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Abstract
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October 2018 and January 2019. Webpage: mdp.ac/teaching/18-algebraic-topology.html.
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0. Topic index

NB: This is only a partial list of key topics in the lectures.
1. Review
1.9 Long exact sequence associated to a pair of spaces

1.12 CW-complexes
1.13 Cellular Approximation Theorem
1.15 CW-approximation theorem
1.23 Whitehead’s theorem
1.26 A weak equivalence induces isomorphisms on homology and cohomology
1.30 Hurewicz’s theorem
2. Fibrations and cofibrations
2.2 Cofibrations
2.9 Homotopy equivalences in A/Top (proof).

2.11 Existence and uniqueness of factorisation of any map into (hty-equivalence ◦ cofibration)
2.12 Homotopy cofibre
2.19 Fibrations
2.23 Homotopy equivalences in Top/B
2.26 Existence and uniqueness of factorisation of any map into (fibration ◦ hty-equivalence)
2.27 Homotopy fibre
2.30 Local-to-global properties for Serre and Hurewicz fibrations
2.34 Adjunction (bijection) Top(X ×A, Y ) ∼= Top(X,Map(A, Y )) if A is locally-compact.
2.36 Fibre bundles
2.38 Compactly-generated weakly-Hausdorff (cgwh) spaces
2.39 Adjunction (homeomorphism) Top(X ×A, Y ) ∼= Top(X,Map(A, Y )) for cgwh spaces.
2.42 Model categories
(∗) Summary of the facts related to cgwh spaces that we will use
2.50 The cofibre sequence of a based map
2.54 Proof of the fact that cofibre sequences are coexact
2.55 The fibre sequence of a based map
2.61 The long exact sequence associated to a quasifibration
2.66 The Hopf bundles
3. The Blakers-Massey theorem
3.1 The Blakers-Massey theorem (see also 3.3, 3.4 and 3.5 for other versions)
3.2 An important lemma about relative Serre fibrations
3.8 The Freudenthal suspension theorem

3.10 Stable homotopy groups of spheres
4. Representability theorems
4.2 The E. H. Brown representability theorem (representability of half-exact functors)
4.6 Extension to E. H. Brown’s representability theorem by J. F. Adams

4.16 Representability of maps between half-exact functors
4.26 Representability for half-exact functors into the category of groups
4.27 Reduced cohomology theories
4.31 Reduced homology theories
4.33 Spectra
4.36 Representability of cohomology theories by Ω-spectra
4.39 Representability of homology theories by spectra
4.45 A map of homology theories is an isomorphism if it is an isomorphism on S0

4.52 The Moore-Postnikov tower of a map
4.57 Postnikov towers and Whitehead towers
4.59 The k-invariants of a space
4.61 Homology Whitehead theorem for maps between simple (not necessarily 1-connected) spaces
5. Quasifibrations and the Dold-Thom theorem
6. Serre classes and rational homotopy groups of spheres
6.1 Serre classes of R-modules

6.11 Relative CW approximation
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6.12 The mod-C Fibration theorem (I)
6.13 The mod-C Fibration theorem (II)
6.18 Wang sequences
6.21 The Thom isomorphism theorem
6.22 Gysin sequences
6.24 The rational cohomology of K(Z, n)
6.25 The group homology of a torsion abelian group is torsion
6.26 The mod-C Hurewicz theorem
6.28 The mod-C Whitehead theorem
6.31 The homotopy groups πj(Sn) are finite for j > n for odd n
6.32 The homotopy groups πj(Sn) are finite for j > n for even n, except π2n−1(Sn) ∼= Z⊕ finite
6.33 The Hopf invariant
6.34 Proof of the mod-C Hurewicz theorem
6.37 Every rational homology theory is a direct sum of shifts of ordinary rational homology
7. Principal bundles, vector bundles, classifying spaces
7.2 Coordinate bundles
7.5 Fibre bundles
7.8 Bundle maps between fibre bundles

7.11 A bundle map is invertible if and only if the map of base spaces is invertible
7.12 Equivalence of fibre bundles
7.16 Correspondence between fibre bundles over B with structure group G and G-cocycles on B.
7.17 Change of fibres
7.19 Principal G-bundles
7.25 A principal G-bundle is trivial if and only if it admits a section
7.27 For discrete G, principal G-bundles correspond to free, properly discontinuous G-spaces.
7.32 Bundle maps between principal G-bundles
7.34 Pullback squares and bundle maps
7.38 Partitions of unity and numerable open covers
7.42 Every numerable fibre bundle is a Hurewicz fibration
7.47 Reduction of numerable open covers to countable numerable open covers
7.50 The pullback of a fibre bundle p over B × [0, 1] along the self-map (b, t) 7→ (b, 1) is p itself.
7.53 The homotopy theorem: pullbacks of fibre bundles along homotopic maps are isomorphic.
7.54 Universal principal G-bundles
7.55 Theorem: universal principal G-bundles exist for any topological group G.
7.58 The classification of numerable principal G-bundles
7.59 The classification of numerable fibre bundles
7.61 The topological join of a collection of spaces
7.63 The Milnor G-space
7.70 Examples of classifying spaces of groups
7.73 A numerable fibre bundle with contractible fibres is a homotopy equivalence.
7.75 A Hurewicz fibration with contractible fibres is not necessarily a homotopy equivalence.
7.76 Characterisation of universal principal G-bundles by contractibility of the total space.
7.78 A criterion for a map to be a (principal) fibre bundle.
7.81 The isotopy extension theorem and a principal Diff(L)-bundle.
7.84 The universal principal Diff(L)-bundle and the universal smooth L-bundle.
7.85 The universal principal GLn(R)-bundle and the universal real vector bundle of rank n.
7.86 The beginnings of topological K-theory
7.87 Bott periodicity
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1. Monday 8 October
1. Review
1.1 Definition of πn(X).
1.2 Basic properties of πn(X):

• It is a group for n > 1.
• It is abelian for n > 2.
• There is a natural action of π1(X) on πn(X) for all n > 1.
• πn is a 2-functor Top∗ −→ Grp, in particular it takes homotopic maps to the same
homomorphism, and therefore homotopy equivalences to isomorphisms.

• πn preserves products.
1.3 Definition of H-spaces, as well as H-monoid, H-group and homotopy-commutative H-group.

Dualising these definitions by reversing the arrows and replacing × with the categorical
coproduct in Top∗, the wedge ∨, we get the dual notions of co-H-space, etc.

1.4 Examples:
• Topological groups are H-groups.
• Sn is a co-H-group for n > 1, and is homotopy-commutative for n > 2.
• More generally: Definition of the reduced suspension ΣX of a based space X. Exercise:

ΣX is a co-H-group and Σ(ΣX) is a homotopy-commutative co-H-group.
• Definition: ΩX = Maps∗(S1, X) with the compact-open topology is the loopspace of X.
Exercise: ΩX is an H-group and Ω(ΩX) is a homotopy-commutative H-group.

1.5 Lemma: if X is an H-space, then πn(X) is abelian also for n = 1 and, writing the operation
on πn(X) as +, we have the formula,

[f ] + [g] = [m ◦ (f, g)],

where m : X ×X → X is the H-space structure of X.
1.6 Definition: if the action of π1(X) on πn(X) is trivial for all n > 1, then X is called a simple

space. For any other property P of group actions on groups, if the action of π1(X) on πn(X)
is P for all n > 1, then X is called a P space. For example, P = nilpotent is an important
example.

1.7 If f : X → Y is a covering map, then πn(f) is an isomorphism for all n > 2.
1.8 Definition of relative homotopy groups πn(X,A).

When n > 2 this has a group structure, and when n > 3 it is abelian.
1.9 Proposition: Associated to any based pair of spaces (X,A), there is a natural long exact

sequence of the form

· · · → πn(A) −→ πn(X) −→ πn(X,A) −→ πn−1(A)→ · · · ,

where the map πn(X,A) → πn−1(A) is given by [f ] 7→ [f |In−1 ]. Moreover, the group π1(A)
acts on each space in the sequence and the horizontal maps are equivariant with respect to
these actions.

1.10 Definition: n-connectedness.
1.11 Remark: how to define π0(X,A) in order for the end of the long exact sequence above to

really be exact; we define it as

π0(X,A) = π0(X/A) = {path-components of X disjoint from A} ∪ {{the rest of X}}.

So the pair (X,A) is 0-connected if and only if each path-component of X contains a point
of A.

1.12 Definition:
• CW-complex X
• geometric realisation |X| of a CW-complex X
• subcomplex of a CW-complex
• Note: if A is a subcomplex of a CW-complex X, then |A| is naturally a subspace of |X|.
Moreover, any subspace S ⊆ |X| can be equal to |A| for at most one subcomplex A of
X, in other words, the subspace |A| ⊆ |X| determines the subcomplex A ⊆ X.

• CW-pair
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1.13 The Cellular Approximation Theorem: any continuous map between (geometric realisations
of) CW-complexes is homotopic to a cellular map, that is, a map taking the n-skeleton of its
domain into the n-skeleton of its codomain, for all n > 0. If the map is already cellular on a
subcomplex, then this homotopy can be taken to be constant on that subcomplex.

1.14 Definition: weak homotopy equivalence.
1.15 CW-approximation theorem:

(a) For any space X, there is a CW-complex Y and a weak equivalence |Y | → X.
(b) If A is a CW-complex, X is a space with |A| ⊆ X and n > 0 is an integer, then

there exists a CW-complex Y containing A as a subcomplex and a factorisation of the
inclusion |A| ↪→ X into

|A| ↪ i−→ |Y | f−−→ X,

where i just denotes the inclusion |A| ⊆ |Y |, such that
• πk(i) is an isomorphism for k < n,
• πn(i) is a surjection and πn(f) is an injection,
• πn(f) is an isomorphism for k > n.

• Note: (b) implies (a).

2. Wednesday 10 October
1.16 Examples of CW-complexes:

• All simplicial complexes (and therefore all smooth manifolds).
• Rn, Sn, RPn, CPn.
• Compact surfaces (picture for the closed, connected, orientable surfaces of genus 2).
• Quotients: if (X,A) is a CW-pair, then X/A is a CW-complex.
(Here, I am using the usual abuse of notation by conflating a CW-complex with its
geometric realisation. A formally correct statement is that the quotient space |X|/|A|
admits a canonical CW-structure.)

• Products: if X and Y are CW-complexes, then so is X × Y .
(There is a subtlety here that I skipped over in the lectures: this statement is true only
as long as we modify the topology on the product slightly. For any space X, there is
another topology on X, called the compactly-generated topology and denoted by Xc,
such that (a) the identity map Xc → X is continuous and (b) the two topologies on
X have the same compact subspaces. The correct version of the above statement is
then the following: if X and Y are (geometric realisations of) CW-complexes, then so
is (X × Y )c. The properties (a) and (b) of the compactly-generated topology, and the
fact that geometric realisations of CW-complexes are Hausdorff, imply that the identity
map (X×Y )c → X×Y is a weak equivalence. We are therefore not changing too much
by modifying the topology of the product in this way.)

• Attaching spaces: if (X,A) is a CW-pair and f : A→ Y is a cellular map, then

X ∪f Y = (X t Y )/(a ∼ f(a) for all a ∈ A)

is a CW-complex.
• Self-attaching spaces: if A and B are subspaces of X and f : A→ B is continuous, then

X/f = X/(a ∼ f(a) for all a ∈ A).

If X is a CW-complex, A and B are subcomplexes and f is cellular, then X/f is a
CW-complex.

1.17 Definition: finite / finite-dimensional CW-complexes.
1.18 Definition: cofibrations.
1.19 Lemma: if (X,A) is a CW-pair, then the inclusion A ↪→ X is a cofibration.
1.20 Constructions on spaces:

• Reduced join.
• Smash product.
• Wedge sum.
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• Loopspace.
1.21 Proposition: if X and Y are based spaces, C is a co-H-group and G is an H-group, then

(a) 〈C, Y 〉 and 〈X,G〉 are groups.
(b) In particular, 〈ΣX,Y 〉 and 〈X,ΩY 〉 are groups.
(c) There is a group isomorphism 〈ΣX,Y 〉 ∼= 〈X,ΩY 〉.

- Proof.
1.22 Construction: mapping cylinders. (Note: if f ' g then Mf 'Mg.)
1.23 Theorem (Whitehead): if X and Y are connected CW-complexes and f : X → Y is a weak

equivalence, then it is a homotopy equivalence.
1.24 Lemma (“Compression Lemma”): Let (X,A) be a CW-pair and (Y,B) any pair of non-empty

spaces. If there is an n-cell of X that is not in A, assume that πn(Y,B) = 0 for all basepoints
of B. Then any map (X,A)→ (Y,B) is homotopic rel. A to a map with image contained in
B.

- Proof.

3. Monday 15 October
1.25 Proposition (Whitehead, special case): Suppose that (X,A) is a CW-pair and that X and

A are both path-connected. If the inclusion A ↪→ X is a weak equivalence, then there is a
strong deformation retraction of X onto A.

- Proof.
- Proof of Theorem 1.23.

1.26 Theorem: if f : X → Y is a weak equivalence, then it induces isomorphisms on homology
and cohomology.

- Proof.
1.27 Proposition: if f : X → Y is a weak equivalence, then it induces bijections [A,X] → [A, Y ]

and 〈A,X〉 → 〈A, Y 〉 for all based CW-complexes A.
1.28 Definition (Hurewicz homomorphism): h : πn(X,A)→ Hn(X,A).
1.29 Lemma: h is well-defined, a group homomorphism for n > 2 and invariant under the action

of π1(A).
1.30 Theorem (Hurewicz): Suppose that (X,A) is n-connected for n > 1 and that X and A are

both 0-connected. Then
(a) Hk(X,A) = 0 for k 6 n,
(b) h : πn+1(X,A)→ Hn+1(X,A) is surjective and induces an isomorphism

πn+1(X,A)/π1(A) ∼= Hn+1(X,A).

1.31 Theorem (the “homology Whitehead theorem”): Suppose that X and Y are 0-connected,
simple CW-complexes and let f : X → Y be a continuous map that induces isomorphisms
on Hn for all n > 0. Then f is a homotopy equivalence.

- Proof, modulo one lemma that will be proven in a few weeks’ time. (The lemma is not
necessary if we make the stronger assumption that X and Y are 1-connected.)

2. Fibrations and cofibrations
2.1 Definition: homotopy extension property (HEP).
2.2 Definition: cofibrations.
2.3 Lemma: i : A→ X is a cofibration if and only if it has the HEP for its mapping cylinder Mi,

if and only if the canonical map Mi → X × [0, 1] has a retraction.
- Proof.

2.4 Proposition: if (X,A) is a CW-pair, then the inclusion A ↪→ X is a cofibration.
2.5 Definition: NDR-pair.
2.6 Proposition: an inclusion A ↪→ X is a closed cofibration if and only if (X,A) is an NDR-pair.

4. Wednesday 17 October
2.4 Proposition: if (X,A) is a CW-pair, then the inclusion A ↪→ X is a cofibration.

2.4.1 Sublemma: If i : A → X is an inclusion, write Mi for its mapping cylinder (equipped with
the colimit topology from its definition as a pushout, i.e., the weak topology generated by
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the subspaces A× [0, 1] and X × {0}) and set C = (A× [0, 1])∪ (X × {0}) ⊆ X × [0, 1] with
the subspace topology. The universal property of the pushout gives us a continuous bijection
f : Mi → C.
If there exists a retraction of the inclusion C ↪→ X × [0, 1], then f is a homeomorphism.
For a proof, see pages 532–533 of [Hatcher].

- Consequence: if there exists retraction of the inclusion C ↪→ X× [0, 1], then i is a cofibration.
- Proof of Proposition 2.4, using this point-set topological fact.

2.5 Definition: NDR-pair. Note that, in particular, if (X,A) is an NDR-pair, then A must be
closed in X and admit an open neighbourhood that strongly deformation retracts onto it.

2.6 Proposition: Let A be a closed subset of X. Then A ↪→ X is a cofibration if and only if
(X,A) is an NDR-pair.

- Proof.
2.7 Example: if f : X → Y is a map, then the inclusion X ↪→Mf is an NDR-pair, and therefore

a cofibration. (It is also not hard to check directly from the definition that it is a cofibration.)
- So any continuous map has a factorisation as a cofibration followed by a homotopy equiva-
lence. We will see soon that this is, in a precise sense, unique.

2.8 Lemma: if i : A→ X is a cofibration and we let Y be the pushout
A B

X Y,

i
p

then the map B → Y is also a cofibration.
2.9 Proposition: Suppose that we have a diagram

A

X

Y

f

i

j

where i and j are cofibrations and f is a homotopy equivalence. Then there exists a map
g : Y → X such that gj = i and homotopies fg ' idY and gf ' idX rel. A.

- Reinterpretation: let A/Top be the (2, 1)-category whose objects are continuous maps A →
X, whose morphisms are continuous maps X → Y making the triangle with the two maps
from A commute, and whose 2-morphisms are homotopies H : f ' g : X → Y such that
H(−, t) makes the triangle commute for all times t. This is the category of spaces under
A. Since it is a 2-category, it has a notion of homotopy equivalence in A/Top. There is a
forgetful functor

F : A/Top −→ Top

that remembers just the codomain of a map A→ X. Proposition 2.9 then says the following.
If f is a morphism in A/Top between cofibrations and F (f) is a homotopy equivalence in
Top, then f is a homotopy equivalence in A/Top.

- Proof: next lecture.
2.10 Proposition: Let Map be the (2, 1)-category whose objects are all continuous maps between

spaces, whose morphisms are commutative squares, and whose 2-morphisms are pairs of
homotopies H,K such that H(−, t) and K(−, t) make the square commute for all times t.
There are 2-functors

A/Top Map
Top

Top

dom

codom

F

If (f, g) is a morphism in Map between cofibrations and f and g are both homotopy equiva-
lences in Top, then (f, g) is a homotopy equivalence in Map.1

1 Note: this statement does not include Proposition 2.9 as a special case. If we are in the situation of Proposition
2.9, we may apply Proposition 2.10 to the pair (f, idA) and deduce that (f, idA) is a homotopy equivalence in Map.
But this is a weaker statement than f being a homotopy equivalence in A/Top. This is essentially because the
inclusion A/Top ↪→ Map is not surjective on 2-hom sets.
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2.11 Corollary: From Construction 1.22 and Example 2.7, we know that, for any map f : X → Y ,
there exists a factorisation of f as X → Z → Y , where the first map is a cofibration and
the second is a homotopy equivalence. This is unique, in the following sense. If we have a
commutative diamond

X Y

Z

Z ′

i1

i2

π1

π2

in which i1, i2 are cofibrations and π1, π2 are homotopy equivalences, then there is a map
h : Z → Z ′ that is a homotopy equivalence in X/Top and such that π2h ' π1.

2.12 Definition: The homotopy cofibre of f : X → Y is Cf = Z/i(X) ∈ Top∗, for any factorisation
π ◦ i : X → Z → Y of f into a cofibration i followed by a homotopy equivalence π.

2.13 Corollary: Cf is well-defined up to homotopy-equivalence in Top∗.
- Proof: apply Corollary 2.11 and the fact that Q : A/Top→ Top∗ (which is defined on objects
as Q(i : A→ X) = X/i(A)) is a 2-functor, and therefore takes homotopy equivalences rel. A
to based homotopy equivalences.

- Proof of Corollary 2.11, using Proposition 2.9 and the following:
- General fact: if ab ' c with b a cofibration, then there is a homotopy a ' â such that âb = c.

5. Monday 22 October
- Correction to proof of one direction of Proposition 2.6 from the last lecture (if A is a closed
subspace of X and the inclusion A ↪→ X is a cofibration, then (X,A) is an NDR-pair).

2.14 Facts: if i : A→ X is a cofibration, then:
(a) i is a topological embedding (continuous, injective, homeomorphism onto its image)

[Exercise on sheet 2]
(b) The canonical map s : Mi → X × [0, 1] is a continuous injection. If A is closed in X or

s(Mi) is a retract of X × [0, 1] then s is a topological embedding.
2.15 Lemma: Let i : A ↪→ X be an inclusion. Then i is a cofibration if and only if the inclusion

(A× [0, 1]) ∪ (X × {0}) ↪→ X × [0, 1] admits a retraction.
This follows from Lemma 2.3 and Sublemma 2.4.1.

