Homological stability of symplectic groups

Ismael Sierra Nathalie Wahl

University of Toronto Copenhagen University

Introduction: what is homological

stability?

Homological Stability I: motivation

```
G = (discrete) group.
```

BG = classifying space of principal G-bundles.

 $H^*(BG)$ = characteristic classes of such bundles.

Homological Stability I: motivation

```
G = (discrete) group.
```

BG =classifying space of principal G-bundles.

 $H^*(BG)$ = characteristic classes of such bundles.

Goal: to compute $H^*(BG)$, or compute $H_*(BG)$.

Algebraic interpretation: $H_*(BG) = Tor_*^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{Z})$ and $H^*(BG) = Ext_{\mathbb{Z}[G]}^*(\mathbb{Z}, \mathbb{Z})$.

Homological Stability I: motivation

```
G = (discrete) group.
```

BG = classifying space of principal G-bundles.

 $H^*(BG)$ = characteristic classes of such bundles.

Goal: to compute $H^*(BG)$, or compute $H_*(BG)$.

Algebraic interpretation: $H_*(BG) = Tor_*^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{Z})$ and $H^*(BG) = Ext_{\mathbb{Z}[G]}^*(\mathbb{Z}, \mathbb{Z})$.

Problem: this is very hard!

Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

$$G_0 \hookrightarrow G_1 \hookrightarrow G_2 \hookrightarrow \cdots$$
.

Thus, get a family of classifying spaces

$$BG_{O} \rightarrow BG_{1} \rightarrow BG_{2} \rightarrow \cdots$$
 .

Then, we can ask two questions.

Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

$$G_0 \hookrightarrow G_1 \hookrightarrow G_2 \hookrightarrow \cdots$$
 .

Thus, get a family of classifying spaces

$$BG_0 \rightarrow BG_1 \rightarrow BG_2 \rightarrow \cdots$$
.

Then, we can ask two questions.

- (i) Do we have homological stability? i.e. are the maps $H_d(BG_n) \to H_d(BG_{n+1})$ isomorphisms for d << n?
- (ii) Can we compute the stable homology? i.e. can we compute $colim_n H_d(BG_n)$?

Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

$$G_0 \hookrightarrow G_1 \hookrightarrow G_2 \hookrightarrow \cdots$$
.

Thus, get a family of classifying spaces

$$BG_0 \rightarrow BG_1 \rightarrow BG_2 \rightarrow \cdots$$
.

Then, we can ask two questions.

- (i) Do we have homological stability? i.e. are the maps $H_d(BG_n) \to H_d(BG_{n+1})$ isomorphisms for d << n?
- (ii) Can we compute the stable homology? i.e. can we compute $colim_n H_d(BG_n)$?

If answer to both is yes then we get partial computations!... and improving stability range becomes relevant!

Stable homology: examples

Fact: In many examples of interest, we can access the stable homology $H_d(BG_\infty) := \operatorname{colim}_n H_d(BG_n)$ using group completion theorem.

Stable homology: examples

Fact: In many examples of interest, we can access the stable homology $H_d(BG_\infty) := \operatorname{colim}_n H_d(BG_n)$ using group completion theorem.

Examples:

- (i) $G_n = GL_n(\mathbb{F}_q)$: stable homology completely described by Quillen '72.
- (ii) G_n = GL_n(R): stable homology related to K(R) = algebraic K-theory of R.
 Example: R = number field and ℚ coefficients then known by Borel '74.
- (iii) $G_n = MCG(\Sigma_{n,1})$: stable homology known! $H^*(BG_\infty, \mathbb{Q}) = \mathbb{Q}[\kappa_1, \kappa_2, \cdots]$. (Madsen–Weiss '07)
- (iv) $G_n = Sp_{2n}(\mathbb{Z})$: $H^*(BSp_{\infty}(\mathbb{Z}), \mathbb{Q}) = \mathbb{Q}[x_2, x_6, x_{10}, \dots]$ by Borel '74. Integral computations possible by 9 authors (Calmès–Dotto–Harpaz–Hebestreit–Land–Moi–Nardin–Nikolaus–Steimle).

The "Classical" argument I: set-up

Question: how does one prove homological stability? for which families?

