# Stable cohomology of the IA-automorphism group

#### Erik Lindell

June 24th, 2024

∃ ► < ∃ ►</p>

ъ

### Contents

Part I: Background

- IA<sub>n</sub> and its cohomology
- The Johnson homomorphism and  $IA_n^{ab}$
- Stable cohomology

**Part II:** Recent results about cohomology of IA<sub>n</sub>:

- Albanese cohomology
- Using stable cohomology of Aut(*F<sub>n</sub>*) with twisted coefficients

→

э.

## Background

### Definition

- $F_n := \langle x_1, x_2, \ldots, x_n \rangle$
- $H_{\mathbb{Z}}(n) := H_1(F_n, \mathbb{Z}) \cong F_n^{ab} \cong \mathbb{Z}^n$ . Let us write  $e_i := [x_i]$ .
- $H(n) := H_1(F_n, \mathbb{Q}) \cong \mathbb{Q}^n$

The action  $\operatorname{Aut}(F_n) \curvearrowright H_{\mathbb{Z}}(n)$  defines a homomorphism

$$\varphi : \operatorname{Aut}(F_n) \to \operatorname{GL}_n(\mathbb{Z})$$

which is surjective.

## Definition

The IA-automorphism group is defined by

$$\mathsf{IA}_n := \mathsf{ker}(\varphi)$$

## Remark

"IA" is an abbreviation of "identity on abelianization".

#### Some facts:

 For each n ≥ 1, IA<sub>n</sub> is finitely generated by the Magnus generators A<sub>ij</sub> and B<sub>ijk</sub> defined by

$$A_{ij}(x_l) = \begin{cases} x_j^{-1} x_i x_j, & \text{if } l = i, \\ x_l & \text{otherwise,} \end{cases}$$

$$B_{ijk}(x_l) = \begin{cases} x_i \lfloor x_j, x_k \rfloor & \text{if } l = i, \\ x_l & \text{otherwise,} \end{cases}$$

where  $[x, y] = xyx^{-1}y^{-1}$  is the commutator.

• For *n* ≥ 2, it is unknown whether IA<sub>n</sub> is finitely presented.

**Goal:** Understand  $H^*(IA_n, \mathbb{Q})$ .

#### Why is this interesting?

- It is related to finiteness properties of the group.
- Characteristic classes: We have

 $\operatorname{Aut}(F_n) \cong \pi_0 \operatorname{hAut}_* \left( \vee^n S^1 \right)$ 

and  $\mathsf{hAut}_*(\bigvee^n S^1)$  has contractible path components, so

$$B\operatorname{Aut}(F_n)\simeq B\operatorname{hAut}_*\left(\vee^nS^1\right),$$

which classifies  $\lor^n S^1$ -fibrations. Similarly,  $B IA_n$  classifies such fibrations with trivial monodromy.

#### Proposition

 $H^*(IA_n, \mathbb{Q})$  is a  $GL_n(\mathbb{Z})$ -representation.

#### Proof.

By definition, we have a short exact sequence

$$1 \to \mathsf{IA}_n \to \mathsf{Aut}(F_n) \stackrel{\varphi}{\to} \mathsf{GL}_n(\mathbb{Z}) \to 1.$$

If  $A \in GL_n(\mathbb{Z})$ , let  $\tilde{A} \in \varphi^{-1}(A)$  and  $C_{\tilde{A}} \in Aut(IA_n)$  be conjugation by  $\tilde{A}$ .

If  $\tilde{A}' \in \varphi^{-1}(A)$ , then  $\tilde{A}^{-1}\tilde{A}' \in IA_n$ , so  $C_{\tilde{A}}^{-1}C_{\tilde{A}'}$  is in  $Inn(IA_n)$ . Inner automorphisms of a group act trivially on its cohomology, so this gives us a well-defined action.