2.16 Lemma: If i : A ↪→ X is a cofibration and Z is any space, then i × idZ : A × Z → X × Z is
also a cofibration.

2.17 Remark: If Z is locally compact, then the mapping cylinder Mi×idZ
is homeomorphic to

Mi×Z, and we could use Mi (with the pushout topology) instead of (A× [0, 1])∪ (X ×{0})
in the proof of Lemma 2.16.

- Proof of Proposition 2.9, in three steps:
(I) If A ↪→ X is a cofibration and f : X → X is a self-map such that f |A = idA and f ' idX ,

then f has a left-inverse up to homology rel. A, namely a self-map g : X → X such that
g|A = idA and gf ' idX rel. A.

- Proof: choose a homotopy H : f ' idX and apply the HEP for A ↪→ X to the maps
(idX , H|A×[0,1]) to obtain a homotopy K : idX ' g such that g|A = idA. Then apply the
HEP for A × [0, 1] ↪→ X × [0, 1] (by Lemma 2.16) to some carefully-constructed maps
to obtain a homotopy gf ' idX rel. A.

(II) In the setting of Proposition 2.9, f has a left-inverse up to homology rel. A (call it g).
- Proof: by reduction to the special case in step (I).

(III) This map g is also a right-inverse up to homotopy rel. A for f .
- Proof: apply step (II) again to g to obtain a left-inverse up to homotopy rel. A for g
(call it h), and then note that h ' f rel. A.

2.18 Corollary: if the inclusion i : A ↪→ X is a cofibration and a homotopy-equivalence, then it is
a strong deformation retract.

- Proof: apply Proposition 2.9 to the diagram

A

A

X.

i

idA

i
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2.19 Definition: the homotopy lifting property (HLP), fibrations (a.k.a. Hurewicz fibrations) and
Serre fibrations.

- Remark: there exist maps that are Serre fibrations but not Hurewicz fibrations (see exercise
sheet 2).

2.20 Proposition: p : E → B has the HLP for Y = [0, 1]n for all n > 0 if and only if it has the
HLP for all CW-complexes Y .

- Many statements for cofibrations dualise to the setting of fibrations, for example:
- The analogues of Propositions 2.9 and 2.10 hold.
- For any map f : X → Y there exists a factorisation f = π◦i : X → Z → Y such that i is
a homotopy equivalence and π is a fibration, and this factorisation is essentially unique
(cf. Corollary 2.11).

[To be stated more precisely and proved next lecture.]
- An obvious example of a Hurewicz (hence also Serre) fibration is the projection X ×B → B.
This generates many more examples, using the following local-to-global principle:

- Theorem: Let p : E → B be a map and U an open cover of B.
(a) If p|p−1(U) : p−1(U)→ U is a Serre fibration for all U ∈ U , then so is p.
(b) If p|p−1(U) : p−1(U)→ U is a Hurewicz fibration for all U ∈ U , and U is numerable, then
p is also a Hurewicz fibration.
[An open cover is numerable if it is locally finite (every b ∈ B has an open neighbourhood V
such that U ∩ V = ∅ for all but finitely many U ∈ U) and for each open set U ∈ U we have
B r U = λ−1(0) for some continuous map λ : B → [0, 1].]

- As a corollary, every fibre bundle is a Serre fibration and every fibre bundle that admits a
numerable trivialising open cover (such as any fibre bundle over a paracompact base space)
is a Hurewicz fibration. More on this (including a proof of the above theorem) next time.

6. Wednesday 24 October
2.20 Proposition: p : E → B is a Serre fibration if and only if it has the HLP for all CW-complexes

Y if and only if it has the HLP for all CW-pairs (Y,A).
- Here, the HLP for a pair of spaces (Y,A) means the right lifting property with respect to
the inclusion (Y × {0}) ∪ (A× [0, 1]) ↪→ Y × [0, 1].

- Note: the constant map E → {∗} is a fibration for any space E, so this proposition includes
the statement that the inclusion A ↪→ Y is a cofibration for any CW-pair (Y,A) (this was
Proposition 2.4).

2.21 Lemma: compositions and pullbacks of Serre/Hurewicz fibrations are Serre/Hurewicz fibra-
tions.

2.22 Remark: if C is a class of spaces, we may define C-fibration to mean satisfying the HLP for
all spaces in C, and then Lemma 2.21 is true for C-fibrations, for any class C.

2.23 Proposition (dual of 2.9): Suppose that p and q are fibrations and f is a homotopy equivalence
in the diagram

B

X

Y

f

p

q

Then there is a map g : Y → X such that pg = q and homotopies gf ' idX and fg ' idY
over B. This may be rephrased in terms of a 2-functor Top/B → Top, as in Proposition 2.9.

- Sketch proof.
2.24 Proposition (dual of 2.10): Suppose that (f, g) is a morphism in Map between fibrations, and

f and g are homotopy equivalences in Top. Then (f, g) is a homotopy equivalence in Map.
2.25 Remark: this does not contain Proposition 2.23 as a special case – cf. footnote on page 7.
2.26 Proposition: For any map f : X → Y there is a factorisation of the form f = pi : X → Z → Y

with i a homotopy equivalence and p a fibration. This is unique in the sense that, if we have
a commutative diamond
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X Y

Z

Z ′

i1

i2

p1

p2

in which i1, i2 are homotopy equivalences and p1, p2 are fibrations, then there is a map
h : Z → Z ′ that is a homotopy equivalence in Top/Y and such that hi1 ' i2.

- Proof. For the existence we define Nf to be the subspace ofX×Path(Y ) = X×Map([0, 1], Y )
of pairs (x, γ) such that f(x) = γ(0). This is the dual of the mapping cylinder construction.
The map f factors through Nf via x 7→ (x, constf(x)) and (x, γ) 7→ γ(1). Then one has to
check that these maps are a homotopy equivalence and a fibration respectively. The proof of
uniqueness is exactly dual to Corollary 2.11.

2.27 Definition: The homotopy fibre of f : X → Y is Ff = p−1(∗Y ) ∈ Top, for any factorisation
of f into a homotopy equivalence followed by a fibration p.

- Notes:
(1) This depends on a choice of basepoint ∗Y of Y .
(2) For comparison: the homotopy cofibre Cf does not depend on a choice of basepoint of

Y , and Cf is naturally a based space; the homotopy fibre Ff depends on a choice of
basepoint of Y , and Ff is naturally an unbased space.

(3) This definition is independent of the choice of factorisation, up to homotopy equiva-
lence. This follows from the uniqueness statement of Proposition 2.26 and the fact that
F : Top/B → Top (which, for a based space B, is defined on objects by F (p : X → B) =
p−1(∗B)) is a 2-functor, and therefore takes homotopy equivalences over B to homotopy
equivalences.

(4) Using our construction of Nf , one explicit model for Ff is the subspace of X×Path(Y )
of pairs (x, γ) such that γ(0) = f(x) and γ(1) = ∗Y .

2.28 Lemma: if the map p : E → B is a fibration and a homotopy equivalence, then is is shrinkable:
there exists a section s : B ↪→ E such that sp is fibrewise homotopic to idE .

- Proof: apply Proposition 2.23 to the diagram

B.

E

B

p

p

idB

2.29 Definition: an open cover U of B is numerable if
◦ every b ∈ B has an open neighbourhood V s.t. U ∩V 6= ∅ for only finitely many U ∈ U ,
◦ for every U ∈ U there is a continuous map λ : B → [0, 1] s.t. λ−1(0) = B r U .

2.30 Theorem: Let p : E → B be a map and U an open cover of B.
(a) If p|p−1(U) : p−1(U)→ U is a Serre fibration for all U ∈ U , then so is p.
(b) If p|p−1(U) : p−1(U)→ U is a Hurewicz fibration for all U ∈ U , and U is numerable, then

p is also a Hurewicz fibration.
- Proof of part (a). Given a homotopy lifting problem for [0, 1]n × {0} ↪→ [0, 1]n+1, pull back
the open cover U to the (n+ 1)-cube and subdivide it into a grid of Nn+1 subcubes of edge-
length 1

N such that each subcube is mapped into U ⊆ B for some U ∈ U . This is possible
for some N by the Lebesgue lemma. Then lift the homotopy over these subcubes, one at a
time (using Proposition 2.20).

2.31 Definition: if P is a property of topological spaces, we say that X ∈ Top is locally P if:
◦ for any x ∈ X and open neighbourhood U of x, there exists another open neighbourhood
V of x and a subset V ⊆ A ⊆ U such that A has property P.

2.32 Definition: for spaces X and Y , let Map(X,Y ) to be the set of continuous maps X → Y
with the open-open topology. This is the topology generated by the subbasis

{B(U, V ) | U open in X and V open in Y },

where B(U, V ) is the set of continuous maps f : X → Y such that f(U) ⊆ V and any open
cover of f−1(V ) admits a finite subcover of U .

2.33 Fact: if X and Y are Hausdorff, this coincides with the more usual compact-open topology.
2.34 Theorem: if A is locally compact, then the rule f 7→ (x 7→ (a 7→ f(x, a))) defines a bijection

Top(X ×A, Y ) ∼= Top(X,Map(A, Y ))
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for any topological spaces X and Y .
- Note that this is just a bijection between sets of continuous maps. We will discuss how this
can be improved to a homeomorphism between mapping spaces in the next lecture.

- We can take A = [0, 1], so homotopies may be equivalently viewed as maps to a pathspace.
Using this, we can reformulate the definition of (Hurewicz) fibrations p : E → B as follows.

2.35 Reformulation: Let Path(E) = Map([0, 1], E) with the open-open topology and let Np be
the construction of the proof of Proposition 2.26. Then p is a Hurewicz fibration if and only
if the map Path(E)→ Np defined by γ 7→ (γ(0), p ◦ γ) admits a section.

- Such a section is called a path-lifting function. (If p is a covering space, then there exists a
unique path-lifting function – in particular, covering spaces are Hurewicz fibrations.)

- Sketch of proof of part (b) of Theorem 2.30. Write p|U for the restriction of p to p−1(U)→ U
and sU : Np|U → Path(p−1(U)) for a choice of path-lifting function. There is an open cover
of Np given by V (U1, . . . , Uk) for k > 1 and Ui ∈ U , where (e, γ) ∈ V (U1, . . . , Uk) if and only
if γ([ i−1

k , ik ]) ⊆ Ui for all i. Using sU1 , . . . , sUk
one can construct a path-lifting function for p

defined on V (U1, . . . , Uk). Using the fact that U is numerable, one can then “glue together”
these various locally-defined path-lifting functions to obtain a globally-defined one using a
partition of unity. The details of this gluing are quite intricate – see chapter 7 of [May] for
the full details.

2.36 Definition: fibre bundles, trivialising open covers for (the base spaces of) fibre bundles.
2.37 Corollary:

(a) Every fibre bundle is a Serre fibration.
(b) Every fibre bundle that admits a numerable trivialising open cover is a Hurewicz fibra-

tion.
- Note: every open cover of a paracompact space has a numerable refinement, so every fibre
bundle over a paracompact base space is a Hurewicz fibration.

7. Monday 29 October
2.38 Aside on a “convenient category of topological spaces”.
(a) Definitions:

A topological space X is compactly generated if the following condition on a subset A ⊆ X
implies that it is closed in X:
(•) for every continuous a : K → X from a compact Hausdorff space, a−1(A) is closed in K.
A topological space X is weakly Hausdorff if, for every continuous map a : K → X from a
compact Hausdorff space K, its image a(K) is closed in X.

(b) Examples:
Any Hausdorff space is weakly Hausdorff.
All CW-complexes are compactly generated (and Hausdorff).
All locally compact spaces and all first-countable spaces (including metrisable spaces) are
compactly generated.

(c) For any space X, let kX have the same underlying set, but modify its topology so that its
closed subsets are precisely those satisfying condition (•) above. Note that the identity is a
continuous map kX → X. Also note that this map is a weak equivalence.

(d) For any compactly generated space X, consider all equivalence relations on X with the
property that the quotient is weakly Hausdorff. There is a smallest such equivalence relation:
the corresponding quotient of X is denoted X → hX.2

2 Note: in contrast to kX → X, the map X → hX is not always a weak equivalence, even if we assume that
X is compactly generated to begin with. Let Z be a countably infinite set with the cofinite topology. This is
first-countable, and therefore compactly generated. It is not path-connected (for a proof of this, see MO:48970).
However, it is easy to see that hZ is the one-point space, so the map Z → hZ does not induce an injection on π0,
so it is not a weak equivalence.
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(e) The operations k and h extend to functors in the following diagram:

Top

WH

CG

CGWH

k

k

h
(1)

In each case, k is a right adjoint to the inclusion and h is a left adjoint to the inclusion.
(f) Limits and colimits in CGWH: If we have a diagram in CGWH and take its colimit in Top, the

resulting space will be in CG but not necessarily in WH. Since h is a left adjoint, it preserves
colimits, so the colimit of the diagram in CGWH is obtained by applying the functor h to
the colimit in Top:

colimCGWH = h ◦ colimTop.

Similarly, if we have a diagram in CGWH and take its limit in Top, the resulting space will
be in WH but not necessarily in CG. Since k is a right adjoint, it preserves limits, so the
limit of the diagram in CGWH is obtained by applying the functor k to the limit in Top:

limCGWH = k ◦ limTop.

(g) In many important cases, the functor h is unnecessary to compute colimits in CGWH. If we
have a pushout diagram in CGWH in which one map is a closed inclusion, or if we have an
infinite sequence of closed inclusions in CGWH, then the colimit (in Top) of either of these
diagrams is already in CGWH, and we do not need to apply h. In particular this means
that, to construct CW-complexes, we may use colimits either in CGWH or in Top – they are
exactly the same thing for the relevant diagrams.

(h) Fact: if X and Y are (geometric realisations of) CW-complexes, then their product – in
the category CGWH – is the geometric realisation of a CW-complex (built using cells corre-
sponding to pairs of cells in X and in Y ).

2.39 An important adjunction:
- For CGWH spaces X and Y , let Map(X,Y ) be the set of continuous maps X → Y with
the k-ification of the compact-open topology, i.e. the result of applying the operation k from
2.38(c) above to the compact-open topology. With this topology, Map(X,Y ) is CGWH.

- Theorem: for all X,Y, Z ∈ CGWH, there is a natural homeomorphism

Map(X × Y,Z) ∼= Map(X,Map(Y,Z)).

- If X and Y are based CGWH spaces, let Map∗(X,Y ) ⊆ Map(X,Y ) be the set of continuous
maps that preserve the basepoint, with the subspace topology. Let X ∧ Y be the smash
product (X ×Y )/(X ∨Y ) where X ∨Y = (X ×{∗})∪ ({∗}×Y ). Here we of course take the
CGWH product topology on X × Y , i.e. the k-ification of the usual product topology. The
quotient X ∧ Y is again in CGWH because of the following general fact.

- If Z is a CGWH space and ∼ is an equivalence relation on Z such that {(z, z̄) | z ∼ z̄} ⊆ Z×Z
is closed, then Z/∼ is also CGWH.3

- Theorem: for all based CGWH spaces X,Y, Z, there is a natural homeomorphism

Map∗(X ∧ Y, Z) ∼= Map∗(X,Map∗(Y, Z)).

- Corollary: taking Y = S1 and applying π0, we see that for based CGWH spaces X,Z there
is a natural bijection

〈ΣX,Z〉 ∼= 〈X,ΩZ〉,

just as in Proposition 1.21.
(∗) Now we return to fibrations and cofibrations, and go back to working in the category Top of

all topological spaces (for the moment).
3 Without this condition, it is CG but not necessarily WH. Taking the quotient and applying h to the result is

equivalent to taking the closure of the equivalence relation in Z × Z and then taking the quotient.

12



2.40 Lemma: Suppose that f is a retract of g in the category Map of continuous maps between
spaces. If g is a (cofibration/fibration/homotopy equivalence), then so is f .
Proof: easy diagram chase.

2.41 Theorem: a strengthening of some things that we proved earlier about (co)fibrations:
(a) Any map f : X → Y may be factorised as

X Y,

Z

Z ′

f (2)

where the left-hand maps are closed cofibrations and the right-hand maps are fibrations, and
the maps X → Z ′ and Z → Y are homotopy equivalences.
[This strengthens (2.11) and (2.26).]
(b) Consider the commutative square

X B,

A E
f

g

i p (3)

where i is a closed cofibration and p is a fibration. If either i or p is a homotopy equivalence,
then there is a map X → E making the two triangles commute.

- Note that, for any space Y , the inclusion Y ×{0} ↪→ Y × [0, 1] is a closed cofibration and the
evaluation map ev0 : Path(Y )→ Y is a fibration, and these are both homotopy equivalences.
The statement of (b) therefore includes as special cases the statements that closed cofibrations
have the HEP for all spaces Y and fibrations have the HLP for all spaces Y .

2.42 Definition: a model category is a category C with all (small) limits and colimits, together
with a choice of three subclasses of morphisms of C, called Weq, Cof and Fib, such that:
(1) Weq contains all isomorphisms and, for composable morphisms f and g, if two out of
{f, g, gf} are in Weq, then so is the third.

(2) In the diagram (3), if i ∈ Cof and p ∈ Fib, and either i ∈Weq or p ∈Weq, then there
is a morphism X → E making the two triangles commute.

(3) Each morphism f : X → Y of C may be factorised as

X Y,

Z

Z ′

i

i′

p

p′

f (4)

with i ∈ Cof, p ∈ Fib ∩Weq, i′ ∈ Cof ∩Weq and p′ ∈ Fib.
(4) The three classes Cof,Fib,Weq are closed under taking retracts of morphisms in C.

2.43 Remark: by Lemma 2.40 and Theorem 2.41, the category Top has a structure of a model
category given by
◦ Weq = {homotopy equivalences}
◦ Fib = {Hurewicz fibrations}
◦ Cof = {closed cofibrations}

2.44 Note: an equivalent definition of model category is given by axioms (1), (3) and:
(2)′ In the diagram (3),

i ∈ Cof ⇐⇒ for any p ∈ Fib ∩Weq . . .

i ∈ Cof ∩Weq ⇐⇒ for any p ∈ Fib . . .

p ∈ Fib ⇐⇒ for any i ∈ Cof ∩Weq . . .

p ∈ Fib ∩Weq ⇐⇒ for any i ∈ Cof . . .
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. . . for any morphisms f, g of C making the square commute, there exists a diagonal
morphism h : X → E making the two triangles commute.

[Note that axiom (2) is exactly the implications =⇒.]
- It then follows that (Weq,Fib) determines Cof and that (Weq,Cof) determines Fib.

2.45 We may use this language to concisely summarise the key properties of several variations on
the notion of fibration and cofibration. There exist model structures on Top with:

Weq Fib Cof
(H) homotopy equivalences Hurewicz fibrations closed cofibrations
(Q) weak homotopy equivalences Serre fibrations (1)
(M) weak homotopy equivalences Hurewicz fibrations (2)

The class (1) is smaller than the class of cofibrations, but contains all CW-pairs. Specifically,
it is the smallest class of maps that contains Sn−1 ↪→ Dn for all n > 0 and is closed
under retracts, disjoint union, pushouts and (possibly infinite) compositions.4 The class (2)
is necessarily larger than the class (1) (fewer fibrations with the same weak equivalences
implies more cofibrations), so in particular it also contains all CW-pairs.

- Moreover, we also obtain three different model structures on each of the other categories in
the diagram

CGWH∗ CGWH

Top∗ Top,

where the vertical functors are inclusions of full subcategories and the horizontal functors
forget the basepoint of a space, by defining Weq(H) ⊆ Mor(C) to be the class of all morphisms
that are mapped into Weq(H) ⊆ Mor(Top), etc., for each C.

8. Wednesday 31 October
2.46 Two remarks:

(a) In the category CGWH, if f : X → Y is a Serre fibration between CW-complexes, then
it is a Hurwicz fibration.

- Note that, since all CW-complexes are objects of CGWH and a map in CGWH is a
Serre fibration if and only if it is a Serre fibration in Top, an equivalent way to state
fact (a) is the following: if f : X → Y is a Serre fibration between CW-complexes, then
it has the homotopy lifting property for all CGWH spaces.

(b) In Top∗ (or CGWH∗) we may define a notion of based (co)fibration by using exactly the
same lifting/extension diagrams, but taking all spaces and maps to be based. However,
in the model structures discussed in (2.45) above, we use the unbased versions of these
notions: for example, the fibrations in the (H) model structure on Top∗ are exactly
those based maps that are Hurewicz fibrations when we ignore basepoints.

