Exercise sheet 7

Due before the lecture on Monday, 3 December 2018.

For the first two exercises, call X an Eilenberg-MacLane space of type K(G, n) if $\pi_n(X) \cong G$ and all other homotopy groups of X vanish. This is equivalent to the definition (via the representability theorem of E. Brown) given in lectures, as can be seen by combining Exercise 2 with the calculation of homotopy groups discussed in the lectures.

Exercise 1. (5 points) Let $n \ge 2$ and let G be an abelian group with presentation

$$0 \to \bigoplus_{j \in J} \mathbb{Z} \stackrel{\varphi}{\longrightarrow} \bigoplus_{i \in I} \mathbb{Z} \longrightarrow G \to 0.$$

(a) Choose a map

$$f \colon \bigvee_{j \in J} S^n \longrightarrow \bigvee_{i \in I} S^n$$

so that $H_n(f; \mathbb{Z}) = \varphi$ under a chosen identification $H_n(S^n; \mathbb{Z}) \cong \mathbb{Z}$. Show that the homotopy cofibre $X = C_f$ of f is (n-1)-connected and satisfies $\pi_n(X) \cong G$.

(b) Construct an Eilenberg-MacLane space of type K(G,n) by attaching cells of dimension at least n+2 to X.

Exercise 2. (5 points) Assume that K and K' are CW-complexes that are both Eilenberg-MacLane spaces of type K(G,n), $n \ge 2$. Show that K and K' are homotopy equivalent. (*Hint*: If K is constructed as in Exercise 1, find a map $g: X \to K'$ that induces an isomorphism on π_n and show that g extends to all of K.)

Exercise 3. (5 points) Let $X = \operatorname{colim}_n(X_n)$ be the colimit of a sequence of based CW-complexes $X_1 \to X_2 \to X_3 \to \cdots$, and let Y be any based space. Consider the sequence of based sets

$$* \to Ph(X,Y) \longrightarrow \langle X,Y \rangle \longrightarrow \lim_{n} \langle X_n,Y \rangle \to *,$$
 (1)

where $Ph(X,Y) \subseteq \langle X,Y \rangle$ is the subset consisting of based homotopy classes of phantom maps and the second map is induced by the inclusions $i_n \colon X_n \to X$. Show that (1) is an exact sequence of based sets, and show that it is an exact sequence of groups if X is a suspension.

Exercise 4. (5 points) Let $\theta: T \to U$ be a natural transformation between half-exact contravariant functors defined on the category CW_{*} of based, connected CW-complexes and taking values in sets.

(a) For a fixed n > 0, assume that the function $\theta(S^m) : T(S^m) \to U(S^m)$ is bijective for all m < n and surjective for m = n. Show that, for every based, connected, finite-dimensional CW-complex X, the function

$$\theta(X) \colon T(X) \longrightarrow U(X)$$
 (2)

is bijective for $\dim(X) < n$ and surjective for $\dim(X) = n$.

(b) Now assume that the function $\theta(S^m): T(S^m) \to U(S^m)$ is bijective for all m > 0. Show that the function (2) is bijective for every based, connected CW-complex X.

(*Hint:* For infinite-dimensional CW-complexes X with basepoint $x_0 \in X^0$, consider the *reduced mapping telescope* of the skeleta of X, i.e. the space obtained from the mapping telescope

$$\bigcup_{i\geqslant 0} \left(X^i \times [i,i+1] \right)$$

by collapsing the subspace $\{x_0\} \times [0, \infty)$.)

This gives an alternative way to complete the proof of the representability theorem of E. Brown for the category CW_* .