Open conformal field theories and ansular functors

Lukas Woike Université Bourgogne Europe

Moduli and Friends Seminar July 7, 2025

(building partially on joint work with L. Müller and A. Brochier)

We consider the following operations for graphs:

A category of graphs

Definition [Costello 04]

We denote by Graphs the category

- whose objects are finite disjoint unions of corollas
- and whose morphisms $\Gamma : T \longrightarrow T'$ are equivalence classes of graphs Γ with identifications $T \cong \nu(\Gamma)$ and $T' \cong \pi_0(\Gamma)$.

Disjoint union endows Graphs with a symmetric monoidal structure.

Operads, cyclic operads and modular operads

The category Graphs has a subcategory Forests with the same objects, but only forests as morphisms. There is also a category RForests of rooted forests. We obtain symmetric monoidal functors

 $\mathsf{RForests} \longrightarrow \mathsf{Forests} \longrightarrow \mathsf{Graphs}$.

Operads, cyclic operads and modular operads

The category Graphs has a subcategory Forests with the same objects, but only forests as morphisms. There is also a category RForests of rooted forests. We obtain symmetric monoidal functors

 $\mathsf{RForests} \longrightarrow \mathsf{Forests} \longrightarrow \mathsf{Graphs}$.

Definition [following Costello building on Getzler-Kapranov]

Let S be a symmetric monoidal (higher) category. An *operad/cyclic operad/modular operad* with values in S is a symmetric monoidal functor

 $\mathcal{O}:\mathsf{RForests}/\mathsf{Forests}/\mathsf{Graphs}\longrightarrow \mathcal{S}$

that is also equipped with operadic identities.

Operads, cyclic operads and modular operads

The category Graphs has a subcategory Forests with the same objects, but only forests as morphisms. There is also a category RForests of rooted forests. We obtain symmetric monoidal functors

 $\mathsf{RForests} \longrightarrow \mathsf{Forests} \longrightarrow \mathsf{Graphs}$.

Definition [following Costello building on Getzler-Kapranov]

Let S be a symmetric monoidal (higher) category. An *operad/cyclic operad/modular operad* with values in S is a symmetric monoidal functor

 $\mathcal{O}:\mathsf{RForests}/\mathsf{Forests}/\mathsf{Graphs}\longrightarrow \mathcal{S}$

that is also equipped with operadic identities.

If T_n is the corolla with legs numbered by $0, \ldots, n$, the object $\mathcal{O}(T_n) \in S$ describes the *n*-ary operations (operations of total arity n + 1).

Let $X \in S$ be an object in a symmetric monoidal bicategory. Suppose that $\kappa : X \otimes X \longrightarrow I$ is a *non-degenerate symmetric pairing*, where

Let $X \in S$ be an object in a symmetric monoidal bicategory. Suppose that $\kappa : X \otimes X \longrightarrow I$ is a *non-degenerate symmetric pairing*, where

 non-degeneracy means that κ exhibits X as its own dual in the homotopy category of S (in particular, there is a coevaluation Δ : I → X ⊗ X), Let $X \in S$ be an object in a symmetric monoidal bicategory. Suppose that $\kappa : X \otimes X \longrightarrow I$ is a *non-degenerate symmetric pairing*, where

- non-degeneracy means that κ exhibits X as its own dual in the homotopy category of S (in particular, there is a coevaluation Δ : I → X ⊗ X),
- and *symmetry* means that κ is a homotopy fixed point of the \mathbb{Z}_2 -action on $\mathcal{S}(X \otimes X, I)$.

The symmetric monoidal bicategory Lex[†]

Fix an algebraically closed field k. Lex^f is the symmetric monoidal bicategory of *finite linear categories* in the sense of Etingof-Ostrik (linear abelian categories with finite-dimensional morphism spaces, enough projective objects, finitely many isomorphism classes of simple objects such that every object has finite length). 1-morphisms are left exact functors. 2-morphisms are linear natural transformations.

Cyclic and modular algebras

One checks that the assignment

corolla
$$T \mapsto \mathcal{S}(X^{\otimes \mathsf{Legs}(T)}, I)$$

extends to a symmetric monoidal functor

 $\operatorname{End}_{\kappa}^X:\operatorname{Graphs}\longrightarrow\operatorname{Cat}$,

the modular endomorphism operad associated to (X, κ) .

