\chi\left({ }^{h} e\right)=h \chi(e) h^{-1}$ for all $h \in H$ and $e \in E$
- χ satisfies Peiffer identity, i.e. ${ }^{\chi(e)} e^{\prime}=e e^{\prime} e^{-1}$ for all $e, e^{\prime} \in E$.

Main theorem

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?

Main theorem

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?
Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)

Let $\chi: E \rightarrow H$ be a crossed module. Then any spherical χ-fusion category \mathcal{C} gives rise to a 3 -dimensional HQFT $\tau_{\mathcal{C}}^{\Delta}$ with target $\mathrm{B} \chi$.

Main theorem

Question: Can we generalize Turaev-Virelizier results from 1-type targets to 2-type targets?

Answer: For the 3-dimensional state-sum HQFT, YES.

Theorem (S.-Virelizier)

Let $\chi: E \rightarrow H$ be a crossed module. Then any spherical χ-fusion
category \mathcal{C} gives rise to a 3-dimensional HQFT $\tau_{\mathcal{C}}^{\Delta}$ with target $\mathrm{B} \chi$.

This result generalizes the state-sum TQFT/HQFT results as follows:

- $\chi=\mathrm{id}_{H} \Longrightarrow \tau_{\chi}^{\Delta}$ is equivalent to 3d state-sum TQFT $\tau_{T V}$.
- $\chi: E \hookrightarrow H \Longrightarrow \tau_{\chi}^{\Delta}$ is equivalent to $\tau_{T V}^{\Delta}$ with $B \chi \simeq K(\operatorname{coker} \chi, 1)$.

What type of invariant such an HQFT yield?

Given a spherical χ-fusion category \mathcal{C} over \mathbb{C}. Then for any pair (M, g) where M is a closed oriented 3 -manifold and $g \in[M, B \chi]$ is a homotopy class, the $B \chi$-HQFT $\tau_{\mathcal{C}}^{\Delta}$ yields a numerical invariant $\tau_{\mathcal{C}}^{\Delta}(M, g) \in \mathbb{C}$ which is multiplicative with respect to disjoint union operation.

Our main goal is to explain how this number is derived.

Spherical Fusion Categories

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

$$
i d_{X}=\left.\right|_{X} \quad(f: X \rightarrow Y)=\underbrace{f_{X}^{Y}}_{X}
$$

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

Graphical calculus for monoidal categories

Graphical calculus is a very useful tool that allows to represent morphisms in a monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ by planar diagrams.

A monoidal category (\mathcal{C}, \otimes) is \mathbb{C}-linear if for any two objects X, Y of \mathcal{C},

- $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a \mathbb{C}-vector space,
- o and \otimes are \mathbb{C}-bilinear.

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{e v}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

A pivotal category is a rigid category with distinguished (pivotal) duality such that the objects of left and right dualities coincide:

$$
\left.\left\{X^{*}, \mathrm{ev}_{x}: X^{*} \otimes X \rightarrow \mathbb{1}, \widetilde{\mathrm{ev}}_{x}: X \otimes X^{*} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}} .
$$

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

A pivotal category is a rigid category with distinguished (pivotal) duality such that the objects of left and right dualities coincide:

$$
\left.\left\{X^{*}, \mathrm{ev}_{X}: X^{*} \otimes X \rightarrow \mathbb{1}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{*} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}
$$

$i d_{x^{*}}=\left\{\begin{array}{|}\left.\right|_{X^{*}} \\ \left.\right|_{X}\end{array}\right.$

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

A pivotal category is a rigid category with distinguished (pivotal) duality such that the objects of left and right dualities coincide:

$$
\left.\left\{X^{*}, \mathrm{ev}_{X}: X^{*} \otimes X \rightarrow \mathbb{1}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{*} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}
$$

Rigid and pivotal categories

A rigid category is a monoidal category (\mathcal{C}, \otimes) which admits both a left duality $\left\{\left({ }^{\vee} X, \mathrm{ev}_{X}:{ }^{\vee} X \otimes X \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$ and a right duality $\left\{\left(X^{\vee}, \widetilde{e v}_{X}: X \otimes X^{\vee} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}$.