"Classical" argument (Quillen, Randal-Williams–Wahl,...) gives a framework for examples.

The "Classical" argument I: set-up

Question: how does one prove homological stability? for which families?

"Classical" argument (Quillen, Randal-Williams–Wahl,...) gives a framework for examples.

Set-up:

- 1. $(C, \oplus, o) = (braided)$ monoidal category.
- 2. $X \in C = stabilizing object.$
- 3. $A \in C$ = choice of object, usually take A = o.
- 4. $G_n = \operatorname{Aut}_{\mathsf{C}}(\mathsf{A} \oplus \mathsf{X}^{\oplus n}).$
- 5. $G_n \hookrightarrow G_{n+1}$ given by $\oplus id_X$.

The Classical argument II: examples

(i) F = field, take $C = Vect_F^{f.d}$, $\oplus = \text{direct sum}$, X = F, A = 0. Then $G_n = GL_n(F)$.

The Classical argument II: examples

- (i) F = field, take $C = Vect_F^{f.d}$, $\oplus = \text{direct sum}$, X = F, A = 0. Then $G_n = GL_n(F)$.
- (ii) $C = \begin{cases} \text{objects=} & \sum_{n,1} \\ \text{morphisms=} & \text{diffeomorphisms rel boundary/isotopy} \end{cases}$

 $\oplus = boundary connected sum,$

$$A=\varnothing$$
, $X=\Sigma_{1,1}$. Then $G_n=MCG(\Sigma_{n,1})$.

The Classical argument II: examples

- (i) F = field, take $C = Vect_F^{f.d}$, $\oplus = \text{direct sum}$, X = F, A = 0. Then $G_n = GL_n(F)$.
- $\text{(ii) } C = \left\{ \begin{array}{ll} \text{objects=} & \sum_{n,1} \\ \text{morphisms=} & \text{diffeomorphisms rel boundary/isotopy} \end{array} \right. ,$

 $\oplus = boundary connected sum,$

$$A = \emptyset$$
, $X = \Sigma_{1,1}$. Then $G_n = MCG(\Sigma_{n,1})$.

(iii) C= category of skew-symmetric bilinear forms over \mathbb{Z} , $\oplus=$ orthogonal direct sum, A= o, $X=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ hyperbolic form. Then $G_n=Sp_{2n}(\mathbb{Z})$.

There are canonical **destabilization complexes** $W_n(A, X)$ associated to the above data, dimension = n - 1.

Informally: p-simplices \iff ways of destabilizing $X^{\oplus p+1}$ from $A \oplus X^{\oplus n} \iff$ embeddings $X^{\oplus p+1} \to A \oplus X^{\oplus n}$ whose complement is $A \oplus X^{\oplus n-p-1}$.

There are canonical **destabilization complexes** $W_n(A, X)$ associated to the above data, dimension = n - 1.

Informally: p-simplices \iff ways of destabilizing $X^{\oplus p+1}$ from $A \oplus X^{\oplus n} \iff$ embeddings $X^{\oplus p+1} \to A \oplus X^{\oplus n}$ whose complement is $A \oplus X^{\oplus n-p-1}$.

Theorem (Quillen, Randal-Williams–Wahl): If the connectivity of $W_n(A, X)$ grows with n then the family $\{G_n\}_n$ has homological stability.

There are canonical **destabilization complexes** $W_n(A, X)$ associated to the above data, dimension = n - 1.

Informally: p-simplices \iff ways of destabilizing $X^{\oplus p+1}$ from $A \oplus X^{\oplus n} \iff$ embeddings $X^{\oplus p+1} \to A \oplus X^{\oplus n}$ whose complement is $A \oplus X^{\oplus n-p-1}$.

Theorem (Quillen, Randal-Williams–Wahl): If the connectivity of $W_n(A, X)$ grows with n then the family $\{G_n\}_n$ has homological stability.

Precise: If $W_n(A,X)$ is $\frac{n-c}{k}$ connected, $c \in \mathbb{Z}$, $\in \mathbb{Z}_{>0}$ then $H_d(BG_n) \to H_d(BG_{n+1})$ is an iso if $d \leq \frac{n-c+2}{\max\{2,k\}}$.

