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Abstract

This is a brief overview and a slightly less brief lecture-by-lecture summary of the topics covered
in the course on Exotic Spheres that I taught in Bonn in the summer semester 2017 (starting on
25th April and ending on 19th July). See also the course webpage zatibq.com/exotic-spheres.

Overview

This is roughly the overview that I gave in the last 20 minutes of the final lecture on 19 July.

• Introduction
• Monoids of manifolds: Mn and its submonoids.
• Some useful theorems: including the Disc Theorem of Palais, the Isotopy Extension

Theorem.
• The group Θn of homotopy n-spheres up to h-cobordism; proof that it is a group.
• The h-cobordism theorem and its corollaries.
• Aside on topological embeddings of manifolds: the generalised Schönflies theorem and

the Annulus theorem.
• The Pseudoisotopy Theorem of Cerf; corollary that for n > 6 there is an isomorphism

Θn
∼= π0Diff+(Sn−1) via the twisted sphere construction.

• Milnor’s original construction of exotic 7-spheres, via sphere bundles over spheres: classify
the S3-bundles over S4, find out which ones are homeomorphic to S7, use an invariant λ
(which we generalise below) to show that not all of these are diffeomorphic to S7.

• The general plumbing construction, with input a (bi-coloured) graph with vertices labelled
by disc bundles over manifolds.

• Construction of invariant λ : M�4k−1 −→ Q/Z, using Pontrjagin numbers, signature and the
Hirzebruch Signature Theorem.

• Special case: fix the graph with two vertices and one edge – vary the two disc bundles.
Condition (on one of the disc bundles) for when the boundary of the plumbing is a topological
sphere. Computation of λ of these topological spheres.

• Another special case: label all vertices by a fixed thing, namely the unit disc subbundle of
the tangent bundle of S2k, and see what happens as we vary the graph (which we require to
be a tree). In particular we studied this for the E8 tree.

• Construction of invariant λ′ : bP4k −→ Z/(σk

8 )Z.
(This is surjective: if X is the plumbing of the E8 tree, then σ(X) = 8 and so λ′(∂X) = 1.)

• Construction of homotopy spheres as the link of an isolated singularity in a complex variety
– Brieskorn spheres. (Important tool in the construction: the Milnor fibration.)

• Theorem: all homotopy spheres are stably parallelisable.
• Cobordism groups with (stable) tangential or normal structure; the Pontrajagin-Thom con-

struction.
• Proof (Kervaire-Milnor) that Θn is finite for n > 4.

• Step one: using the P-T construction to get a s.e.s. 0→ bPn+1 → Θn → (finite)→ 0.
• Surgery techniques — reduces the problem to trying to reduce Hk(M) to zero by surg-

eries (where M is a (k− 1)-connected parallelisable manifold of dimension 2k or 2k+ 1
with homotopy sphere boundary).1

• n ≡ 0 (mod 4): This can always be done, by framed surgeries.

1 Here we set k = bn+1
2

c.
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• n ≡ 2 (mod 4): This can also always be done, with more care and some subtleties about
re-framing surgery data.

• n ≡ 3 (mod 4): This cannot always be done: the obstruction is the signature of M . But
we can show that the invariant λ′ is injective.

• n ≡ 1 (mod 4): This cannot always be done: the obstruction is the Kervaire (or Arf)
invariant of M . But this lives in Z/2Z, and we constructed a surjection Z/2Z� bPn+1.

• Brief summary of what is known and unknown about the precise structure of the groups Θn.

Lecture-by-lecture summary

A more detailed summary of what was discussed in each lecture.

Lecture 1. (Tues 25 April)

• General introduction.
• Definitions of topological sphere and homotopy sphere.
• Connected sum and boundary connected sum.
• The monoids Mn ⊇ Sn ⊇ Tn of scco2 n-manifolds, homotopy n-spheres and topological
n-spheres respectively.

• Definition of cobordism and h-cobordism. The quotient monoid Θn of homotopy n-spheres
up to h-cobordism.

• The various formulations of the Poincaré conjecture (smooth, topological, weak topological).
• What is known in dimensions 6 4.
• The h-cobordism theorem in dimensions > 5.
• Corollary: the weak topological Poincaré conjecture, i.e., Tn = Sn, holds for n > 6.
• Corollary: h-cobordant homotopy spheres are diffeomorphic, i.e., the quotient Sn → Θn is

an isomorphism, for n > 5.
• Exotic smooth structures on Rn (none for n 6= 4, uncountably many for n = 4).
• Mazur’s lemma (a criterion for when an element of Mn is invertible).
• Corollary (also using the topological Poincaré conjecture and the uniqueness of smooth struc-

tures on Rn except for n = 4): Tn is a group, and therefore so is Θn (except possibly n = 4).

