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Abstract

Configuration spaces and homological stability
Martin Palmer

Merton College

A thesis submitted for the degree of

Doctor of Philosophy

Michaelmas 2012

In this thesis we study the homological behaviour of configuration spaces as the number

of objects in the configuration goes to infinity. For unordered configurations of distinct

points (possibly equipped with some internal parameters) in a connected, open manifold

it is a well-known result, going back to G. Segal and D. McDuff in the 1970s, that these

spaces enjoy the property of homological stability.

In Chapter 2 we prove that this property also holds for so-called oriented configuration

spaces, in which the points of a configuration are equipped with an ordering up to even

permutations. There are two important differences from the unordered setting: the rate (or

slope) of stabilisation is strictly slower, and the stabilisation maps are not in general split-

injective on homology. This can be seen by some explicit calculations of Guest-Koz lowski-

Yamaguchi in the case of surfaces. In Chapter 3 we refine their calculations to show that,

for an odd prime p, the difference between the mod-p homology of the oriented and the

unordered configuration spaces on a surface is zero in a stable range whose slope converges

to 1 as p→∞.

In Chapter 4 we prove that unordered configuration spaces satisfy homological stability

with respect to finite-degree twisted coefficient systems, generalising the corresponding result

of S. Betley for the symmetric groups. We deduce this from a general “twisted stability

from untwisted stability” principle, which also applies to the configuration spaces studied

in the next chapter.

In Chapter 5 we study configuration spaces of submanifolds of a background manifold

M . Roughly, these are spaces of pairwise unlinked, mutually isotopic copies of a fixed closed,

connected manifold P in M . We prove that if the dimension of P is at most 1
2(dim(M)−3)

then these configuration spaces satisfy homological stability w.r.t. the number of copies of

P in the configuration. If P is a sphere this upper bound on its dimension can be increased

to dim(M)− 3.
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Introduction



Chapter 1. Introduction

Beginning is easy; continuing, hard.

Japanese proverb

This thesis is centred around the phenomenon of homological stability for a sequence of

spaces {Xn}. By this we mean that in any fixed degree ∗ the homology H∗(Xn) is eventually

independent of the parameter n. When true, this property of {Xn} gives a powerful link

between the topology of the individual spaces Xn and the limiting space X∞ = limn→∞Xn.1

Often the limiting space has more structure than the individual spaces, and can be identified

in terms of more accessible spaces, making its homology more amenable to calculation. Thus

homological stability often affords a calculation of H∗(Xn) in the stable range — the range

in which this is independent of n.

Many examples of interest are sequences of classifying spaces of discrete groups. One

very important example is the family of mapping class groups MCG(Σr
g) = π0Diff(Σr

g; ∂Σr
g)

of compact, connected, orientable surfaces of genus g and with r boundary-components. In

this case the family is parametrised by two numbers, and it was proved by Harer [Har85]

that for any fixed degree ∗, the homology H∗(MCG(Σr
g)) is independent of both g and r once

g is sufficiently large. This homological stability property was used by Tillmann [Til97] to

prove that the classifying space of the stable mapping class group limg→∞MCG(Σg,1), after

applying the Quillen plus-construction, is an infinite loop space. A recent breakthrough

was an explicit identification of this infinite loop space in terms of Thom spaces of bundles

over oriented Grassmannians, which was conjectured by Madsen and Tillmann [MT01] and

later proved by Madsen and Weiss [MW07], whose proof also used homological stability for

mapping class groups. This identified the cohomology ring of the stable mapping class group,

in particular proving Mumford’s conjecture [Mum83], and therefore also, via homological

stability again, identified the cohomology of the mapping class groups in the stable range.

There is a recent survey [Coh09] of homological stability phenomena which discusses many

other examples, and puts this into a broader context.