Cyclic and modular algebras

One checks that the assignment

corolla
$$T \mapsto \mathcal{S}(X^{\otimes \mathsf{Legs}(T)}, I)$$

extends to a symmetric monoidal functor

 $\operatorname{End}_{\kappa}^X:\operatorname{Graphs}\longrightarrow\operatorname{Cat}$,

the modular endomorphism operad associated to (X, κ) . The restriction of $\operatorname{End}_{\kappa}^{X}$ to Forests is the cyclic endomorphism operad.

Cyclic and modular algebras

One checks that the assignment

corolla
$$T \mapsto \mathcal{S}(X^{\otimes \mathsf{Legs}(T)}, I)$$

extends to a symmetric monoidal functor

 $\operatorname{End}_{\kappa}^X:\operatorname{Graphs}\longrightarrow\operatorname{Cat}$,

the modular endomorphism operad associated to (X, κ) . The restriction of $\operatorname{End}_{\kappa}^{X}$ to Forests is the cyclic endomorphism operad.

Definition [Müller-W., extending Costello]

Let \mathcal{O} be a Cat-valued cyclic (modular) operad. For any symmetric monoidal bicategory \mathcal{S} , an \mathcal{S} -valued cyclic (modular) \mathcal{O} -algebra is an object $X \in \mathcal{S}$, a non-degenerate symmetric pairing $\kappa : X \otimes X \longrightarrow I$ and a symmetric monoidal transformation $A : \mathcal{O} \longrightarrow \operatorname{End}_{\kappa}^{X}$.

Again, we need a version with operadic identities. This is omitted here.

Framed little disk operad

Theorem [Wahl 01, Salvatore-Wahl 03]

Framed little disks algebras in Cat are equivalent to balanced braided categories.

Reminder on balanced braided categories

braiding on a monoidal category: natural isomorphism
 X ⊗ Y → Y ⊗ X subject to the hexagon axioms. A braiding on a finite tensor category is called *non-degenerate* if the only objects that trivially double braid with all other objects are finite direct sums of the monoidal unit.

Reminder on balanced braided categories

- braiding on a monoidal category: natural isomorphism
 X ⊗ Y → Y ⊗ X subject to the hexagon axioms. A braiding on a finite tensor category is called *non-degenerate* if the only objects that trivially double braid with all other objects are finite direct sums of the monoidal unit.
- *balancing* on a braided monoidal category: natural isomorphism $\theta_X : X \longrightarrow X$ subject to

$$\begin{aligned} \theta_{X\otimes Y} &= c_{Y,X} c_{X,Y} (\theta_X \otimes \theta_Y) ,\\ \theta_I &= \mathsf{id}_I . \end{aligned}$$

How does this correspondence look like?

Textbook reference: [Fresse]

How does this correspondence look like?

Textbook reference: [Fresse]

Next critical observation: The framed E_2 -operad is *cyclic*. What are the cyclic algebras?

The framed little disk operad is equivalent to the cyclic operad of genus zero surfaces. The latter has a cyclic structure by renumbering the boundary components.

Cyclic framed E_2 -algebras (in Lex[†])

Baez-Dolan microcosm principle

An algebraic structure of a certain type (where the type is typically encoded by an operad) can be defined in a category carrying the same algebraic structure, but one categorical level higher.

Baez-Dolan microcosm principle

An algebraic structure of a certain type (where the type is typically encoded by an operad) can be defined in a category carrying the same algebraic structure, but one categorical level higher.

Example

An algebra can be defined in any monoidal category.

Baez-Dolan microcosm principle

An algebraic structure of a certain type (where the type is typically encoded by an operad) can be defined in a category carrying the same algebraic structure, but one categorical level higher.

Example

An algebra can be defined in any monoidal category.

Goal

Adapt this to cyclic and modular operads and use it in quantum topology.

Modular algebras in modular algebras

 Let O : Graphs → Cat be a category-valued modular operad (the same works for cyclic operads). Consider the Grothendieck construction ∫ O, the category of all pairs (T, o) with T ∈ Graphs and o ∈ O(T). This is a symmetric monoidal category.

Modular algebras in modular algebras

- Let O: Graphs → Cat be a category-valued modular operad (the same works for cyclic operads). Consider the Grothendieck construction ∫ O, the category of all pairs (T, o) with T ∈ Graphs and o ∈ O(T). This is a symmetric monoidal category.
- Let A be a modular O-algebra, for specificity in Lex^f. Denote by Δ = ∫^{X∈A} DX ⊠ X its coevaluation object. Here D : A^{opp} → A is the equivalence induced by the pairing κ : A ⊠ A → vect.