- Fortunately the notions of based and unbased (co)fibrations are not too different, as
we’ll see in a moment.

2.47 Definition: a based space X is non-degenerately based, or well-based, if the inclusion of the
basepoint {∗} ↪→ X is a cofibration.

- Note that every based space is homotopy equivalent (although not necessarily based homotopy
equivalent) to a well-based space: just factor the inclusion i : {∗} ↪→ X through the mapping
cylinder of i:

{∗} ↪−→Mi −→ X.

In other words X ' X∨ [0, 1], where we use the basepoint 0 of the interval to take the wedge,
but then consider the wedge sum X ∨ [0, 1] = Mi as a based space with the basepoint 1.

2.48 Proposition: Let f : X → Y be a map of based spaces.
(i) If f is an unbased cofibration, then f is a based cofibration.

The reverse implication also holds if X and Y are well-based.

4 For a diagram in Top indexed by an ordinal, the transfinite composition is defined recursively, in the usual way
for a successor ordinal and by taking the colimit for a limit ordinal.
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(ii) If f is a based fibration, then f is an unbased fibration.
If f is an unbased fibration, then f has the based HLP for all well-based spaces.

(iii) For Serre fibrations, the statement is simpler, since all cubes are well-based:
The map f is a based Serre fibration if and only if it is an unbased Serre fibration.

(∗) From now on, we will work in the full subcategory of CGWH spaces, unless otherwise specified
(although many things will also work in the category of all topological spaces).

- In particular, limits and colimits will be taken in this category. For limits, this means
computing the limit in Top and then (if necessary) applying the functor k. This is only
a mild complication, since kX is always weakly homotopy equivalent to X. For colimits,
we have to compute the colimit in Top and then (if necessary – i.e. if the result is not
already weakly Hausdorff) apply the functor h. This is a bigger problem than in the case of
limits, because there are compactly generated spaces Z such that hZ is not weakly homotopy
equivalent to Z (see exercise D of the optional exercises). However, for the kinds of diagrams
that we will need to take colimits of (sequences of closed inclusions, pushout diagrams in
which at least one map is a closed inclusion), the colimit in Top will already be weakly
Hausdorff, so this issue will not arise.

- The mapping space Map(X,Y ) will always be given the k-ification of the compact-open
topology.

- Quotients: for any equivalence relation ∼ on a CGWH space X, the quotient X/∼ is always
CG, and it is WH if and only if ∼ is closed as a subspace of X × X. We may therefore
obtain a CGWH space in two different ways: take the closure of the equivalence relation in
X ×X and then take the quotient, or take the quotient by ∼ and then apply the functor h;
these are naturally homeomorphic: X/∼ ∼= h(X/∼). We will always implicitly do this when
taking quotients in CGWH (but we will very rarely need non-closed equivalence relations, so
we will almost always just take the ordinary quotient).

2.49 Constructions:
(a) The double mapping cylinder M(X, f, g) for maps f : Y ← X → Z : g in Top∗.
(b) The double pathspace P (X, f, g) for maps f : Y → X ← Z : g in Top∗.

- If f and g are inclusions of subspaces, we write P (X,Y, Z) = P (X, f, g).
- Some special cases are:

CX = M(X, idX , X → {∗})
ΣX = M(X,X → {∗}, X → {∗})
Mf = M(X, f, idX) (mapping cylinder)
Cf = M(X, f,X → {∗}) (homotopy cofibre)
PX = P (X,X, {∗})
ΩX = P (X, {∗}, {∗})
Nf = P (X, f,X)
Ff = P (X, f, {∗}) (homotopy fibre)

2.50 Definition: the (based) cofibre sequence of a map f : X → Y in Top∗:

X Y Cf ΣX ΣY ΣCf Σ2X Σ2Y · · ·
f i(f) π(f) −Σf −Σi(f) −Σπ(f) Σ2f

' (−Σ)2f

2.51 Theorem: For any Z ∈ Top∗, applying the functor 〈−, Z〉 : Top∗ → Set∗ to this sequence
results in an exact sequence of pointed sets.

2.52 If we apply 〈−, Z〉 to the cofibre sequence, we get a sequence of groups starting from the 4th
term, and a sequence of abelian groups from the 7th term. A sequence of (abelian) groups is
exact if and only if it is exact when regarded as a sequence of pointed sets, so Theorem 2.51
tells us that cofibre sequences give rise to exact sequences of (abelian) groups from the 4th
term (resp. 7th term) term onwards.

2.53 Definition: let us call a diagram A→ B → C in Top∗ a triple.
- A triple is called coexact if the induced sequence 〈A,Z〉 ← 〈B,Z〉 ← 〈C,Z〉 is exact for all
Z ∈ Top∗.
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- More generally, we say that a sequence in Top∗ is coexact if it is taken to an exact sequence in
Set∗ by 〈−, Z〉 for every Z ∈ Top∗. So Theorem 2.51 says that cofibre sequences are coexact.

- Two triples A→ B → C and A′ → B′ → C ′ are homotopy equivalent if there are homotopy
equivalences A → A′, B → B′ and C → C ′ making the squares commute up to homotopy.
(Here we mean based homotopy equivalences and “up to based homotopy”.)

- Observation: homotopy equivalences of triples preserve coexactness.
2.54 Lemma:

(a) Triples of the form

X Y Cf
f i(f) (5)

are coexact.
(b) Each triple of the form

Y Cf ΣX
i(f) π(f) (6)

is homotopy equivalent to a triple of the form (5).
(c) Each triple of the form

Cf ΣX ΣY
π(f) −Σf (7)

is homotopy equivalent to a triple of the form (6).
(d) Applying the functor −Σ: Top∗ → Top∗ to a triple of the form (5)/(6)/(7) results in a

triple that is homotopy equivalent to one of the form (5)/(6)/(7).
- Note that Theorem 2.51 follows from this sequence of lemmas.
- Proof (given in detail in the lectures, but just a sketch here):

(a) This is easy to see, unwinding the definitions.
(d) This is also easy to construct. For example, for −Σ of a triple of the form (5), we can

construct a homotopy equivalence of triples to one of the form (5) (with f replaced
by −Σf) using the homeomorphism ΣCf ∼= C−Σf that swaps the cone and suspension
coordinates and inverts the suspension coordinate.

(b+c) This is a little more tricky. There is a map ϕ : Ci(f) → ΣX collapsing the subspace
CY ⊆ Ci(f) to a point, which makes the appropriate squares commute up to homotopy.
Using the fact that i(f) : Y ↪→ Cf is a cofibration, we may construct a homotopy inverse
for ϕ as

ΣX Cf Cf × [0, 1] Mi(f) Ci(f),
x 7→ (x, 1) r

where the wrong-way arrow on the left means that the map Cf → Ci(f) factors through
the quotient Cf � ΣX and therefore induces a well-defined map ΣX → Ci(f). Therefore
(6)/(7) are homotopy equivalent to (5)/(6) with f replaced by i(f).

9. Monday 5 November
2.55 Definition: the (based) fibre sequence of a map f : X → Y in Top∗:

YXFfΩYΩXΩFfΩ2YΩ2X· · ·
fp(f)j(f)−Ωf−Ωp(f)−Ωj(f)Ω2f

' (−Ω)2f

2.56 Definition: a sequence in Top∗ is exact if it is taken to an exact sequence in Set∗ by the
contravariant functor 〈Z,−〉 for every Z ∈ Top∗.

2.57 Theorem: the fibre sequence of any map f : X → Y in Top∗ is exact.
- Proof: dual to that of Theorem 2.51 (last week).
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2.58 Lemma: there are natural isomorphisms πn(P (X,A, {∗})) ∼= πn+1(X,A, ∗) for any pair of
spaces (X,A) and all n > 0.

- Note that P (X,A, {∗}) = Fi, where i is the inclusion A ↪→ X.
2.59 Corollary: For any pair of spaces (X,A), applying the functor π0 = 〈S0,−〉 : Topop

∗ → Set∗
to the fibre sequence of the inclusion A ↪→ X recovers the long exact sequence of the pair
(X,A) (this was Proposition 1.9).

2.60 Definition: a map f : X → Y in Top is a quasifibration if and only if the inclusion

f−1(y) ↪−→ Ff,y

is a weak homotopy equivalence for each y ∈ Y . (Note: since Y is not a based space, we
have to choose a basepoint to define the homotopy fibre Ff , and the notation Ff,y means the
homotopy fibre of f using y ∈ Y as the basepoint.)

2.61 Lemma: if f : X → Y in Top∗ is a quasifibration, then there is a long exact sequence of
(pointed sets/groups) the form

· · · → πn(X) f∗−→ πn(Y )→ πn−1(F )→ πn−1(X) f∗−→ πn−1(Y )→ · · · ,

where F = f−1(∗).
- Proof: apply π0 to the fibre sequence of f and replace Ff with f−1(∗) via the isomorphisms
on πn induced by the inclusion.

2.62 Proposition: The following implications hold for a map f : X → Y in Top.

f is a Hurewicz fibration f is a Serre fibration

f−1(y) ↪→ Ff,y is a homotopy
equivalence for all y ∈ Y f is a quasifibration

⇒

⇒

⇒ ⇒

- Proof (given in detail in the lectures, but just a sketch here):
· The horizontal implications are immediate from the definitions.
· The left-hand vertical implication uses the viewpoint of Hurewicz fibrations as maps for which
there is a section (path-lifting function) of the map

Path(X) = P (X,X,X) −→ P (Y, f, Y ) = Nf

in order to construct homotopy inverses for the inclusions f−1(y) ↪→ Ff,y.
· For the right-hand vertical implication: Let y ∈ Y and write F = f−1(y). We first showed
that the map f : (X,F )→ (Y, {y}) induces isomorphisms on all relative homotopy groups if
f is a Serre fibration. There is then a map of exact sequences from the LES of the pair (X,F )
to π0 of the fibre sequence of f . One third of these maps are the identities πn(X) = πn(X).
Another third are the maps f∗ : πn(X,F ) → πn(Y ) that we just showed are isomorphisms.
The last third are the maps πn(F )→ πn(Ff,y) induced by the inclusion F ↪→ Ff,y. By the 5-
lemma (plus a small extra argument for small n, where the sequences are of just pointed sets
or groups, rather than abelian groups), these are also isomorphisms, so f is a quasifibration.

2.63 Lemma: if f is a quasifibration in Top∗, its induced long exact sequence (from Lemma 2.61)
is isomorphic to the LES of the pair (X, f−1(∗)).

- Proof: this follows from the map of long exact sequences considered in the last part of the
proof above.

2.64 Proposition: the cofibre and fibre sequences of morphisms in Top∗ are natural, in other words
a commutative square of maps induces a map of sequences in Top∗. In particular, this implies
that the LES on π∗ induced by a quasifibration is also natural.

- Proof.
- Some important examples of fibre bundles (and therefore quasifibrations, inducing long exact
sequences of homotopy groups) are the Hopf bundles.

- Let F be one of the four R-algebras R,C,H,O (real numbers, complex numbers, quaternions,
octonions) and let n > 2 be an integer. (If F = O we assume that n = 2 or 3.) There is a
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continuous action of the topological group F× = F r {0} on Fn given by multiplication in
each coordinate.5 Restricted to Fn r {0}, this is a free action, whose quotient is called the
nth projective space FPn−1.

2.65 Proposition: the quotient map q : Fn r {0} −→ FPn−1 is a fibre bundle (and therefore also a
Hurewicz fibration, since the base space is compact, so paracompact).

- We therefore have a fibre sequence (up to homotopy equivalence) of the form

F× −→ Fn r {0} −→ FPn−1.

- Note: We usually just write the first three terms of a fibre sequence, and it is understood
that it continues infinitely to the left. In any case, a fibre sequence is determined by the first
map (by definition!), so we are not losing information this way.

- Topologically, the first two spaces are just Euclidean spaces minus the origin, so they are
homotopy equivalent to spheres and we may rewrite this homotopy fibre sequence as

Sd−1 −→ Snd−1 −→ FPn−1

for d = 1, 2, 4, 8.
2.66 Example: In particular, setting n = 2 we obtain four homotopy fibre sequences

(R) S0 −→ S1 2−→ S1 = RP1

(C) S1 −→ S3 η−→ S2 = CP1

(H) S3 −→ S7 ν−→ S4 = HP1

(O) S7 −→ S15 σ−−→ S8 = OP1

In the first case, we just obtain the double covering of S1 over itself. In the second case, the
map η : S3 → S2 is the famous Hopf bundle (more generally the maps Snd−1 → FPn−1 are
often called Hopf bundles too). Using the long exact sequence of homotopy groups induced by
the fibre sequence of η, and the fact that the higher homotopy groups of S1 vanish (because
its universal cover is R, which is contractible), we see that η induces isomorphisms

πi(S3) ∼= πi(S2)

for all i > 3.
3. The Blakers-Massey theorem
3.1 Theorem: Let X be a space and A,B ⊆ X open subsets such that X = A∪B and A∩B 6= ∅.

We summarise this by saying that (X,A,B) is a triad6 Assume that the inclusions

A ∩B ↪−→ A

and A ∩B ↪−→ B

are p-connected and q-connected respectively, for integers p, q > 0. (We summarise this by
saying that the triad (X,A,B) is (p, q)-connected.) Then the inclusion

P (A,A,A ∩B) ↪−→ P (X,A,B)

is (p+ q − 1)-connected.
5 The construction that we give here works as long as F is an associative R-algebra, which is the case for R, C

and H. However, O is non-associative, and therefore the construction that we give does not work. The problem is
that O× is not a group, so we cannot produce an equivalence relation on On r {0} using an action of O×. One can
get around this by trying to define an appropriate equivalence relation on On r {0} directly, to obtain OPn−1. This
can be done for n = 2, 3 with some care, using the fact that O is 2-associative (any subalgebra of it that is generated
by 2 elements is associative). This is why we have to assume that n = 2 or 3 when F = O; there is no object called
OPk for k > 3. One could try to continue: the Cayley-Dickson construction D takes an algebra with involution
to another algebra with involution. If we start with R with the trivial involution, then the algebras C,H,O are
precisely Dr(R) for r = 1, 2, 3. So we could try to produce projective spaces from D(O) = D4(R), the sedenions,
and more generally Dr(R) for all r. However, Dr(R) is not associative — nor even 2-associative — for r > 4, so we
cannot apply the trick used in the case of O to define a projective plane.

6 This is often called an excisive triad.
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- Proof: next lecture(s).
3.2 Lemma: Let i : E1 ↪→ E2 be an inclusion and let g : E2 → B be a Serre fibration such that

f = g◦ i : E1 → B is also a Serre fibration (this is sometimes called a relative Serre fibration):

E1 E2

B

i

f g

Also fix n > 0. Then i : E1 ↪→ E2 is n-connected if and only if for every b ∈ B, the restriction
of i to ib : f−1(b) ↪→ g−1(b) is n-connected.

- Proof: for b ∈ B there is a map of fibre sequences, and therefore a map of long exact
sequences. If we can prove the lemma for n = 0, 1, then for n > 2 we will be able to prove it
just using the 5-lemma (or, more precisely, the two 4-lemmas), since we have a map of long
exact sequences of abelian groups and we can do homological algebra. (Note: the fact that
we have to say “for all b ∈ B” in the statement comes from the fact that “n-connected” for a
map means that it induces isomorphisms/surjections on homotopy groups in a certain range
of degrees for all possible choices of basepoint.) It therefore remains to prove the lemma for
n = 0 and n = 1.

- Proof for n = 0: the direction ⇐ is immediate from the definitions. For the direction ⇒: we
know that any point e ∈ E2 is connected by a path γ to a point in E1, and we need to show
that there is moreover a path contained within the fibre g−1(g(e)) that connects e to a point
of E1 ∩ g−1(g(e)) = f−1(g(e)). We can do this by first lifting the path g ◦ γ up the Serre
fibration f to a path δ that also covers g ◦ γ and δ(1) = γ(1). We then use the HLP for g as
follows:

The restriction of K to the left, top and right sides of the square is a path contained in the
fibre g−1(b) where b = g(e) starting at e and ending at δ(0) ∈ f−1(b).

- Proof for n = 1. Let b ∈ B and e ∈ f−1(b). We’ll show that the map induced by inclusion

π1(g−1(b), f−1(b), e) −→ π1(E2, E1, e) (8)

is an isomorphism. The proof of surjectivity is quite similar to the second half of the proof
for n = 0 above. Let γ be a path starting at e and ending in E1, representing an element
[γ] ∈ π1(E2, E1, e). As above, lift g◦γ up f to a path δ. Note that [γ] = [γ∗δ̄] ∈ π1(E2, E1, e),
where δ̄ means the reverse of δ. Using the HLP for g exactly as above and restricting K to
the left, top and right sides of the square, we obtain a path ν such that [ν] = [γ ∗ δ̄]. Clearly
[ν] is in the image of the map (8).
· For injectivity, see Figure 1 on page 49. The restriction of L to the back face of the 3-cube
is a homotopy γ ∗ e ' δ ∗ e through maps of triples ([0, 1], {0}, {1})→ (g−1(b), f−1(b), {e}),
and therefore

[γ] = [γ ∗ e] = [δ ∗ e] = [δ] ∈ π1(g−1(b), f−1(b), e).

3.3 Corollary: (version II of the Blakers-Massey theorem) If (X,A,B) is a (p, q)-connected triad
for p, q > 0, then the map induced by inclusion

πn(A,A ∩B) −→ πn(X,B)
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is an isomorphism for n 6 p+ q − 1 and surjective for n 6 p+ q.
- Note: this is analogous to the excision theorem for homology, where πn is replaced with Hn.
For homology, there is no hypothesis on the connectivity of the triad, and the map induced
by the inclusion (A,A∩B) ↪→ (X,B) is an isomorphism on relative homology in all degrees.
The Blakers-Massey theorem is therefore a weak form of excision for homotopy groups.

- Proof of Corollary 3.3: Evaluation of a path at 0 defines a relative Hurewicz fibration (and
therefore a relative Serre fibration)

P (A,A,A ∩B) P (X,A,B)

A

i

ev0 ev0

Apply Lemma 3.2 to this, and recall that in general πn(P (Z, Y, {∗})) ∼= πn+1(Z, Y, ∗) (see
Lemma 2.58).

10. Wednesday 7 November
3.4 Corollary: (version III of the Blakers-Massey theorem) Let (X,A,B) be a triad and assume:

πn(A,A ∩B) = 0 for 1 6 n 6 p
πn(B,A ∩B) = 0 for 1 6 n 6 q,

for integers p, q > 0. Then the map induced by inclusion

πn(A,A ∩B) −→ πn(X,B)

is an isomorphism for 1 6 n 6 p+ q − 1 and surjective for 1 6 n 6 p+ q.
- Note: this is almost identical to version II (Corollary 3.3), except that there is no hypothesis
on π0(A,A ∩B) or π0(B,A ∩B), and no conclusion about the induced map on π0.

- Proof, by applying Corollary 3.3 to a related triad, with extra ad hoc arguments to deal with
π0 issues.

3.5 Corollary: (version IV of the Blakers-Massey theorem) Let (X,A,B) be a triad. If (A,A∩B)
is p-connected then (X,B) is also p-connected.

- Proof: Apply Corollary 3.4 with q = 0. This tells us that πn(X,B) = 0 for 1 6 n 6 p. Then
an easy extra argument shows that π0(X,B) = 0 too.

3.6 Definition of the suspension homomorphism Σ∗ for a space X ∈ Top∗ and degree i > 0:

πi(X, ∗)
∼=←−− πi+1(CX,X, ∗) −→ πi+1(ΣX, {∗}, ∗) = πi+1(ΣX, ∗),

where the first arrow comes from the LES for the pair (CX,X) and is an isomorphism because
CX is contractible, and the second arrow is induced by the quotient map q : CX → ΣX that
collapses the base of the cone to a point.

3.7 Lemma: there is a commutative diagram

πi(X, ∗) πi+1(C+X,X, ∗) πi+1(ΣX, ∗)

πi+1(ΣX,C−X, ∗),

∼= q∗

incl∗ incl∗

∼=

Σ∗

where C+X and C−X are the upper and lower cones of the suspension ΣX respectively, and
the diagonal map is an isomorphism since it is part of the LES for the pair (ΣX,C−X), and
C−X is contractible.