There are canonical **destabilization complexes** $W_n(A, X)$ associated to the above data, dimension = n - 1.

Informally: p-simplices \iff ways of destabilizing $X^{\oplus p+1}$ from $A \oplus X^{\oplus n} \iff$ embeddings $X^{\oplus p+1} \to A \oplus X^{\oplus n}$ whose complement is $A \oplus X^{\oplus n-p-1}$.

Theorem (Quillen, Randal-Williams–Wahl): If the connectivity of $W_n(A, X)$ grows with n then the family $\{G_n\}_n$ has homological stability.

Precise: If $W_n(A,X)$ is $\frac{n-c}{k}$ connected, $c \in \mathbb{Z}$, $\in \mathbb{Z}_{>0}$ then $H_d(BG_n) \to H_d(BG_{n+1})$ is an iso if $d \leq \frac{n-c+2}{\max\{2,k\}}$.

Limitation of method: we can never get something better than $\frac{n-\text{const}}{2}$. In fact, this issue is intrinsic: braid groups!

The Classical method: applications

- (i) $G_n = GL_n(R)$: get result $\frac{n-c}{2}$, c = constant depending on ring. (Quillen, Maazen, Van der Kallen, ...).
- (ii) $G_n = MCG(\Sigma_{n,1})$ (Harer, Ivanov, Boldsen, Randal-Williams, Galatius-Kupers-Randal-Williams, Harr-Vistrup-Wahl). Best bound $\lesssim \frac{2n}{3}$.
- (iii) $G_n = Sp_{2n}(R)$ (Charney, Miraii–Van der Kallen,...) get range $d \lesssim \frac{n}{2}$, constant depends on ring.

The Classical method: applications

- (i) $G_n = GL_n(R)$: get result $\frac{n-c}{2}$, c = constant depending on ring. (Quillen, Maazen, Van der Kallen, ...).
- (ii) $G_n = MCG(\Sigma_{n,1})$ (Harer, Ivanov, Boldsen, Randal-Williams, Galatius-Kupers-Randal-Williams, Harr-Vistrup-Wahl). Best bound $\lesssim \frac{2n}{3}$.
- (iii) $G_n = Sp_{2n}(R)$ (Charney, Miraii–Van der Kallen,...) get range $d \lesssim \frac{n}{2}$, constant depends on ring.

Surprise: bound for MCG is 2n/3 >> n/2... so hard to get using "classical method" alone...

The Classical method: applications

- (i) $G_n = GL_n(R)$: get result $\frac{n-c}{2}$, c = constant depending on ring. (Quillen, Maazen, Van der Kallen, ...).
- (ii) $G_n = MCG(\Sigma_{n,1})$ (Harer, Ivanov, Boldsen, Randal-Williams, Galatius-Kupers-Randal-Williams, Harr-Vistrup-Wahl). Best bound $\lesssim \frac{2n}{3}$.
- (iii) $G_n = Sp_{2n}(R)$ (Charney, Miraii–Van der Kallen,...) get range $d \lesssim \frac{n}{2}$, constant depends on ring.

Surprise: bound for MCG is 2n/3 >> n/2... so hard to get using "classical method" alone...

Result of Harr-Vistrup-Wahl manages to do so!

Results

Result I

Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c=0 if R is a PID and c=2usr(R)+2 otherwise. Then

$$H_d(BSp_{2g}(R)) \rightarrow H_d(BSp_{2(g+1)}(R))$$

is an iso for $d \leq \frac{2g-c-2}{3}$.

Result I

Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c=0 if R is a PID and c=2usr(R)+2 otherwise. Then

$$H_d(BSp_{2g}(R)) \rightarrow H_d(BSp_{2(g+1)}(R))$$

is an iso for $d \leq \frac{2g-c-2}{3}$.

This improves previously 1/2 slope bound to 2/3.

Result I

Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c=0 if R is a PID and c=2usr(R)+2 otherwise. Then

$$H_d(BSp_{2g}(R)) \rightarrow H_d(BSp_{2(g+1)}(R))$$

is an iso for $d \leq \frac{2g-c-2}{3}$.

This improves previously 1/2 slope bound to 2/3.

As we will see, 2/3 slope is related to MCG 2/3 slope...