# The Johnson homomorphism and $IA_n^{ab}$

Let  $\mathcal{L}_n(2) := [F_n, F_n]/[F_n, [F_n, F_n]]$  be the second quotient of the lower central series of  $F_n$ . We then have a homomorphism

$$\tau: \mathsf{IA}_n \to \mathsf{Hom}_{\mathbb{Z}}(H_{\mathbb{Z}}(n), \mathcal{L}_n(2))$$
$$\phi \mapsto ([x] \mapsto [x^{-1}\phi(x)])$$

called the Johnson homomorphism. We have  $\mathcal{L}_n(2)\cong \Lambda^2 H_{\mathbb{Z}}(n)$  and

 $\tau (A_{ij}) = e_i^{\vee} \otimes (e_i \wedge e_j)$  $\tau (B_{ijk}) = e_i^{\vee} \otimes (e_j \wedge e_k)$ 

#### Theorem (Kawazumi '05)

The Johnson homomorphism induces a  $GL_n(\mathbb{Z})$ -equivariant isomorphism

 $\mathsf{IA}_n^{\mathsf{ab}} \xrightarrow{\cong} H_{\mathbb{Z}}(n)^{\vee} \otimes \Lambda^2 H_{\mathbb{Z}}(n).$ 

## Stability

Using that  $F_{n+1} \cong F_n * \mathbb{Z}$ , we have a homomorphism

$$s_n : \operatorname{Aut}(F_n) \to \operatorname{Aut}(F_{n+1})$$
  
 $\phi \mapsto \phi * \operatorname{id}_{\mathbb{Z}}$ 

### Theorem (Hatcher-Vogtmann '04)

For  $n \ge 2* + 2$ ,  $s_n$  induces an isomorphism in homology in degree \*.

#### Theorem (Galatius '11)

We have  $\operatorname{colim}_n H_*(\operatorname{Aut}(F_n), \mathbb{Q}) \cong \mathbb{Q}[0].$ 

Note that  $s_n$  restricts to a homomorphism  $IA_n \rightarrow IA_{n+1}$ . However we have

$$\operatorname{rank}(H_{\mathbb{Z}}(n)^{\vee}\otimes \Lambda^{2}H_{\mathbb{Z}}(n)) = n \cdot \binom{n}{2} \xrightarrow{n \to \infty} \infty,$$

so  $H_1(IA_n, \mathbb{Z})$  does not stabilize.

# Interlude - Representation theory of GL<sub>n</sub>

# Back to stability

| The $Aut(F_n)$ -representation     | H(n) | factors | through |
|------------------------------------|------|---------|---------|
| $\operatorname{GL}_n(\mathbb{Z}).$ |      |         |         |

## Definition

A  $GL_n(\mathbb{Z})$ -representation V is *algebraic* if it is the restriction of a representation of  $GL_n(\mathbb{Q})$ .

### Example

#### The representation H(n) is algebraic.

Representations of  $GL_n(\mathbb{Q})$  are semi-simple and the irreducible representations are indexed by *bipartitions*, i.e. pairs  $(\lambda, \mu)$ , of partitions  $(\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_l \ge 0)$ . We write  $V_{(\lambda,\mu)}$  for the corresponding representation.

### Example

- $H(n) \cong V_{(1,0)}$ ,
- $H(n)^{\scriptscriptstyle ee} \cong V_{(0,1)}$ ,

• 
$$H(n)^{\vee} \otimes \Lambda^2 H(n) \cong V_{(1^2,1)} \oplus V_{(1,0)}$$

### Corollary

 $H_1(\mathsf{IA}_n,\mathbb{Q})\cong V_{(1^2,1)}\oplus V_{(1,0)}.$ 

This is independent of *n* as a  $GL_n(\mathbb{Z})$ -representation.

## Conjecture (Church-Farb '12)

The rational (co)homology groups of IA<sub>n</sub> are stably algebraic  $GL_n(\mathbb{Z})$ -representations and satisfy multiplicity stability, i.e. for  $n \gg *$ , its decomposition

$$H_*(\mathsf{IA}_n,\mathbb{Q})\cong \bigoplus_i V_{(\lambda,\mu)_i}$$

#### is independent of n.

However, in degrees \* > 1, we don't even know if there is a range  $n \gg *$  such that the (co)homology is finite dimensional!