In particular we will be concerned with homological stability for sequences of configura-

tion spaces. In the simplest case this means the space (suitably topologised) of cardinality-n

subsets of M , for some fixed integer n and background space M (usually a manifold). There

are more sophisticated versions of this notion, in which for example the n “particles” in M

are equipped with a parameter taking values in a fixed space, or more generally in a bundle

over M . One can also give the particles an ordering, or alternatively just a “shadow” of

an ordering by taking the quotient w.r.t. the action of a subgroup of the symmetric group.

In another direction, instead of considering configurations of points, i.e. 0-dimensional con-

nected submanifolds of M , one could instead consider configurations of higher-dimensional

connected submanifolds of M . A brief history of some homological stability results for

1We assume that we also have maps Xn → Xn+1, and the abstract isomorphisms H∗(Xn) ∼= H∗(Xn+1)
for n� ∗ are induced by these maps.
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§1.1. Outline of the thesis

configuration spaces is given in §2.1.1 below.

The importance of configuration spaces lies in their ubiquity: they appear in various

guises in many different settings in, for example, homotopy theory, knot theory and algebraic

geometry. In homotopy theory, for instance, configuration spaces give tractable models for

mapping spaces, and more generally section spaces of fibre bundles (see for example [Böd87]).

Another fairly direct link to configuration spaces is with the classical braid groups, whose

classifying spaces can be modelled as configuration spaces of particles on the plane R2.

Studying the homology of configuration spaces therefore includes the study of the homology

of (generalised) braid groups.

Motivated by this, the purpose of this thesis is to establish homological stability results

for configuration spaces in several different contexts (i.e. the precise meanings of the words

“homological stability” and “configuration spaces”). We will introduce and outline each

chapter in the next section, and then finish this introduction with some remarks on possible

further directions in which this work may be taken.

1.1 Outline of the thesis

As remarked above, there are various ways of making the basic configuration spaces of

unordered points more sophisticated. We will always allow points to possess parameters with

values in a fixed parameter-space. In Chapters 2 and 3 we are concerned with configurations

which additionally have an “orientation” (or “alternating”) structure, meaning an ordering

up to even permutations. In Chapter 4 we return to unordered configuration spaces, but

consider their homology with coefficients in a “twisted coefficient system”. Finally, in

Chapter 5 we consider configurations of submanifolds.

The chapters are designed to be essentially self-contained, so there is a small amount of

repetition in their introductory sections.

Some notation

Let M be a connected manifold which is the interior of a manifold M with non-empty

boundary. Let X be a space. We then define the ordered configuration space on M with

labels in X to be

C̃n(M,X) :=
{

(p1, . . . , pn) ∈Mn | pi 6= pj for i 6= j
}
×Xn.

The symmetric group Σn acts diagonally on this space, by permuting the coordinates of

both Mn and Xn, and we define the unordered and oriented configuration spaces to be the

3



Chapter 1. Introduction

quotients

Cn(M,X) := C̃n(M,X)/Σn

C+
n (M,X) := C̃n(M,X)/An

respectively. Choosing a boundary-component B of M and a basepoint x0 ∈ X, there is a

map

sn : C̃n(M,X) −→ C̃n+1(M,X)

which “pushes” a new configuration point into the manifold from B and labels it by x0

(this is defined rigorously in §2.2.2 below). Since it is equivariant with respect to the

action of Σn it descends to maps of unordered and oriented configuration spaces (also

called sn). It is called the “stabilisation map” since it turns out to induce the isomor-

phisms H∗(Cn(M,X)) ∼= H∗(Cn+1(M,X)) in the statement of homological stability for

{Cn(M,X)}, and similarly for {C+
n (M,X)}.

The limiting space C∞(M,X) is defined to be the (homotopy) colimit of the sequence

· · · sn−1−−−→ Cn(M,X)
sn−−→ Cn+1(M,X)

sn+1−−−→ · · ·

with respect to these maps; C+
∞(M,X) is defined analogously.

In Chapter 5 we consider a more general notion of configuration space of submanifolds.