Lecture 2. (Wed 26 April)

• Spaces of embeddings and diffeomorphisms between manifolds.
• Isotopies and ambient isotopies; the Isotopy Extension Theorem (after Thom, Palais, Cerf

and Lima).
• The Disc Theorem of Palais (sketch of proof).
• Definition of the connected sum; proposition: it does not depend on the auxiliary choices

of embeddings of discs. The commutative monoid Mn of scco n-manifolds under connected
sum.

• The connected sum of two homotopy spheres is a homotopy sphere. The connected sum of
two topological spheres is a topological sphere.3

• Submonoids Tn ⊆ Sn ⊆Mn.

Lecture 3. (Tues 2 May)

• Cobordism and h-cobordism.
• The equivalence relation ∼ of being h-cobordant is compatible with the connected sum oper-

ation on Sn (proof using the parametrised connected sum). Therefore we have a well-defined
quotient Sn � Θn := Sn/∼, and Θn is a commutative monoid.

• Proof that Θn is a group, with [Σ]−1 = [Σ̄].
• Proof that Tn is the maximal subgroup of Mn (if n 6= 4) using Mazur’s lemma.

2 smooth, connected, closed, oriented — although sometimes the second c will mean just compact, but possibly
with non-empty boundary

3 The second fact depends on the generalised Schönflies theorem, which comes later. (Thanks to Kaan Öcal for
pointing out to me that this is less obvious than it seems.)
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Lecture 4. (Wed 3 May)

• Proof of Mazur’s lemma (with the infinite connected sum trick).
• We may extend Mn to a larger monoid M±n by allowing either non-orientable or oriented

manifolds.
• Structure of Mn and M±n for n 6 3.
• The h-cobordism theorem and the s-cobordism theorem.
• Corollary: qn : Sn −→ Θn is an isomorphism for n > 5.
• Corollary: for n > 6, every homotopy sphere is a twisted sphere.4

• Corollary: the weak topological Poincaré conjecture is true, in other words Tn = Sn, in
dimensions n > 6.5

• Summary of what is true, false and unknown for the Poincaré conjecture and h-cobordism
theorem in their smooth and topological versions, in dimensions n = 2, 3, 4 and > 5.

Lecture 5. (Tues 9 May)

• The collar neighbourhood theorem and the bicollar neighbourhood theorem in the smooth
setting.

• The collar neighbourhood theorem in the topological setting is also true, but the bicollar
neighbourhood theorem fails topologically (the Alexander Horned Sphere).

• Example of a topological embedding that is not locally flat.
• Alexander duality.
• The generalised Schönflies theorem (for topological embeddings Sn−1 ↪→ Sn).
• The smooth Schönflies theorem in dimensions n > 5.
• The Annulus theorem — which implies the (topological) generalised Schönflies theorem.
• Proofs of some implications between different versions (smooth/topological, and different di-

mensions) of the Poincaré conjecture and the h-cobordism theorem. Tools: the Disc theorem
of Palais, the Annulus theorem, the Alexander trick.

• Definition: pseudoisotopy and pseudoisotopy diffeomorphism.
• The Pseudoisotopy Theorem of Cerf.
• The group µDiff(M) of diffeomorphisms of M up to pseudoisotopy.
• Corollary: if M is simply-connected and dim(M) > 5 then µDiff(M) ∼= π0Diff(M). (And

the same for orientation-preserving versions of these groups.)

Lecture 6. (Wed 10 May)

• Lemma: the construction of twisted spheres is an injective homomorphism µDiff+(Sn−1) −→
Tn.

• Together with the h-cobordism theorem and the pseudoisotopy theorem, this implies that we
have an isomorphism π0Diff+(Sn−1) ∼= Θn for n > 6.

• Summary of what is known in lower dimensions (n 6 5) about Γn := π0Diff+(Sn−1).
• Construction of Milnor’s original exotic 7-spheres.
• Prerequisites: principal G-bundles, classification of principal G-bundles, manifold bundles

(smooth vs. fibrewise smooth), replacing the fibres of a fibre bundle with a given structure
group.

• First step: oriented smooth S3-bundles over S4, up to isomorphism, are in one-to-one corre-
spondence with π3(SO(4)) ∼= π3(S3 × S3) ∼= Z2. Denote them by Mi,j .

• Lemma: Mi,j is homeomorphic to S7 if and only if i− j = ±1.
• For any odd k let Mk be Mi,j with i− j = 1 and i+ j = k.
• Construction of an invariant λ(M) ∈ Z/7Z for any scco 7-manifold M with vanishing H3

and H4. This uses the Pontrjagin numbers and signature of an 8-manifold with boundary
diffeomorphic to M , and the Hirzebruch signature theorem.