= 990

## Albanese cohomology

## Definition

For G a group, we define

$$\mathcal{H}^*_{\mathsf{Alb}}(G,\mathbb{Q}) := \operatorname{im}\left(\Lambda^*\mathcal{H}^1(G,\mathbb{Q}) \xrightarrow{\smile} \mathcal{H}^*(G,\mathbb{Q})\right)$$

## Corollary

 $H^*_{Alb}(IA_n, \mathbb{Q})$  is a quotient of  $\Lambda(\Lambda^2 H(n)^{\vee} \otimes H(n))$ . In particular, it is an algebraic  $GL_n(\mathbb{Z})$ -representation.

Albanese cohomology may be effectively studied using *abelian (co)cycles*:

## Definition

For G a group and  $(g_1, \ldots, g_k) \in G^{\times k}$  pairwise commuting, we define

$$AC(g_1,\ldots,g_k) := \{f_1 \cup \cdots \cup f_k\} \subseteq H^*_{Alb}(G,\mathbb{Q})$$

for  $f_i \in H^1(G,\mathbb{Q})$  such that  $f_i([g_j]) = \delta_{ij}$ .

A k-tuple  $(g_1, \ldots, g_k) \in G^{\times k}$ , as in the definition, defines a homomorphism

$$\phi: \mathbb{Z}^k \to G$$
$$e_i \mapsto g_i$$

which induces a commutative diagram

$$\Lambda^{k}H^{1}(G,\mathbb{Q}) \xrightarrow{\cup} H^{k}(G,\mathbb{Q})$$
$$\downarrow^{\Lambda^{k}\phi_{*}} \qquad \qquad \downarrow^{\phi_{*}}$$
$$\Lambda^{k}H^{1}(\mathbb{Z}^{k},\mathbb{Q}) \xrightarrow{\cong} H^{k}(\mathbb{Z}^{k},\mathbb{Q})$$

By definition, any  $f_1 \cup \cdots \cup f_k \in AC(g_1, \ldots, g_k)$  is mapped to the generator of  $H^k(\mathbb{Z}^k, \mathbb{Q})$ .

For  $G = IA_n$ :

- Abelian (co)cycles are easy to construct using the generators  $A_{ij}$  and  $B_{ijk}$ .
- We can also use the representation structure.

### Albanese cohomology

This approach was used to obtain the following:

## Theorem (Pettet '05)

For  $n \ge 6$ , we have

$$H^2_{\operatorname{Alb}}(\operatorname{IA}_n, \mathbb{Q}) \cong \Lambda^2(\Lambda^2 H(n)^{\vee} \otimes H(n))/R_2,$$

where

$$R_2 := \left\langle \sum_{i=1}^n \begin{pmatrix} ((f_1 \land f_2) \otimes e_i) \land ((e_i^{\lor} \land f_3) \otimes a) \\ -((f_3 \land f_1) \otimes e_i) \land ((e_i^{\lor} \otimes f_2) \otimes a) \end{pmatrix} \right\rangle$$

## Theorem (Katada '22)

For  $n \ge 9$ , we have

 $H^3_{Alb}(IA_n, \mathbb{Q}) \cong \Lambda^3(\Lambda^2 H(n)^{\vee} \otimes H(n))/R_3,$ 

where

$$R_3 := \langle \operatorname{im}(R_2 \otimes H^1(\mathsf{IA}_n) \xrightarrow{\cup} H^3(\mathsf{IA}_n, \mathbb{Q})) \rangle$$

### Conjecture (Katada '22)

For  $n \ge 3*$ , we have

$$\mathcal{H}^*_{\operatorname{Alb}}(\operatorname{IA}_n, \mathbb{Q}) \cong \Lambda^*(\Lambda^2 \mathcal{H}(n)^{\vee} \otimes \mathcal{H}(n))/R,$$

where R is the ideal generated by  $R_2$ .