A pivotal category is a rigid category with distinguished (pivotal) duality such that the objects of left and right dualities coincide:

$$
\left.\left\{X^{*}, \mathrm{ev}_{X}: X^{*} \otimes X \rightarrow \mathbb{1}, \widetilde{\mathrm{ev}}_{X}: X \otimes X^{*} \rightarrow \mathbb{1}\right)\right\}_{X \in \mathcal{C}}
$$

Fusion categories

An object i of \mathcal{C} is called simple if $\operatorname{Hom}_{\mathcal{C}}(i, i) \cong \mathbb{C}$.

Fusion categories

An object i of \mathcal{C} is called simple if $\operatorname{Hom}_{\mathcal{C}}(i, i) \cong \mathbb{C}$.

Definition

A fusion \mathbb{C}-category is a monoidal \mathbb{C}-linear category \mathcal{C} such that there exists a finite set I of simple objects of \mathcal{C} satisfying the conditions

- $\mathbb{1} \in I$,
- $\operatorname{Hom}_{\mathcal{C}}(i, j)=0$ for any distinct $i, j \in I$,
- every object of \mathcal{C} is a direct sum of finitely many elements of \boldsymbol{I}.

Fusion categories

An object i of \mathcal{C} is called simple if $\operatorname{Hom}_{\mathcal{C}}(i, i) \cong \mathbb{C}$.

Definition

A fusion \mathbb{C}-category is a monoidal \mathbb{C}-linear category \mathcal{C} such that there exists a finite set I of simple objects of \mathcal{C} satisfying the conditions

- $\mathbb{1} \in I$,
- $\operatorname{Hom}_{\mathcal{C}}(i, j)=0$ for any distinct $i, j \in I$,
- every object of \mathcal{C} is a direct sum of finitely many elements of I.

Example Representations of a finite group.
Example Representations of quantum groups.
Example Given a finite group G, we have a category \mathcal{G}; $\operatorname{Ob}(\mathcal{G})=G$ and $\operatorname{Hom}_{\mathcal{G}}(g, h)=\delta_{g, h} \mathbb{C}$ for all $g, h \in G$ where $g \otimes h=g h$ for all $g, h \in G$ and $k \otimes l=k l$ for all $k, l \in \mathbb{C}$.

Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $\operatorname{tr}_{l}(f)=\operatorname{tr}_{r}(f)$.

Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $\operatorname{tr}_{l}(f)=\operatorname{tr}_{r}(f)$.

The graphical calculus extends from \mathbb{R}^{2} to S^{2} when the monoidal category is spherical. In other words, the representation of a morphism by a graph P is invariant under the isotopies of P in S^{2}.

Spherical categories and graphical calculus on a sphere

A spherical category is a pivotal category whose left and right traces coincide. That is, for any endomorphism f, we have $\operatorname{tr}_{l}(f)=\operatorname{tr}_{r}(f)$.

The graphical calculus extends from \mathbb{R}^{2} to S^{2} when the monoidal category is spherical. In other words, the representation of a morphism by a graph P is invariant under the isotopies of P in S^{2}.

Let \mathcal{C} be a pivotal fusion cat. and I be a repres. of simple objects;

- Left dimension of an object $X \in \mathcal{C}: \operatorname{dim}_{l}(X)=\operatorname{tr}_{l}\left(\mathrm{id}_{X}\right) \in \mathbb{C}$,
- right dimension of an object $X \in \mathcal{C}$: $\operatorname{dim}_{r}(X)=\operatorname{tr}_{r}\left(\mathrm{id}_{X}\right) \in \mathbb{C}$,
- dimension of $\mathcal{C}: \operatorname{dim}(\mathcal{C})=\sum_{i \in I} \operatorname{dim}_{l}(i) \operatorname{dim}_{r}(i)$.