Modular algebras in modular algebras

- Let O: Graphs → Cat be a category-valued modular operad (the same works for cyclic operads). Consider the Grothendieck construction ∫ O, the category of all pairs (T, o) with T ∈ Graphs and o ∈ O(T). This is a symmetric monoidal category.
- Let \mathcal{A} be a modular \mathcal{O} -algebra, for specificity in Lex^f. Denote by $\Delta = \int^{X \in \mathcal{A}} DX \boxtimes X$ its coevaluation object. Here $D : \mathcal{A}^{opp} \longrightarrow \mathcal{A}$ is the equivalence induced by the pairing $\kappa : \mathcal{A} \boxtimes \mathcal{A} \longrightarrow$ vect.
- A self-dual object $X \in \mathcal{A}$ is an object equipped with an isomorphism $\psi : X \longrightarrow DX$ such that $D\psi$ agrees with ψ under the isomorphism $X \longrightarrow D^2X$ coming from the symmetry of the pairing.

Let \mathcal{O} be a Cat-valued modular operad and $X \in \mathcal{A}$ a self-dual object in a modular \mathcal{O} -algebra \mathcal{A} .

Theorem [W. 24] 'Flat vector bundles over the space of operations'

By sending a corolla T and $o \in \mathcal{O}(T)$ to the vector space $\mathcal{A}_o(X, \ldots, X)$, we obtain a symmetric monoidal functor $\mathbb{V}_X^{\mathcal{A}} : \int \mathcal{O} \longrightarrow$ vect.

Definition [W. 24] 'Modular microcosm principle'

A modular \mathcal{O} -algebra in \mathcal{A} is a self-dual object X together with a monoidal transformation $k \longrightarrow \mathbb{V}_X^{\mathcal{A}}$ of symmetric monoidal functors $\int \mathcal{O} \longrightarrow$ vect.

Again, all of of this works also for cyclic operads and their algebras.

Frobenius algebras

Cyclic associative algebras in Lex^f are equivalent to *pivotal* Grothendieck-Verdier categories [Müller-W. 20]; a class of examples are pivotal finite tensor categories. A cyclic associative algebra in a pivotal Grothendieck-Verdier category A is a symmetric Frobenius algebra F in A. The corresponding transformation $k \longrightarrow \mathbb{V}_{F}^{\mathcal{A}}$ selects for a corolla with n legs and the 'standard' operation o of total arity *n* a vector in Hom_A($K, F^{\otimes n}$), namely the total arity *n* operation of the Frobenius algebra F. In the rigid case, this is the standard notion. Beyond that, one recovers the definitions of [Fuchs-Schaumann-Schweigert-Wood 24]. For the cyclic framed E_2 -operad, we obtain symmetric braided commutative Frobenius algebras in ribbon Grothendieck-Verdier categories.

This is very reassuring, but by no means impressive... we might as well have defined all this by hand, without the microcosm principle.

Let \mathcal{O} be a category-valued cyclic operad. Denote by $U_{\int}\mathcal{O}$ the derived modular envelope of \mathcal{O} in the sense of [Costello], the smallest extension of \mathcal{O} to a modular operad, in a homotopy coherent way. Then any cyclic \mathcal{O} -algebra extends uniquely to a modular $U_{\int}\mathcal{O}$ -algebra $\widehat{\mathcal{A}}$ [Müller-W. 22].

Let \mathcal{O} be a category-valued cyclic operad. Denote by $U_{\int}\mathcal{O}$ the derived modular envelope of \mathcal{O} in the sense of [Costello], the smallest extension of \mathcal{O} to a modular operad, in a homotopy coherent way. Then any cyclic \mathcal{O} -algebra extends uniquely to a modular $U_{\int}\mathcal{O}$ -algebra $\widehat{\mathcal{A}}$ [Müller-W. 22].

Theorem [W. 24] Modular extension

There is a canonical 'restriction-extension' equivalence

 $\mathsf{CycAlg}(\mathcal{O};\mathcal{A})\simeq\mathsf{ModAlg}(\mathsf{\Pi}|BU_{\int}\mathcal{O}|;\widehat{\mathcal{A}})$.