Katada defined a graded representation  $W^*(n)$  (which we will characterize later) and proved, using abelian cycles, that for  $n \ge 3*$ ,

 $W^*(n) \hookrightarrow H^*_{Alb}(IA_n, \mathbb{Q}).$ 

### Conjecture (Katada '22)

For  $n \ge 3*$ , we have

 $W^*(n) \cong H^*_{Alb}(IA_n, \mathbb{Q}) \cong \Lambda^*(\Lambda^2 H(n)^{\vee} \otimes H(n))/R.$ 

## Some more representation theory of $GL_n$

**Q.** How can we try to understand  $H^*(IA_n, \mathbb{Q})$  more generally?

Let us limit ourselves to the *algebraic part*:

#### Definition

For V a  $GL_n(\mathbb{Z})$ -representation, let

 $V^{\mathsf{alg}} := \operatornamewithlimits{colim}_{\substack{W \subset V \ W ext{ algebraic}}} W \subseteq V.$ 

To decompose a  $\operatorname{GL}_n(\mathbb{Q})$ -representation V into irreducibles, we need to calculate

$$\operatorname{Hom}_{\operatorname{\mathsf{GL}}_n(\mathbb{Q})}(V_{(\lambda,\mu)},V)\cong [V_{(\mu,\lambda)}\otimes V]^{\operatorname{\mathsf{GL}}_n(\mathbb{Q})},$$

for every bipartition  $(\lambda, \mu)$ .

Let us write  $H^{\scriptscriptstyle ee}(n):=\operatorname{Hom}_{\mathbb Q}(H(n),\mathbb Q)$  and for  $p,q\geqslant 0$ 

 $K^{p,q}(n) := H(n)^{\otimes p} \otimes H^{\vee}(n)^{\otimes q}.$ 

The duality pairing  $H(n) \otimes H^{\vee}(n) \to \mathbb{Q}$  induces, for  $p, q \ge 1$  and  $1 \le i \le p, 1 \le j \le q$ , equivariant maps

$$\lambda_{i,j}: \mathcal{K}^{p,q}(n) \to \mathcal{K}^{p-1,q-1}(n).$$

#### Definition

#### We define

• 
$$\mathcal{T}^{p,q}(n) := \bigcap_{i,j} \ker(\lambda_{i,j}) \subseteq \mathcal{K}^{p,q}(n)$$

• 
$$V_{(\lambda,\mu)} := (S^{\lambda} \otimes S^{\mu}) \otimes_{\Sigma_{p} \times \Sigma_{q}} T^{p,q}(n)$$

**Slogan:** Decomposing  $GL_n(\mathbb{Q})$ -representation V requires

- computing  $[V \otimes K^{p,q}(n)]^{GL_n(\mathbb{Q})}$  as a  $\Sigma_p \times \Sigma_q$ -representation, for all  $p, q \ge 0$ ,
- understanding the maps induced by the  $\lambda_{i,j}$ .

<ロト < 回 ト < 三 ト < 三 ト < 三 ト へのへの

# The walled Brauer category

## Definition

The walled Brauer category  $wBr_n$  is the  $\mathbb{Q}$ -linear category with

- **Objects:** (p,q) with  $p,q \ge 0$
- Morphisms: spanned by diagrams



**Slogan':** To decompose V, we need to understand the functor  $[V \otimes K^{-,-}(n)]^{\operatorname{GL}_n(\mathbb{Z})} : \operatorname{wBr}_n \to \mathbb{Q}$ -mod.

#### Definition

The *downward* walled Brauer category  $dwBr \subset wBr_n$  has the same objects, but the spaces of morphisms are spanned by diagrams with only downward horizontal strands.