Crossed module graded monoidal categories

Let $\chi: E \rightarrow H$ be a crossed module. A χ-graded category is a \mathbb{C}-linear monoidal category (\mathcal{C}, \otimes) which is

- E-Hom graded, i.e. $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\oplus_{e \in E} \operatorname{Hom}_{\mathcal{C}}^{e}(X, Y)$ for all $X, Y \in \mathcal{C}$.
- endowed with a subclass $\mathcal{C}_{\text {hom }}$ and a degree map $|\cdot|: \mathcal{C}_{\text {hom }} \rightarrow H$ such that
- $X=\oplus_{i=1}^{n} X_{i}$ where $X_{i} \in \mathcal{C}_{\text {hom }}$,
- For $X, Y \in \mathcal{C}_{\text {hom }}$, we have $\operatorname{Hom}_{\mathcal{C}}^{e}(X, Y)=0$ if $|Y| \neq \chi(e)|X|$,
- For $X, Y \in \mathcal{C}_{\text {hom }}$, we have $X \otimes Y=\oplus_{i=1}^{n} Z_{i}$ with $\left|Z_{i}\right|=|X||Y|$,
- $|\mathbb{1}|=1 \in H$,
- For any homogeneous morphisms α, β with $s(\alpha) \in \mathcal{C}_{\text {hom }}$, we have $|\alpha \otimes \beta|=|\alpha|(|s(\alpha)||\beta|) \in E$,
- $\left|a_{X, Y, Z}\right|=\left|l_{X}\right|=\left|r_{X}\right|=1 \in E$ for all $X, Y, Z \in \mathcal{C}$.

Crossed module graded monoidal categories

Let $\chi: E \rightarrow H$ be a crossed module. A χ-graded category is a \mathbb{C}-linear monoidal category (\mathcal{C}, \otimes) which is

- E-Hom graded, i.e. $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\oplus_{e \in E} \operatorname{Hom}_{\mathcal{C}}^{e}(X, Y)$ for all $X, Y \in \mathcal{C}$.
- endowed with a subclass $\mathcal{C}_{\text {hom }}$ and a degree map $|\cdot|: \mathcal{C}_{\text {hom }} \rightarrow H$ such that
- $X=\oplus_{i=1}^{n} X_{i}$ where $X_{i} \in \mathcal{C}_{\text {hom }}$,
- For $X, Y \in \mathcal{C}_{\text {hom }}$, we have $\operatorname{Hom}_{\mathcal{C}}^{e}(X, Y)=0$ if $|Y| \neq \chi(e)|X|$,
- For $X, Y \in \mathcal{C}_{\text {hom }}$, we have $X \otimes Y=\oplus_{i=1}^{n} Z_{i}$ with $\left|Z_{i}\right|=|X||Y|$,
- $|\mathbb{1}|=1 \in H$,
- For any homogeneous morphisms α, β with $s(\alpha) \in \mathcal{C}_{\text {hom }}$, we have $|\alpha \otimes \beta|=|\alpha|(|s(\alpha)||\beta|) \in E$,
- $\left|a_{X, Y, Z}\right|=\left|l_{X}\right|=\left|r_{X}\right|=1 \in E$ for all $X, Y, Z \in \mathcal{C}$.

A pivotal structure on a χ-graded monoidal category \mathcal{C} is a pivotal duality where all evaluation morphisms ev_{x} and $\widetilde{\mathrm{ev}}_{x}$ are homogeneous of degree $1 \in E$.
A pivotal χ-graded monoidal category \mathcal{C} is spherical if for any degree 1 endomorphism $f \in \operatorname{Hom}_{\mathcal{C}}^{1}(X, X)$, left and right traces coincide.

Spherical χ-fusion categories

Definition (S.-Virelizier)

A spherical χ-fusion category (over \mathbb{C}) is a spherical χ-graded category (\mathcal{C}, \otimes) such that

- \mathcal{C} is E-semisimple, i.e. for any $e \in E$ and $X \in \mathcal{C}$, we have $X=\oplus_{i \in J}^{e} X_{i}$ where each X_{i} is simple (i.e. $E n d^{1}\left(X_{i}\right) \cong \mathbb{C}$),
- $\mathbb{1}$ is simple,
- For any $h \in H$, the set I_{h} of 1 -isomorphism classes of degree h homogeneous simple objects is finite and nonempty.