Result II

Define the "odd" symplectic groups $Sp_{2g+1}(R):=Stab_{Sp_{2g+2}(R)}(e_1)$, where standard basis is $e_1,f_1,\ldots,e_{g+1},f_{g+1}$.

Have
$$Sp_0(R)\subset Sp_1(R)\subset Sp_2(R)\subset Sp_3(R)\subset \cdots$$

Result II

Define the "odd" symplectic groups $Sp_{2g+1}(R) := Stab_{Sp_{2g+2}(R)}(e_1)$, where standard basis is $e_1, f_1, \ldots, e_{g+1}, f_{g+1}$.

Have
$$Sp_0(R) \subset Sp_1(R) \subset Sp_2(R) \subset Sp_3(R) \subset \cdots$$

Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c = 0 if R is a PID and c = 2usr(R) + 2 otherwise. Then

$$H_d(BSp_n(R)) \rightarrow H_d(BSp_{n+1}(R))$$

is an iso for $d \leq \frac{n-c-3}{3}$.

g

Result II

Define the "odd" symplectic groups $Sp_{2g+1}(R) := Stab_{Sp_{2g+2}(R)}(e_1)$, where standard basis is $e_1, f_1, \ldots, e_{g+1}, f_{g+1}$.

Have
$$Sp_0(R) \subset Sp_1(R) \subset Sp_2(R) \subset Sp_3(R) \subset \cdots$$

Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c = 0 if R is a PID and c = 2usr(R) + 2 otherwise. Then

$$H_d(BSp_n(R)) \rightarrow H_d(BSp_{n+1}(R))$$

is an iso for $d \leq \frac{n-c-3}{3}$.

New slope = 1/3.

The proof

Key idea (Harr-Vistrup-Wahl) $\Sigma_{n+1,1}$ can be obtained by attaching **two** handles to $\Sigma_{n,1}$.

Thus, we can define new family by attaching **one** handle at a time: $\Sigma_{0,1}, \Sigma_{0,2}, \Sigma_{1,1}, \Sigma_{1,2}, \Sigma_{2,1}, \Sigma_{2,2}, \dots$

Old stability problem has twice the speed \Rightarrow Suffices stability of slope 1/3 for new family!

Key idea (Harr-Vistrup-Wahl) $\Sigma_{n+1,1}$ can be obtained by attaching **two** handles to $\Sigma_{n,1}$.

Thus, we can define new family by attaching **one** handle at a time: $\Sigma_{0,1}, \Sigma_{0,2}, \Sigma_{1,1}, \Sigma_{1,2}, \Sigma_{2,1}, \Sigma_{2,2}, \dots$

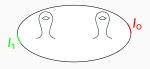
Old stability problem has twice the speed \Rightarrow Suffices stability of slope 1/3 for new family!

Issues:

- 1. One has to be careful attaching handles!
- 2. How to create a nice categorical set-up?

Take C = category of bidecorated surfaces.

Objects = (Σ, I_0, I_1) .



Take C =category of *bidecorated surfaces*.

Objects = (Σ, I_0, I_1) .

 $\label{eq:morphisms} \mbox{Morphisms} = \mbox{isotopy classes of diffeomorphisms preserving the intervals.}$

Take C =category of *bidecorated surfaces*.

Objects = (Σ, I_0, I_1) .

Morphisms = isotopy classes of diffeomorphisms preserving the intervals.

Monoidal structure: glue along "half of the intervals", and use the remaining halves to define the new intervals in the glued surface.

Take C =category of *bidecorated surfaces*.

Objects = (Σ, I_0, I_1) .

 $\label{eq:morphisms} \mbox{Morphisms} = \mbox{isotopy classes of diffeomorphisms preserving the intervals.}$

Monoidal structure: glue along "half of the intervals", and use the remaining halves to define the new intervals in the glued surface.

 $A = \emptyset$.

X = disc.

The geometric idea II

Take C =category of *bidecorated surfaces*.

Objects = (Σ, I_0, I_1) .

Morphisms = isotopy classes of diffeomorphisms preserving the intervals.

Monoidal structure: glue along "half of the intervals", and use the remaining halves to define the new intervals in the glued surface.

 $A = \emptyset$.

X = disc.