For  $M \in \operatorname{Rep}(\operatorname{GL}_n(\mathbb{Z}))^{\operatorname{dwBr}^{\operatorname{op}}}$  and  $N \in \operatorname{Rep}(\operatorname{GL}_n(\mathbb{Z}))^{\operatorname{dwBr}}$ , we will write

$$M \overset{\mathsf{dw}\mathsf{Br}}{\otimes} N := \int^{(\rho,q)\in\mathsf{dw}\mathsf{Br}} M(\rho,q) \otimes N(\rho,q) \in \mathsf{Rep}(\mathsf{GL}_n(\mathbb{Z})).$$

## Proposition (Kupers-Randal-Williams '19, L. '24)

If  $A \in (\mathbb{Q}-mod)^{dwBr}$  has finite length and B is a  $GL_n(\mathbb{Z})$ -representation such that

 $i_*(A) \cong [K^{-,-}(n) \otimes B]^{\operatorname{GL}_n(\mathbb{Z})},$ 

where  $i_*$  denotes left Kan extension along  $i : dwBr \hookrightarrow wBr_n$ , then

$$i^*(K^{-,-}(n)^{\vee}) \overset{\mathsf{dwBr}}{\otimes} A \cong B^{\mathsf{alg}}.$$

June 24th, 2024

### A spectral sequence approach

For  $p, q \ge 0$  the short exact sequence

 $1 \to \mathsf{IA}_n \to \mathsf{Aut}(F_n) \to \mathsf{GL}_n(\mathbb{Z}) \to 1$ 

gives us a Hochschild-Serre spectral sequence

$$\begin{split} E_2^{i,j} &= H^i(\mathsf{GL}_n(\mathbb{Z}), H^j(\mathsf{IA}_n, \mathbb{Q}) \otimes K^{p,q}(n)) \\ &\Rightarrow H^{i+j}(\mathsf{Aut}(F_n), K^{p,q}(n)). \end{split}$$

Note that  $E_2^{0,j} = [H^j(IA_n, \mathbb{Q}) \otimes K^{p,q}(n)]^{GL_n(\mathbb{Z})}.$ 

### Theorem (L. '22)

For  $n \ge 2* + p + q + 3$ , we have

$$H^*(\operatorname{Aut}(F_n), K^{p,q}(n)) \cong \mathcal{P}(p,q) \otimes \operatorname{sgn}_p \otimes \operatorname{sgn}_q,$$

where

$$\mathcal{P}(p,q) := \begin{cases} Partitions of \{1, \dots, p\} \text{ with at least } q \\ parts, q \text{ of which are labeled } 1, \dots, q \\ and remaining unlabeled \end{cases}$$

We can also think of  $\mathcal{P}(p,q)$  as being spanned by graphs like the following:



#### Definition

Let  $\mathcal{P}'(p,q) \subseteq \mathcal{P}(p,q)$  be the subspace generated by partitions with no labeled parts of size 1.

#### Theorem (Katada '22)

For  $n \gg *$ , we have  $W^*(n) \cong \bigoplus_{p-q=*} T^{q,p}(n) \underset{\Sigma_p \times \Sigma_q}{\otimes} (\mathcal{P}'(p,q) \otimes \operatorname{sgn}_p \otimes \operatorname{sgn}_q).$   $\left( \cong K^{-,-}(n)^{\vee} \overset{\operatorname{dwBr}}{\otimes} (\mathcal{P}' \otimes \operatorname{sgn}) \right).$ 

June 24th, 2024

#### A spectral sequence approach

By analyzing the spectral sequence (under certain added assumptions that we will specify), one obtains that in a stable range of degrees

$$\begin{split} & [\mathcal{K}^{p,q}(n)\otimes\mathcal{H}^*(\mathsf{IA}_n,\mathbb{Q})]^{\mathsf{GL}_n\mathbb{Z}}\\ &\cong(\mathcal{P}(p,q)\otimes\mathrm{sgn}_p\otimes\mathrm{sgn}_q)\otimes\mathbb{Q}[y_4,y_8,\ldots,], \end{split}$$

where  $|y_{4k}| = 4k$ . This is a natural isomorphism and we stably have that  $\mathcal{P} \cong i_* \mathcal{P}'$ . Habiro and Katada used a similar approach to obtain the following:

#### Theorem (Habiro-Katada '22)

Suppose that there is a  $Q \ge 0$  such that for  $n \gg *$  and  $* \le Q$ ,  $H^*_{Alb}(IA_n, \mathbb{Q}) \cong W^*(n)$  and  $H^*(IA_n, \mathbb{Q})$  is algebraic. Then there is a range  $n \gg *$  such that

$$\begin{aligned} H^*(\mathsf{IA}_n,\mathbb{Q}) &\cong H^*_{\mathsf{Alb}}(\mathsf{IA}_n,\mathbb{Q}) \otimes H^*(\mathsf{IA}_n,\mathbb{Q})^{\mathsf{GL}_n(\mathbb{Z})} \\ &\cong W^*(n) \otimes \mathbb{Q}[y_4,y_8,\ldots], \end{aligned}$$

for  $* \leqslant Q$ .

#### The invariants

**Q**. What is the source of the invariant classes  $y_{4k}$ ? Understanding the invariants corresponds to analysing the spectral sequence for p = q = 0:

$$E_2^{i,j} = H^i(\mathsf{GL}_n(\mathbb{Z}), H^j(\mathsf{IA}_n, \mathbb{Q})) \Rightarrow H^{i+j}(\mathsf{Aut}(F_n), \mathbb{Q}).$$

Note that

• For  $n \gg i + j > 0$ , the target is 0,

• 
$$E_2^{0,j} = H^j(\mathsf{IA}_n, \mathbb{Q})^{\mathsf{GL}_n(\mathbb{Z})}$$

•  $E_2^{i,0} = H^i(\operatorname{GL}_n(\mathbb{Z}), \mathbb{Q}).$ 

#### Theorem (Borel '74)

For  $n \gg *$ ,  $H^*(GL_n(\mathbb{Z}), \mathbb{Q}) \cong \Lambda\{x_5, x_9, \ldots\}$ , where  $|x_{4k+1}| = 4k + 1$ .

Since the target is zero, the differential

$$d_k: E_k^{0,k} \to E_k^{k+1,0}$$

must be an isomorphism, so we can define the *anti-transgression* map

$$\varphi_k: E_2^{k+1,0} \twoheadrightarrow E_k^{k+1,0} \stackrel{d_k^{-1}}{\to} E_k^{0,k} \hookrightarrow E_2^{0,k}.$$

#### Definition

We set 
$$y_{4k} := \varphi_{4k}(x_{4k+1}) \in H^{4k}(\mathsf{IA}_n, \mathbb{Q})^{\mathsf{GL}_n(\mathbb{Z})}.$$

(4) E > (4) E > (4)

< <p>Image: A matrix

E nac

## Borel Vanishing

# Some slight improvements

This method is only suitable for understanding  $H^*(IA_n, \mathbb{Q})^{alg}$ , but the assumption of algebraicity is also used in the analysis of the spectral sequence. More specifically:

### Theorem (Borel '74)

Suppose V is an algebraic  $GL_n(\mathbb{Z})$ -representation. If  $n \gg *,$  then the cup product map

 $H^{0}(\mathrm{GL}_{n}(\mathbb{Z}), V) \otimes H^{*}(\mathrm{GL}_{n}(\mathbb{Z}), \mathbb{Q}) \to H^{*}(\mathrm{GL}_{n}(\mathbb{Z}), V)$ 

#### is an isomorphism.

This implies that if for  $n \gg *$ , we have that  $H^*(IA_n, \mathbb{Q})$  is algebraic, then

$$\begin{split} E_2^{i,j} &= H^i(\mathsf{GL}_n, H^j(\mathsf{IA}_n, \mathbb{Q})) \\ &\cong H^i(\mathsf{GL}_n(\mathbb{Z}), \mathbb{Q}) \otimes H^j(\mathsf{IA}_n, \mathbb{Q})^{\mathsf{GL}_n(\mathbb{Z})} \cong E_2^{i,0} \otimes E_2^{0,j}. \end{split}$$

This makes the spectral sequence manageable.