• Computations: λ(S7) = 0 whereas λ(Mk) = k2 − 1. So there are at least 3 distinct exotic
7-spheres, namely M3, M5 and M7. In fact it turns out that λ is a homomorphism, so there
are at least 6 distinct exotic 7-spheres.

4 This is in fact true for all n, since Θn is trivial for n 6 5, by classification for n = 1, 2, by Perelman for n = 3
and by Kervaire-Milnor for n = 4, 5.

5 This is also true for all n.
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Lecture 7. (Wed 24 May)

• Comparision between construction of sphere bundles over spheres (via clutching functions)
and the plumbing construction (in a special case).

• The idea of the general plumbing construction (details next lecture).
• Pontrjagin classes and numbers, for closed manifolds and more generally for compact mani-

folds with certain conditions on the boundary (e.g. homology sphere boundary).
• The Hirzebruch Signature Theorem.
• Lemmas about how Pontrjagin numbers and signature behave under (a) gluing along common

boundary and (b) boundary connected sum (i.e. gluing along a disc in each boundary).
• Definition of the invariant λ.
• Corollaries: this invariant is (a) well-defined and (b) a homomorphism M�4k−1 −→ Q/Z.

Lecture 8. (Tues 30 May)

• Details of the general plumbing construction (unoriented and oriented versions).
• Lemma: the plumbing construction depends only on the input graph and the disc bundles

that label its vertices, and not on the extra auxiliary choices that we made (certain embed-
dings of discs and trivialisations of the bundles over those discs). This is analogous to the
fact that the connected sum is independent of the additional choice of (suitably-oriented)
embedded discs.

• Homotopy type of the plumbing, operations that correspond to boundary connected sum of
plumbings and to fibrewise connected sum of disc bundles.

• Alternative, explicit description of the plumbing construction in the special case of a graph
with two vertices (plumbing together two disc bundles over spheres).

• Let X be the plumbing of two disc bundles over spheres, described by clutching functions f
and g. Lemma: condition on f that implies that ∂X is a topological sphere.

Lecture 9. (Wed 31 May)

• Calculation that X has signature zero (under certain conditions on f and g).
• The Pontrjagin homomorphism.
• Calculation of the Pontrjagin numbers of X, and therefore of λ(∂X), in terms of the Pontr-

jagin homomorphism evaluated on f and g.
• Corollary (using also a theorem of Bott and Milnor): a lower bound on the number of exotic

spheres in dimension 4k − 1.

Lecture 10. (Tues 13 June)

• (Clarification about the signature of a manifold, and the calculation of σ(X) from last lec-
ture.)

• Study the plumbing construction on a tree Γ with vertices labelled by a disc bundle over
a sphere (described by clutching functions). Definition: the intersection matrix of such a
labelled tree.

• The Euler homomorphism.
• Lemma: the signature of PΓ depends only on the intersection matrix of Γ.

Lecture 11. (Wed 14 June)

• Lemma: condition for when ∂PΓ is a topological sphere (the intersection matrix of Γ is
non-singular over Z).

• Specialise to the E8 tree with every vertex labelled by T1S2k: the intersection matrix is
non-singular and its signature is 8.

• Corollary: a lower bound on the number of exotic spheres that bound a parallelisable manifold
in dimension 4k − 1.

• Philosophy of how to define invariants of homotopy spheres Σ: not by using invariants of
their tangent bundles (this cannot work), but by using invariants of (the tangent bundles of)
all possible smooth manifolds whose boundary is Σ.

• Definition of the invariant λ′ : bP4k −→ Z/(σk

8 )Z. Proof that it is a well-defined homomor-
phism.
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• Remark about how λ and λ′ are related.

Lecture 12. (Tues 20 June)

• Complex varieties, singular points and their links.
• The Milnor Fibration Theorem.
• Some lemmas about when vector bundles are (stably) trivialisable.
• Corollary: the link of an isolated singularity bounds a parallelisable manifold.
• Setup for constructing Brieskorn spheres Σa, depending on a tuple of integers a.
• Note about twisted homology and the Serre spectral sequence.
• Aside: some computations of Pha.m.
• Corollary (Theorem of Brieskorn): a combinatorial condition on a that ensures that Σa is a

topological sphere.
• Corollary (Theorem of Brieskorn): a combinatorial formula for the signature of the (canoni-

cal) parallelisable manifold that Σa bounds.
• Special case: a = (6`− 1, 3, 2, . . . , 2).

Lecture 13. (Wed 21 June)

• The J-homomorphism.
• Obstruction theory for finding a section of a bundle; relation to Pontrjagin classes and to the
J-homomorphism.

• Proof that all homotopy spheres are stably parallelisable.
• Aside: Stiefel-Whitney classes and numbers.
• [Thom]: two unoriented manifolds are cobordant if and only if their SW numbers agree.
• [Wall, Milnor]: two oriented manifolds are oriented-cobordant if and only if their SW and P

numbers agree.
• Corollary: every homotopy sphere is the oriented boundary of some (compact!) oriented

manifold.