Spherical χ-fusion categories

Definition (S.-Virelizier)

A spherical χ-fusion category (over \mathbb{C}) is a spherical χ-graded category (\mathcal{C}, \otimes) such that

- \mathcal{C} is E-semisimple, i.e. for any $e \in E$ and $X \in \mathcal{C}$, we have $X=\oplus_{i \in\}}^{e} X_{i}$ where each X_{i} is simple (i.e. $E n d^{1}\left(X_{i}\right) \cong \mathbb{C}$),
- $\mathbb{1}$ is simple,
- For any $h \in H$, the set of 1 -isomorphism classes of degree h homogeneous simple objects is finite and nonempty.

Example: Consider the category $\mathbb{C G}_{\chi}$ whose

- $\operatorname{Ob}\left(\mathbb{C G}_{\chi}\right)=H$
- $\operatorname{Hom}_{\mathbb{C}_{x}}(x, y)=\{e \in E \mid y=\chi(e) x\} \mathbb{C}$ for $x, y \in H$.
- monoidal product of objects $x \otimes y=x y$
- monoidal product of morphisms $(x \xrightarrow{e} y) \otimes(z \xrightarrow{f} t)=x y \xrightarrow{e^{x f}} z t$.

Hopf χ-coalgebras and their representations

A Hopf χ-coalgebra is a family $\left\{A_{x}\right\}_{x \in H}$ of \mathbb{C}-algebras endowed with

- coassociative algebra homoms. $\left\{\Delta_{x, y}: A_{x y} \rightarrow A_{x} \otimes A_{y}\right\}_{x, y \in H}$
- counitary algebra homomorphism $\varepsilon: A_{1} \rightarrow \mathbb{C}$
- bijective \mathbb{C}-linear homoms. $S=\left\{S_{x}: A_{x-1} \rightarrow A_{x}\right\}_{x \in H}$ [antipode].
- algebra isomorphisms $\left\{\phi_{x, e}: A_{x} \rightarrow A_{\chi(e)_{x}}\right\}_{x \in H, e \in E}$
satisfying certain conditions.

Hopf χ-coalgebras and their representations

A Hopf χ-coalgebra is a family $\left\{A_{x}\right\}_{x \in H}$ of \mathbb{C}-algebras endowed with

- coassociative algebra homoms. $\left\{\Delta_{x, y}: A_{x y} \rightarrow A_{x} \otimes A_{y}\right\}_{x, y \in H}$
- counitary algebra homomorphism $\varepsilon: A_{1} \rightarrow \mathbb{C}$
- bijective \mathbb{C}-linear homoms. $S=\left\{S_{x}: A_{x^{-1}} \rightarrow A_{x}\right\}_{x \in H}$ [antipode].
- algebra isomorphisms $\left\{\phi_{x, e}: A_{x} \rightarrow A_{\chi(e)_{x}}\right\}_{x \in H, e \in E}$
satisfying certain conditions.

Theorem (S.-Virelizier)

The category $\bmod (A)$ of representations of a Hopf χ-coalgebra $A=\left\{A_{x}\right\}_{x \in H}$ is χ-fusion if A_{1} is semisimple and each A_{x} is nonzero and finite dimensional.

Hopf χ-coalgebras: Graphical definition

State-sum Homotopy Invariants of Maps

χ-labeling of a triangulation

Let M be a closed oriented 3-manifold and $g \in[M, B \chi]$ be a homotopy class of a map.

- Given a triangulation Δ of M with oriented 2-faces $\Delta^{(2)} \subset \Delta$.
- Encode the data of g by specifying a χ-labeling (α, β) where

$$
\left(\alpha: \Delta^{(2)} \rightarrow H, \beta: \Delta^{(1)} \rightarrow E\right)
$$

Question: How do we specify a χ-labeling?
Step 1: Choose a representative \bar{g} of g mapping centers of 3 -simplices to the basepoint $x \in B \chi$.

χ-labeling of a triangulation

Let M be a closed oriented 3-manifold and $g \in[M, B \chi]$ be a homotopy class of a map.

- Given a triangulation Δ of M with oriented 2-faces $\Delta^{(2)} \subset \Delta$.
- Encode the data of g by specifying a χ-labeling (α, β) where

$$
\left(\alpha: \Delta^{(2)} \rightarrow H, \beta: \Delta^{(1)} \rightarrow E\right)
$$

Question: How do we specify a χ-labeling?
Step 1: Choose a representative \bar{g} of g mapping centers of 3 -simplices to the basepoint $x \in B \chi$.

