Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer Wintersemester 2016/17

Week 2 — Umlauf, linking and winding numbers of curves

to be done by: 02.11.2016

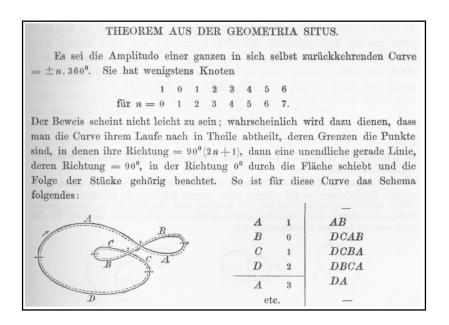


Figure 1: From the notes of C.-F. Gauß, probably between 1823 and 1827.

Exercise 1.1 ('Two-dimensional intermediate value theorem')

Let $f: \mathbb{D}^2 \to \mathbb{R}^2$ be a smooth function and $P \in \mathbb{R}^2$ a point such that $P \notin f(\mathbb{S}^1) = f(\partial \mathbb{D}^2)$. Recall the definition of the *umlauf number* U(f, P) of the curve $f|_{\mathbb{S}^1}: \mathbb{S}^1 \to \mathbb{R}^2$ about the point P. Assuming that $U(f, P) \neq 0$, show that there exists a point $z \in \mathbb{D}^2$ such that f(z) = P.

Exercise 1.2 (Linking numbers of curves in \mathbb{R}^3)

(a) Let L be any one-dimensional affine subspace of \mathbb{R}^3 and let $f: \mathbb{S}^1 \to \mathbb{R}^3$ be a smooth curve which is disjoint from L. By considering a projection of f onto a plane orthogonal to L, define the *umlauf number* U(f, L) of f about L. (b) Show that if f and g are curves in the complement of L that are homotopic via a homotopy that never intersects L, then U(f, L) = U(g, L).

(c) Fix a smooth curve $f: \mathbb{S}^1 \to \mathbb{R}^3$ and let $H: \mathbb{R} \times [0,1] \to \mathbb{R}^3$ be a continuous function that never intersects f and has the property that for each fixed t the function $H(-,t): \mathbb{R} \to \mathbb{R}^3$ is an affine injection. Denote by L_t the one-dimensional affine subspace $H(\mathbb{R} \times \{t\})$ of \mathbb{R}^3 . Show that $U(f, L_0) = U(f, L_1)$.

(d) We return to the situation where we have a fixed one-dimensional affine subspace L of \mathbb{R}^3 and a smooth curve $f: \mathbb{S}^1 \to \mathbb{R}^3$ in its complement. Consider a two-dimensional half-space with L as its boundary. (There are many possibilities – they are all related to each other by a rotation about L.) Define what it means for the half-space to *intersect* f transversely, and, if it does, the sign of the intersection. How can one calculate U(f, L) using these signed intersections ?

(e)* Now let C be the unit circle in a two-dimensional affine subspace of \mathbb{R}^3 . Find a continuous function $K: \mathbb{S}^3 \times [0,1] \to \mathbb{S}^3$ such that (i) each K(-,t) is a diffeomorphism of \mathbb{S}^3 , (ii) K(-,0) is the identity on \mathbb{S}^3 and (iii) K(C,1)

is a one-dimensional affine subspace of \mathbb{R}^3 together with the point at infinity.

(f)* Using this, define the umlauf number U(f, C) of any smooth curve $f: \mathbb{S}^1 \to \mathbb{R}^3$ which does not intersect C. (g)* Consider a two-dimensional disc embedded into \mathbb{R}^3 in such a way that its boundary is C. Similarly to part (d), define a *transverse intersection* of f with the disc, the *sign* of such an intersection and show how one can compute U(f, C) using these concepts.

Exercise 1.3 (Circumnavigating the world)

Let B be a sailing boat on the surface of the world \mathbb{S}^2 , and assume that it never visits the north or the south pole. What does it mean for B to *circumnavigate the world*? If you are given a map of its journey (which starts and ends at the basepoint Hamburg $\in \mathbb{S}^2$), how can you use lines of longitude to detect whether it has really circumnavigated the world?

Exercise 1.4 (Local index of vector fields)

For each of the following sets of integers, give a vector field V on \mathbb{S}^2 with precisely k zeros ζ_1, \ldots, ζ_k having the listed integers as their local indices $\operatorname{ind}(V, \zeta_i)$:

(a) k = 2 and indices 1, 1,

(b) k = 1 and index 2,

(c) k = 4 and indices 1, 1, 1, -1,

(d) k = 2 and indices 2, 0,

(e) k = 7 and indices 1, 1, 1, 1, 1, -1, -2.

(Do this by a drawing.)

Der Beweis ist doch sehr leicht. Man nenne *n* die Anzahl der Knoten und bezeichne sie in der Folge, wie man sie trifft, indem man die Curve in einem angenommenen Sinne der Bewegung durchläuft, durch 1, 2, 3, ... *n*. Da bei dieser Bewegung jeder Knoten zweimal getroffen wird, so sei Ω die aus 2*n* Gliedern bestehende Reihe dieser Zahlen, indem man das Zeichen + beischreibt, so oft man auf die innere (rechte) Seite des durchschnittenen Arms kommt, sonst –. Man zähle die + und –Zeichen bloss da zusammen, wo die Zahlen zum erstenmal vorkommen und habe so + α -, $-\beta$ mal. Indem man nun die Charactere des Theils der Curve, der zunächst vor dem ersten Knoten liegt, durch γ, γ' ausdrückt, ist die Amplitudo der ganzen Curve $= (\gamma + \gamma' + \alpha - \beta) 360^{\circ}.$

Figure 2: A little later in the notes of C.-F. Gauß.