This solves both problems!

The geometric idea III

 $W_n(\emptyset, X) = complex of disordered arcs.$

Vertices: non-separating arcs from b_0 to b_1 (up to isotopy).

p- simplex: collection $\{a_0,\ldots,a_p\}$ of non-separating pairwise disjoint arcs such that orders at b_0,b_1 agree.

The geometric idea III

 $W_n(\emptyset, X) = complex of disordered arcs.$

Vertices: non-separating arcs from b_0 to b_1 (up to isotopy).

p- simplex: collection $\{a_0, \ldots, a_p\}$ of non-separating pairwise disjoint arcs such that orders at b_0, b_1 agree.

Theorem (Harr-Vistrup-Wahl): W_n is $\frac{n-5}{3}$ -connected.

The geometric idea III

 $W_n(\emptyset, X) = complex of disordered arcs.$

Vertices: non-separating arcs from b_0 to b_1 (up to isotopy).

p- simplex: collection $\{a_0,\ldots,a_p\}$ of non-separating pairwise disjoint arcs such that orders at b_0,b_1 agree.

Theorem (Harr-Vistrup-Wahl): W_n is $\frac{n-5}{3}$ -connected.

This implies stability result of slope 2/3 for $MCG(\Sigma_{g,1})$.

Formed spaces with boundary I

Key insight: Action on homology (with R coefficients) gives a map $MCG(\Sigma_{g,1}) \to Sp_{2g}(R)$. Want to find $Sp_{2g+1}(R)$ with maps $MCG(\Sigma_{g,2}) \to Sp_{2g+1}(R)$. Then study new family.

Formed spaces with boundary I

Key insight: Action on homology (with R coefficients) gives a map $MCG(\Sigma_{g,1}) \to Sp_{2g}(R)$. Want to find $Sp_{2g+1}(R)$ with maps $MCG(\Sigma_{g,2}) \to Sp_{2g+1}(R)$. Then study new family.

Better wish: find algebraic analogue of bidecorated surfaces and a functor from bidecorated surfaces to it.

Formed spaces with boundary I

Key insight: Action on homology (with R coefficients) gives a map $MCG(\Sigma_{g,1}) \to Sp_{2g}(R)$. Want to find $Sp_{2g+1}(R)$ with maps $MCG(\Sigma_{g,2}) \to Sp_{2g+1}(R)$. Then study new family.

Better wish: find algebraic analogue of bidecorated surfaces and a functor from bidecorated surfaces to it.

Solution: Category F_{∂} of formed spaces with boundary.

- Objects = (M, λ, ∂) , M = f.g. free R-module, $\lambda = \text{skew-symmetric}$ bilinear form, $\partial: M \to R$.
- Morphisms= module maps preserving λ, ∂ .
- Monoidal structure #:

$$(M_1, \lambda_1, \partial_1) \# (M_2, \lambda_2, \partial_2) = \left(M_1 \oplus M_2, \begin{pmatrix} \lambda_1 & \partial_1^T \partial_2 \\ -\partial_2^T \partial_1 & \lambda_2 \end{pmatrix}, \partial_1 + \partial_2 \right).$$

• X = (R, O, id).

Formed spaces with boundary II

Geometric interpretation: Functor from bidecorated surfaces to F_{∂} defined by $(\Sigma, I_0, I_1) \mapsto (H_1(\Sigma \cup_{I_0 \sqcup I_1} H), \lambda, \partial)$ where $\partial: H_1(\Sigma \cup_{I_0 \sqcup I_1} H) \cong H_1(\Sigma, I_0 \sqcup I_1) \to \tilde{H}_0(I_0 \sqcup I_1) \cong R$ is boundary map.

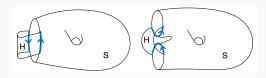


Figure 1: Two bidecorated surfaces (Σ, I_0, I_1) and their associated surface $\Sigma^+ = \Sigma \cup H$

Formed spaces with boundary II

Geometric interpretation: Functor from bidecorated surfaces to F_{∂} defined by $(\Sigma, I_0, I_1) \mapsto (H_1(\Sigma \cup_{I_0 \sqcup I_1} H), \lambda, \partial)$ where $\partial: H_1(\Sigma \cup_{I_0 \sqcup I_1} H) \cong H_1(\Sigma, I_0 \sqcup I_1) \to \tilde{H}_0(I_0 \sqcup I_1) \cong R$ is boundary map.

