Reminder :

 $W_n(Q)$ is $\left(\frac{n-12}{4}\right)$ - connected [MPPRW'24]

Recall Shat
$$Q_n \subset T_n \subset GL_n(\mathbb{Z})$$

Is
 $S_{p_{n-1}}(\mathbb{Z})$

1) Definitions

Recall that we have equipped Z" with

 $\begin{array}{c} \cdot \langle \cdot, \cdot \rangle : \mathbb{Z}^{n} \times \mathbb{Z}^{n} \longrightarrow \mathbb{Z} \\ \cdot \phi : \mathbb{Z}^{n} \longrightarrow \mathbb{Z} \\ \cdot \phi : \mathbb{Z}^{n} \longrightarrow \mathbb{Z} \\ \end{array} \qquad \begin{array}{c} \langle e_{i}, e_{j} \rangle = \begin{cases} +1 & i < j \\ -1 & i > j \\ 0 & i = j \end{cases} \\ \phi(e_{i}) = 1 \\ \\ \psi_{n} := \sum_{i=1}^{n} (-1)^{i+1} e_{i} \end{array}$

We also define

$$g: \mathbb{Z}^{n} \longrightarrow \mathbb{P}(\{1,...,n\}) \qquad g\left(\sum_{i=1}^{n} a_{i}e_{i}\right) = \{1 \le i \le n \ : \ a_{i} \ in \ odd\}$$

$$\frac{\text{Deb}}{\text{Z}_{n}} = \text{simplicial complex whose } p \cdot \text{simplices are } u_{0}, ..., u_{p} \in \mathbb{Z}^{n}$$
such that $\cdot \{u_{0}, ..., u_{p}, v_{n}\}$ is a partial Z-basis of \mathbb{Z}^{n}
 $\cdot g(u_{0}), ..., g(u_{p})$ are pairwise disjoint

$$\frac{\text{Del}}{Y_n} = \text{subcomplex} \quad \text{where we also have } \phi(u_i) = 0, \quad |g(u_i)| = 2$$

$$\text{IX}_n = \text{subcomplex} \quad \text{where we also have } \phi(u_i) = 0, \quad |g(u_i)| = 2, \quad \langle u_i, u_i \rangle = 0$$

$$\text{X}_n = \text{subcomplex} \quad \text{where we also have } \phi(u_i) = 1, \quad |g(u_i)| = 1, \quad \langle u_i, u_i \rangle = 1$$

$$\text{for } i < j, \quad \text{for some ordering of } u_0, ..., u_p$$

$$(necessarily \ unique)$$

(2) <u>Complexes & lifts of partial bases</u> (vesult of Channy)
R ving (with unit)
A C R ideal (2-sided)
<u>Def</u> U_A(R^{K,R}) has p-simplices {X₀,..., x_p} C R^{K+R} such that
• {X₀,..., x_p} is <u>unimodular</u> (basis of direct summand of R^{K+R})
[Note: In general this is vedee than assuming it is a partial basis. Bit when R is a P.I.D. (eg. R=Z) it is equivalent.

· each x: is congruent mod A to one of e,,...., e_k.

Obs dim
$$(\mathcal{U}_{A}(\mathbb{R}^{k,\ell})) = k-1$$

Assume Shat R satisfies Bass' stable range condition of solin=d. LDE.g. [Bass] if R is commutative Noeslerian of Kull dimension d, other solin=d LDE.g. if R = field solin=0 if R = Z solin = 1 (P.I.D. not a field)

Def:
$$P_n = simplicial complex whose p-simplices are $u_{0,...,u_p} \in kar(\phi) \subset \mathbb{Z}^n$
such that $\cdot \{u_{0,...,u_p}\}$ is a partial \mathbb{Z} -basis of $ker(\phi)$
 $\cdot g(u_0),...,g(u_p)$ are pairwise disjoint
 $\cdot each g(u_c) = \{2j-1,2j\}$ for some $1 \leq j \leq \lfloor \frac{u}{2} \rfloor$ (*)$$

Obs: (1) When n is odd, Pn = the schoonplex of Yn of simplices satisfying The additional condition (¥). [Note: Zⁿ ≃ ker(\$) ⊕ < vn) for n add.] (This is also true when n is even, but with a slightly different definition of Pn in that case.)