 For the cyclic associative operad, Π|BU_∫As| is equivalent to the open surface operad O, the groupoid-valued operad whose operations of total arity n ≥ 0 are connected compact oriented surfaces Σ with at least one boundary component and n parametrized intervals in ∂Σ; morphisms in the groupoids of operations are mapping classes [Costello,Giansiracusa, Müller-W.]. (The gluing is along intervals.)

- For the cyclic associative operad, Π|BU_∫As| is equivalent to the open surface operad O, the groupoid-valued operad whose operations of total arity n ≥ 0 are connected compact oriented surfaces Σ with at least one boundary component and n parametrized intervals in ∂Σ; morphisms in the groupoids of operations are mapping classes [Costello,Giansiracusa, Müller-W.]. (The gluing is along intervals.)
- Lex^f-valued modular O-algebras are categorified open two-dimensional topological field theories or simply *open modular functors* [Segal, Moore-Seiberg, Turaev, Tillmann, Bakalov-Kirillov, ...], the monodromy data of an *open conformal field theory*.

- For the cyclic associative operad, Π|BU_∫As| is equivalent to the open surface operad O, the groupoid-valued operad whose operations of total arity n ≥ 0 are connected compact oriented surfaces Σ with at least one boundary component and n parametrized intervals in ∂Σ; morphisms in the groupoids of operations are mapping classes [Costello,Giansiracusa, Müller-W.]. (The gluing is along intervals.)
- Lex^f-valued modular O-algebras are categorified open two-dimensional topological field theories or simply *open modular functors* [Segal, Moore-Seiberg, Turaev, Tillmann, Bakalov-Kirillov, ...], the monodromy data of an *open conformal field theory*.

Theorem [Müller-W. 20/24]

Cyclic associative algebras in Lex^f are pivotal Grothendieck-Verdier categories, thereby giving us an equivalence between open modular functors and pivotal Grothendieck-Verdier categories.

Let \mathcal{A} be a pivotal Grothendieck-Verdier category in Lex^f; this is a monoidal category \mathcal{A} in Lex^f with a Grothendieck-Verdier duality $D: \mathcal{A}^{opp} \longrightarrow \mathcal{A}$ with a monoidal trivialization $\omega : \mathrm{id}_{\mathcal{A}} \cong D^2$ whose component $\omega_{\mathcal{K}} : \mathcal{K} \cong D^2 \mathcal{K}$ at the dualizing object \mathcal{K} is the 'canonical map'.

Denote by $\mathcal{A}_{!}$ the unique extension to an open modular functor.

Let \mathcal{A} be a pivotal Grothendieck-Verdier category in Lex^f; this is a monoidal category \mathcal{A} in Lex^f with a Grothendieck-Verdier duality $D: \mathcal{A}^{opp} \longrightarrow \mathcal{A}$ with a monoidal trivialization $\omega : \operatorname{id}_{\mathcal{A}} \cong D^2$ whose component $\omega_{K}: K \cong D^2 K$ at the dualizing object K is the 'canonical map'.

Denote by $\mathcal{A}_{!}$ the unique extension to an open modular functor.

(These mapping class group representations are called *spaces of conformal blocks* for the open conformal field theory.)

By the modular extension theorem modular O-algebras in A_{l} are equivalent to symmetric Frobenius algebra $F \in A$. These give us linear maps $k \longrightarrow A_{l}(\Sigma; F, ..., F)$ for all surfaces, i.e. vectors in the spaces of conformal blocks. By naturality of the assignment, these are mapping class group invariant and compatible with gluing. These are exactly the *correlators of the open conformal field theory* with monodromy data A. By the modular extension theorem modular O-algebras in $A_{!}$ are equivalent to symmetric Frobenius algebra $F \in A$. These give us linear maps $k \longrightarrow A_{!}(\Sigma; F, \ldots, F)$ for all surfaces, i.e. vectors in the spaces of conformal blocks. By naturality of the assignment, these are mapping class group invariant and compatible with gluing. These are exactly the *correlators of the open conformal field theory* with monodromy data A. We summarize:

Theorem [W. 24] 'Classification of open correlators'

Consistent systems of correlators for an open conformal field theories with monodromy data \mathcal{A} (a pivotal Grothendieck-Verdier category) are equivalent to symmetric Frobenius algebras in \mathcal{A} .

 Let A be a pivotal finite tensor category and L : A → Z(A) the left adjoint to the forgetful functor U : Z(A) → A from the Drinfeld center. Assume for simplicity that A is unimodular and spherical.