3.8 Theorem: (Freudenthal) If X ∈ Top∗ is n-connected, then

Σ∗ : πi(X) −→ πi+1(ΣX)

is an isomorphism for i 6 2n and surjective for i 6 2n+ 1.
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- Proof: we will apply the Blakers-Massey theorem (version II, i.e. Corollary 3.3) to the triad
(ΣX,C+X,C−X). To be rigorous we should thicken C+X and C−X slightly to open cones
on X contained in ΣX in order for this to be a triad, but this does not change the homotopy
types of any of the spaces, pairs of spaces or maps involved. Since X is n-connected, the LES
of the pair (CX,X) implies that (CX,X) is (n+1)-connected, so the triad (ΣX,C+X,C−X)
is (n+ 1, n+ 1)-connected. Corollary 3.3 then tells us that the vertical map in the diagram
above is an isomorphism for i+ 1 6 2n+ 1 and surjective for i+ 1 6 2n+ 2.

3.9 Example: for any i < n, any map Si → Sn is nullhomotopic (by the cellular approximation
theorem), so Sn is (n− 1)-connected. Theorem 3.8 therefore implies that

Σ∗ : πi(Sn) −→ πi+1(Sn+1)

is an isomorphism for i 6 2n− 2 and surjective for i 6 2n− 1. In particular, we have

π1(S1) −→→ π2(S2)
∼=−−→ π3(S3)

∼=−−→ π4(S4)
∼=−−→ · · ·

We know from covering space theory that π1(S1) ∼= Z, and then from the LES associated to
the Hopf fibre sequence S1 → S3 → S2 that π2(S2) ∼= Z. Any surjection Z→ Z must be an
isomorphism, so the first map above must also be an isomorphism. In particular this gives a
proof that πn(Sn) ∼= Z for all n > 1 (this can also be proved using the Hurewicz theorem).

3.10 We can put the abelian groups πi(Sn) into a table with n on the horizontal axis and j = i−n
on the vertical axis. The suspension homomorphisms are then arrows that go one step to
the right. They are isomorphisms underneath the line j = n− 2, and surjections just above
it. We have Z/2 at the origin (since π0(S0) ∼= Z/2) and then Z on the rest of the x-axis.
For each fixed j, the Freudenthal suspension theorem implies that the entries on the jth row
stabilise after π2j+2(Sj+2). The stable value is called πsj (the jth stable homotopy group of
the spheres), equivalently, we can just define πsj = π2j+2(Sj+2). By the previous discussion,
we know that πs0 ∼= Z. From the Hopf fibre sequence we also know that π3(S2) ∼= π3(S3) ∼= Z,
which is just above the stable range, so we have a surjection Z � π4(S3) ∼= πs1. It turns
out in fact that πs1 ∼= Z/2. Later in the course, we’ll prove that almost all of the homotopy
groups of spheres are finite, and in particular that πsj is finite for all j > 1.

- Now we’ll begin the proof of the Blakers-Massey theorem (Theorem 3.1).
3.11 Notation: a cube will mean any space of the form

∏n
i=1[ai, bi] for a1, . . . , an, b1, . . . , bn ∈ R

such that, for some ` > 0 and for every i ∈ {1, . . . , n}, either bi = ai or bi = ai + `. The
edge length of this cube is `. A face of this cube is any cube

∏n
i=1[a′i, b′i] such that, for each

i ∈ {1, . . . , n}, the interval [a′i, b′i] is either [ai, bi] or {ai} or {bi}. If t ∈ C =
∏n
i=1[ai, bi], its

ith coordinate ti is called small if ti < 1
2 (bi + ai). Note that this is impossible if bi = ai, so

a coordinate can only be small if the cube C has non-zero thickness in that coordinate. The
point t ∈ C is called p-small if it has at least p different coordinates that are small in this
sense. Note that this is impossible if p > dim(C). The set of all p-small coordinates of C is
denoted Smallp(C). We define Largep(C) similarly, using the inequality ti > 1

2 (bi + ai) to
define largeness of a coordinate ti. An elementary observation is that, if p+ q > n, then no
point t ∈ C can be simultaneously p-small and q-large, in other words:

Smallp(C) ∩ Largeq(C) = ∅.

This observation will be key to the proof of the Blakers-Massey theorem.
3.12 Lemma: Let C be a cube, f : C → Z a continuous map, Y ⊆ Z a subspace and p any integer

in the range 1 6 p 6 n = dim(C). Assume that, for any proper face C0 of C (proper means
that C0 6= C) we have

f−1(Y ) ∩ C0 ⊆ Smallp(C0),

in other words, any point on C0 that maps into Y under f is p-small in C0. Then there is
a homotopy f ' g relative to ∂C such that g−1(Y ) ⊆ Smallp(C), in other words, any point
of C that maps into Y under g is p-small in C. The same statement also holds with “small”
replaced by “large”.

- Proof.

21



3.13 Lemma: Let (X,A,B) be a (p, q)-connected triad for integers p, q > 0 and f : [0, 1]n → X a
continuous map. By the Lebesgue lemma, we know that there exists a regular subdivision of
the cube [0, 1]n into subcubes, such that for each cube C of the subdivision either f(C) ⊆ A or
f(C) ⊆ B. By a regular subdivision we mean that we have a choice ofN ∈ N, and then we take
the subdivision consisting of the cubes

∏n
i=1
[
ki−1
N , ki

N

]
for all (k1, . . . , kn) ∈ {1, . . . , N}n. So

we choose an N ∈ N such that the corresponding regular subdivision has the above property.
Then there exists a homotopy H : [0, 1]n × [0, 1] −→ X from f to g such that, for any cube
C of the subdivision,
(I) · if f(C) ⊆ A ∩B, then H|C×{t} = f |C for all t ∈ [0, 1], i.e. H is constant on C,
· if f(C) ⊆ A, then H(C × [0, 1]) ⊆ A,
· if f(C) ⊆ B, then H(C × [0, 1]) ⊆ B,

(II) · if f(C) ⊆ A, then g−1(X rB) ∩ C ⊆ Smallp+1(C),
· if f(C) ⊆ B, then g−1(X rA) ∩ C ⊆ Smallq+1(C).

- Proof: next lecture.

11. Monday 12 November
- Proof of Lemma 3.13.

3.14 Remark about where the hypothesis of (p, q)-connectivity is used in the proof of the Blakers-
Massey theorem and in the proof of Lemma 3.13.

- Proof of Theorem 3.1 (version I of the Blakers-Massey theorem).

12. Wednesday 14 November
3.15 Theorem: Let A,B ⊆ X such that X is the union of the interiors of A and B, and similarly

for A′, B′ ⊆ X ′. Let f : X → X ′ be a continuous map such that f(A) ⊆ A′ and f(B) ⊆ B′.
Suppose that f |A : A→ A′ and f |B : B → B′ are n-connected and f |A∩B : A ∩B → A′ ∩B′
is (n− 1)-connected. Then f is n-connected.

3.16 Corollary: a version of this theorem for arbitrary open covers, instead of covers by just two
subsets.

- Proof.
3.17 Fact about closed cofibrations (NDR-pairs): Suppose that g is the pushout along a closed

cofibration of a map f . If f is a homotopy equivalence, then so is g.
In particular, if the inclusion A ↪→ X is a closed cofibration and A is contractible, then the
quotient map X → X/A is a homotopy equivalence.

3.18 Corollary: Let f : X → Y be a map between well-based spaces. If f is n-connected, then Σf
is (n+ 1)-connected.

- Proof.
- Correction: in the statement of the Freudenthal suspension theorem (Theorem 3.8), X should
be assumed to be well-based, so that in the proof we may replace the based suspension with
the unbased suspension (without changing homotopy type).

3.19 Corollary: Sn is (n− 1)-connected.
- (Of course, this also follows from the cellular approximation theorem.)
4. Representability theorems
4.1 Definition: the categories CW∗, CWfd

∗ and CWf
∗.

4.2 Theorem (Brown): Let C be one of the above three categories and let T : Cop → Set be a
homotopy-invariant functor satisfying the wedge axiom (W) and the Mayer-Vietoris axiom
(MV). Also assume that T is not the functor sending every object to the empty set. In
the case when C = CWf

∗, assume that T (Sn) is countable for all n > 1. Then there exists
Z ∈ CW∗ and a natural isomorphism

T ∼= 〈− , Z〉 : Cop −→ Set.

Moreover, if 〈− , Z〉 ∼= 〈− , Z ′〉 for Z,Z ′ ∈ CW∗, then Z ' Z ′.
- NB: A homotopy-invariant functor T satisfying the wedge and Mayer-Vietoris axioms is called
half-exact.

4.3 Remarks:
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(1) When C = CW∗, the uniqueness statement follows from the Yoneda lemma.
(2) Remark about half-exact and exact functors.
(3) Reformulation of the (MV) axiom when T factors through the category of abelian

groups.
4.4 Example: reduced singular homology in degree k > 0 with coefficients in A.
4.5 Definition: the Eilenberg-MacLane space K(A, k).
4.6 Theorem (Adams): Take C = CWf

∗ in Theorem 4.2, but instead of assuming that T (Sn) is
countable for all n, assume that T factors as

CWf
∗

T ′−→ Group −→ Set.

Then T ∼= 〈− , Z〉 for some Z ∈ CW∗. Moreover, T ′ ∼= 〈− , Z〉 for some weak H-group Z.
4.7 Definition of weak homotopy and weak H-group in CW∗.
4.4 Example (cont.): the homotopy class K(A, k) contains a weak H-group.
- We’ll first prove Theorem 4.2 for C = CWfd

∗ .
4.8 Definition: pro-universal sequence (for a CW-complex Y and a functor T ).
4.9 Observation: the functor T is represented by Y if and only if there exists a pro-universal

sequence for (T, Y ).

13. Monday 19 November
- Fix a half-exact functor T : (CWfd

∗ )op −→ Set.
4.10 Observations:

(a) For each X ∈ CWfd
∗ , the set T (X) is naturally based. In other words, T factors through

the category of based sets.
(b) If X is a co-H-group, then T (X) is a group. In particular, T (Sn) is a group for all

n > 1.
4.11 Lemma: Let θ : T → U be a natural transformation between half-exact functors. Fix n > 1.

Assume that T (Sm) → U(Sm) is a bijection for all m 6 n − 1 and a surjection for m = n.
Then, for all X ∈ CWfd

∗ , the function T (X)→ U(X) is a bijection if dim(X) 6 n− 1 and a
surjection if dim(X) = n.

4.12 Lemma: for any Y ∈ CW∗, the functor 〈− , Y 〉 : (CWfd
∗ )op → Set is half-exact.

- Proof of Theorem 4.2 (existence statement) for C = CWfd
∗ . (Construct, recursively on n, the

n-skeleton Y n of Y ∈ CW∗ and a pro-universal sequence un ∈ T (Y n).)
4.13 Sublemma: the (MV) axiom applies not just to diagrams of inclusions of subcomplexes, but

also more generally, for example to the pushout square that attaches n-cells to an (n − 1)-
dimensional CW-complex. (Proof uses Fact 3.17.)

4.14 Lemma: Let X,Y be pointed CW-complexes, let un ∈ T (Xn) be a compatible sequence and
let vn ∈ T (Y n) be a pro-universal sequence. Then there exists a cellular map f : X → Y
such that

T (fn : Xn → Y n)(vn) = un

for all n.
- Proof

4.15 Lemma: In the previous lemma, if un is also pro-universal, then f is a homotopy equivalence.
- Proof.

4.16 Theorem: Let T and U be half-exact functors (CWfd
∗ )op −→ Set and let X and Y be pointed

CW-complexes. Suppose we have natural isomorphisms θ : 〈− , X〉 ∼= T and ϕ : 〈− , Y 〉 ∼= U .
(a) If σ : T → U is any natural transformation, there is a cellular map f : X → Y such that

the following square commutes:

T U

〈− , X〉 〈− , Y 〉

θ ϕ

σ

f ◦ −

(9)

(b) If σ is a natural isomorphism, then f is a homotopy equivalence.
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- Note: this implies the uniqueness statement of Theorem 4.2 for C = CWfd
∗ .

14. Wednesday 21 November
- Proof of Theorem 4.16.

4.17 Remark about the proof in the case of C = CWf
∗. The difficulty is that, in the construction

of the CW-complex Y representing T , we need to attach n-cells indexed by the sets T (Sn)
and ker(πn−1(Y n−1)→ T (Sn−1)). Even if we assume that T (Sn) is finite for all n, the kernel
may not be finite, even if Y n−1 is a finite complex. We can modify the construction to attach
n-cells indexed just by a generating set of this kernel, but this still doesn’t help since finite
CW-complexes may have non-finitely-generated homotopy groups (the standard example is
π2(S1 ∨ S2)).
The idea is instead to assume that the T (Sn) are all countable, and, as a first (technical!)
step, to show that T extends to the category of based, countable CW-complexes, satisfying
the wedge axiom and a slightly weaker form of the Mayer-Vietoris axiom. Then we may
proceed as before, attaching cells indexed by T (Sn) and by ker(πn−1(Y n−1)→ T (Sn−1)) to
construct a CW-complex representing T . Here, we use the fact that the homotopy groups of
countable CW-complexes are countable – a fact that follows by induction from the fact that
the homotopy groups of spheres are countable.

4.18 Remark about the proof in the case of C = CW∗. The method for CWfd
∗ applies to give us a

CW-complex Y and a natural isomorphism 〈− , Y 〉 ∼= T that is defined on the subcategory
CWfd

∗ ⊂ CW∗. We therefore need to extend this.
4.19 Definition: a universal element u ∈ T (Y ) for a functor T : (CW∗)op → Set.
4.20 Lemma: if Y ∈ CW∗ and T : (CW∗)op → Set is half-exact, then

limn(T (Y n))� T (Y ) (10)

is surjective.
4.21 Corollary: there is a universal element u ∈ T (Y ).

- From this we get a natural transformation 〈− , Y 〉 → T that is defined on all CW-complexes,
and which agrees with the previous natural isomorphism on finite-dimensional CW-complexes.
However, we cannot directly use Lemma 4.20 to deduce that it is an isomorphism also for
infinite-dimensional CW-complexes, since we only have surjectivity of (10), not injectivity.
Counterexamples that show the failure of injectivity can be given by so-called phantom maps
(examples coming soon).

- Instead, we use an infinite-dimensional analogue of Lemma 4.14.
4.22 Lemma: Let T : (CW∗)op → Set be half-exact, v ∈ T (Y ) a universal element and u ∈ T (X)

any element. Also let A ⊆ X be a subcomplex and f0 : A → Y a based, cellular map such
that T (f0)(v) = T (A ↪→ X)(u). Then f0 extends to a cellular map f : X → Y such that
T (f)(v) = u.

- Proof of Theorem 4.2 for C = CW∗.
4.23 Examples of phantom maps and weak phantom maps. (See also optional exercise F.)
4.24 Definition: C-homotopy and C-H-group for any full subcategory C ⊆ CW∗.
4.25 Observation: if Y is a C-H-group, then 〈− , Y 〉 is a functor to the category of groups.
4.26 Theorem: Let C be one of CW∗, CWfd

∗ or CWf
∗, as in Theorem 4.2, and let

T : Cop −→ Group

be a half-exact functor. Then there is a C-H-group Y and a natural isomorphism 〈− ,Y 〉 ∼= T .
- Sketch of proof of why Y has a structure of a C-H-group.

15. Monday 26 November
4.27 Definition: reduced cohomology theories on the category cw∗ of based CW-complexes (whose

basepoint is a 0-cell) and based, continuous maps. (Two versions of the definition, either
with a connecting homomorphism or with a suspension isomorphism.)

4.28 Remarks:
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(a) These two definitions are equivalent.
(b) We could define this on the category Top∗ instead of cw∗, and require that weak homo-

topy equivalences are taken to isomorphisms. By CW-approximation, such an object is
determined by its restriction to cw∗ ⊂ Top∗. By Whitehead’s theorem, this restriction
is exactly the type of object defined above. For example, singular cohomology extends
in this way, but Čech cohomology does not.

4.29 Lemma: if {hn} is a cohomology theory, then each hn is a half-exact functor (when restricted
to CW∗ ⊂ cw∗).

- Proof. (This is essentially part of the derivation of the Mayer-Vietoris sequence from the
long exact sequence of a pair.)

4.30 Corollary: there is therefore a based, connected CW-complex Yn such that 〈−,Yn〉 ∼= hn|CW∗ .
4.31 Definition: reduced homology theory on the category cw∗.
4.32 Remarks on the axioms:

(a) As in the proof of Lemma 4.29 (in the case of cohomology), the exactness axiom implies
the existence of Mayer-Vietoris sequences, which implies the wedge axiom for finite
collections of objects.

(b) There is another axiom, called the direct limit axiom (DL). This axiom implies the wedge
axiom (idea: use the direct limit axiom to break up a wedge into its finite subcomplexes,
then use the finite wedge axiom inside the direct limit to rewrite the wedge as a direct
sum). In fact, the direct limit axiom is equivalent to the wedge axiom (in the presence
of the exactness axiom), but the other implication is more complicated to prove.

4.33 Definitions of (naive, or pre-)spectrum, Ω-spectrum, infinite loopspace as well as the homotopy
groups of a spectrum.

- Side note: Theorem (Milnor): if Z is a zero-based CW-complex (based CW-complex whose
basepoint is a 0-cell), then ΩZ is homotopy equivalent to a zero-based CW-complex.

4.34 Remark on the homotopy groups of an Ω-spectrum.
4.35 Example: the suspension spectrum of X ∈ cw∗. Its homotopy groups are the stable homotopy

groups of X.
- Note: one may define morphisms and 2-morphisms (homotopies) of spectra and Ω-spectra in
the obvious (“naive”) way, and therefore obtain 2-categories Ω-Spec ⊆ Spec. We may also
define morphsisms of (co)homology theories in the obvious way, as sequences of natural trans-
formations commuting with the given suspensions isomorphisms, and so we have categories
Coh and Hom that may be thought of as 2-categories by declaring all of their 2-morphisms
to be identities.

4.36 Theorem: there is a 2-functor Ω-Spec −→ Coh, given on objects by

{Yn, fn} 7−→ (〈− , Yn〉, (fn ◦ −) ◦ Σ),

that induces a bijection of equivalence classes of objects and surjections of equivalence classes
of morphisms. In other words, every cohomology theory is represented by an Ω-spectrum that
is unique up to homotopy equivalence, and every morphism between cohomology theories
is represented by a morphism between the corresponding Ω-spectra (but this representing
morphism is not unique up to homotopy in general).

4.37 Example: the Eilenberg-MacLane Ω-spectrum HG, for an abelian group G, represents singu-
lar cohomology with coefficients in G.

16. Wednesday 28 November
4.38 Definition: the smash product X ∧ Y of X ∈ cw∗ and a spectrum Y .
4.39 Theorem: there is a 2-functor Spec −→ Hom, given on objects by

Y 7−→
(
hn(X) = πn(X ∧ Y ) , σn(X) = colimit of suspension homomorphisms

)
,

that induces a bijection of equivalence classes of objects and surjections of equivalence classes
of morphisms. In other words, every homology theory is represented7 by a spectrum that is

7 This is an informal use of the word “represented”.
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unique up to homotopy equivalence, and every morphism between homology theories is rep-
resented by a morphism between the corresponding spectra (but this representing morphism
is not unique up to homotopy in general).

- Note: For cohomology theories, we need to assume that Y is an Ω-spectrum in order to ensure
that the suspension isomorphisms that we define really are isomorphisms. On the other hand,
for homology theories, we do not need to assume this: the Freudenthal suspension theorem
implies that the suspension isomorphisms, as defined, really are isomorphisms.

4.40 Example: the Eilenberg-MacLane spectrum HG, for an abelian group G, represents singular
homology with coefficients in G via Theorem 4.39.

4.41 Construction: there is a 2-functor ω : Spec −→ Ω-Spec ⊆ Spec given on objects by

Y 7−→ (ωY )n = the mapping telescope of the sequence Yn → ΩYn+1 → Ω2Yn+2 → · · ·

together with canonical weak equivalences (ωY )n → Ω(ωY )n+1 given by the up-to-homotopy
universal property of mapping telescopes (homotopy colimits). (We should also either take
a functorial CW-approximation of this as a second step, or appeal to the theorem of Milnor
mentioned just after Definition 4.33 to ensure that this is a diagram of CW-complexes.)

- We may therefore associate a cohomology theory to any spectrum via

Y 7−→ hn(−) = 〈− , (ωY )n〉.