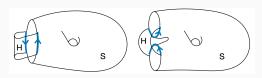


Figure 1: Two bidecorated surfaces (Σ, I_0, I_1) and their associated surface $\Sigma^+ = \Sigma \cup H$

Note: bidecorated disc $\mapsto X = (R, O, id)$.

Formed spaces with boundary II

Geometric interpretation: Functor from bidecorated surfaces to F_{∂} defined by $(\Sigma, I_0, I_1) \mapsto (H_1(\Sigma \cup_{I_0 \sqcup I_1} H), \lambda, \partial)$ where $\partial: H_1(\Sigma \cup_{I_0 \sqcup I_1} H) \cong H_1(\Sigma, I_0 \sqcup I_1) \to \tilde{H}_0(I_0 \sqcup I_1) \cong R$ is boundary map.

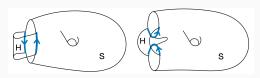


Figure 1: Two bidecorated surfaces (Σ, I_0, I_1) and their associated surface $\Sigma^+ = \Sigma \cup H$

Note: bidecorated disc \mapsto X = (R, o, id).

Functor is monoidal! This gives geometric meaning to #.

Algebraic meaning uses $(M_1 \oplus M_2)^{\vee} \cong M_1^{\vee} \oplus M_2^{\vee}$ and $\Lambda^2(M_1 \oplus M_2)^{\vee} \cong \Lambda^2 M_1^{\vee} \oplus M_1^{\vee} \otimes M_2^{\vee} \oplus \Lambda^2 M_2^{\vee}$.

Even and odd symplectic groups

Now, natural to consider $G_n = Aut(X^{\#n})$.

Fact: n = 2g + 1 one gets $G_n \cong Sp_{2g}(R)$.

Even and odd symplectic groups

```
Now, natural to consider G_n = Aut(X^{\#n}).
```

Fact:
$$n = 2g + 1$$
 one gets $G_n \cong Sp_{2g}(R)$.

When
$$n = 2g$$
 one gets $G_n \cong Stab_{Sp_{2g}(R)}(e_1) = Sp_{2g-1}(R)$.

Thus, $G_n = Sp_{n-1}(R)$... even and odd are exchanged for us!

Even and odd symplectic groups

```
Now, natural to consider G_n = Aut(X^{\#n}).
```

Fact:
$$n = 2g + 1$$
 one gets $G_n \cong Sp_{2g}(R)$.

When
$$n = 2g$$
 one gets $G_n \cong Stab_{Sp_{2g}(R)}(e_1) = Sp_{2g-1}(R)$.

Thus, $G_n = Sp_{n-1}(R)$... even and odd are exchanged for us!

Fun fact: There is a braiding in full subcategory generated by X so get $B_n \to Aut(X^{\# n}) = Sp_{n-1}(R)...$ this is (reduced) Bureau representation!

Geometrically $W_n = \text{disordered arc complex.}$

Question: what happens algebraically?

Geometrically $W_n = \text{disordered arc complex.}$

Question: what happens algebraically?

Arc:= $a \in M$ such that $\partial a = 1$.

Geometric meaning: geometric arc gives algebraic arc!

Geometrically $W_n = \text{disordered arc complex}$.

Question: what happens algebraically?

Arc:= $a \in M$ such that $\partial a = 1$.

Geometric meaning: geometric arc gives algebraic arc!

Non-separating: $a \in M$ arc is non-separating if $\{\lambda(a, -), \partial\}$ unimodular in M^{\vee} .

Meaning: condition says there is $b \in M$ such that $\partial b = 1$ and $\lambda(a,b) = 1$: "b connects the two sides of a".

Geometrically $W_n = \text{disordered arc complex}$.

Question: what happens algebraically?

Arc:= $a \in M$ such that $\partial a = 1$.

Geometric meaning: geometric arc gives algebraic arc!

Non-separating: $a \in M$ arc is non-separating if $\{\lambda(a, -), \partial\}$ unimodular in M^{\vee} .

