

Filling in the gaps: odd symplectic groups
For n20 let
$$M_n = \mathbb{Z}^n = \mathbb{Z}\{e_1, \dots, e_n\}$$
 equipped with
 $\langle -, - \rangle : \mathbb{Z}^n \times \mathbb{Z}^n \longrightarrow \mathbb{Z}$ $\langle e_i, e_i \rangle = \begin{cases} 1 & i < j \\ -1 & i > j \\ 0 & i = j \end{cases}$
 $\phi : \mathbb{Z}^n \longrightarrow \mathbb{Z}$ given by addition.

Obs
$$\langle \cdot, - \rangle$$
 is bilinear and alternating.
IF $n = 2g$ it is non-degenerate and hence symplectic.
IF $n = 2g+1$ it is degenerate : $\langle \sum_{i=1}^{2g+1} (-i)^i e_i, - \rangle \equiv 0$
but its restriction to $\ker(\phi)$ is non-degenerate, thus
symplectic.

Lemma For
$$n = 2g+1$$
, $T_{2g+1} \cong Sp_{2g}(\mathbb{Z})$
Proof: M_n is spanned by $e_i - e_{i+1}$ $i = 1, ..., 2g$ } ber(ϕ)
and $\sum_{i=1}^{2g+1} (-1)^i e_i = v$
In this basis, T_{2g+1} acts by $\left(\begin{array}{c} S_{p_{2g}}(\mathbb{Z}) & 0\\ \hline 0 & 1 \end{array}\right)$

 $\frac{\text{Def}}{\text{Gelfend}-\text{Zekvinsky}} \quad \text{For all n \in \mathbb{N}, Spn}(\mathbb{Z}) := \mathcal{T}_{n+1}$

$$\left(\text{Equivalent del s } S_{p_{2g-1}}(\mathbb{Z}) : \text{ the subgroup of } S_{p_{2g}}(\mathbb{Z}) \text{ stabilising a } \right)$$

Suppose we have :

groups
$$G_n$$
 (neN) (with G_o trivial)
injections $G_m \times G_n \xrightarrow{\oplus} G_{m+n}$ (assoc., unital)
antomorphisms $G_{m+n} \xrightarrow{b_{m,n}} G_{m+n}$
 $b_{m,n+p} = (1_n \oplus b_{m,p}) \circ (b_{m,n} \oplus 1_p)$
 $b_{m+n,p} = (b_{n,p} \oplus 1_n) \circ (1_m \oplus b_{n,p})$

This determines a sequence of "destabilisation complexes" $W_n(G)$. Now suppose that we have: $\cdot \{G_n\}$ and $\{Q_n\}$ as above $\cdot \text{ surjections } p_n: G_n \longrightarrow Q_n$ compatible with all structure $\cdot (!!) W_n(G)$ and $W_n(Q)$ are highly -connected of slope q > 0 $\{\pi_i(-) = 0\}$ for $i < qn - \beta$

The [MPPRW'24] uniformly homologically stable
If Qn is UHS of slope
$$V > 0$$

for a class of coeffe systems (closed under taking shifts)
 $(H_{i}(Q_{n}; V) \longrightarrow H_{i}(Q_{n+1}; V))$ ison. for $i < \delta_{n} - constant$

then Gn is UHS of slope min (x) for the pullbacks of these coeff systems.

Reduction to high-connectivity

Now set
$$G_n = B_n$$

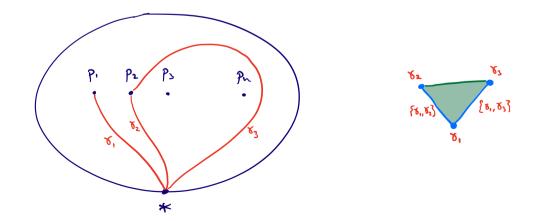
 $Q_n = Q_n \subset T_n = S_{p_{n-1}}(Z)$
 $p_n = B_{uv} : B_n \longrightarrow Q_n$