We alert the reader that there is also a change of notation: the ‘C’ is replaced by a ‘Σ’, by

analogy with the symmetric groups (Cn(R∞) ' BΣn in the old notation). Let M and X be

as before, and now also choose a closed, connected manifold P and a subgroup G ≤ Diff(P )

of its diffeomorphism group. In §5.1.2 we define rigorously the space

ΣP
n (M,X|G),

which can be thought of as the space of n unordered, mutually isotopic copies of P embedded

in M , equipped with labels in X and parametrised up to G (in other words the embedding

into M is only remembered up to the action of G). There are a few technical assumptions

to be made here, including that the copies of P must all be isotopic to an embedding into

the boundary ∂M , and that they are “pairwise unlinked”. See §5.1.2 for more details.

Oriented configuration spaces

Homological stability is well-known to hold for unordered configuration spaces [Seg73,

McD75,Seg79,RW11]. The main result of Chapter 2 is a quantitative homological stability

result for oriented configuration spaces: if dim(M) ≥ 2 and X is path-connected then the

stabilisation map

(sn)∗ : H∗
(
C+
n (M,X)

)
−→ H∗

(
C+
n+1(M,X)

)

4



§1.1. Outline of the thesis

is an isomorphism in the range ∗ ≤ n−5
3 and surjective in the range ∗ ≤ n−2

3 . To prove this

result we adopt the strategy of “taking resolutions” which was introduced in [RW11].

Part of the interest of this result is that it cannot be proved by the “scanning” techniques

of McDuff [McD75]. Firstly, the scanning map used in [McD75] (which was introduced

in [Seg73] and first used under the name “scanning” in [Seg79]) can only see local data,

such as parameters attached to the configuration points, whereas an ordering up to even

permutations is an example of non-local data. So there is no natural geometric analogue of

the scanning map for C+
n (M,X).2 Secondly, the method of [McD75] relies on the fact that

the maps (sn)∗ : H∗(Cn(M,X))→ H∗(Cn+1(M,X)) are always split-injective; however, this

is false for (sn)∗ : H∗(C
+
n (M,X)) → H∗(C

+
n+1(M,X)). Counterexamples can be found by

the calculations in [GKY96], which compute the difference between H∗(C
+
n (S, pt);Fp) and

H∗(Cn(S, pt);Fp) for certain surfaces S and odd primes p.

A noticeable fact about our homological stability result for C+
n (M,X) is that it holds in

a range with a stability slope of 1
3 , rather than the larger stability slope of 1

2 for Cn(M,X).

Again looking at the calculations of [GKY96], one can find counterexamples to improving the

slope beyond 1
3 for oriented configuration spaces. On the other hand these counterexamples

only appear at the prime 3, and indeed if we take coefficients in Z[1
3 ] the calculations imply

that homological stability with a stability slope of 1
2 does hold for C+

n (S, pt) — at least for

the surfaces S considered in [GKY96].

Chapter 2 has appeared, essentially as it is now (but without §2.ℵ), as the preprint:

Martin Palmer, Homological stability for oriented configuration spaces, arXiv:1106.4540, 2011.

It is also shortly to appear in the Transactions of the American Mathematical Society.

Since this chapter was written less recently than the others, we have added an Addendum

(§2.ℵ) which mentions some simpler models for certain maps between configuration spaces

used in the proof, and also discusses configuration spaces on closed manifolds. Homological

stability does not hold in general for unordered configuration spaces on closed manifolds,3

but it does hold for certain coefficients or dimensions, by [RW11, Theorem C] and [Chu12].

We explain how the proof of [RW11] for unordered configuration spaces on closed manifolds

works, and why it does not carry over to oriented configuration spaces.