4.42 Remarks:
(a) The functor ω is idempotent up to homotopy equivalence on objects, i.e., ω2Y ' ωY .
(b) For any X ∈ cw∗ and spectrum Y , we have πn(X∧Y ) ∼= πn(X∧(ωY )), so the homology

theory associated to ωY is the same as that associated to Y . If we write (−)∗ for the
2-functor of Theorem 4.39, this says that (ωY )∗ ∼= Y∗ for all spectra Y .

(c) One can directly define a cohomology theory on the category cwf
∗ of finite, zero-based

CW-complexes, without using ω. This is a 2-functor Spec→ Cohf given on objects by

Y 7−→ hn(X) = colimi〈ΣiX , Yn+i〉.

This formula satisfies the finite wedge axiom, but not the infinite wedge axiom, which
is why we only obtain a cohomology theory on cwf

∗. This is compatible with Theorem
4.36 in the sense that the following square of 2-functors commutes:

Spec Cohf

Ω-Spec Coh

ω restriction

On equivalence classes of objects, the bottom horizontal map induces a bijection (by
Theorem 4.36) and the map ω induces a surjection by remark (a) above.

4.43 Theorem (Adams): the 2-functor Spec → Cohf induces a bijection on equivalence classes of
objects.

4.44 Corollary: all of the 2-functors in the square above induce bijections on equivalence classes
of objects. For the right-hand vertical map, this means that every cohomology theory on cwf

∗
extends uniquely to a cohomology theory on cw∗.

4.45 Proposition: if h → k is a morphism of homology theories such that hn(S0) → kn(S0) is
an isomorphism of groups for all n, then h → k is an isomorphism of homology theories,
equivalently, hn(X)→ kn(X) is an isomorphism of groups for all n and all X ∈ cw∗.

- Sketch proof.
4.46 Remark: there is an exactly analogous result for cohomology theories.
4.47 Remarks:

(a) The sequence {hn(S0) | n ∈ Z} of abelian groups does not generally determine h up to
isomorphism.

(b) However, it does if hn(S0) = 0 for all n 6= 0. (In this case, h must be isomorphic to
ordinary singular homology with coefficients in the abelian group h0(S0).) This follows
from:

4.48 Lemma: if h and k are homology theories, then any group homomorphism h0(S0)→ k0(S0)
may be extended to a morphism h→ k of homology theories.
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- Remark: the existence of non-isomorphic homology theories with the same coefficient groups
(i.e. values on the 0-sphere) means that the extension in Lemma 4.48 must be non-unique in
general.

4.49 Remark about why homology theories cannot be “corepresentable”, in the sense of a sequence
of functors of the form 〈Yn ,−〉. This is because representable functors must take coproducts
to products (which is true for cohomology theories by the wedge axiom), and corepresentable
functors must preserve products, i.e. take products to products. This is not true for homology
theories, as one can see already for ordinary singular homology: the homology of a product is
not the product of the homologies (consider for example H2(S1×S1)). The Künneth theorem
states something analogous to preserving products, but with several differences, namely (a)
considering all degrees of homology simultaneously as a functor into graded abelian groups,
(b) using the smash product in cw∗ rather than the categorical product (the direct product),
and (c) most significantly, using the tensor product in the category of graded abelian groups,
instead of the categorical product (which is the direct sum if the number of objects is finite).

- Recall Theorem 1.15(b) from lecture 1 (which implies the CW-approximation theorem). We
will now use this to construct Moore-Postnikov towers of maps between spaces.

- Recall also Lemma 1.24, the Compression Lemma:
1.24 Lemma: Let (X,A) be a CW-pair and (Y,B) be any pair of spaces with B 6= ∅. Assume

that πn(Y,B) = 0 for all choices of basepoint of B whenever there is an n-cell in X r A.
Then any map of pairs (X,A)→ (Y,B) may be compressed into B, i.e., there is a homotopy
rel. A to a map with image contained in B.

- Definition: Given a space X with a subspace A ⊆ X that is a CW-complex, and an integer
n > 0, we say that an n-connected CW-model for (X,A) is a CW-complex Y containing A
as a subcomplex and a map Y → X relative to A (i.e., restricting to the identity on A),
such that (a) all cells of Y rA have dimension at least n+ 1 (this implies that the inclusion
A ↪→ Y is n-connected, namely that it induces isomorphisms on π6n−1 and surjections on
πn) and (b) the map Y → X is n-coconnected, namely it induces isomorphisms on π>n+1
and injections on πn.

4.50 Corollary: Let Y → X be an n-connected CW-model for (X,A) and let Y ′ → X ′ be an
n′-connected CW-model for (X ′, A′), with n′ > n, and let g : (X,A)→ (X ′, A′) be any map
of pairs. Then there is a map (Y,A)→ (Y ′, A′) such that the square

Y X

Y ′ X ′

f

f ′
h g

commutes when restricted to A (equivalently, h|A = g|A) and commutes up to homotopy rel.
A without restriction. This h is unique up to homotopy rel. A.

- Proof.
4.51 Corollary: any two n-connected CW-models for (X,A) are homotopy equivalent rel. A.
4.52 Definition: a Moore-Postnikov tower of a map f : X → Y between path-connected spaces is

a diagram of the form

X YZ1

Z2

Z3

...

where each map X → Zn is n-connected, each map Zn → Y is n-coconnected and each
map Zn → Zn−1 is a Hurewicz fibration whose fibre is K(πn−1(Ff ), n− 1), where Ff is the
homotopy fibre of f .
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4.53 Theorem: if f : X → Y is a map between path-connected spaces and X is a CW-complex,
then there exists a unique (up to weak homotopy equivalence of diagrams) Moore-Postnikov
tower for f . Moreover, if we wish, we can ensure that the maps X → Zn are all cofibrations
and the maps Zn → Y are all fibrations.

- Proof (sketch).
4.54 A map f is principal if it is weakly homotopy equivalent (in the category of maps) to a map

of the form p(g) : Fg → X for some map g : X → Y , where Fg is the homotopy fibre of g and
p(g) : Fg → X is the first step in the fibre sequence of g (see Definition 2.55). Equivalently, we
may say that every map appearing in a fibre sequence, except the right-most one, is principal
by definition, and then any map that is weakly homotopy equivalent to such a map is also
principal. In other words, the defining property of a principal map is that its fibre sequence
may be extended not just infinitely to the left, but also (at least) one step to the right.

- Note that being principal is a property of based maps between based spaces, but for path-
connected spaces the choices of basepoints do not affect whether or not a map is principal.

4.55 Lemma: Let X be a path-connected space and A ⊆ X a path-connected subspace, such that
the inclusion i : A ↪→ X has homotopy fibre Fi ' K(G,n) for some abelian group G and
integer n > 1. Then i is principal if and only if the action of π1(A) on πn+1(X,A) is trivial.

- Brief outline of proof.
- Remark: Note that πn+1(X,A) ∼= πn(Fi) ∼= G. Also note that, if i is principal, then its fibre
sequence may be extended by X → Z for some space Z, whose loopspace must be K(G,n),
so that Z must be K(G,n+1), by the characterisation of Eilenberg-MacLane spaces in terms
of their homotopy groups. The extended fibre sequence of i therefore has the form

· · · → K(G,n) −→ A ↪−→ X −→ K(G,n+ 1).

4.56 Corollary: in Theorem 4.53, if the action of π1(X) on πn(Mf , X) is trivial for all n > 2, then
f admits a Moore-Postnikov tower consisting of principal fibrations.

- Remark: when this happens, this is much more useful than having just a Moore-Postnikov
tower of fibrations, because it means that each map Zn → Zn−1 in the tower is determined
by a map Zn−1 → K(πn−1(Ff ), n) (by taking the first step of the fibre sequence of this map),
in other words a cohomology class kn−1 ∈ Hn(Zn−1;πn−1(Ff )). In principle, the sequence
of cohomology classes {kn | n > 1} allows one to reconstruct the whole tower from Z1.

4.57 Examples:
(a) Take Y = ∗. Then, for any connected CW-complex X, we have a unique tower

· · · → Zn −→ Zn−1 → · · · · · · → Z3 −→ Z2

of spaces and fibrations with compatible maps from X. Let us re-index by Xn = Zn+1.
Then each X → Xn induces isomorphisms on π6n and π>n+1(Xn) = 0. This is the
Postnikov tower of X. We may assume that the fibrations are principal if and only if
the action of π1(X) on πn(CX,X) ∼= πn−1(X) is trivial for all n > 3. This condition is
satisfied if X is either simple or aspherical (all of its higher homotopy groups vanish).
The tower may be extended by a principal fibration X1 → X0 if and only if X is simple.

(b) Take X = ∗. Then, for any connected space Y , we have a unique tower

· · · → Zn −→ Zn−1 → · · · · · · → Z3 −→ Z2 −→ Z1

of spaces and principal fibrations equipped with compatible maps to Y . Each space Zn
is n-connected and the map Zn → Y induces isomorphisms on π>n+1. This is called the
Whitehead tower of Y , and the map Zn → Y is called the n-connected cover of Y . For
example, we see by uniqueness that the map Z1 → Y is (up to homotopy equivalence)
the universal cover Ỹ → Y . Another example is that, for Y = S2, the 2-connected cover
Z2 → Y is the Hopf fibration η : S3 → S2.

4.58 Lemma: Let X be a connected CW-complex and let {Xn} be a Postnikov tower for X. There
is then a well-defined map

X −→ lim(· · · → Xn → Xn−1 → · · · → X2 → X1) (11)

to the inverse limit of the tower. This map is a weak equivalence.
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4.59 Definition: the cohomology classes kn ∈ Hn+1(Zn;πn(Ff )), mentioned just after Corollary
4.56, in the special case when Y = ∗, corresponding to the Postnikov tower of X, are called
the k-invariants of X. In this case f is the unique map from X to a point, so Ff ' X and
we can rewrite them as

kn ∈ Hn+1(Zn;πn(X)).

The stage X1 in the Postnikov tower for X is K(π1(X), 1). Thus, by the discussion just
after Corollary 4.56, together with Lemma 4.58, every connected, semisimple8 CW-complex
X is determined up to weak homotopy equivalence by π1(X) together with the cohomology
classes {kn | n > 1}. Of course, the class kn only becomes defined once the previous classes
k1, . . . , kn−1 have been determined, so that the space Zn is known.

4.60 Application: Let (Y,A) be a CW-pair and letX be a connected, simple CW-complex. Assume
that Hn+1(Y,A;πn(X)) = 0 for all n > 1. Then every map A→ X extends to Y → X.

- Sketch of proof: The idea is to start with the trivial map Y → X0 = ∗ and try to lift it to
Xn for all n. Then there is just a small extra argument to lift it along the map (11). The
problem of lifting a map from Xn−1 to Xn may be rewritten, using the k-invariants, as the
vanishing of a certain cohomology class. Since we are doing everything relative to a given
map A→ X → Xn, this turns out to be a relative cohomology class, living in the group that
we have assumed to be zero.

- NB: the reason that we need X to be simple and not just semisimple is that we need its
Postnikov tower of principal fibrations to start from X0, and not only from X1.

4.61 Corollary (also 1.31): If f : X → Y is a map between connected, simple CW-complexes that
induces isomorphisms on integral homology in every degree, then f is a homotopy equivalence.

- Proof. We may assume that X ↪→ Y is an inclusion, by replacing Y withMf if necessary. We
know that H∗(Y,X) = 0 and by Whitehead’s theorem it will suffice to show that π∗(Y,X) =
0. This will follow from the relative Hurewicz theorem as long as the action of π1(X) on
πn(Y,X) is trivial for all n. We know by hypothesis that the action of π1(X) on πn(X) and
on πn(Y ) is trivial for all n, but this on its own (using the long exact sequence of relative
homotopy groups of (Y,X)) is not enough to deduce that the action on πn(Y,X) is also
trivial. However, it will be enough if we know that πn(Y )→ πn(Y,X) is surjective for all n.
By exactness, this is equivalent to the claim that πn(X) → πn(Y ) is injective for all n. For
this to be true, it suffices for the inclusion X ↪→ Y to admit a left-inverse. In other words,
we need to extend the identity X → X to Y . The fact that such an extension exists now
follows from Application 4.60 above: the condition that certain relative cohomology groups
vanish is implied via the universal coefficient theorem by the fact that H∗(Y,X) = 0.

17. Monday 3 December
5. Quasifibrations and the Dold-Thom theorem
- Lecture given by Benjamin Böhme.
- Reference: A. Dold, R. Thom, Quasifaserungen und Unendliche Symmetrische Produkte.
Annals of Mathematics (2) 67.2, pp. 239–281, (1958).

- Link for the notes: mdp.ac/teaching/18-algebraic-topology/outline-of-lectures-17-and-18.pdf

18. Monday 10 December
- Lecture given by Benjamin Böhme.
- Reference: A. Dold, R. Thom, Quasifaserungen und Unendliche Symmetrische Produkte.
Annals of Mathematics (2) 67.2, pp. 239–281, (1958).

- Link for the notes: mdp.ac/teaching/18-algebraic-topology/outline-of-lectures-17-and-18.pdf

19. Monday 17 December
6. Serre classes and rational homotopy groups of spheres

8 This is an ad hoc terminology meaning that the action of π1(X) on πn(X) is trivial for all n > 2. Simple spaces
are semisimple, and aspherical spaces are also semisimple.

29

https://mdp.ac/teaching/18-algebraic-topology/outline-of-lectures-17-and-18.pdf
https://mdp.ac/teaching/18-algebraic-topology/outline-of-lectures-17-and-18.pdf


6.1 Definition: Fix a commutative ring R and a class C of R-modules.
- C is a Serre class if, whenever

0→ A→ B → C → 0

is an exact sequence of R-modules, we have: B ∈ C ⇔ A ∈ C and C ∈ C.
- C is saturated if A ∈ C implies that

⊕
i∈I A ∈ C for any set I.

(Note that for finite I this is automatic if C is a Serre class.)
- A homomorphism f : A → B is a C-monomorphism if and only if ker(f) ∈ C and a
C-epimorphism if and only if coker(f) ∈ C. It is a C-isomorphism if and only both
ker(f) and coker(f) are in C.

6.2 Examples of Serre classes:
(a) {0} (saturated)
(b) {finite R-modules} (not saturated)
(c) {noetherian R-modules} (not saturated)

An R-module M is noetherian if every submodule of M is finitely generated. If the ring
R itself is noetherian (as a module over itself), then an R-moduleM is noetherian if and
only if it is finitely generated. Note that every principal ideal domain R is a noetherian
ring, so in this case the Serre class under consideration is {finitely generated R-modules}.
In particular, for R = Z we have the Serre class {finitely generated abelian groups}.

(d) {R-modules that are finitely generated as Z-modules} (not saturated)
(e) {all R-modules} (saturated)
(f) If R is an integral domain, then we have the Serre class:
{torsion R-modules} (saturated)
An R-module M is torsion if, for every m ∈ M , there is some λ ∈ R with λ 6= 0 and
λm = 0. In particular we have the Serre class {torsion abelian groups}.

(g) In general, intersections of Serre classes are again Serre classes. So, for example, if R
is a noetherian integral domain (e.g. a principal ideal domain), we have the Serre class
{finitely generated torsion R-modules} (not saturated)

In particular, we will write:
- F = {finite abelian groups}
- G = {finitely generated abelian groups}
- T = {torsion abelian groups}
Note that T ∩ G = F . The Serre class T is saturated, but G and F are not.
For the proof of the finiteness (with a few exceptions) of the homotopy groups of spheres,
the important Serre classes to consider will be G and T .

6.3 Proposition: Homological algebra works “as expected” modulo C, in particular we have:
(a) The two 4-lemmas (and hence the 5-lemma) hold with “epi” and “mono” replaced with

“C-epi” and “C-mono” respectively.
(b) If f and g are both C-mono (resp. C-epi), then so is their composition.
(c) If two of f , g and f ◦ g are C-isomorphisms, then so is the third.
(d) Let f be a homomorphism that is the colimit of a “ladder diagram” of homomorphisms

fn. If every fn is a C-mono (resp. C-epi), then so is f .
6.4 Notation: For this lecture, fix a commutative ring R and an R-module M , and write H∗ for

the homology H∗(−;M) with coefficients in M .
6.5 Lemma: Consider the attaching diagram

St−1 A

Dt B,

ϕ

Φ
p

in other words B = A ∪ϕ Dt is obtained from A by attaching a t-cell along the map ϕ, and
Φ is the resulting characteristic map of this t-cell. Let X → B be a fibration. This induces
three other fibrations

X ′ → A Y → Dt Y ′ → St−1
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by pulling back along the maps in this square. Then the induced map

H∗(Y, Y ′) −→ H∗(X,X ′)

is an isomorphism.
- Proof.

6.6 Remark: By the same argument, if we simultaneously attach many t-cells:

∐
i S

t−1
i A

∐
Dt
i B,

ϕ

Φ
p

(12)

then a fibration X → B pulls back to fibrations X ′ → A and

Yi → Dt
i Y ′i → St−1

i

for each i. Then the induced map⊕
i

H∗(Yi, Y ′i ) −→ H∗(X,X ′)

is an isomorphism.
6.7 Fact: If h : Z → Y is a fibration and f ' g : X → Y are homotopic maps, then the two

pulled-pack fibrations f∗(Z)→ X and g∗(Z)→ X are homotopy equivalent in Top/X.
Corollary: If h : Z → Y is a fibration and Y is contractible, then h is homotopy equivalent
in Top/Y to the trivial fibration Y × h−1(∗)→ Y .
(Proof: apply the fact to f = idY and g = constY , the constant map to the basepoint of Y .)

6.8 Notation: For a path-connected space Z, write Z ∈ C(r,M) to mean that Hi(Z;M) ∈ C for
all 1 6 i < r.

6.9 Proposition: In the setting of Remark 6.6, assume that B and F = p−1(∗) are path-connected.
If F ∈ C(r,M), then the map H∗(X,X ′) −→ H∗(B,A) is:
(a) surjective,
(b) injective if ∗ 6 t,
(c) a C-monomorphism if ∗ > t and ∗ − t < r, and either

(i) C is saturated, or
(ii) the disjoint union

∐
i in (12) is finite.

- Proof, using Remark 6.6 and Fact 6.7.
6.10 Definition of relative CW-complex (same as that of CW-complex, except that we start by

attaching 0-cells to an arbitrary space, instead of the empty set).
6.11 Proposition (Relative CW approximation): Let (X,A) be a k-connected pair for k > −1.

(a) There exists a relative CW-complex (B,A) with only cells of dimension > k + 1 and a
weak equivalence B → X that restricts to the identity on A.

(b) If X and A are path-connected, π1(X) is finitely generated and H∗(X,A;Z) is finitely
generated in degrees ∗ 6 `, then we may assume that the relative CW-complex (B,A)
has only finitely many cells of dimension 6 `.

- Sketch of proof, using the relative Hurewicz theorem (1.30) for part (b).
6.12 Theorem (Fibration Theorem I ): Let (B,A) be a relative CW-complex with cells only in

dimensions > s (where s > 1) and let p : X → B be a fibration. Assume also that A,B and
F = p−1(∗) are path-connected, and that F ∈ C(r,M).
(a) If C is saturated, then

H∗(X, p−1(A)) −→ H∗(B,A) (13)

is a C-isomorphism in degrees ∗ 6 r + s− 1 and a C-epimorphism in degrees ∗ 6 r + s.
(b) If (B,A) has only finitely many cells in dimensions 6 d, then (13) is a C-isomorphism in

degrees ∗ 6 min(r+ s− 1, d+ 1) and a C-epimorphism in degrees ∗ 6 min(r+ s, d+ 2).
- Proof, using Proposition 6.9 and the property (6.3)(d) of passing to colimits modulo C.
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6.13 Corollary (Fibration Theorem II ): Let (B,A) be an (s− 1)-connected pair and p : X → B be
a fibration. Assume that A,B and F = p−1(∗) are path-connected and that F ∈ C(r,M).
(a) If C is saturated, then

H∗(X, p−1(A)) −→ H∗(B,A) (14)

is a C-isomorphism in degrees ∗ 6 r + s− 1 and a C-epimorphism in degrees ∗ 6 r + s.
(b) If π1(B) is finitely generated and H∗(B,A;Z) is finitely generated in degrees ∗ 6 d,

then (14) is a C-isomorphism in degrees ∗ 6 min(r+ s− 1, d+ 1) and a C-epimorphism
in degrees ∗ 6 min(r + s, d+ 2).

- Proof: this follows from Theorem 6.12 after taking a relative CW approximation as given in
Proposition 6.11.