These admit all of the above structure, so we have destabilisation complexes Wn(B) Wn(Q)

Calculations of Barel
(arithmetic subgrap)
UHS of slope 1 for
$$Q_{2g+1} \subset S_{P_{2g}}(\mathbb{Z})$$
 with coeffs in V_{Λ}
(archive the subgrap)
UHS of slope V_{2} for $Q_{\pi} \subset S_{P_{\pi,1}}(\mathbb{Z})$ with coeffs in V_{Λ}
(closed under the to branching shifts due to branching
(MPPRiv)
 t high-consectivity of $W_{\pi}(\mathbb{B})$ of slope oo
 $W_{\pi}(Q)$ V_{Λ} and other $\frac{W}{4}$
UHS of slope V_{15} for \mathbb{B}_{π} with coeffs in V_{Λ} pulled back along
 $\mathbb{B}_{W}: \mathbb{B}_{\pi} \longrightarrow Q_{\pi} \subset T_{\pi} = Sp_{m}, (\mathbb{Z})$

Wn(B) is contractible [Damiolini '13, Hatche-Vogtmann '17] P. P2 P3 Ph · · · ·

Examples :

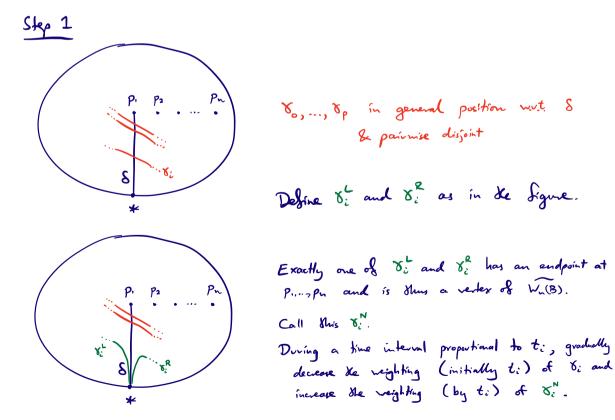


Remarks :

•
$$\infty$$
 many vertices
• dim $W_n(B) = n - 1$
• dim $\widetilde{W_n(B)} = \infty$

Proposition: Let S be any redex of
$$W_{h}(B)$$
. Then $W_{h}(B)$ deformation retracts onto $\{S\}$.

Point
$$p \in |W_n(B)|$$
 (--> collection of arcs (that form a simplex)
 $\delta_{0,...,\delta_p}$ $\delta_{0,...,\delta_p}$ $\delta_{0,...,\delta_p}$
& weights $t_{0,...,\delta_p} \in [0,1]$
summing to 1
(bany centric coordinates)



Repeat finitely many times
$$\delta_{0}^{2}, \ldots, \delta_{q}^{2}$$
 $(q \leq p)$
 $t_{0}^{2}, \ldots, t_{q}^{2}$
with $\delta_{i}^{2} \cap \delta = \{*\}$, $i = 0, \ldots, q$.
Step 2. Conside this as $\delta_{0}^{2}, \ldots, \delta_{q}^{2}, \delta$ of This forms a valid
 $(q+1)$ -simplex !
 $t_{0}^{2}, \ldots, t_{q}^{2}, 0$

Theorem: The inclusion Wn(B) ~> Wn(B) is a (neak) homotopy equivalence, and hence Wn(B) is contractible.

The proof of this uses the "bad simplex argument" ...

Bad simplex argument

YCX simplicial complexes

then of * oz is also bad.

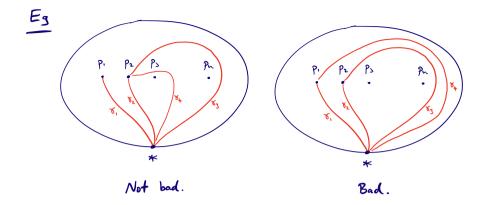
For
$$\sigma \in B$$
 set $G_{\sigma} = sibconplex of X of simplices τ such that
 $\cdot \tau * \sigma$ is a simplex of X (τ is in the link of σ)
 \cdot all bad faces of $\tau * \sigma$ lie in σ
("good link of σ ")$

Proposition Suppose
$$\exists d > 0$$
: $\forall \sigma \in B$, G_{σ} is $(d - dim(\sigma) - 1)$ -connected.
Then $\forall \longrightarrow X$ induces isom's on π_i $(i \leq d-1)$ and a surjection on π_d .

