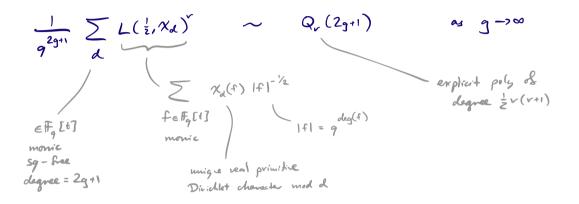
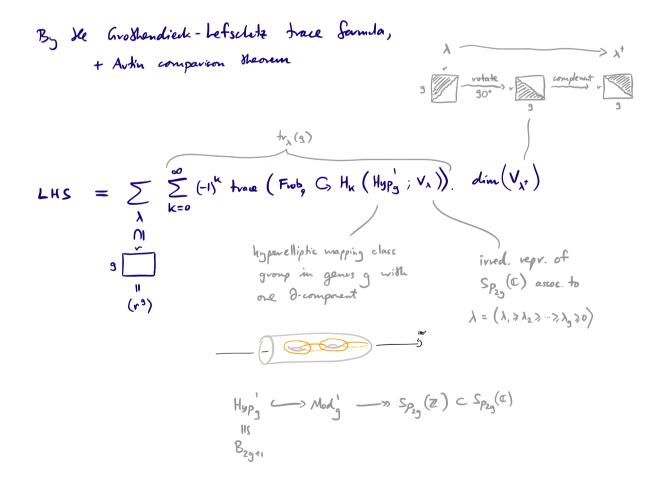
Recall from last time :

Our aim is to prove that, for all fixed q >> v :





Denote Mris function of g — equivalently, of 2g+1 — by Mr(2g+1). Define

- This turns out to be desired explicit polynomial so in particular de notation is consistent.
- Strategy: Prove that $M_r(2g_{1}) Q_r(2g_{1}) \sim 0$ as $g \rightarrow \infty$. D Prove uniform twisted how. stab^r for $Hyp'_g \cong B_{2g+1}$ with V_λ coeffes. (today) stable vange independent of λ

Theorem (Miller-Parts+ · Petersen · Randal · William '24)

(**) is an isomorphism for $k < \frac{N-13}{12}$

Runk It was previously known by [Randal-Williams-Wahl'17] that (*) is
on isomorphism for
$$K < \frac{n-2-1\lambda 1}{2}$$
.

How to prove homological stability
(A) - with constant coefficients

$$\overline{Idea}$$
 (Qvillen '70s) (this axiomatisation: Hatcher-Wahl'10)
 $G_1 \hookrightarrow G_2 \hookrightarrow G_3 \hookrightarrow \cdots$
 $G_n \supseteq X_n$ simplicial complex
 $action is transitive on $plex$
 $action is transitive on $plex$
 $stab(p-simples) \sim G_{n-p-1}$
 X_n is $(\frac{n\cdot 2}{2})$ -connected (+ small technical condis)$$

~ hom. staby for {Gn} with constant Z coeffs.

Example Symmetric groups En 2 An-1

I dea of proof

Spectral sequence $E'_{pq} = H_q(stab(\sigma_p)) => 0 \quad \text{for } p + q \leq \frac{n - 1}{2}$ $d' - differentials \quad \text{are built out of stabilisation maps}:$ $H_q(stab(\sigma_0)) \longrightarrow H_q(stab(\sigma_0))$ $H_q(G_{nn1})$

This allows a proof by induction on q

(B) - with twisted coe Braints

[Randal - Williams - Wahl '17]

Inputs:

① G braided monoidal grapoid with objects = N
△ groups Gn
homom. Gn × Gm → Gnem (assoc., unital)
isom. Gnem ≅> Gnem (compatible with ⊕)
(Eq. braid groups

(2) Coeff. system:
$$V(n)$$
 G_n -representation over R
 $V(m) \rightarrow V(n+m)$ $(G_n \times G_m)$ -equivariant
 $(E.g. V(n) = R^{\otimes n}$ permutation representation)

Assume that V has Simile polynomial degree d.

$$\sum \sum V(n) = V(n+1) \quad \text{shift of } V$$

$$V \longrightarrow \sum V$$

$$d y = 0 \quad \text{if } kev(V \longrightarrow \sum V) = 0$$

$$color(V \longrightarrow \sum V) \quad hos \quad degnee \leq d-1$$

$$d eg(V) = -1 \quad \text{if } V = 0$$

$$(E.g. \quad d = 0 \quad \text{constant}$$

$$V(n) = R^{\otimes n} \quad hos \quad d = 1$$

Theorem (RWW') +)
There is a sequence of simplicial completes (souri-simplicial sets)

$$X_{n}(6)$$
 naturally associated to G.
If $X_{n}(6)$ is $\binom{n-2}{2}$ - connected \longrightarrow term shi' for $\{6n\}$ with $V(n)$ coeffs
in the varge $k \leq \frac{n}{2} - d = 1$
destabilisation complex for G degree $d = V$
Example $G_{n} = B_{n}$ braid groups
 $V(n) = V_{A}(n)$
 $B_{n} \longrightarrow Sp_{n-1}(\mathbb{Z}) \supseteq V_{A}(n)$
 T_{n} bus degree $d = [\lambda]$.
 $(D Proof: Exercise 6.12 in [Folton-Harris]$
 $=> \mathbb{Z}V_{A}(n)$
 $V_{A}(n+1) \equiv \bigoplus V_{A}(n)$
 $V_{B}(n) = V_{A}(n)$

=> coleer
$$(V_{\lambda} \rightarrow \Sigma V_{\lambda}) \cong \bigoplus_{\substack{M \\ M \neq \lambda}} V_{\mu}$$

has degree $\max_{\substack{M \\ M}} |\mu| = |\lambda| - 1$
by induction. //.

Example (1)
$$G_n = B_n$$
 braid groups
 $B_n \longrightarrow Sp_{n-1}(\mathbb{Z})$
 $N \to conjective!$
 $\underline{Def} \quad Q_n := image \quad \sigma f \quad B_n \longrightarrow Sp_{n-1}(\mathbb{Z})$
 $\left(\frac{Thm}{A'campo'79} \right) \qquad Sp_{n-1}(\mathbb{Z}) \longrightarrow Sp_{n-1}(\mathbb{Z}/2)$
 $Q_n \xrightarrow{\gamma} \longrightarrow \overset{\cup}{\Sigma}_n$

(2)
$$\mathcal{Y} = all \text{ finite direct sums of } V_{\lambda} \text{ for all } \lambda$$

closed under $\mathcal{Z}(-)$ because $\mathcal{Z}V_{\lambda} \cong \bigoplus_{M} V_{M}$

$$\rightarrow Thm [MPPRW'24] X_n(0) is (\frac{n-12}{4}) - connected.$$

[Bovel]

Apply this to
$$\Gamma = Q_{2g+1}$$

 \longrightarrow uniform hom. stab^Y for $\{Q_{2g+1}\}$ with coeffs in each V_{λ}
 $\bigcap_{S_{P_{2g}}(\mathbb{Z})}$

extra
"trick"

$$H_{k}(Q_{2n-1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

$$H_{k}(Q_{2n+1}; V_{\lambda}(2n-1))$$

Still to explaini

• Proof of high-come of
$$X_n(Q)$$
 (& contractibility of $X_n(B)$).

. Proof of "pulling back home stab" from Q to G.