Lecture 14. (Tues 27 June)

• Transversality; Thom’s transversality theorem.
• The smooth approximation theorem.
• The tubular neighbourhood theorem.
• The oriented cobordism group Ωn.
• Lemma: the canonical homomorphism Θn −→ Ωn is zero.
• Variations: unoriented, spin, framed cobordism groups. In general: cobordism groups of

manifolds with a tangential structure.
• Other variations: manifolds with a stable tangential structure, embedded manifolds with a

normal structure.

Lecture 15. (Wed 28 June)

• More precise definition/construction of cobordism groups of manifolds with a tangential
structure.

• Aside about stable almost complex structures.
• Lemma: relation between cobordism groups of manifolds with a stable framing and cobordism

groups of embedded manifolds with a normal framing.
• The Pontrjagin-Thom construction (and theorem).
• (Aside about Thom spectra and Madsen-Tillmann spectra.)

Lecture 16. (Thu 29 June)

• How Pontrjagin (and Rokhlin) used the PT construction to compute the (low-degree) stable
homotopy groups of the sphere spectrum.

• Construction of a homomorphism from Θn to a certain quotient of πn of the sphere spectrum.
• Lemma: its kernal is precisely bPn+1 6 Θn.
• Corollary: Θn is finite if and only if bPn+1 is finite.
• Brief look ahead to how we will prove that bPn+1 is finite, using surgery.

5



• Definition: (framed) surgery datum λ, the effect Mλ of surgery on M and the associated
cobordism Wλ.

• Lemma: the effect of surgery in low dimensions.
• Corollary: to finish the proof, it suffices to reduce Hk(M) to zero by surgeries.

Lecture 17. (Tues 4 July)

• Case n ≡ 0 (mod 4).
• Lemma: the effect of surgery just below the middle dimension.
• How to remove a Z summand from Hk(M).
• How to decrease the size of the torsion subgroup of Hk(M).
• Corollary: we may always reduce Hk(M) to zero in this case, so Θ4k is finite.

Lecture 18. (Wed 5 July)

• Case n ≡ 2 (mod 4).
• Re-framing a framed surgery datum.
• The linking number L(−,−) of two torsion homology classes in a manifold.
• As yesterday, we may always reduce Hk(M) to a finite abelian group, so we assume this from

now on.
• Most of the proof of a technical lemma: if `′/` is not an integer, where ` is the order of λ

and `′ is the order of the dual surgery datum λ′, then performing λ-surgery reduces the size
of Hk(−), after possibly re-framing λ.

Lecture 19. (Tues 18 July)

• Finishing case n ≡ 2 (mod 4).
• Lemma: `′/` = ±L(λ, λ) modulo 1.
• Corollary: we may always reduce the size of Hk(M) by either one or two sugeries, as long as

this group contains an element with non-trivial self-linking number.
• Lemma: if all elements have trivial self-linking number, then Hk(M) is 2-torsion.
• Corollary: in this case, we may always perform a surgery so that either (i) the torsion

subgroup of Hk(−) is smaller or (ii) it is the same size, but not all 2-torsion.
• Corollary: thus we may always reduce Hk(M) to the trivial group, so Θ4k+2 is finite.

Lecture 20. (Wed 19 July)

• Case n ≡ 1 or 3 (mod 4).
• Explanation about why this case is harder: this time we have to perform surgeries in the

middle dimension, not only just below the middle dimension. Not every homology class may
be represented by a surgery datum.

• Key lemma: two conditions (a) and (b) that ensure that we may reduce Hk(M) to the trivial
group (which implies that [∂M ] = 0 ∈ bP2k).

• Case n ≡ 3 (mod 4).
• Condition (a) implies condition (b) in this case, so we just have to study condition (a).

Question: when does Hk(M) have a basis such that the intersection form has a certain
matrix with respect to it?

• Answer: if and only if the signature of M is zero.
• Corollary: the invariant λ′ introduced earlier is an isomorphism bP4k −→ Z/(σk

8 )Z.
• Hence bP4k is finite and therefore so is Θ4k−1.
• Case n ≡ 1 (mod 4).
• Condition (a) is automatic in this case, but condition (b) is not. Question: when does an

embedded Sk in M2k have a trivial normal bundle?
• The answer depends on a certain invariant ψ, which may be used to define the Kervaire (or

Arf) invariant c(M) ∈ Z/2Z of M .
• Corollary: if c(M) is zero then [∂M ] = 0 ∈ bP2k.
• Corollary: bP2k is either 0 or Z/2Z when k is odd. Thus Θ4k+1 is finite.
• Brief overview of what is known and unknown related to the precise structure of the groups

Θn.
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