Note that for each  $k \ge 2$ , the term  $E_k^{0,j}$  only has differentials to strictly lower rows.

$$E_{2}^{0,j}$$

$$E_{2}^{0,j-1} \quad E_{2}^{1,j-1} \quad E_{2}^{2,j-1} \quad E_{2}^{3,j-1} \quad \dots$$

$$E_{2}^{0,j-1} \quad E_{2}^{1,j-1} \quad E_{2}^{2,j-1} \quad E_{2}^{3,j-1} \quad \dots$$

$$E_{2}^{0,j-1} \quad E_{2}^{1,j-1} \quad E_{2}^{2,j-1} \quad E_{2}^{3,j-1} \quad \dots$$

$$E_{2}^{0,j} \quad Proposition$$

$$E_{2}^{0,j} \quad Suppose \ V \ is \ a \ finite \ dimensional \ GL_{n}(\mathbb{Z}) - represent-ation. \ If \ n \gg *, \ then$$

$$H^{0}(GL_{n}(\mathbb{Z}), V) \otimes H^{*}(GL_{n}(\mathbb{Z}), \mathbb{Q}) \rightarrow H^{*}(GL_{n}(\mathbb{Z}), V)$$

$$is \ an \ isomorphism.$$

June 24th, 2024

14/16

### Theorem (L. '24)

Suppose that there is a  $Q \ge 0$  such that for  $n \gg *$ ,  $H^*(IA_n, \mathbb{Q})$  is finite dimensional for all  $* \le Q$ . Then there is a range  $n \gg *$  such that

 $H^*(IA_n, \mathbb{Q})^{alg} \cong W^*(n) \otimes \mathbb{Q}[y_4, y_8, \ldots],$ 

for  $* \leq Q + 1$ .

#### Corollary

 $H^2(\mathsf{IA}_n,\mathbb{Q})^{\mathsf{alg}}\cong H^2_{\mathsf{Alb}}(\mathsf{IA}_n,\mathbb{Q})\cong \Lambda^2(\Lambda^2 H(n)^{\vee} \otimes H(n))/R_2$ 

Recall that  $W^*(n) \cong K^{-,-}(n)^{\vee} \overset{\text{dwBr}}{\otimes} (\mathcal{P}' \otimes \text{sgn})$ . By the universal properties of coends, we obtain a map

$$\Lambda^*\left(\mathcal{K}^{1,2}(n)\otimes(\mathcal{P}'(2,1)\otimes \mathrm{sgn}_2)\right)\to W^*(n)$$

By identifications in the coend, we get that this map factors through  $\Lambda^*(H(n)\otimes \Lambda^2 H(n)^{\vee})$ .

## Theorem (L. '24)

The map

$$\Lambda^*(H(n)\otimes\Lambda^2H(n)^{\vee})\to W^*(n)$$

is surjective and stably, its kernel is R.

### Corollary (Katada '24)

Stably, we have

 $H^*_{Alb}(IA_n, \mathbb{Q}) \cong \Lambda^*(\Lambda^2 H(n)^{\vee} \otimes H(n))/R$ 

## Summary of results

We can summarize the results as follows:

**Theorem (Habiro-Katada** '22, L. '22, Katada '24) • For  $n \gg *$ , we have  $H^*_{Alb}(IA_n, \mathbb{Q}) \cong \Lambda^*(\Lambda^2 H(n)^{\vee} \otimes H(n))/R.$ • Suppose that there is a  $Q \ge 0$  such that for  $n \gg *$ ,  $H^*(IA_n, \mathbb{Q})$  is finite dimensional for all  $* \le Q$ . Then there is a range  $n \gg *$  such that  $H^*(IA_n, \mathbb{Q})^{alg} \cong H^*_{Alb}(IA_n, \mathbb{Q}) \otimes \mathbb{Q}[y_4, y_8, \ldots],$ 

for  $* \leq Q + 1$ .

In particular

 $H^{2}(IA_{n},\mathbb{Q})^{\mathsf{alg}}\cong H^{2}_{\mathsf{Alb}}(IA_{n},\mathbb{Q}).$