In Chapter 3 we refine the calculations of [GKY96] to show that, for odd primes p, the

twisted homology group H∗
(
Cn(S, pt);F(−1)

p

)
— which measures the difference between the

Fp-homology of C+
n (S, pt) and of Cn(S, pt) — vanishes in the range

∗ ≤
(
p−2
p

)
n− 1

for any connected surface S. So looking through a mod-p filter, the rate at which Cn(S, pt)

2See §1.2 below, however.
3One can see from a presentation [Bir74, Theorem 1.11] of π1Cn(S2) that H1(Cn(S2)) ∼= Z/(2n− 2), for

example.
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Chapter 1. Introduction

and C+
n (S, pt) become “the same” increases from 1

3 to 1 as p → ∞. From this and ho-

mological stability for unordered configuration spaces it follows that we have homological

stability

H∗
(
C+
n (S, pt);Z[1

3 ]
) ∼= H∗

(
C+
n+1(S, pt);Z[1

3 ]
)

in the range ∗ ≤ n−1
2 , for any connected, open surface S.

To illustrate the calculation we also give some tables of dim
(
H∗
(
Cn(S, pt);F(−1)

p

))
for

small values of ∗, n and p, and for the surface S equal to the plane, sphere, torus and

once-punctured torus.

Twisted homological stability

In Chapter 4 we extend stability of the sequence H∗(Cn(M,X);Z) to stability for

H∗(Cn(M,X);Tn), where the sequence of Σn-modules Tn comes from a “finite-degree coef-

ficient system”.

Similar twisted homological stability results are known for general linear groups [Dwy80],

mapping class groups of surfaces [Iva93, CM09, Bol12] and symmetric groups [Bet02]; our

method is a generalisation of that of [Bet02]. In each case one must carefully define exactly

what is meant by a “twisted coefficient system” for {Yn}. It is not enough to simply have

a π1Yn-module for each n, with no relations between them; such a sequence of modules is a

functor π1({Yn})→ Ab, where π1({Yn}) has objects {1, 2, 3 . . .}, automorphisms Aut(n) =

π1Yn and no other morphisms. A twisted coefficient system is an abelian-group-valued

functor from a certain larger category, with some non-endomorphisms added, whose precise

definition depends on the sequence {Yn} one is considering. The degree of such a functor

is then defined in terms of these new morphisms. In our case the correct category is the

partial braid category B(M,X), which is built out of “partial braids” on M with strands

decorated by paths in X.

The precise statement of our twisted homological stability result is as follows: for

dim(M) ≥ 2, X path-connected and T a twisted coefficient system of finite degree d,

there is an isomorphism

H∗
(
Cn(M,X);Tn

) ∼= H∗
(
Cn+1(M,X);Tn+1

)
in the range ∗ ≤ n−d

2 . For example we may take Tn to be the Σn-module Hq(Z
n;F ), for a

fixed based space Z, field F and degree q, or Z[Σn/Σn−k] for fixed k.

As a curious consequence of (the rational version of) the latter example, one can prove

(see §4.10) that if the sequence

dim
(
V (λ)∗ ⊗Σn H

∗(C̃n(M,X);Q)
)

(1.1.1)

is non-decreasing for all ∗ and λ, then it is eventually constant for all ∗ and λ. Here λ denotes

6



§1.1. Outline of the thesis

a stable Young diagram4 and V (λ) denotes the corresponding irreducible Σn-representation.

This last statement is multiplicity stability for the cohomology of the ordered configuration

spaces C̃n(M,X), in the sense of representation stability (see [CF10]). We emphasise that we

only know how to deduce this from Q[Σn/Σn−k]-twisted homological stability for Cn(M,X)

if we already assume that (1.1.1) is non-decreasing.

