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Exercise 7.1 (Decomposition of chain complexes.)
(1) Let

0← C0 ← C1 ← · · · ← CN−1 ← CN ← 0

be a bounded chain complex of finitely generated free abelian groups. Show that it splits as a direct sum of finitely
many subcomplexes, each of which is of the form

0← Z← 0 or 0← Z k←− Z← 0

for some non-zero k ∈ Z, up to shifts to the left and right.
(Hint: Use the Elementarteilersatz (Smith normal form) for integer matrices.)

(2) Show that, if we had started with a bounded chain complex of finite-dimensional vector spaces over a field K
instead, then it splits as a direct sum of finitely many subcomplexes of just two types, namely 0 ← K ← 0 and

0← K id←− K← 0.

(3) Thus any bounded chain complex of finite-dimensional vector spaces is isomorphic to one with chain modules of
the form Cn = Bn ⊕Hn ⊕Bn−1, where Bn denotes the boundaries of degree n, and where the boundary operator

∂ : Cn = Bn ⊕Hn ⊕Bn−1 � Bn−1 ↪→ Bn−1 ⊕Hn−1 ⊕Bn−2 = Cn−1

is the projection of Cn onto Bn−1 composed with the inclusion of Bn−1 into Cn−1. It follows that the homology is
Hn(C•) ∼= Hn.

Exercise 7.2 (Homology of some small chain complexes.)
(a) Compute the homology of each of the following chain complexes.
(b) Take the tensor product with Q and compute the homology of the resulting chain complex.
(c) Take the tensor product with Fp (for a prime p) and compute the homology of the resulting chain complex.

(A•) 0→ Z2

(
1 1
−1 −1

)
−−−−−−→ Z2

(
1 1
−1 −1

)
−−−−−−→ · · ·

(
1 1
−1 −1

)
−−−−−−→ Z2

(
1 1
−1 −1

)
−−−−−−→ Z2 → 0.

(B•) 0→ Z 2−→ Z 0−→ · · · 2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0.

(C•) 0→ Z4


1 0 −1 0
0 1 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


−−−−−−−−−−−−→ Z6

(
0 0 1 1 1 1
0 0 −1 −1 −1 −1

)
−−−−−−−−−−−−−→ Z2 → 0.

(d) Use Exercise 7.1 part (1) to show that (in general – not just for these examples) the computations in (b) and
(c) may in fact be deduced directly from the computations in (a), without knowledge of the original chain complex.

Exercise 7.3 (Chain homotopy is an equivalence relation.)
Recall that a chain homotopy h : f0 ' f1 between two chain maps f0, f1 : C• → D• is a collection of homomorphisms
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hn : Cn → Dn+1 such that hn−1 ◦ ∂ + ∂′ ◦ hn = f0 − f1.
Suppose that C•, D•, E• are chain complexes, f0, f1, f2 : C• → D• and g0, g1 : D• → E• are chain maps and
h : f0 ' f1, ĥ : f1 → f2 and k : g0 ' g1 are chain homotopies. Show that there are chain homotopies
(a) f0 ' f0,
(b) f1 ' f0,
(c) f0 ' f2,
(d) g0f0 ' g1f1,

given by 0, −h, h+ ĥ and g0h+ kf1 respectively. Conclude that chain homotopy is an equivalence relation and is
preserved by composition.

Exercise 7.4 (Tensor products of chain complexes)
Let K denote a principal ideal domain. For two chain complexes A• and B• over K with boundary operator ∂A

resp. ∂B we define a new complex C• = A• ⊗ B• by setting Cn :=
∑

n=k+lAk ⊗ Bl and defining the boundary
operator ∂⊗ : Cn → Cn−1 by setting (Leibniz-like)

∂⊗(a⊗ b) := ∂A(a)⊗ b + (−1)ka⊗ ∂B(b)

for a generator a ∈ Ak and b ∈ Bl with k + l = n.
(1) Show that this is a chain complex.
(2) Assume An = Bn = 0 for n < 0 and A0 = B0 = K. Can you define chain maps ιA : A• → C• and ιB : B• → C•
and πA : C• → A• and πB : C• → B• such that πA ◦ ιA = id, πB ◦ ιB = id, and πA ◦ ιB = 0 = πB ◦ ιA ?

Figure 1: From Topologie I, by P. Alexandroff and H. Hopf (1935), page 214. What they term Betti groups are
the homology groups with integer coefficients of a space. In the first formula, αr is the number of r-dimensional
simplices of the n-dimensional simplicial complex K (cf. Exercise 7.6 on page 4), whereas, in the second formula, pr

denotes the rank of the r-th homology group Hr(K;Z). (The rank of an abelian group is defined exactly analogously
to the dimension of a vector space.)

Exercise 7.5 (Euler characteristic)
If C• is a bounded chain complex of finite-dimensional vector spaces over a field K, we can define its Euler charac-
teristic by

χ(C•) :=
∑
n

(−1)n dimK(Cn).

Show the following formulae:

(1) χ(C•) =
∑

n(−1)n dimKHn(C•). (Hint: use Exercise 7.1 part (3).)

(2) χ(A• ⊕B•) = χ(A•) + χ(B•).

(3) χ(A• ⊗B•) = χ(A•)χ(B•).

(Comment to (1): This is the famous formula of Euler-Poincaré-Hopf (see Figure 1 above): the Euler characteristic
depends only on the homology. This is true in general, not only over fields, as we will see later.)
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Figure 2: The simplicial complexes from Exercise 7.6 part (4). Note about the 2-simplices in these figures: if an
(innermost) triangle is shaded, then the corresponding 2-simplex is present; otherwise, it is not.
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Exercise 7.6* (Simplicial chain complexes)
Let X be a set of non-empty, finite subsets of some fixed set X0 such that σ ∈ X implies τ ∈ X for any non-empty
subset τ of σ. We denote by Xn all elements σ of X with exactly n+ 1 elements of X0. There is an obvious reason
why we call the elements of X0 vertices, the elements of X1 edges or 1-simplices, those in X2 triangles or 2-simplices
and so on. We assume that X0 is a linearly ordered set; thus any σ ∈ Xn is an ordered set of n+ 1 vertices, which
we number v0 < v1 < . . . < vn from 0 to n. Denote now, for i = 0, 1, . . . , n, by d′i(σ) the set σ with its i-th element
vi removed; this defines functions d′i : Xn → Xn−1 for n > 0.
(1) Show that d′i ◦ d′i = d′i ◦ d′i+1 and for i < j that d′i ◦ d′j = d′j−1 ◦ d′i.
(2) Denote by Cn(X ) the free module over the principal ideal domain K generated by the set Xn. Consider the
homomorphisms di : Cn(X ) → Cn−1(X ) determined by d′i by linear extension. Show that the formulae from (1)
hold also for the di.
(3) If we set ∂ :=

∑n
i=0(−1)idi show that ∂ ◦ ∂ = 0 holds.

(4) In each of the examples depicted in Figure 2 on the previous page, the figure depicts a triangulation of a certain
space. The vertices of the triangulation form the set X0 and a subset σ of X0 belongs to X if and only if there
exists a simplex (in the figures, this means either an edge, a triangle or a vertex) whose vertices are precisely the
vertices corresponding to σ. In each case, write down the chain complex C•(X ) and compute its homology groups
Hn(C•(X )) for all n and its Euler characteristic.
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