Meaning: condition says there is $b \in M$ such that $\partial b = 1$ and $\lambda(a,b) = 1$: "b connects the two sides of a".

Jointly non-separating: $\{\lambda(a_0,-),\ldots,\lambda(a_p,-),\partial\}$ unimodular in M^\vee .

What about ordering condition?

We say that a_0, \ldots, a_p are disordered if we can pick an ordering of them such that $\lambda(a_i, a_j) = 1$ for i < j.

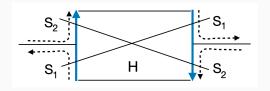


Figure 2: Two disordered arcs crossing once inside the handle

What about ordering condition?

We say that a_0, \ldots, a_p are disordered if we can pick an ordering of them such that $\lambda(a_i, a_j) = 1$ for i < j.

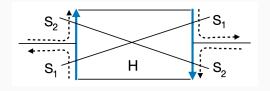


Figure 2: Two disordered arcs crossing once inside the handle

Thus, get algebraic disordered arc complex $D(M, \lambda, \partial)$.

Vertices= non-separating arcs.

p-simplex: jointly non-separating and disordered.

What about ordering condition?

We say that a_0, \ldots, a_p are disordered if we can pick an ordering of them such that $\lambda(a_i, a_j) = 1$ for i < j.

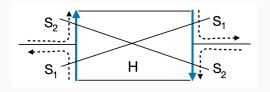


Figure 2: Two disordered arcs crossing once inside the handle

Thus, get algebraic disordered arc complex $D(M, \lambda, \partial)$.

Vertices= non-separating arcs.

p-simplex: jointly non-separating and disordered.

Key fact "algebra = geometry": W_n and $D(X^{\#n})$ agree (on a skeleton).

What about ordering condition?

We say that a_0, \ldots, a_p are disordered if we can pick an ordering of them such that $\lambda(a_i, a_j) = 1$ for i < j.

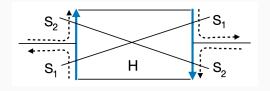


Figure 2: Two disordered arcs crossing once inside the handle

Thus, get algebraic disordered arc complex $D(M, \lambda, \partial)$.

Vertices= non-separating arcs.

p-simplex: jointly non-separating and disordered.

Key fact "algebra = geometry": W_n and $D(X^{\#n})$ agree (on a skeleton).

Connectivity of disordered arc complex

Theorem (S.–Wahl) $D(M, \lambda, \partial)$ is $\frac{n-c}{3}$ -connected, where c=5 if R is a PID and c=2usr(R)+6 in general.

Connectivity of disordered arc complex

Theorem (S.-Wahl) $D(M, \lambda, \partial)$ is $\frac{n-c}{3}$ -connected, where c=5 if R is a PID and c=2usr(R)+6 in general.

Using the above one proves stability theorem!

Finishing the proof

Proof based on a "bad simplex argument".

Finishing the proof

Proof based on a "bad simplex argument".

Start with complex of all non-separating arcs, and try to deform maps (this is analogue to geometric proof!).

Finishing the proof

Proof based on a "bad simplex argument".

Start with complex of all non-separating arcs, and try to deform maps (this is analogue to geometric proof!).

Key: Complex of non-separating arcs related to unimodular vectors complexes... that has connectivity of slope 1 in fact!

Key algebraic ingredient: understanding how X-genus decreases when we cut algebraic arcs... problem is that the X-genus (algebraic version of "number of handles") generally drops by 2 and not by 1, that causes slope 1/3 and not 1/2.

Further possible works and applications

- In the geometric arc complex, slope 1/3 stability is optimal.
 What about in the algebraic arc complex? (nothing known...)
- 2. Use this to get a classical proof 2/3-slope stability for diffeomorphism groups of some high-dimensional manifolds.
- 3. What about quadratic symplectic groups? issue is the non-separating arc complex... all other steps work analogously and stability of slope > 1/4 has new geometric implications!
- 4. Can one use similar methods to improve the slope 1/4 connectivity in the paper "Uniform twisted homological stability" by Miller-Patzt-Petersen-Randal-Williams? Maybe go to slope 1/3? (Ideal conjecture says it is 1/2 and connects to number theory)