Finally, we note that homological stability for oriented configuration spaces (Chapter

2) is equivalent to homological stability for unordered configuration spaces, with twisted

coefficients in the π1Cn(M,X)-module V ∼= Z2, with the action

π1Cn(M,X)� π1Cn(M,X)/π1C
+
n (M,X) = Z/2 y Z2

given by (x, y) 7→ (y, x). However, this result is disjoint from the twisted homological

stability result of this chapter, since one can easily show that this sequence of π1Cn(M,X)-

modules {V } cannot be part of a twisted coefficient system for {Cn(M,X)}. Alternatively,

by [GKY96] or Chapter 3 we know that homological stability with a stability slope of 1
2

cannot hold integrally for oriented configuration spaces, so the result of this chapter cannot

apply to the sequence of coefficients {V }.

Configuration spaces of submanifolds

In Chapter 5 we generalise homological stability for unordered configuration spaces in a

different direction: to homological stability for unordered configuration spaces of submani-

folds of M , in a suitable sense.

Recall from earlier in this section the description of the space ΣP
n (M,X|G) of “configu-

rations of copies of P in M”. When the subgroup G of Diff(P ) is the trivial group this is

denoted Σ̂P
n (M,X), and consists of n parametrised copies of P in M , labelled by X (and

which must all be isotopic to a chosen embedding ι : P ↪→ ∂M , and be “pairwise unlinked”).

In this case the main theorem of Chapter 5 can be stated as follows.

(a) If X is path-connected and dim(M) ≥ 2 dim(P ) + 3 then the stabilisation map

Σ̂P
n (M,X) −→ Σ̂P

n+1(M,X)

is an isomorphism on homology up to degree n−2
2 , and a surjection up to degree n

2 .

(b) If P is a point or k-sphere (with the chosen embedding ι : Sk ↪→ ∂M a standard embed-

ding), then the dimension condition above may be relaxed to dim(M) ≥ dim(P ) + 3.

More generally, we have the same result for ΣP
n (M,X|G), subject to certain conditions on

G ≤ Diff(P ). In both cases it must be either finite or open in Diff(P ), and in the extension

(b) for points and spheres it must also satisfy an extra technical condition; see §5.1 for the

full details and a discussion of the hypotheses.

4A Young diagram with any number of boxes, up to the equivalence relation generated by identifying λ
with λ+, which is λ with one box added to the top row.
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Chapter 1. Introduction

We can also combine the ideas of Chapters 4 and 5 to obtain twisted homological stability

for configuration spaces of submanifolds: under the same conditions, there is an isomorphism

H∗
(
ΣP
n (M,X|G);Tn

) ∼= H∗
(
ΣP
n+1(M,X|G);Tn+1

)
in the range ∗ ≤ n−d−2

2 , for any degree-d twisted coefficient system T .

There seems to be no essential obstruction to combining the ideas of Chapters 2 and 5

to obtain homological stability for oriented (or, perhaps better terminology in this context,

alternating) configuration spaces of submanifolds: there is an isomorphism

H∗
(
APn (M,X|G)

) ∼= H∗
(
APn+1(M,X|G)

)
in the stable range ∗ ≤ n−5

3 under the same conditions as in the main theorem, where

APn (M,X|G) denotes the alternating version of ΣP
n (M,X|G). However, we do not claim to

have checked this explicitly.

The dimension assumption dim(M) ≥ 2 dim(P ) + 3 in part (a) of the main theorem

arises due to the need for a transversality argument at a certain point in the proof (and we

need transverse to imply disjoint). The weakening of this dimension assumption for points

and spheres is possible since this step can be done “by hand” in this special case. However,

we are still left with a codimension (at least) 3 requirement, which arises since we need M

to remain connected after cutting out various embedded copies of P × [0, 1].

We conjecture that, in case (b) of the main theorem, the codimension requirement may

in fact be reduced to 2. This seems plausible as (i) homological stability does hold in

codimension 2 when P is a point, and (ii) homological stability holds for the sequence of

fundamental groups π1ΣS1

n (R3), where implicitly we take X = pt and G = Diff(S1). This is

because π1ΣS1

n (R3) ∼= ΣAut(Fn), the symmetric automorphism group of the free group Fn,

and homological stability for the latter was proved in [HW10, Corollary 1.2]. This second

fact is just evidence by analogy though, since ΣS1

n (R3) is not aspherical, so this is not a

special case of the conjecture. See §5.1.4 for more details.