20. Wednesday 19 December
6.14 Corollary: Let C be a Serre class of R-modules and recall that we denote the Serre class of

finitely generated abelian groups by G. Let p : E → B be a fibration with B and F = p−1(∗)
path-connected.
We then have the following implications, which say (approximately) that if two of the three
spaces F,E,B have the property that their homology is contained in C in a range of degrees,
then so does the third.
(E) If either C is saturated, or B is simply-connected and B ∈ G(r − 1,Z), then:

F ∈ C(r,M) and B ∈ C(r,M) ⇒ E ∈ C(r,M).

(B) If either C is saturated, or B is simply-connected and B ∈ G(r,Z), then:

F ∈ C(r,M) and E ∈ C(r + 1,M) ⇒ B ∈ C(r + 1,M).

(F) If B is simply-connected and either C is saturated or B ∈ G(r,Z), then:

B ∈ C(r + 1,M) and E ∈ C(r,M) ⇒ F ∈ C(r,M).

- Proof: follows from Corollary 6.13 and the long exact homology sequence for the pair (E,F ).
6.15 Corollary: Let B be simply-connected.

(a) If C is saturated, then: ΩB ∈ C(r,M)⇐⇒ B ∈ C(r + 1,M).
(b) For C = G we also have: ΩB ∈ G(r,Z)⇐⇒ B ∈ G(r + 1,Z).

- Proof: using Corollary 6.14 applied to the path fibration PB → B.
6.16 Proposition: Let A ∈ G. Then K(A,n) ∈ G(∞,Z) for all n. In other words: for all n and all

i > 1, the homology groups Hi(K(A,n);Z) are finitely generated.
- Proof: By Corollary 6.15 and the fact that ΩK(A,n) ' K(A,n − 1), it is enough to prove
that K(A, 1) ∈ G(∞,Z), i.e., that the integral homology of K(A, 1) is finitely generated in
each degree. Using cellular homology, it therefore suffices to find a model for K(A, 1) that
admits a CW structure with only finitely many cells in each dimension. By the classification
of finitely generated abelian groups and the fact that K(−, 1) commutes with products, it
suffices to show that K(Z, 1) and of K(Z/d, 1) have models admitting such a CW structure,
for each d > 2. For K(Z, 1), we may of course take S1. For K(Z/d, 1), we may take the orbit
space S∞/(Z/d), where S∞ is the unit sphere in C∞ and Z/d acts by rotation by 2π/d in
each coordinate. This space admits a CW structure with a single cell in each dimension.

- Now we will work towards calculating the rational cohomology of K(Z, n) for all n, which
we will need later to study the finiteness of the homotopy groups of spheres.

6.17 Corollary: Let f : X → Y be a map between path-connected spaces. If H̃∗(Ff ;Q) = 0, then
f induces an isomorphism H∗(X;Q)→ H∗(Y ;Q).

- Proof: using the Fibration Theorem (6.13) applied to the fibration (Nf , Ff )→ (Y, ∗).
6.18 Proposition (Wang sequence): Let p : X → Sn be a fibration, n > 2, and write F = p−1(∗).

Then there is a long exact sequence (for any cohomology theory h):

· · · −→ h∗(X) restr.−−−→ h∗(F ) θ−−→ h∗−n+1(F ) −→ h∗+1(X) −→ · · · .
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- Construction: First, use Fact 6.7 to trivialise the restrictions of p to the upper and lower
hemispheres Dn

+ and Dn
− of Sn, and then carefully analyse the Mayer-Vietoris sequence of

the covering {p−1(Dn
+), p−1(Dn

−)} of X.
6.19 Remark: The proof of 6.18 shows that the map θ : h∗(F ) → h∗−n+1(F ) has the following

derivation property: for any x, y ∈ h∗(F ),

θ(xy) = θ(x)y + (−1)|x|(n−1)xθ(y). (15)

6.20 Definition: Fix a ring R and an integer n > 1. Let p : (E,E′) → B be a relative fibration
over a path-connected space B (i.e. p : E → B is a fibration and its restriction to E′ → B is
also a fibration). Write F = p−1(∗) and F ′ = F ∩ E′ and abbreviate H∗(−;R) to H∗(−).
Suppose that Hn(F, F ′) ∼= R and Hi(F, F ′) = 0 for i 6= n. Then a Thom class for p is an
element τ ∈ Hn(E,E′) such that, for each point b ∈ B, the pullback of τ is a generator for
Hn(p−1(b), p−1(b) ∩ E′) as an R-module.

6.21 Theorem (Thom isomorphism theorem):
(a) A Thom class for p exists if and only if the action of π1(B) on Hn(F, F ′) is trivial.

The action of an element [γ] ∈ π1(B) is defined as follows. Choose a representative loop
γ : [0, 1] → B and write (γ∗(E), γ∗(E′)) for the relative fibration over [0, 1] given by
pulling back (E,E′) along γ. Restricting to fibres over 0 and over 1 induces isomorphisms

Hn(F, F ′)←− Hn(γ∗(E), γ∗(E′)) −→ Hn(F, F ′),

and [γ] acts on Hn(F, F ′) via this zig-zag of isomorphisms.
(b) If a Thom class τ exists, then the homomorphism

Hi(B) −→ Hi+n(E,E′)

given by x 7→ p∗(x) ∪ τ is an isomorphism.
6.22 Proposition (Gysin sequence): As above, let p : (E,E′) → B be a relative fibration over a

path-connected space B. Let n > 1 and abbreviate H∗(−;R) to H∗(−). Assume that:
(i) Hn(F, F ′) ∼= R and Hi(F, F ′) = 0 for i 6= n,
(ii) the action of π1(B) on Hn(F, F ′) is trivial,
(iii) p∗ : H∗(B)→ H∗(E) is an isomorphism in all degrees.
Then there is an exact sequence:

· · · −→ Hi−1(E′) −→ Hi−n(B) −∪e−−−→ Hi(B) (p|E′ )
∗

−−−−−→ Hi(E′) −→ · · · ,

for a certain class e ∈ Hn(B) (which is then called the Euler class).
- Proof: this follows easily from the Thom isomorphism theorem (6.21).

6.23 Example: Let E → B be a fibre bundle over a path-connected space with fibres homeomor-
phic to Sn−1. We may then take the fibrewise cone of E to obtain a relative fibre bundle(

Conefib(E), E × [0, 1)
)
−→ B,

whose relative fibres are homeomorphic to (Dn, Sn−1). Then, as long as the action of π1(B)
on Hn(Dn, Sn−1) is trivial (for example if π1(B) = 0 or R = Z/2), we have a Gysin sequence
of the form:

· · · −→ Hi−1(E) −→ Hi−n(B) −→ Hi(B) −→ Hi(E) −→ · · · .

6.24 Theorem (Rational cohomology of integral Eilenberg-MacLane spaces): Let n > 1.
(a) H∗(K(Z, n);Q) ∼= H∗(Sn;Q) when n is odd.
(b) H∗(K(Z, n);Q) ∼= Q[ιn] when n is even,

(polynomial algebra generated by one element ιn in degree n)
- Proof: Choose any representative f : Sn → K(Z, n) of a generator of πn(K(Z, n)). By the
Hurewicz theorem (and universal coefficient theorem), the induced map on Hn(−;Q) is an
isomorphism. Let ιn be any non-zero element of Hn(K(Z, n);Q) ∼= Q.

- The proof is by induction on n. The case n = 1 is clear since K(Z, 1) ' S1, so we assume
that n > 2.
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- First assume that n is even. Let E = Map([0, 1],K(Z, n)) and E′ = {γ ∈ E | γ(0) = ∗} ⊆ E.
Note that E′ is contractible. Then

(E,E′) −→ K(Z, n), (16)

defined by γ 7→ γ(1), is a relative fibration whose relative fibre over the basepoint ∗ ∈ K(Z, n)
is (PK(Z, n),ΩK(Z, n)). Since PK(Z, n) is contractible and ΩK(Z, n) ' K(Z, n − 1), the
inductive hypothesis implies that this relative fibration satisfies condition (i) of Proposition
6.22 (with R = Q). Conditions (ii) and (iii) also hold since π1(K(Z, n)) = 0 and the fibre
PK(Z, n) is contractible. Hence we have a Gysin sequence in rational cohomology:

· · · −→ Hi+n−1(∗) −→ Hi(K(Z, n)) −∪e−−−→ Hi+n(K(Z, n)) −→ Hi+1(∗) −→ · · · ,

where e ∈ Hn(K(Z, n)) is the Euler class of the relative fibration (16). This implies that
the map − ∪ e is an isomorphism for i > n. In particular, e 6= 0 (since otherwise this would
fail for i = n), so we may assume that e = ιn (the Euler class is only well-defined up to
multiplication by an element of R× = Qr {0}, and Hn(K(Z, n)) ∼= Q). So we know that:

- In degrees i 6 n, the only non-zero rational cohomology of K(Z, n) is in degree zero
and in degree n, where Hn(K(Z, n)) ∼= Q{ιn}.

- In degrees i > n, the map − ∪ ιn : Hi(K(Z, n))→ Hi+n(K(Z, n)) is an isomorphism.
These two facts imply by induction on the degree that H∗(K(Z, n)) ∼= Q[ιn].

- Now assume that n is odd. Our aim is to show that f induces an isomorphism on rational
cohomology in all degrees (we already know that it does in degrees 6 n). By Corollary 6.17
and the universal coefficient theorem, it will be enough to show that the reduced rational
homology of the homotopy fibre Ff vanishes. Consider the path fibration

PK(Z, n) −→ K(Z, n)

and its pullback Ff → Sn along the map f . These both have fibre ΩK(Z, n) ' K(Z, n− 1).
An argument with the long exact sequences of these fibrations implies that Ff is n-connected.
The Hurewicz theorem and the universal coefficient theorem then imply that the reduced
rational cohomology of Ff vanishes in degrees 6 n too. The Wang sequence of the fibration
Ff → Sn is

· · · −→ Hi(Ff ) −→ Hi(K(Z, n− 1)) θ−−→ Hi−n+1(K(Z, n− 1)) −→ Hi+1(Ff ) −→ · · · ,

so we know that θ is an isomorphism for i = n−1. If we can show that θ is an isomorphism for
all i > n−1, then we will be done, because this implies that the reduced rational cohomology
of Ff vanishes (and therefore its reduced rational homology vanishes too). By the inductive
hypothesis, we know that H∗(K(Z, n − 1)) ∼= Q[ιn−1], so it will be enough to show, for all
k > 1, that

θ(ιkn−1) = λk ι
k−1
n−1,

for some non-zero scalars λk ∈ Q r {0} depending on k. We already know that this is true
for k = 1.

- Claim: for all k > 1, we have θ(ιkn−1) = kλ1ι
k−1
n−1.

- Proof by induction on k. We already know the base case k = 1, so assume that k > 2 and
write ιn−1 = e for short. Then, using (15), we have:

θ(ek) = θ(e ∪ ek−1) = λ1e
k−1 + e ∪ (k − 1)λ1e

k−2 = kλ1e
k−1.

21. Monday 7 January
- Recall from Definition 6.1 the notions of Serre class, and of saturated Serre class. Another
property of Serre classes that we will be interested in is the following.

- Definition: A Serre class of R-modules C is called homology-closed if A ∈ C implies that
K(A, 1) ∈ C(∞, R), in other words, Hi(K(A, 1);R) ∈ C for all i > 1.

- Examples: the examples of Serre classes of Z-modules that we will be interested in are:
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- G = {finitely generated abelian groups}
- T = {torsion abelian groups} = {abelian groups A such that A⊗Q = 0}
- F = G ∩ T = {finite abelian groups}

- The class T is saturated, whereas G and F are not.
- The classes G and F are homology-closed (for G this is part of Proposition 6.10, and for F
it can be shown similarly). Also:

6.25 Lemma: T is homology-closed.
- Proof: A general fact from group homology is that, for any abelian group A,

H∗(A;Q) ∼=
∧∗(A⊗Q),

the exterior algebra over Q generated by the vector space A⊗Q in degree 1. (See for example
Theorem V.6.4 of [Brown, Cohomology of groups].) Suppose that A ∈ T . Then, by the above
fact and the universal coefficient theorem,

H∗(A;Z)⊗Q ∼= H∗(A;Q) ∼=
∧∗(A⊗Q) =

∧∗(0) = Q[0],

where Q[0] denotes the graded Q-algebra consisting just of Q in degree zero. Thus, for every
i > 1, Hi(A;Z) ∼= Hi(K(A, 1);Z) is torsion.

6.26 Theorem (The mod-C Hurewicz theorem):
Let C be a homology-closed Serre class of Z-modules and X a 1-connected space. Let n > 2
and assume that:
(i) either C is saturated
(ii) or X ∈ G(n,Z), i.e., Hi(X;Z) is finitely generated for all i < n.
Then:

Π(n)⇐⇒ H(n) =⇒ I(n),

where:

Π(n) = πi(X) ∈ C for all i < n

H(n) = Hi(X;Z) ∈ C for all i < n

I(n) = The Hurewicz map πi(X)→ Hi(X;Z) is a C-isomorphism for all i 6 n

- Proof: next lecture.
6.27 Corollary: If X is a 1-connected CW-complex with only finitely many cells in each dimension,

then πi(X) is finitely generated for all i.
- Proof: The assumption implies that Hi(X;Z) is finitely generated for all i, by considering
cellular homology. Then Theorem 6.26 with C = G implies the result.

6.28 Corollary (The mod-C Whitehead theorem):
Let C be a saturated, homology-closed Serre class of Z-modules and let f : X → Y be a map
between simply-connected spaces such that Ff is also simply-connected (equivalently, π2(f)
is a surjection). Then the following two statements are equivalent.
(1) πi(f) is a C-isomorphism for all i < n and a C-epimorphism for i = n.
(2) H(f ;Z) is a C-isomorphism for all i < n and a C-epimorphism for i = n.

- Proof sketch:
- First assume statement (1). This implies that πi(Ff ) ∈ C for i < n, so the mod-C Hurewicz
theorem 6.26 implies that Hi(Ff ;Z) ∈ C for i < n. We may therefore apply the Fibration
theorem 6.13 with r = n and s = 2 to the fibration of pairs (Nf , Ff )→ (Y, ∗) and conclude
that Hi(Nf , Ff )→ Hi(Y, ∗) is a C-isomorphism in degrees i 6 n+ 1 and a C-epimorphism in
degree i = n + 2. Then the mod-C 5-lemma applied to the map of long exact sequences of
homology groups induced by (Nf , Ff )→ (Y, ∗) implies statement (2).

- Now assume statement (2). By the mod-C Hurewicz theorem 6.26, it is enough to show that
Hi(Ff ;Z) ∈ C for i < n. We prove this by induction on i. For i 6 1 this is true since Ff is
simply-connected. Let 2 6 k < n. By the inductive hypothesis, we may apply the Fibration
theorem 6.13 to the fibration of pairs (Nf , Ff ) → (Y, ∗) with r = i and s = 2 to deduce
that Hj(Nf , Ff )→ Hj(Y, ∗) is a C-isomorphism in degrees j 6 i+ 1 and a C-epimorphism in
degree j = i+ 2. Then the mod-C 5-lemma implies statement (1).
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6.29 Definition (Stiefel manifolds): For k 6 n define Vn,k to be the orbit space O(n)/O(n − k),
in other words, the space of O(n − k)-cosets in the orthogonal group O(n). This can also
be thought of as the set of orthonormal k-tuples in Rn. For example Vn,1 ∼= Sn−1. For any
k 6 ` 6 n there is a fibre bundle Vn,` → Vn,k given by forgetting ` − k vectors from an
`-tuple. In particular, for any 1 6 k 6 n we have a fibre bundle

Vn,k −→ Sn−1. (17)

6.30 Fact: We will see in the next chapter of the lecture course that Vn,2 has a CW structure with
exactly 4 cells, in dimensions 0, n− 2, n− 1, 2n− 3. Moreover, in the cellular chain complex
of this CW-complex, all differentials are zero except when n is odd, in which case there is a
single non-zero differential Z ∼= Cn−1(Vn,2)→ Cn−2(Vn,2) ∼= Z, which is multiplication by 2.

- Corollary: For n > 3,

Hi(Vn,2;Z) ∼=


Z i = 0 or 2n− 3
Z i = n− 2 or n− 1, if n is even
Z/2 i = n− 2, if n is odd
0 otherwise.

(Note that V2,2 = O(2) ∼= S1 t S1, so Hi(V2,2;Z) is Z2 for i = 0, 1 and zero for i > 2.)

- Now we can apply everything we have proved so far in this chapter to prove the main results.
6.31 Theorem: Let j > n and n be odd. Then πj(Sn) is finite.
6.32 Theorem: Let j > n and n be even. Then πj(Sn) is finite, except for π2n−1(Sn), which is

Z⊕ finite.
- Proof of Theorem 6.31:
- First of all, the result is clear for n = 1, so we may assume that n > 3. Let f : Sn → K(Z, n)
represent a generator of πn(K(Z, n)). By Theorem 6.24 and the universal coefficient theorem,
f induces an isomorphism on H∗(−;Q) = H∗(−;Z) ⊗ Q. In other words, the induced map
H∗(f ;Z) is a T -isomorphism, for T = {torsion abelian groups}. Since T is homology-closed
(Lemma 6.25), we may apply the mod-T Whitehead theorem 6.28 to deduce that πi(f) is
also a T -isomorphism for all i. This implies that πj(Sn) is a torsion abelian group for j > n,
since πj(K(Z, n)) = 0. But, by Corollary 6.27, πj(Sn) is also finitely generated, so it must
be finite.

- Proof of Theorem 6.32:
- Write n = 2k and V = V2k+1,2 and consider the fibre bundle

p : V −→ S2k,

a special case of (17). The fibre over a point v is the space of unit vectors in R2k+1 that are
orthogonal to v, which is homeomorphic to S2k−1. There is a map f : V → S4k−1 inducing an
isomorphism on H4k−1(−;Z), since V is a closed, orientable (4k + 1)-dimensional manifold.
(For example, choose a coordinate neighbourhood in V and collapse its complement to a
point.) Since V has the rational homology of S4k−1 (by 6.30), the induced map H∗(f ;Q) is
an isomorphism in all degrees. By the same argument as above, using the mod-T Whitehead
theorem, we deduce that πi(f) is a T -isomorphism for all i. By Corollary 6.27, the homotopy
groups πi(V ) are finitely generated for all i. Hence Theorem 6.31 and the fact that πi(f)
is a T -isomorphism (and the classification of finitely generated abelian groups) imply that
πi(V ) is finite for all i, except for π4k−1(V ), which is Z⊕finite. Using this fact, and applying
Theorem 6.31 again to the homotopy groups of S2k−1, the long exact sequence of homotopy
groups of the fibre bundle p implies the result.

6.33 Aside on the Hopf invariant.
- There is a homomorphism (in fact isomorphism) πn(Sn) → Z given by sending [f ] to the
integer deg(f) such that f∗(α) = deg(f).α, where α is a fixed generator of Hn(Sn).

- By Theorems 6.31 and 6.32, we know that the only other possible i for which there can be a
non-trivial homomorphism πi(Sn)→ Z is i = 2n− 1 if n is even.
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- A homomorphism h : π2n−1(Sn) → Z may be defined as follows (for any n > 2, although it
will necessarily be trivial if n is odd).

- Fix generators α of Hn(Sn) and β of H2n(D2n, S2n−1). Given an element [f ] ∈ π2n−1(Sn)
and a map f : S2n−1 → Sn representing it, construct a CW-complex X(f) by attaching a
2n-cell to Sn along f . The inclusion of the n-skeleton of X(f) induces an isomorphism

ϕ : Hn(X(f)) −→ Hn(Sn)

and the characteristic map (D2n, S2n−1)→ (X(f), Sn) of the 2n-cell induces an isomorphism
H2n(X(f), Sn)→ H2n(D2n, S2n−1), which may be composed with an isomorphism from the
long exact sequence for (X(f), Sn) to obtain an isomorphism

ψ : H2n(X(f)) −→ H2n(D2n, S2n−1).

We then define h([f ]) to be the integer such that ϕ−1(α) ∪ ϕ−1(α) = h([f ]).ψ−1(β).
- Some facts that are easy to check from the definitions are:

- This definition results in a well-defined homomorphism h : π2n−1(Sn)→ Z. This is the
Hopf map, and h([f ]) is the Hopf invariant of f .