(2)
$$P_n \cong \text{complex of partial } \mathbb{Z} \text{-bases of } \mathbb{Z}^{n-1} \text{ that reduce}$$

 $\text{mod } \mathbb{Z} \text{ to a scheret of a fixed partial } \mathbb{Z} \text{-basis}$
 $\text{of } (\mathbb{Z}_2)^{n-1}$.
 NS
 $\text{kar}(\phi) \otimes \mathbb{Z}_2'$
Hence, by changing basis, we have $P_n \cong \mathcal{U}_{\mathbb{Z}_2}(\mathbb{Z}^{k,\mathbb{R}})$
 $\text{with } k = \lfloor \frac{n}{2} \rfloor$
 $\text{kell} = n-1$

Applying Chaney's Theorem with $k = \lfloor \frac{n}{2} \rfloor$ and d = 1 we obtain: Lince $R = \mathbb{Z}$, which is Coro: P_n is $\lfloor \frac{n-6}{2} \rfloor$ - connected.

 $\begin{aligned} & \text{More generally}: \quad \underline{\text{Def}}: \quad For \quad S \subseteq \{1, 2, \dots, L^{\frac{n}{2}}\} \\ & P_n(S) = \text{scheanglex of } P_n \text{ where } j \in S \text{ in } (\texttt{*}) \\ & \underline{\text{Obs}}: \quad P_n(S) \cong \mathcal{M}_{2\mathbb{Z}}(\mathbb{Z}^{k, k}) \text{ with } k = |S| \\ & \quad k + l = n - 1 \\ & \quad k + l = n - 1 \end{aligned}$

(3) From Pn to Yn via bad simplices

(Take nodd ; se case neven is slightly different.)

Recall

$$\mathcal{A} = \left\{ \left\{ 2j - 1, 2j \right\} : 1 \leq j \leq \lfloor \frac{1}{2} \rfloor \right\}$$

To prove that the inclusion is d-connected, we need a family of "bad simplices" so that, for each bad p-simplex or, Go is (d-p-1)-connected.

> Reminde of the bad simplex argument from last time:

```
Y ⊂ X simplicial complexes

B = collection of simplies of X-Y ("bad simplies")

so that (1) if no face of σ ⊂ X is bad, then σ ⊂ Y

(2) if σ<sub>1</sub>, σ<sub>2</sub> ⊂ X are bad

and σ, *σ<sub>2</sub> is also a simplex of X

"join" = the simplex spanned by the union

of the vertices of σ<sub>1</sub> and σ<sub>2</sub>

then σ<sub>1</sub> * σ<sub>2</sub> is also bad.

For σ ∈ B set G<sub>0</sub> = subcomplex of X of simplices T such that

· T + σ is a simplex of X (t is in the link of σ)

· all bad faces of T + σ lie in σ

("good link of σ")

Proposition Suppose Ed 20: Vσ ∈ B, G<sub>0</sub> is (d-dim(0)-1)-connected.

Then Y → X induces isom's on T<sub>1</sub>: (i ≤ d-1) and a suggestion on T<sub>X</sub>.
```

Say a simplex or of Yn is bad if none of its vertices lie in Pn.
This clearly satisfies (1) and (2).
For a bad simplex or, we have
$$G_{\sigma} = P_n(S)$$
, where $S \subseteq \{1, 2, ..., L^{\frac{n}{2}}\}$
 $[u_{\sigma,...,u_p}]$ is deset of indices j such that $\{2j-1, 2j\}$ is disjoint
from every $g(u_{\sigma}),..., g(u_p)$.
Each $|g(u_{i})| = 2$, so $|S| \ge L^{\frac{n}{2}}] - 2(p+1)$,
so connectivity $(G_{\sigma}) \ge L^{\frac{n}{2}}] - 2p-5$

So connectivity $(G_{\sigma}) \geqslant \lfloor \frac{n-4p-10}{2} \rfloor$ => connectivity $(G_{\sigma}) \geqslant \lfloor \frac{n-4p-12}{4} \rfloor = \lfloor \frac{n}{4} \rfloor - p - 3$

Bad simplex argument => de inclusion $P_n \hookrightarrow Y_n$ is $\left(\lfloor \frac{n}{4} \rfloor - 2\right)$ -connected. P_n is $\lfloor \frac{n-6}{2} \rfloor$ -connected => it is $\lfloor \frac{n-8}{4} \rfloor$ -connected.

=> <u>Proposition</u>: Y_n is $\lfloor \frac{n-8}{4} \rfloor$ - connected.

(Note: Shis is valid for nodd. When n is even de details are slightly different and we conclude that In is $\lfloor \frac{n-9}{4} \rfloor$ - connected.