- Let A be a pivotal finite tensor category and L : A → Z(A) the left adjoint to the forgetful functor U : Z(A) → A from the Drinfeld center. Assume for simplicity that A is unimodular and spherical.
- The open modular functor A₁ describes the Lyubashenko modular functor for the modular category Z(A), or rather its restriction along L [Müller-Schweigert-W.-Yang 23, Müller-W. 24]. Therefore, the above construction produces mapping class group invariants in the spaces of conformal blocks for Z(A).

- Let A be a pivotal finite tensor category and L : A → Z(A) the left adjoint to the forgetful functor U : Z(A) → A from the Drinfeld center. Assume for simplicity that A is unimodular and spherical.
- The open modular functor A₁ describes the Lyubashenko modular functor for the modular category Z(A), or rather its restriction along L [Müller-Schweigert-W.-Yang 23, Müller-W. 24]. Therefore, the above construction produces mapping class group invariants in the spaces of conformal blocks for Z(A).
- But careful: A priori, these just glue along intervals!

- Let A be a pivotal finite tensor category and L : A → Z(A) the left adjoint to the forgetful functor U : Z(A) → A from the Drinfeld center. Assume for simplicity that A is unimodular and spherical.
- The open modular functor A₁ describes the Lyubashenko modular functor for the modular category Z(A), or rather its restriction along L [Müller-Schweigert-W.-Yang 23, Müller-W. 24]. Therefore, the above construction produces mapping class group invariants in the spaces of conformal blocks for Z(A).
- But careful: A priori, these just glue along intervals!
- In summary, we obtain a vast generalization of the open part of the correlator construction of [Fuchs-Runkel-Schweigert] from the early 2000s.

Recall from above:

Theorem [Müller-W. 20]

Cyclic framed little disks algebras in Lex^f are equivalent to ribbon Grothendieck-Verdier categories in Lex^f.

Recall from above:

Theorem [Müller-W. 20]

Cyclic framed little disks algebras in Lex^f are equivalent to ribbon Grothendieck-Verdier categories in Lex^f.

We denote by Hbdy the (groupoid-valued) modular operad of handlebodies. For a corolla T, its groupoid Hbdy(T) of operations has as objects connected compact oriented three-dimensional handlebodies H together with an embedding of $\bigsqcup_{\text{Legs}(T)} \mathbb{D}^2$ into ∂H (called parametrization) and as morphisms isotopy classes of parametrization and orientation preserving diffeomorphisms.

Recall from above:

Theorem [Müller-W. 20]

Cyclic framed little disks algebras in Lex^f are equivalent to ribbon Grothendieck-Verdier categories in Lex^f.

We denote by Hbdy the (groupoid-valued) modular operad of handlebodies. For a corolla T, its groupoid Hbdy(T) of operations has as objects connected compact oriented three-dimensional handlebodies H together with an embedding of $\bigsqcup_{\text{Legs}(T)} \mathbb{D}^2$ into ∂H (called parametrization) and as morphisms isotopy classes of parametrization and orientation preserving diffeomorphisms.

Definition

For any symmetric monoidal bicategory S, we call a modular S-valued Hbdy-algebra an *ansular functor* with values in S.

Ansular functors

We use a result of Giansiracusa on the *derived modular envelope* of framed E_2 (and several additional results) to prove:

Theorem [Müller-W. 22]

Genus zero restriction provides an equivalence between ansular functors and cyclic framed E_2 -algebras. In Lex^f, the ansular functor associated to a ribbon Grothendieck-Verdier category A sends a handlebody of genus g and n boundary components labeled with X_1, \ldots, X_n to the hom space

$$\mathcal{A}(K, X_1 \otimes \cdots \otimes X_n \otimes \mathbb{F}^{\otimes g})$$

defined using the canonical coend $\mathbb{F} = \otimes \left(\int^{X \in \mathcal{A}} X \otimes DX \right)$ (D is the duality functor of \mathcal{A}).

This is a vast generalization of the Lyubashenko construction.

Theorem [W. 24]

Consistent systems of correlators for an ansular functor based on the ribbon Grothendieck-Verdier category \mathcal{A} are equivalent to symmetric commutative Frobenius algebras F in \mathcal{A} . In more detail, F produces for each handlebody H with n embedded disks mapping class group invariant vectors $\xi_{H}^{F} \in \widehat{\mathcal{A}}(H; F, \dots, F)$. If \mathcal{A} is a finite ribbon category and F = I, these are non-zero.

This is an entirely categorical construction of the *empty skein*.