Exercise 1.5 (Symmetric vector fields on spheres)

In this exercise we will take the point of view that a tangent vector field on $\mathbb{S}^2 \subset \mathbb{R}^3$ is a continuous function $V: \mathbb{S}^2 \to \mathbb{R}^3$ with the property that x and V(x) are orthogonal vectors for each $x \in \mathbb{S}^2$.

(a) Suppose that V(x) = V(-x) for each $x \in \mathbb{S}^2$. If x is a zero of V, what is the relationship between the local index of V at x and the local index of V at -x?

(b) Now fix an angle $\theta \in [0, 2\pi]$. Consider the following equation (where $x \in \mathbb{S}^2$):

$$V(-x) = \cos(\theta) V(x) + \sin(\theta) (x \times V(x)), \tag{1}$$

where \times denotes the cross product in \mathbb{R}^3 . Show that (1) holds for x if and only if it holds for -x.

(c) Now assume that (1) holds for all $x \in \mathbb{S}^2$. If x is a zero of V, what is the relationship between the local index of V at x and the local index of V at -x? How does this relationship depend on θ ?

(d) Now let V be an arbitrary vector field (not necessarily satisfying (1)) and define another vector field V_{θ} for $\theta \in [0, 2\pi]$ by

$$V_{\theta}(x) = \cos(\theta) V(x) + \sin(\theta) (x \times V(x)).$$

What are the zeros of V_{θ} in comparison to the zeros of V? How is the local index of a zero of V_{θ} determined by the local indices of the zeros of V?

(e)* Now let $F \subset \mathbb{R}^3$ be a torus, symmetrically embedded into \mathbb{R}^3 such that $x \in F$ implies that $-x \in F$ and the tangent spaces $T_x F$ and $T_{-x} F$ are parallel. Let us say that it is the z-axis that passes through the 'hole' in the torus (so F is disjoint from the z-axis).

We will think of vector fields on F as continuous functions $V: F \to \mathbb{R}^3$ with the property that V(x) is parallel to T_xF for each $x \in F$. Let $p: \mathbb{R}^3 \to \mathbb{R}^2$ be the projection onto the (x, y)-axis. Show that, when $x \in F$, the vector $W(x) = p(x) \times (0, 0, 1)$ always lies in the tangent plane T_xF , where \times is the cross product in \mathbb{R}^3 . This is therefore an example of a non-vanishing vector field on F. Now suppose that V is any vector field on F satisfying the following property: for each $x \in F$,

V(-x) = the reflection of V(x) about the axis $\{\lambda, W(x) \mid \lambda \in \mathbb{R}\}$ in the tangent plane $T_x F$.

If x is a zero of V, what is the relationship between the local index of V at x and the local index of V at -x? Give an example of a vector field V that has zeros and satisfies this property.

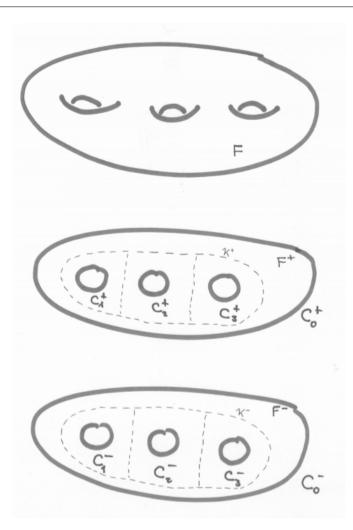


Figure 3: The surface F from Exercise 1.6.

Exercise 1.6 ('Satz vom Igel' for higher-genus surfaces)

The orientable surface F of genus g we imagine as smoothly embedded in \mathbb{R}^3 (see Figure 3 on page 3), symmetric with respect to the origin and to the (x, y)-plane. The intersection with this plane consists of an outer curve C_0 and g further curves C_1, \ldots, C_q . We have an upper resp. lower half-surface F^+ and F^- , both a disc with an outer

boundary curve C_0^+ resp. C_0^- and g inner boundary curves C_1^+, \ldots, C_g^+ resp. C_1^-, \ldots, C_g^- . (a) Show that T(F) is trivial over both F^+ and F^- . (Move a point ζ towards the point on the dotted core curve K^+ resp. K^- closest to ζ and slide the tangent plane along. The curves K^+ and K_- lie in planes parallel to the (x, y)-plane, where all tangent planes have a canonical isomorphism to \mathbb{R}^2 .) In the end we have for each curve a clutching function $\phi_i \colon C_i \to \operatorname{GL}_2(\mathbb{R}), i = 0, 1, \dots, g$.

(b) In the case of a torus, g = 1, conclude that the tangent bundle is trivial over the whole surface.

(c) Now assume a vector field is given. This vector field is a function $V: F \to \mathbb{R}^3$ such that $V(\zeta)$ is tangent to F at ζ , i.e., $V(\zeta) \in T_{\zeta}(F)$. What can we conclude about the zeroes of V? If we assume that V has no zeroes; then — since F is orientable — in each tangent plane we get by left-rotation of $V(\zeta)$ with angle 90° a second and linearly independent vector and thus a basis in each tangent space. Restricting to the curves C_i we have functions $\psi_i \colon C_i \to \mathrm{GL}_2(\mathbb{R})$. But these functions must satisfy relations. What are these relations, and what do they imply for non-vanishing vector fields on F?