(4) Neve lemma arguments
Finally, we have to prove

$$\binom{highrconn}{4}$$
 $\binom{1}{4}$ $\binom{1}{4}$ $\binom{2}{1}$ $\binom{1}{1}$ $\binom{2}{1}$ $\binom{1}{1}$ $\binom{1$

$$\begin{array}{l} \begin{array}{c} \underbrace{\operatorname{Reminder}}_{i}: & \operatorname{simplities} \ are \ u_{o}, \dots, u_{p} \in \mathbb{Z}^{n}: \\ & \cdot \left\{ u_{o}, \dots, u_{p}, v_{n} \right\} \ partial \ \mathbb{Z} - basis \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, \dots, g\left(u_{p}\right) \right\} \ pairmise \ disjoint \\ & \cdot \left\{ u_{o}, u_{o} \right\} \ = 0 \\ & \left(\mathbb{T} \times u_{n} \right) \ \phi(u_{c}) = 0 \ , \ \left| g\left(u_{i} \right) \right| = 2 \ , \ \left\langle u_{i}, u_{i} \right\rangle = 0 \\ & \left(\mathbb{T} \times u_{n} \right) \ \phi(u_{c}) = 1 \ , \ \left| g\left(u_{i} \right) \right| = 1 \ , \ \left\langle u_{i}, u_{i} \right\rangle = 1 \ \text{for } i < j \ \text{for some ordering} \end{array}$$

Arguments (1) and (2) are similar — focus on (2).
(non-empty!)
Notation
$$A \xrightarrow{f} B$$
 means [simplices of A] \xrightarrow{f} [subcomplexes of B]
 $\sigma \subseteq \tau = = f(\sigma) \supseteq f(\tau)$

Applying de Nerre lemma to ②

Aim: construct
$$IX_n$$
 muss X_n and check (A, B, C)
with $d = \frac{n-12}{4}$.
Worke by induction on n .

 $n \leq 7$ vacuous so assume that $n \gtrsim 8$ (=> $n \gtrsim d + 9$)

Construction:

$$\sigma \in \mathbf{I} \times_{n} \longrightarrow \underset{Z_{n}}{\text{Link}} (\sigma)_{n} \times_{n} =: f(\sigma)$$

$$\left\{ \tau \in Z_{n} : \tau * \sigma \in Z_{n} \right\}$$

(A)
$$\tau$$
 p-sinplex of X_n , $p \le n-4$
First: $\tau = \{e_{n-p}, ..., e_n\}$
This lies in $f(\{e_1 - e_2\})$
Center of IXn

Recall: Qn acts transitively on p-simplices of Xn f: IXn m Xn is Qn-equivariant

$$\bigcirc \underline{\text{Lemma}}: \forall p \text{-simplex } z \text{ of } X_n, \quad (\mathbf{I}X_n)_z \cong \mathbf{I}X_{n-p-1} \\ \text{connectivity} \geqslant \frac{n-p-1z}{4} = d - \frac{p}{4} \geqslant d - p .$$

Lemma: $\forall q$ -singlex z of X_n , $LLink_{X_n}(z) \cong X_{n-q-1}$

In our case:

$$X_{n-2p-2} \xrightarrow{\text{inc.}} X_{n-2p-2} \left\langle (2\mathbb{Z})^{n+1} \right\rangle \cong f(\sigma)$$

$$\underset{T}{\overset{W}{T}} g_{-sinplex}$$

$$LLink_{X_{n-2p-2}} (\tau) \cong X_{n-2p-q-3}$$

$$connectivity \geqslant \frac{n-2p-q-15}{4} \geqslant \frac{n-2p-11}{4} - 9 - 1$$

$$by inductive hypothesis$$

$$Prop (Chansey) \Longrightarrow \text{inc. is } \left(\frac{n-2p-11}{4}\right) - connected$$

$$X_{n-2p-2} \quad \text{is } \left(\frac{n-2p-14}{4}\right) - connected$$

$$k_{n-2p-2} \quad \text{is } \left(\frac{n-2p-14}{4}\right) - connected$$

$$Hence: \quad connectivity (f(\sigma)) \geqslant \frac{n-2p-14}{4} \left\{ \geqslant \frac{n-4p-12}{4} = d-p \qquad p \geqslant 1$$

$$= d - \frac{1}{2} \geqslant d - 1 \qquad p = 0$$

Final step When p=0 (so o=v is a vertex) we need to show that f(v) (-> Xn factors through a d-connected subcomplex.

Hence we may assume that $V = e_{n-1} - e_n$.

$$X_{n-2} \longrightarrow X_{n-2} \langle 2\mathbb{Z} \rangle \cong f(v) \longrightarrow X_n$$

is the canonical inclusion Xn-2 ~ Xn.

(iii) Obs:
$$\forall \tau \in X_{n-2}$$
, $\tau * e_n \in X_n$
Hence Ke canonical inclusion factors as

$$X_{n-2} \longrightarrow X_{n-2} * \{e_n\} \longrightarrow X_n$$

This is a cone, hence contractible!

(iv) Consider de pushout :