- For n > 2, given maps S2n−1 a−→ S2n−1 b−→ Sn
c−→ Sn, we have the following identities:

h([b ◦ a]) = h([b]).deg(a) h([c ◦ b]) = h([b]).deg(c)2.

- Theorem (Hopf): The image of h contains 2Z.
- Theorem (Adams): The image of h is Z (i.e. h is surjective) if and only if n = 2, 4 or 8.

22. Wednesday 9 January
- Recall the Whitehead tower of a path-connected space (see 4.57(b)). Namely, for any path-
connected space Y there is a sequence (tower) of principal fibrations

· · · −→ Yn −→ Yn−1 −→ · · · −→ Y2 −→ Y1 −→ Y,

where Yn is n-connected, the map Yn → Yn−1 is n-coconnected (induces isomorphisms on πi
for i > n and an injection on πn) and its fibre is K(πn(Y ), n − 1). This sequence is unique
up to homotopy-equivalence of diagrams. In particular, the principal fibration Y1 → Y is the
universal cover of Y (when Y admits a universal cover, i.e., when Y is locally path-connected
and semi-locally simply-connected). The composite map Yn → Y is analogously called the
n-connected cover of Y . In the proof of the mod-C Hurewicz theorem (Theorem 6.26), we
will need to use the 2-connected cover of a space.

- We now restate the mod-C Hurewicz theorem. For a path-connected space X we have the
following statements (for n > 2):

Π(n) = πi(X) ∈ C for all i < n

H(n) = Hi(X;Z) ∈ C for all i < n

I(n) = The Hurewicz map πi(X)→ Hi(X;Z) is a C-isomorphism for all i 6 n

Fix n > 2, a homology-closed Serre class of Z-modules C and a 1-connected space X. Assume:
(i) either C is saturated
(ii) or X ∈ G(n,Z), i.e., Hi(X;Z) is finitely generated for all i < n.

6.34 Theorem (also Theorem 6.26): Under these conditions, Π(n)⇔ H(n)⇒ I(n).
- Proof:
The path-fibration f : (PX,ΩX) → (X, ∗), the long exact sequences of the pair (PX,ΩX)
and the Hurewicz homomorphisms induce a commutative diagram

πn(X) πn(PX,ΩX) πn−1(ΩX)

Hn(X, ∗) Hn(PX,ΩX) Hn−1(ΩX),

h hΩ

πn(f)
∼=

∂
∼=

∂

∼=
Hn(f)

(18)
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where the two boundary maps ∂ are isomorphisms because PX is contractible, and the map
πn(f) : πn(PX,ΩX)→ πn(X) is an isomorphism because f is a Serre fibration (cf. the proof
of Proposition 2.62). We abbreviate H∗(−;Z) to H∗(−) in this proof.

- The proof is by induction on n. The statements Π(2) and H(2) are always true, since X is
1-connected, and the statement I(2) is also always true, by the classical Hurewicz theorem
(Theorem 1.30). So the base case n = 2 holds.

- Let n > 3. We first show the easy implications, which are Π(n)⇔ H(n).
Statement H(n) implies H(n− 1), and therefore I(n− 1) by the inductive hypothesis. This is
the statement that πi(X)→ Hi(X) is a C-isomorphism for all i 6 n− 1. By H(n) we know
that Hi(X) ∈ C in this range of degrees, and therefore so is πi(X). This is Π(n).
The opposite direction is identical: statement Π(n) implies Π(n− 1), which implies I(n− 1)
by inductive hypothesis, and then statements Π(n) and I(n− 1) together imply H(n).

- We will prove the remaining implication Π(n)⇒ I(n) in two steps.
Claim1: Assuming that Theorem 6.34 holds for smaller values of n, and assuming that X is
2-connected, we have the implication Π(n)⇒ I(n).
Claim2: Assuming that Theorem 6.34 holds for smaller values of n, and assuming that Claim1
is true, we have the implication Π(n)⇒ I(n).
Once we have proven Claim1 and Claim2, the induction will be complete.

- Proof of Claim1:
The idea is to apply the inductive hypothesis to ΩX, so we first have to check that the
hypotheses of the theorem apply to it. It is 1-connected by our extra assumption that X is
2-connected. If C is saturated, then we have nothing further to check. If, on the other hand,
we have made assumption (ii) that X ∈ G(n,Z), then we must check that ΩX ∈ G(n− 1,Z),
in order to apply the inductive hypothesis to it. This follows by Corollary 6.15(b).
Thus, by induction, we have the implication Π(n− 1)⇒ H(n− 1) and I(n− 1) for ΩX.
For i < n− 1, we know πi(ΩX) ∼= πi+1(X) ∈ C, by Π(n) for X, so Π(n− 1) holds for ΩX.
Now I(n− 1) for ΩX implies that the map hΩ in diagram (18) is a C-isomorphism.
Statement H(n − 1) for ΩX implies that we may apply the Fibration theorem 6.13 to the
fibration of pairs (PX,ΩX)→ (X, ∗) with s = 2 and r = n− 1. (If C is saturated, use part
(a) of the theorem, if we have assumed that X ∈ G(n,Z), use part (b) with d = n− 1.) The
Fibration theorem implies that the map Hn(f) in diagram (18) is a C-isomorphism.
Thus we have shown that h : πi(X)→ Hi(X) is a C-isomorphism for i = n. For i 6 n− 1 it
is also a C-isomorphism (since Π(n)⇒ Π(n− 1)⇒ I(n− 1) by inductive hypothesis), so we
have shown I(n) for X. This completes the proof of Claim1.

- Proof of Claim2:
Consider the 2-connected cover of X, a fibration

X2 −→ X,

whose fibre is K(A, 1), where A = π2(X). The space X2 is 2-connected and the map X2 → X
induces isomorphisms on πi for i > 3. This fibration and the Hurewicz homomorphisms give
us a commutative diagram

πn(X2) Hn(X2)

πn(X) Hn(X),

h2

h

∼= (19)

where the left-hand vertical map is an isomorphism since n > 3.
The idea is to apply Claim1 to X2, so we first have to check that the hypotheses of Theorem
6.34 apply to X2. It is certainly 1-connected. If C is saturated, then we have nothing further
to check. If, on the other hand, we have instead made assumption (ii) that X ∈ G(n,Z),
then we must check that X2 ∈ G(n,Z). Part (E) of Corollary 6.14 with C = G, applied to
the fibration X2 → X, says that

X and K(A, 1) ∈ G(n,Z) =⇒ X2 ∈ G(n,Z).
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So we need to know that K(A, 1) ∈ G(n,Z). To see this, note that A = π2(X) ∼= H2(X)
by the classical Hurewicz theorem (1.30). We know that X ∈ G(n,Z) and n > 3, so A ∈ G.
Proposition 6.16 then implies that K(A, 1) ∈ G(∞,Z).
Thus the hypotheses of Theorem 6.34 apply to X2, so by Claim1 we have the implication
Π(n)⇒ I(n) for X2.
Statement I(n) for X2 implies that the map h2 in diagram (19) is a C-isomorphism.
Claim3: Assuming that Theorem 6.34 holds for smaller values of n, and assuming statement
Π(n) for X, the map Hi(X2)→ Hi(X) is a C-isomorphism for 2 6 i 6 n.
We will prove this in a moment. First we use it to complete the proof of Claim2.
Diagram (19), the fact that h2 is a C-isomorphism and Claim3 imply that the map h : πi(X)→
Hi(X) is a C-isomorphism for i = n. For i 6 n− 1 it is also a C-isomorphism (since we have
implications Π(n) ⇒ Π(n − 1) ⇒ I(n − 1) by inductive hypothesis), so we have shown I(n)
for X. This completes the proof of Claim2, assuming Claim3.

- Proof of Claim3:9
Since n > 3, statement Π(n) for X implies that A = π2(X) ∈ C. We have assumed that C is
homology-closed, so K(A, 1) ∈ C(∞,Z). Thus we may apply the Fibration theorem 6.13 to
the fibration of pairs

(X2,K(A, 1)) −→ (X, ∗) (20)

with s = 2 and r = ∞. If C is saturated, part (a) of that theorem implies that the map
on relative homology induced by (20) is a C-isomorphism in all degrees. If instead we have
assumed that X ∈ G(n,Z), then part (b) of that theorem (with d = n− 1) implies that the
map on relative homology induced by (20) is a C-isomorphism in degrees 6 n.
Let 2 6 i 6 n. In the diagram

Hi(K(A, 1)) Hi(X2) Hi(X2,K(A, 1)) Hi−1(K(A, 1))

Hi(∗) Hi(X) Hi(X, ∗) Hi−1(∗)

(�)

(?) (21)

the rows are exact and the map (?) is a C-isomorphism, by above. Since K(A, 1) ∈ C(∞,Z)
and by exactness, the map (�) is also a C-isomorphism. The map Hi(X) → Hi(X, ∗) is of
course an (ordinary) isomorphism, so we conclude that Hi(X2)→ Hi(X) is a C-isomorphism.
This completes the proof of Claim3, and of Theorem 6.34.

- We will finish this chapter with a brief remark about rational homology theories.
- Recall that cw∗ denotes the 2-category of zero-based CW-complexes, based maps and based
homotopies, and a reduced homology theory is a sequence of functors hn : Ho(cw∗) → Ab
from the associated homotopy category to the category of abelian groups, indexed by n ∈ Z,
satisfying the wedge and exactness axioms, together with a sequence of natural isomorphisms
hn → hn+1 ◦ Σ, where Σ is the endofunctor of Ho(cw∗) given by reduced suspension.

6.35 Examples:
(i) hn(X) = H̃n(X;Z). The coefficients hn(S0) of this homology theory are Z in degree

n = 0 and 0 in degrees n 6= 0.
(ii) hn(X) = πst

n (X) = colimk→∞(πn+k(ΣkX)). The coefficients of this homology theory
are the stable homotopy groups of spheres πst

n (S0). By Theorems 6.31 and 6.32, these
are Z in degree n = 0 and finite in degrees n 6= 0.

- The Hurewicz homomorphisms make the following square commute:

πn+k(ΣkX) πn+k+1(CΣkX,ΣkX) πn+k+1(Σk+1X)

H̃n+k(ΣkX;Z) H̃n+k+1(Σk+1X;Z),

h h

∼=

Σ∗

∼=

9 Don’t worry, there is no Claim4!
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so they induce a stable Hurewicz homomorphism

hst
n : πst

n (X) −→ H̃n(X;Z).

Moreover, this is a morphism of homology theories (it is natural in X and it commutes with
the natural isomorphisms hn → hn+1 ◦ Σ).

6.36 Definition: A reduced homology theory h is rational if each of the functors hn : Ho(cw∗)→ Ab
takes values in the subcategory VectQ 6 Ab of rational vector spaces.

6.37 Theorem: Let h be any rational homology theory. Then there is an isomorphism of homology
theories:

hn(X) ∼=
⊕
p+q=n

H̃p(X;hq(S0)).

- Sketch proof: There is a homomorphism

πst
p (X) −→ HomZ(hq(S0), hp+q(X))

defined as follows. Let f : Sp+k → ΣkX represent an element of πst
p . Send this to the map

hq(S0) ∼= hq+p+k(Sp+k) f∗−−−→ hq+p+k(ΣkX) ∼= hq+p(X), (22)

where the isomorphisms on each side are suspension isomorphisms. The adjoint of this is a
map πst

p (X)⊗Z hq(S0)→ hp+q(X), and summing these over all p+ q = n gives us a map⊕
p+q=n

πst
p (X)⊗Z hq(S0) −→ hn(X). (23)

This is in fact a morphism of homology theories. Using the stable Hurewicz homomorphisms,
we have another morphism of homology theories⊕

p+q=n
πst
p (X)⊗Z hq(S0) −→

⊕
p+q=n

H̃p(X;Z)⊗Z hq(S0) ∼=
⊕
p+q=n

H̃p(X;hq(S0)), (24)

where the isomorphism on the right is due to the universal coefficient theorem (there are no
Tor terms involved, because hq(S0) is a rational vector space). We just need to show that
(23) and (24) are isomorphisms. By Proposition 4.45, it suffices to check this when X = S0.

- For (23): Since πst
p (S0) is finite for p 6= 0 and hq(S0) is a rational vector space, the left-hand

side of (23) (when X = S0) is πst
0 (S0) ⊗Z hn(S0) ∼= hn(S0). Unwinding the definitions, the

map (23) is identified with the map (22) when p = 0, q = n, X = S0 and f = id: S0 → S0,
so in particular it is an isomorphism.

- For (24): As above, the left-hand side of (24) (when X = S0) is πst
0 (S0)⊗Z hn(S0). By the

same argument, the right-hand side is H̃0(S0;Z)⊗Z hn(S0). The map (24) is identified with
hst

0 ⊗ id, where hst
0 is the stable Hurewicz homomorphism for S0 in dimension 0. Since the

sequence π0(S0) → π1(S1) → π2(S2) → · · · stabilises already at π1(S1), we may identify
this with h1 ⊗ id, where h1 is the (unstable) Hurewicz homomorphism π1(S1)→ H1(S1;Z),
which is an isomorphism.

23. Monday 14 January
7. Principal bundles, vector bundles, classifying spaces
7.1 Definition of fibre bundle / locally trivial map.
- Examples: product bundles, covering spaces, the Möbius band, more generally the projection

([0, 1] × R)/∼ → S1 where ∼ is generated by (0, t) ∼ (1, ϕ(t)) for a fixed homeomorphism
ϕ : R→ R.

7.2 Definition of coordinate bundle with base space B, structure group G and fibre F . (A locally
trivial map equipped with an atlas of local trivialisations (or local coordinates) such that the
change-of-coordinates functions Ui∩Uj → Homeo(F ) factor continuously through the action
G→ Homeo(F ).)
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7.3 Definition of coordinate cocycle.
7.4 Observation: there is a well-defined function

Cocyc: {coordinate bundles for B,F,G} −→ {coordinate cocycles for B,G}.

7.5 Definition: (a) Two coordinate bundles are compatible if they have the same map, and the
union of the two atlases for this map is again an atlas. (b) A fibre bundle with base space B,
structure group G, and fibre F is an equivalence class of coordinate bundles with respect to
the equivalence relation of compatibility.

7.6 Remark: If G = Homeo(F ), then any locally trivial map has exactly one equivalence class
(with respect to compatibility) of atlases, since any two atlases are compatible. So fibre
bundle with fibre F and structure group Homeo(F ) recovers the notion of fibre bundle (with
unspecified structure group).

7.7 Remark: if p : E → B is a fibre bundle, then p is an open quotient map.
7.8 Definition of bundle map.
7.9 Remark: there is a well-defined function

{bundle maps from E1 → B1 to E2 → B2}
−→ {abstract mapping transformations from B1 to B2 with values in G}

7.10 Lemma: this is a bijection.
7.11 Corollary: a bundle map is invertible if and only if the map of base spaces is invertible.
7.12 Definition:

(a) Note that, by definition, two coordinate bundles are compatible if and only if the identity
map between them is a bundle map.

(b) Two coordinate bundles are equivalent if there is a bundle map between them whose
map of base spaces is the identity.

(c) Note that compatible bundles are equivalent, and that “equivalent” is indeed an equiv-
alence relation on coordinate bundles (by Corollary 7.11).

(d) Two fibre bundles are equivalent if they have representative coordinate bundles that are
equivalent.

7.13 Corollary: two coordinate bundles are equivalent if and only if a certain condition (∗) is
satisfied by their associated coordinate cocycles.

7.14 Definition: two coordinate cocycles are equivalent if and only if (∗) holds.
7.15 Observation: if we quotient out by the equivalence relations on the source and target of the

map Cocyc from (7.4), we obtain a well-defined and injective function, which we denote by

Cocyc: Bun(B,F,G) −→ Cocyc(B,G).

7.16 Theorem: This is a bijection: Bun(B,F,G) ∼= Cocyc(B,G).
7.17 Remark: This makes “change of fibres” easy to define: if F, F ′ are two faithful left G-spaces,

we have canonical bijections

Bun(B,F,G) ∼= Cocyc(B,G) ∼= Bun(B,F ′, G).

In particular, this means that the classification of Bun(B,F,G) depends only on B and G,
not on F . So it will suffice to classify Bun(B,F,G) when F = G . . .

7.18 Examples:
(a) Principal G-bundles (where F = G acting on itself by left-multiplication). When G is

discrete these are regular covering spaces.
(b) Real vector bundles (where F = Rn and G = GLn(R) for some n ∈ N). For example

tangent bundles of smooth manifolds or normal bundles of immersions between smooth
manifolds.

24. Wednesday 16 January
- Proof of Theorem 7.16.
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7.19 Definition of principal G-bundle. A right G-space E and a G-invariant map p : E → B that
is locally G-equivariantly trivial.

7.20 Remark: this definition is equivalent to the special case of a fibre bundle over B with structure
group G and fibre F = G, considered as a left G-space by left-multiplication.

7.21 Remark: if (E x G, p : E → B) is a principal G-bundle, then p is homeomorphic (as an
object of E/Top) to the quotient map E → E/G. Hence principal G-bundles are just (free)
right G-spaces with a certain property.

7.22 Remark: The change of fibre of (7.17) may be described as follows, in the case where we
start with a principal G-bundle, and we want to change the fibres to F . Let E → B be a
principal G-bundle and consider the projection E × F → E. This is G-equivariant, so we
may quotient out by the action of G to obtain a fibre bundle E ×G F → B with structure
group G and fibre F .

7.23 Definition: The translation map tE of a free right G-space E. The action is weakly proper if
tE is continuous.

7.24 Lemma: If E is a free right G-space such that the projection E → E/G is a locally trivial
map, then the action of G on E is weakly proper. In particular, any principal G-bundle is
weakly proper.

7.25 Let E be a weakly proper free G-space. Then p : E → E/G is trivial (isomorphic to the
projection (E/G)×G→ E/G) if and only if there exists a section of p.

7.26 Definition: When G is discrete, principal G-bundles are also known as principal G-coverings.
7.27 Definition of properly discontinuous group actions. Lemma: Let E be a free G-space, for a

discrete group G. Then E → E/G is a principal G-bundle if and only if the action of G on
E is properly discontinuous.

7.28 Remark: These statements are also equivalent to the statement that the action of G on E is
weakly proper. So:

{principal G-coverings} ∼= {free, weakly proper G-spaces}.

In general, for non-discrete G, not all free, weakly proper G-spaces are principal G-bundles.
7.29 Examples: If E is a topological group and G 6 E is a closed, discrete subgroup, then the

action of G on E is free and weakly proper, and therefore E → E/G is a principal G-covering.
In particular,

- R→ R/Z ∼= S1,
- C→ C/Z ∼= S1 × R,
- Q→ Q/Z

are all principal Z-coverings.
7.30 Lemma: Let U be a right G-space. Then U → U/G is trivial (isomorphic to the projection

(U/G)×G→ U/G) if and only if there exists a G-equivariant map U → G.
7.31 Corollary: Let E be a right G-space. Then E → E/G is a principal G-bundle if and only if

there is an open cover {Ui} of E by G-invariant subspaces Ui ⊆ E, and G-equivariant maps
Ui → G.

25. Monday 21 January
7.32 Definition of a bundle map between principal G-bundles: just a G-equivariant map between

the total spaces.
7.33 Remark: this agrees with Definition 7.8 in the special case where F = G. Hence, by Corollary

7.11, a G-equivariant map E1 → E2 between principal G-bundles is invertible if and only if
the induced map E1/G→ E2/G is invertible.

7.34 Remark about pullbacks and bundle maps:
- The pullback of a fibre bundle is again a fibre bundle (with the same fibre and the same
structure group).

- If we have a commutative square in which both vertical maps are fibre bundles (with
the same fibre and the same structure group), then the square is a bundle map if and
only if it is a pullback square.

7.35 Lemma: Suppose that f : E1 → E2 is a G-equivariant map of right G-spaces, and E2 → E2/G
is a principal G-bundle. Then the square
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E1 E2

E1/G E2/G

f

f/G

is a pullback square.
- Proof: By Remark 7.34, it will be enough to show that E1 → E1/G is a principal G-bundle;
this can be shown using the characterisation in Corollary 7.31.

7.36 Corollary: Suppose that E is a topological group and G 6 E is a subgroup. The quotient
p : E → E/G is a principal G-bundle if and only if there exists a local section of p near the
coset 1E .G ∈ E/G.