χ-labeling of a triangulation

Step 2: Choose arcs connecting central points and orient each arc using the orientation of the corresponding 2-face and the orientation of M.
Step 3: Label an arc γ by an element of H which corresponds to the homotopy class of a loop $\bar{g}(\gamma) \subset(B \chi)^{1} \subset B \chi$.
Step 4: $\alpha: \Delta^{(2)} \rightarrow H$ maps a 2 -face to the H-label of the corresponding arc.

χ-labeling of a triangulation

Step 5: Around an oriented edge k of Δ form a disk δ_{k} whose boundary is the concatenation of the arcs obtained above.
Step 6: For a central point a adjacent to k, label the pair (k, a) by an element of E which corresponds to the relative homotopy class of $\left.\bar{g}\right|_{\delta_{k}} \subset B \chi$ in $\pi_{2}\left(B \chi,(B \chi)^{1}, x\right)=E$.

$$
\begin{aligned}
\chi(e) & =h_{1} h_{2} h_{3} h_{4}^{-1} \\
\chi\left(e^{\prime}\right) & =h_{2} h_{3} h_{4}^{-1} h_{1}
\end{aligned}
$$

- Lemma: $\left\{\chi\right.$-labelings of $\left.\Delta^{(2)}\right\} /$ Gauge group $\cong[M, B \chi]$.

The state-sum invariant

Given a spherical χ-fusion category \mathcal{C} and a set $I=\sqcup_{h \in H} I_{h}$ of representatives of simple objects.
A coloring is a map $c: \Delta^{(2)} \rightarrow I$ such that $c(r) \in I_{\alpha(r)}$ for all $r \in \Delta^{(2)}$.

Assigning scalar $|c|$ to a coloring c

Given a spherical χ-fusion category \mathcal{C} and a set $I=\sqcup_{h \in H} I_{h}$ of representatives of simple objects.
A coloring is a map $c: \Delta^{(2)} \rightarrow I$ such that $c(r) \in I_{\alpha(r)}$ for all $r \in \Delta^{(2)}$.
Given a coloring $c: \Delta^{(2)} \rightarrow I$, we obtain a scalar $|c| \in \mathbb{C}$ as follows.

- To each pair (k, a) of an oriented edge k and a central point a adjacent to k, we assign a vector space

$$
H_{c}(k, a)=\operatorname{Hom}_{\mathcal{C}}^{\beta(k, a)}\left(\mathbb{1}, c\left(r_{1}\right)^{\varepsilon_{1}} \otimes c\left(r_{2}\right)^{\varepsilon_{2}} \otimes \cdots \otimes c\left(r_{n}\right)^{\varepsilon_{n}}\right)
$$

$$
\stackrel{x_{1}}{x_{3}} x_{2}
$$

$\longmapsto H_{c}(k, a)$

Assigning scalar $|c|$ to a coloring c

- Doing this assignment for all oriented edges, we obtain a finite-dimensional \mathbb{C}-vector space

$$
H_{c}=\otimes_{\substack{\text { oriented } \\ \text { edges } k}} H_{c}\left(k, a_{k}\right) .
$$

- Lemma: $H_{c}\left(k, a_{k}\right)$ and $H_{c}\left(-k, a_{k}\right)$ are dual to each other. This yields a vector $*_{k} \in H_{c}\left(k, a_{k}\right) \otimes H_{c}\left(-k, a_{k}\right)$.

$$
\begin{aligned}
f \in H_{c}(k, a) & =\operatorname{Hom}_{\mathcal{C}}^{\beta(k, a)}\left(\mathbb{1}, c\left(r_{1}\right) \otimes c\left(r_{2}\right)^{*} \otimes c\left(r_{3}\right)^{*} \otimes c\left(r_{4}\right)\right) \\
g \in H_{c}(-k, a) & =\operatorname{Hom}_{\mathcal{C}}^{-\beta(k, a)}\left(\mathbb{1}, c\left(r_{4}\right)^{*} \otimes c\left(r_{3}\right) \otimes c\left(r_{2}\right) \otimes c\left(r_{1}\right)^{*}\right)
\end{aligned}
$$

