Einführung in die Algebra — Übungsblatt 11

Prof. Dr. Catharina Stroppel, Dr. Martin Palmer-Anghel (Assistent) // Wintersemester 17/18

[**Abgabe**: 11. Januar 2018, **vor** der Vorlesung, 10:00 – 10:15]

Sie können sich aus den sieben Aufgaben vier aussuchen (Aufgabe 5 ist aber eine Voraussetzung für Aufgabe 6) und diese bearbeiten. Sie bekommen dann eine Punktzahl von zwanzig, wie üblich. Wenn Sie mehr als vier Aufgaben bearbeiten, und Sie a_i Punkte für Aufgabe i bekommen haben, ist Ihre Punktzahl $\max\{a_{\sigma(1)} + a_{\sigma(2)} + a_{\sigma(3)} + a_{\sigma(4)} \mid \sigma \in \mathfrak{S}_7\}$.

Aufgabe 1. (5 Punkte = $5 \cdot 1$)

Wahr oder falsch? Begründen Sie Ihre Antwort.

- (a) Seien $\mathbb{Q}(\sqrt[4]{2}) = L/\!\!/K = \mathbb{Q}(\sqrt{2})$ und $f: K \to K$ ein Ringisomorphismus. Dann gibt es einen Ringisomorphismus $\hat{f}: L \to L$, so dass $\hat{f}|_K = f$.
- (b) Das Polynom $t^4 4t^3 + 8t^2 8t + 4 \in \mathbb{R}[t]$ ist irreduzibel.
- (c) Für eine endliche Teilmenge S eines Körpers K gibt es ein Polynom $f(t) \in K[t]$ mit keinen Nullstellen in S.
- (d) Der algebraische Abschluss $\bar{\mathbb{F}}_n$ von \mathbb{F}_n , wobei $n=p^r$ für eine Primzahl p, ist unendlich.
- (e) Ein endlicher Integritätsbereich ist ein Körper.

Aufgabe 2. (5 Punkte = 2 + 2 + 1)

Seien $K/\!\!/\mathbb{Q}$ eine algebraische Körpererweiterung und $f: K \to K$ ein Ringhomomorphismus.

- (a) Seien $a \in K$ und $S_a \subseteq K$ die Menge aller Nullstellen in K des Minimalpolynoms $m_a(t) \in \mathbb{Q}[t]$. Zeigen Sie, dass $f(S_a) \subseteq S_a$.
- (b) Folgern Sie, dass wir tatsächlich $f(S_a) = S_a$ haben.
- (c) Folgern Sie schließlich, dass f ein Ringisomorphismus ist.

Aufgabe 3. (5 Punkte = 1 + 1 + 1 + 2)

Seien R ein kommutativer Ring, und $f(t) = a_n t^n + \dots + a_1 t + a_0 \in R[t]$ ein Polynom. Die formale Ableitung von f(t) ist $f'(t) = n \cdot a_n t^{n-1} + (n-1) \cdot a_{n-1} t^{n-2} + \dots + 2 \cdot a_2 t + a_1$.

Seien jetzt $r, s \in R$ und $f(t), g(t) \in R[t]$. Zeigen Sie:

- (a) $(r \cdot f + s \cdot g)'(t) = r \cdot f'(t) + s \cdot g'(t)$,
- (b) $(f \cdot g)'(t) = f'(t) \cdot g(t) + f(t) \cdot g'(t)$.
- (c) Sei $f(t) = t^9 + a_8 t^8 + \dots + a_0 \in \mathbb{F}_9[t]$ ein irreduzibles Polynom und sei K ein Zerfällungskörper von f(t) über \mathbb{F}_9 . Zeigen Sie, dass (mindestens) eine von den folgenden Aussagen wahr ist: (1) f(t) hat genau 9 Nullstellen in K; (2) f'(t) hat genau 9 Nullstellen in \mathbb{F}_9 .
- (d) Finden Sie doppelte Nullstellen für die folgenden Polynomen in $\mathbb{F}_9[t]$.
 - (i) $t^6 + t^5 t^4 t^3 t^2 + t$
 - (ii) $t^{12} + t^6 + t^4 + 2t^3 + t$

Aufgabe 4. (5 Punkte = 2 + 2 + 1)

Seien K ein endlicher Körper und $a, b \in K^* = K \setminus \{0\}$.

- (a) Wie viele Elemente $z \in K^*$ gibt es, so dass $z = ax^2$ für $x \in K$?
- (b) Zeigen Sie, dass es $x, y \in K$ mit $1 + ax^2 + by^2 = 0$ gibt.
- (c) Wenn |K| gerade ist, gilt sogar, dass es $x \in K$ mit $1 + ax^2 = 0$ gibt.

Aufgabe 5. (5 Punkte = 3 + 2)

- (a) Seien G eine abelsche Gruppe der Ordnung p^n und $g \in G$ ein Element der maximalen Ordnung, d.h. für jedes Element $h \in G$ gilt $|h| \leq |g|$. Vorausgesetzt, dass G nicht gleich $\langle g \rangle$ ist, finden Sie eine Untergruppe H < G der Ordnung p mit $H \cap \langle g \rangle = \{0\}$.
- (b) Sei G eine abelsche Gruppe der Ordnung p^n . Zeigen Sie, dass G zu einem direkten Produkt von mehreren zyklischen Gruppen isomorph ist.

Hinweis: benutzen Sie Induktion nach n und die kanonische Abbildung can: $G \to G/H$.

Aufgabe 6. (5 Punkte = 1 + 2 + 2)

- (a) Mithilfe der Aufgabe 5 und einer Aussage aus der Vorlesung, folgern Sie: Satz. Jede endliche abelsche Gruppe ist zu einem direkten Produkt von zyklischen Gruppen isomorph.
- (b) Seien p_1, p_2, \ldots, p_n beliebige Primzahlen und $N = p_1 p_2 \cdots p_n$. Zeigen Sie, dass es bis auf Isomorphie höchstens n^n endliche abelsche Gruppen der Ordnung N gibt.
- (c) Sei G eine Gruppe der Ordnung 48 mit genau 12 Elemente der Ordnung 4. Bestimmen Sie G bis auf Isomorphie.

Aufgabe 7. (5 Punkte = 2 + 2 + 1)

Seien p eine Primzahl und $K_1 = \mathbb{F}_p$. Für $n \ge 1$ wählen wir jetzt rekursiv eine Körpererweiterung $K_{n+1}/\!\!/ K_n$ mit $p^{(n+1)!}$ Elementen, also $K_n \cong \mathbb{F}_{p^{n!}}$ für jedes n. Wir setzen $\mathbb{F}_{p^{\infty}} = \bigcup_{n=1}^{\infty} K_n$.

- (a) Definieren Sie eine Addition und eine Multiplikation auf $\mathbb{F}_{p^{\infty}}$, die mit den Operationen auf jeden Unterkörper K_n übereinstimmen, und zeigen Sie, dass $\mathbb{F}_{p^{\infty}}$ auf diese Weise zu einem Körper wird.
- (b) Zeigen Sie, dass $\mathbb{F}_{p^{\infty}}$ algebraisch abgeschlossen ist.
- (c) Zeigen Sie, dass die Körpererweiterung $\mathbb{F}_{p^{\infty}}/\!\!/\mathbb{F}_p$ algebraisch ist.