7.37 Proposition: Let E be a weakly proper, free right G-space and let F be a left G-space.
Consider the commutative square:

E × F E

E ×G F E/G

pr1

q

There is a one-to-one correspondence between G-equivariant maps E → F (meaning maps
f such that f(xg) = g−1f(x) for all g ∈ G and x ∈ E) and sections of q. Moreover, this
correspondence may be parametrised by [0, 1], in the sense that G-equivariant homotopies of
maps E → F correspond to homotopies of sections of q.

7.38 Definitions:
- The support of a continuous function X → [0,∞).
- A locally finite collection of subsets of X. A locally finite collection of functions on X.
- A partition of unity.
- A partition of unity subordinate to a given open cover of X. Numerable open covers of
X.

7.39 Recall that we gave a different definition of the property of being “numerable” for an open
cover in Definition 2.29. From now on we will call this property strongly numerable.

7.40 Observation: if U is a numerable open cover of X, then there exists a refinement V of U such
that V is strongly numerable. Conversely, we have:

7.41 Lemma: if U is strongly numerable, then it is numerable.
7.42 Definition of numerable bundle (the base space admits a numerable open cover that locally

trivialises the bundle).
Corollary: every numerable bundle is a Hurewicz fibration.
(This follows from 7.40 and 2.37(b).)

7.43 Theorem: If U is a locally finite open cover of X, and X is a normal space, then U is
numerable.

7.44 Lemma: If V is a refinement of U , and V is numerable, then U is also numerable.
7.45 Corollary: If X is paracompact and Hausdorff, then every open cover of X is numerable.
7.46 Remark: For any space B, we will classify the set of numerable principal G-bundles over B

up to isomorphism. If B is paracompact and Hausdorff, this will be the set of all principal
G-bundles over B up to isomorphism.

26. Wednesday 23 January
7.47 Proposition: Let U be a numerable open cover of X. Then there is a countable numerable

open cover V of X such that each V ∈ V is of the form

V =
∐
i∈IV

Vi,

where each Vi is an open subset of X that is contained in some element of U (in other words,
the open cover {Vi | i ∈ IV , V ∈ V} is a refinement of U).
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7.48 Corollary: if p : E → B is a numerable bundle, then there is a countable numerable open
cover of B that locally trivialises p.

7.49 Theorem: Let U be a numerable open cover of B × [0, 1]. Then there is a numerable open
cover V of B and a function ε : V −→ (0,∞) such that the covering{

V × [s, t] | V ∈ V, 0 < t− s < ε(V )
}

of B × [0, 1] is a refinement of U .
7.50 Theorem: Let p : E → B × [0, 1] be a numerable bundle with fibre F and structure group G,

and let r : B× [0, 1]→ B× [0, 1] be the self-map defined by r(b, t) = (b, 1). Then the pullback
of p along r is p. More precisely, there is a bundle map (equivalently, pullback square) of the
form

E E

B × [0, 1] B × [0, 1],

R

r

p p

and the restriction of R to p−1(B × {1}) is the identity.
(The proof involves writing r as a countably infinite (but locally finite) composition ©∞i=0 ri
of self-maps of B × [0, 1], lifting each ri to a self-map Ri of E and then taking the infinite
composition R =©∞i=0Ri.)

7.51 Remark: We used Theorem 7.49 and then Proposition 7.47 to find a countable numerable
open cover of B, which we then used to index the composition of self-maps of B × [0, 1]. In
particular, Proposition 7.47 allowed us to index the composition by N. An alternative proof,
avoiding the use of Proposition 7.47, uses the open cover of B provided by Theorem 7.49
directly. By the well-ordering theorem (equivalent to the axiom of choice), we can choose a
bijection between that open cover and a (possibly uncountable) ordinal number α. Then we
decompose r as a transfinite composition of self-maps ri for i ∈ α, and the rest of the proof
works as before. [This does not obviate the need for Proposition 7.47, however; we will need
it later, for Lemma 7.65, in the construction of a universal principal G-bundle.]

7.52 Theorem: Let p : E → B × [0, 1] be a numerable bundle with fibre F and structure group G.
Then the restrictions

p0 : E0 = p−1(B × {0}) −→ B × {0} ∼= B

p1 : E1 = p−1(B × {1}) −→ B × {1} ∼= B

are isomorphic bundles over B.
7.53 Corollary (The homotopy theorem): Let p : E → B × [0, 1] be a numerable bundle with fibre

F and structure group G and let f, g : A → B be homotopic maps. Then the pullbacks
f∗(p) : f∗(E)→ A and g∗(p) : g∗(E)→ A are isomorphic bundles over A.

27. Monday 28 January
7.54 Definition: Let NPrinG be the 2-category whose objects are numerable principal G-bundles,

whose 1-morphisms are bundle maps (equivalently, G-equivariant maps between total spaces)
and whose 2-morphisms are bundle homotopies (equivalently, G-equivariant homotopies).
Identifying all 1-morphisms that are connected by 2-morphisms, we obtain the homotopy
1-category Ho(NPrinG), consisting of numerable principal G-bundles and bundle-homotopy
classes of bundle maps (equivalently, G-equivariant homotopy classes of G-equivariant maps).
A numerable principal G-bundle is called universal if it is a terminal object of Ho(NPrinG).

7.55 Theorem: For any topological group G, there exists a universal principal G-bundle.
(This will be proved later, as Lemmas 7.64–66.)

7.56 Remark: Universal principal G-bundles are unique up to bundle-homotopy equivalence. In
particular, base spaces of universal principal G-bundles are unique up to homotopy equiva-
lence.

7.57 Definition: The classifying space of G, denoted BG, is the base space of a universal principal
G-bundle.
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Notation: Let us write pG : EG→ BG for the universal principalG-bundle, and PBunN (B,G)
for the set of isomorphism classes of numerable principal G-bundles over B.

7.58 Corollary (Classification theorem, I ): For any space B and topological group G, there is a
bijection [B,BG] ∼= PBunN (B,G) given by sending a homotopy class [f ] to the pullback
bundle f∗(pG) : f∗(EG)→ B.

7.59 Corollary (Classification theorem, II ): For any space B, topological group G and faithful left
G-space F , there is a bijection [B,BG] ∼= BunN (B,F,G) given by sending a homotopy class
[f ] to the pullback bundle f∗(pG ×G idF ) : f∗(EG×G F )→ B.

- To prove Theorem 7.55 (and hence the classification theorems), we first need another fact
about partitions of unity.

7.60 Lemma: Let {fi : X → [0,∞) | i ∈ I} be a collection of continuous functions such that, for
each x ∈ X, the set {i ∈ I | fi(x) 6= 0} is finite and

∑
i∈I fi(x) = 1. (This is a generalised

partition of unity.) Then the open cover{
f−1
i ((0,∞)) | i ∈ I

}
of X is numerable.

7.61 Definition: Let {Xi | i ∈ I} be a collection of spaces. Their join

X = F
i∈I

Xi

is the following space:
- As a set, it is a quotient of a subset of [0, 1]I ×

∏
i∈I Xi. First we take the subset of

collections {tixi | i ∈ I} with ti ∈ [0, 1] and xi ∈ Xi such that only finitely many of the
ti are non-zero, and

∑
i∈I ti = 1. Then we identify 0xi with 0x′i for any xi, x′i ∈ Xi.

More precisely, two collections {tixi | i ∈ I} and {uiyi | i ∈ I} are identified if and only
if ti = ui for all i ∈ I and xi = yi for all i ∈ I such that ti = ui 6= 0.

- There are well-defined functions

pj : X −→ [0, 1] {tixi} 7→ tj

qj : p−1
j ((0, 1]) −→ Xj {tixi} 7→ xj .

- Then X is given the smallest topology such that all pj and qj are continuous. In other
words, it is generated by the subsets p−1

j (A) and q−1
j (B) where A belongs to a chosen

basis for the topology of [0, 1] and B belongs to a chosen basis for the topology of Xj .
7.62 Remarks:

(a) A map into F
i∈I

Xi is continuous if and only if its composition with each pj and each qj
is continuous.

(b) Using this, one can check that, if each Xi is a right G-space, then F
i∈I

Xi is also naturally

a right G-space.
7.63 Definition: For a topological group G, the Milnor G-space is

G?∞ = F
i∈N

Xi, where Xi = G for all i ∈ N.

This is also called the (countably) infinite join power of G.
7.64 Lemma: The projection π : G?∞ −→ G?∞/G is a numerable principal G-bundle.
7.65 Lemma: If π′ : E → E/G is a numerable principal G-bundle, then there is a G-equivariant

map E → G?∞.
(Note: the proof of this lemma requires the use of Proposition 7.47.)

7.66 Lemma: If E is any G-space, then all G-equivariant maps E → G?∞ are G-homotopic.
- Note that these three lemmas jointly imply Theorem 7.55.

7.67 Proposition: For any topological group G, the Milnor G-space G?∞ is contractible.
(This follows very easily from the proof of Lemma 7.66.)

7.68 Proposition: For any topological group G, its classifying space BG is path-connected, and
for all n > 1, we have πn(BG) ∼= πn−1(G).

7.69 Remark: In fact, by a slightly more careful argument, we can show that ΩBG ' G.
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7.70 Examples: If G is discrete, then BG ' K(G, 1). So we have:
- B(Z/2) ' RP∞,
- BZ ' S1.

Also, Proposition 7.68 tells us that the classifying space of S1 is a K(Z, 2), so we also have:
- BS1 ' CP∞.

28. Wednesday 30 January
- Our next aim is to characterise universal principal G-bundles as those whose total space is
contractible. First, we need yet another fact about partitions of unity.

7.71 Theorem: Let f : E1 → E2 be a morphism in Top/B, i.e., a commutative triangle

E1 E2

B

f

p1 p2 (25)

in Top, and let U be a numerable open cover of B. Assume that the restriction of f to
p−1

1 (U)→ p−1
2 (U) is a fibrewise homotopy equivalence (i.e., homotopy equivalence in Top/B)

for all U ∈ U . Then f is a fibrewise homotopy equivalence.
7.72 Corollary: Let (25) be a morphism in Top/B and now assume that p1 and p2 are fibre bundles

that are simultaneously numerable (there exists a numerable open cover of B that locally
trivialises both of them). Assume that the restriction of f to the fibres p−1

1 (b)→ p−1
2 (b) is a

homotopy equivalence for all b ∈ B. Then f is a fibrewise homotopy equivalence.
7.73 Corollary: If p : E → B is a numerable bundle with fibre F ' ∗, then p is a homotopy

equivalence.
7.74 Remark: This is analogous to the fact that, if p : E → B is a Serre fibration with weakly

contractible fibres, then it is a weak homotopy equivalence (which follows directly from the
long exact sequence of homotopy groups). One might expect the analogue to state that, if
p : E → B is a Hurewicz fibration with contractible fibres, then p is a homotopy equivalence
— but this is actually false (see Counterexample 7.75). Instead, the analogue is provided by
Corollary 7.73, assuming the stronger (by Corollary 7.42) hypothesis that p is a numerable
bundle.

7.75 The map Qδ → Q, where Qδ denotes the rational numbers with the discrete topology and
the map is the identity of the underlying sets, is a Hurewicz fibration with contractible (in
fact point) fibres, but not a homotopy equivalence.

7.76 Theorem: Let p : E → B be a numerable principal G-bundle. Then p is universal if and only
if E is contractible.

- Now we will apply this theorem to construct a universal principal G-bundle in the case
G = Diff(M), for a smooth manifold M .

7.77 Definition: A left G-space X is G-locally continuously transitive (G-lct) if each point x ∈ X
has an open neighbourhood U and a continuous map γ : U → G sending x to idG such that,
for each u ∈ U , we have γ(u).x = u.

7.78 Proposition:
(a) If f : X → Y is G-equivariant and Y is G-lct, then f is a fibre bundle.
(b) Let X be a left G-space and a right H-space, and assume that these actions commute.

Assume that the quotient X/H is G-lct, and that x.− : H → X is a topological embed-
ding for each x ∈ X. Then the quotient map X → X/H is a principal H-bundle.

7.79 Definition: Let L,M be two smooth manifolds (without boundary), where L is compact. We
write Emb(L,M) for the space of all smooth embeddings L ↪→M , equipped with the Whitney
C∞ topology. We note that this topology (assuming that L is compact!) is paracompact,
Hausdorff and second-countable. Moreover, there are continuous group actions

Diffc(M) y Emb(L,M) x Diff(L),
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where Diffc(M) is the subgroup of compactly-supported diffeomorphisms of M . Additionally,
for any embedding e : L ↪→M , the map Diff(L)→ Emb(L,M) given by reparametrising e is
a topological embedding.

7.80 Theorem:
(a) Emb(L,M) is Diffc(M)-lct.
(b) Emb(L,M)/Diff(L) is Diffc(M)-lct.

7.81 Corollary:
(a) Fix e ∈ Emb(L,M). Then the map Diffc(M)→ Emb(L,M) given by post-composition

is a fibre bundle (and therefore a Hurewicz fibration). The fact that we may lift paths
up this map is equivalent to the Isotopy Extension Theorem. The fact that we may lift
homotopies up this map is a parametrised version of the Isotopy Extension Theorem.

(b) The quotient map Emb(L,M)→ Emb(L,M)/Diff(L) is a principal Diff(L)-bundle.
7.82 Facts:

- The quotient space Emb(L,M)/Diff(L) is paracompact Hausdorff.
- Thus:

πL,M : Emb(L,M) −→ Emb(L,M)/Diff(L)
is a numerable principal Diff(L)-bundle.

- These results all go through also withM = R∞ instead of a finite-dimensional manifold.
7.83 Lemma: The embedding space Emb(L,R∞) is contractible.

(The proof is very analogous to the proof of Proposition 7.67, that the Milnor G-space G?∞
is contractible.)

7.84 Corollaries:
- The universal principal Diff(L)-bundle is:

πL,R∞ : Emb(L,R∞) −→ Emb(L,R∞)/Diff(L).

- BDiff(L) ' Emb(L,R∞)/Diff(L) = {A ⊂ R∞ | A ∼= L}, the space of smooth submani-
folds of R∞ that are abstractly diffeomorphic to L.

- A smooth L-bundle means a fibre bundle with fibre L and structure group Diff(L). The
universal smooth L-bundle is therefore:

Emb(L,R∞)×Diff(L) L −→ BDiff(L),

whose total space may be identified as the space {(A, x) ∈ BDiff(L) × R∞ | x ∈ A} of
pointed submanifolds of R∞ that are abstractly diffeomorphic to L, and the projection
map simply forgets the basepoint. This is often called the tautological L-bundle, since
its fibre over a point A in the base space is equal to A.

- Finally, we apply Theorem 7.76 to describe the universal vector bundle of rank n, and say a
few words about topological K-theory.

- Recall that a vector bundle (over R or C, but the notion can be made much more general) is
a fibre bundle with fibre Rn and structure group GLn(R) for some n ∈ N (or the same with
C instead of R).

7.85 Classification:
- The universal principal GLn(R)-bundle is

∗ ' InjLin(Rn,R∞) = EGLn(R) −→ BGLn(R) = Grn(R∞),

whose total space is the space of injective linear maps from Rn into R∞, or equivalently
the space of linearly independent n-tuples in R∞. It is not hard to see that this is
contractible, using the same tricks as before. The classifying space BGLn(R) is then
the space of n-dimensional linear subspaces of R∞, i.e., the Grassmannian Grn(R∞).

- The universal real vector bundle of rank n is therefore

InjLin(Rn,R∞)×GLn(R) Rn −→ Grn(R∞),

whose total space may be identified as the space {(V, x) ∈ Grn(R∞)×R∞ | x ∈ V } of n-
dimensional subspaces of R∞ together with a point on this subspace, and the projection
map forgets this point. Analogously to 7.84 above, this is often called the tautological
rank-n real vector bundle, since its fibre over the point V is the vector space V itself.
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- So in particular we have a bijection RVectnN (B) ∼= [B,Grn(R∞)], where RVectnN (B)
denotes the set of isomorphism classes of numerable rank-n real vector bundles over B.

- The analogous results also hold for complex vector bundles.
7.86 K-theory:

- Given two vector bundles p1 : E1 → B and p2 : E2 → B over the same base space, we
may take their product and then pull back along the diagonal ∆: B → B×B to obtain
the Whitney sum:

p1 ⊕ p2 = ∆∗(p1 × p2) : ∆∗(E1 × E2) −→ B.

- This turns
∐
n∈N RVectnN (B) into a commutative monoid (the identity element is the

trivial bundle id : B → B).
- Using the Grothendieck group Gro(M) of a monoid M , we may therefore define:

KO(B) = Gro
(∐

n∈N RVectnN (B)
)

KU(B) = Gro
(∐

n∈N CVectnN (B)
)

- Theorem: If B is path-connected, compact and Hausdorff, there are natural bijections:

KO(B) ∼= [B,Z×BO]
KU(B) ∼= [B,Z×BU ],

where BO is the colimit of the classifying spaces of the orthogonal groups O(n) and BU
is the colimit of the classifying spaces of the unitary groups U(n).

7.87 Bott periodicity:
- The functor KO is the degree-zero part of a cohomology theory (and similarly for KU).
This follows from the following steps:

- One can first check that KO satisfies the exactness and the wedge axioms.
- One may then tautologically extend this to the part of a cohomology theory defined in
negative degrees: For any cohomology theory h, the functor hn is determined by hn+1

via the chosen isomorphism hn ∼= hn+1 ◦Σ, where Σ is the suspension endofunctor. We
may therefore take the functor in degree n < 0 to be KO ◦ Σ−n and the suspension
isomorphism to be the identity. However, it is not clear how to extend this into positive
degrees. The first step would be to try to find a functor h1 (satisfying the exactness
and wedge axioms) such that KO ∼= h1 ◦ Σ.

- One equivalent statement of the periodicity theorem of Bott is that the sequence of
functors KO ◦Σ−n for n < 0 is periodic (in fact precisely 8-periodic, and the analogous
sequence for KU is exactly 2-periodic).

- Hence we may extend this sequence to n > 0 just using periodicity, and we automatically
obtain a cohomology theory of which KO is the functor in degree zero (and similarly
for KU).
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Figure 1 Proof of one direction of Lemma 3.2 (page 19) for n = 1.
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∞. Some relevant references

• 1. Review
• A. Hatcher (Algebraic topology), chapter 4.1
• A. Hatcher (Algebraic topology), pages 366 onwards (for the Hurewicz theorem)
• M. Arkowitz (Introduction to homotopy theory), chapter 2 (H-spaces and co-H-spaces)

• 2. Fibrations and cofibrations
• T. tom Dieck (Algebraic topology), chapter 5
• J. P. May (A concise course in Algebraic Topology), chapters 6–8
• S. Mitchell (Notes on Serre fibrations)
• N. Strickland (The category of CGWH spaces)

• 3. The Blakers-Massey theorem
• T. tom Dieck (Algebraic topology), chapter 6

• 4. Representability theorems
(including (co)homology theories, spectra, Moore-Postnikov towers)
• A. Dold (Halbexakte Homotopiefunktoren), chapter 16
• R. Switzer (Algebraic topology — homotopy and homology), chapters 7–9
• A. Hatcher (Algebraic topology), chapter 4.3
• E. H. Brown (Cohomology theories), Annals of Mathematics (1962)
• J. F. Adams (A variant of E. F. Brown’s representability theorem), Topology (1971)

• 5. Quasifibrations and the Dold-Thom theorem
• A. Dold, R. Thom (Quasifaserungen und Unendliche Symmetrische Produkte), Annals

of Mathematics (1958)
• A. Hatcher (Algebraic topology), appendix 4.K

• 6. Serre classes and rational homotopy groups of spheres
• T. tom Dieck (Algebraic topology), chapter 20
• T. tom Dieck (Algebraic topology), chapter 17.7–17.9 (for the Wang sequence, Thom
isomorphism theorem and Gysin sequence)

• 7. Principal bundles, vector bundles, classifying spaces
• N. Steenrod (The topology of fibre bundles), sections 2–3
• T. tom Dieck (Algebraic topology), chapters 13 (partitions of unity) and 14 (bundles)
• J. Milnor (Construction of universal bundles, II ), Annals of Mathematics (1956)
• For spaces of smooth embeddings:
• R. Palais (Local triviality of the restriction map for embeddings), Commentarii

Mathematici Helvetici (1960)
• J. Cerf (Topologie de certains espaces de plongements), §II.2.2, Bulletin de la Société
Mathématique de France (1961)

• E. Lima (On the local triviality of the restriction map for embeddings), Commentarii
Mathematici Helvetici (1963–1964)
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