In our case
$$X = \widetilde{U_n(B)}$$

 $Y = W_n(B)$

 $\frac{\text{Define}:}{B:=\left\{\sigma: \forall i=1,...,n, \text{ if an ancols } \sigma \text{ ends at } p: \\ \text{ then } \geqslant 2 \text{ ancs } \sigma \text{ end at } p: \right\}}$

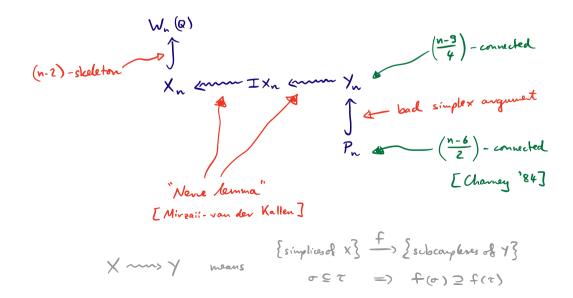


Proof of Theorem Induction on n. (n=1 is trivial) VoeB, cut along o - disjoint union of discs, each with n < n punctures and m; >1 boundary basepoints Go ≅ join of Wn, m; (B) one all j Key observation: one of the m; is equal to 1 (say m, =1) (ie far at least one of de complementary regions of o, de basepoint * does not get split into several copies when cutting along o) $G_{or} \cong W_{n_{1}}(B) * (de rest)$ Hence (contractible by induction So Go is contractible, hence de Proposition above applies with d==.

 $W_n(Q)$ is $\left(\frac{n-12}{4}\right)$ - connected [MPPRW'24]

Recall Shat
$$Q_n \subset T_n \subset GL_n(\mathbb{Z})$$

Is
 $S_{p_{n-1}}(\mathbb{Z})$



$$P_n = \text{``complex of partial bases of } \mathbb{Z}^{n-1}$$
 that reduce mod Z to
a subset of a fixed partial basis of $(\mathbb{Z}_2)^{n-1}$ "

R ving (with unit)
ACR ideal (2-sided)
Def
$$U_A(R^{k,R})$$
 has p-simplices $[x_0,...,x_p] \subseteq R^{k+R}$ such that
 $\cdot [x_0,...,x_p]$ is unimodular (basis of direct summand of R^{k+R})
 $[Note: In general this is realer than
assuming it is a partial basis. Bit
when R is a P.I.D. (eg. R=Z) it
is equivalent.]$

· each x: is congruent mod A to one of e,,...., ex.

$$P_{n} = \mathcal{U}_{2\mathbb{Z}}(\mathbb{Z}^{k,\ell}) \quad \text{with} \quad k = \lfloor \frac{k}{2} \rfloor \qquad (\dots \text{ then } n \text{ is odd.} \\ k \in \mathcal{K} = n-1 \qquad \qquad \text{ When } n \text{ is even } i + \\ \text{ is slightly different.})$$

 $\underline{Obs} \quad dim\left(\mathcal{U}_{A}(\mathbf{R}^{\mathbf{u},\mathbf{\ell}})\right) = \mathbf{k} - \mathbf{I}$

Theorem [Channey'84]
$$\mathcal{U}_{A}(\mathcal{R}^{k,k})$$
 is $(k-d-2)$ -connected.

In our cose
$$k = \lfloor \frac{N}{2} \rfloor$$

 $d = 1$ (since $R = \mathbb{Z}$)

connectivity
$$\Im \lfloor \frac{n}{2} \rfloor - 3 = \lfloor \frac{n-6}{2} \rfloor$$