Assigning scalar $|c|$ to a coloring c

- Doing this assignment for all oriented edges, we obtain a finite-dimensional \mathbb{C}-vector space

$$
H_{c}=\underset{\substack{\text { oriented } \\ \text { edges } k}}{ } H_{c}\left(k, a_{k}\right)
$$

- Lemma: $H_{c}\left(k, a_{k}\right)$ and $H_{c}\left(-k, a_{k}\right)$ are dual to each other. This yields a vector $*_{k} \in H_{c}\left(k, a_{k}\right) \otimes H_{c}\left(-k, a_{k}\right)$.

- Each coloring c produces a vector $*_{c}=\otimes_{\text {unoriented }} *_{\tilde{k}} \in H_{C}$. edges \tilde{R}

Assigning scalar $|c|$ to a coloring c

The next step involves vertices:

- For any vertex v of Δ, choose a 3-ball neighborhood B_{v}^{3} of v.
- The intersection $\partial B_{v}^{3} \cap \Delta^{(2)}$ yields a graph Γ_{v} on ∂B_{v}^{2}.

- A coloring c assigns to each vertex of Γ_{v} a $H o m$-vector space in \mathcal{C}.
- The assigned vector space is precisely $H_{c}\left(k_{1}, a\right)$ where k_{1} is the corresponding edge and oriented away from v.

Assigning scalar $|c|$ to a coloring c

- Then each vertex v of Δ and a coloring c yields a dual vector

$$
\mathbb{F}_{\mathcal{C}}\left(\Gamma_{v}^{c}\right): \underbrace{H_{c}\left(k_{1}, a\right) \otimes H_{c}\left(k_{2}, a\right) \otimes \cdots \otimes H_{c}\left(k_{n}, a\right)}_{H_{c}\left(\Gamma_{v}^{c}\right)} \rightarrow \mathbb{C}
$$

where k_{i} 's are the edges incident to v and oriented away from v.

- Repeating this process for all vertices, we obtain

$$
\otimes_{v \in \Delta} H\left(\Gamma_{v}^{c}\right)^{*} \cong \otimes_{v} \otimes_{k_{v}} H_{c}\left(k_{v}, a_{v}\right)^{*} \cong \underset{\substack{\text { oriented } \\ \text { edges } k}}{ } H_{c}\left(k, a_{k}\right)^{*}=H_{c}^{*}
$$

- Denote the image of $\otimes_{v \in \Delta} \mathbb{F}_{\mathcal{C}}\left(\Gamma_{v}^{c}\right) \in \otimes_{v \in \Delta} H\left(\Gamma_{v}^{c}\right)^{*}$ under these isomorphisms by $V_{c} \in H_{c}^{*}$.
- Lastly, the scalar $|c|$ is obtained by the evaluation $V_{c}\left(*_{c}\right) \in \mathbb{C}$.

The state-sum invariant

The state-sum invariant of a pair (M, g) is defined as

$$
\tau_{\mathcal{C}}^{\Delta}(M, g)=\left(\operatorname{dim} \mathcal{C}_{1}^{1}\right)^{-(\# 3-\text { simplices of } \Delta)} \sum_{\substack{\text { colorings } \\ \text { c: } \Delta^{(2)} \rightarrow 1}}\left(\prod_{r \in \Delta^{(2)}} \operatorname{dim}(c(r))\right)|c| \in \mathbb{C} \text {. }
$$

where \mathcal{C}_{1}^{1} is the fusion subcategory of \mathcal{C} consisting of degree 1 objects and degree 1 morphisms.

Recall that the inputs for $\tau_{\mathcal{C}}^{\Delta}(M, g)$ are

- triangulation Δ of M,
- χ-labeling (α, β) of Δ associated to g.
- spherical χ-fusion category \mathcal{C},
- representative set I of simple objects of \mathcal{C},

Theorem (S.-Virelizier)
$\tau_{\mathcal{C}}^{\Delta}(M, g)$ is independent of the choices of $\Delta,(\alpha, \beta)$, and I.

Thanks for your attention!