1.2 Further directions

One natural next question to think about is whether there are “scanning” theorems

complementing the homological stability theorems of Chapters 2 and 5. In other words: is

it possible, up to homology, to identify the limiting space in terms of more accessible spaces,

in the setting of oriented configurations, or configurations of submanifolds? The author has

an ongoing joint project (see the section below on “scanning for oriented configurations”)

which is closely related to the first question, and intends to think about the second question

in the near future.

Another objective is to extend the result in Chapter 5 for configuration spaces of spheres

in M to the codimension-2 case, as conjectured in §5.1.4.

8



§1.2. Further directions

One may be able to find some applications of homological stability for oriented configura-

tion spaces in proving homotopical stability results for certain other types of configuration

spaces. An application along these lines appears in an unpublished preprint of Guest,

Koz lowski and Yamaguchi [GKY], for certain spaces of “positive and negative particles”

(related to those of McDuff [McD75]). The sequence of configuration spaces in question is

just Z/2→ Z/2→ · · · on π1, so homotopical stability is equivalent to homological stability

of the universal cover of this sequence, and being a double cover it turns out to be sufficiently

closely related to oriented configuration spaces that homological stability carries over.

In relation to Chapter 4, it would be good to have some interesting examples of twisted

coefficient systems for configuration spaces {Cn(M,X)} which are not pulled back from

a twisted coefficient system for the symmetric groups {Σn}; this may be possible by a

more geometric construction than that of the examples given in §4.5. See the end of §4.5

for a discussion of this. Finally, it would be very interesting to investigate further the

apparent link, mentioned in §4.10, between twisted homological stability for unordered

configuration spaces (for a certain twisted coefficient system) and representation stability

for the cohomology of ordered configuration spaces.

Scanning for oriented configurations

The author is currently working on a joint project, together with Jeremy Miller,5 which

in particular involves “scanning” questions for oriented configuration spaces. Let M be a

connected, open manifold, and denote the unordered and oriented configuration spaces onM

by Σn(M) and An(M) respectively (as in Chapter 5).6 This is to avoid conflict of notation

with the Quillen plus-construction. Let T cM →M be the fibrewise one-point compactified

tangent bundle of M , and denote by Γ(T cM) the compactly-supported sections of this

bundle. There is a scanning map s : Z × Σ∞(M) → Γ(T cM), which in [McD75, Theorem

1.2] was proved to be a homology-equivalence. The main aim of our project is to strengthen

this to the statement that the scanning map is acyclic, i.e. induces an isomorphism

H∗
(
Z× Σ∞(M); s∗A

) ∼= H∗
(
Γ(T cM);A

)
(1.2.1)

for any local coefficient system A on Γ(T cM).

Now, the double cover Z × A∞(M) of Z × Σ∞(M) is classified by a cohomology class

in H1(Z × Σ∞(M);Z/2), so since s is an isomorphism on H1(−;Z/2) we conclude that

Z×A∞(M) is the pullback of some double cover of Γ(T cM), which we denote by ΓA(T cM).

Acyclicity is a property of maps which lifts to covering spaces,7 so (1.2.1) implies that the

5jmiller@gc.cuny.edu
6We will just speak of unlabelled configuration spaces in this section, for simplicity.
7Since an equivalent characterisation of acyclicity for a map X → Y is that its lift to X ×Y Ỹ → Ỹ is a

homology-equivalence, where Ỹ is the universal cover of Y .

9



Chapter 1. Introduction

lifted map

Z×A∞(M)→ ΓA(T cM)

is acyclic, and in particular a homology-equivalence. This could be thought of as the

corresponding scanning result for oriented configuration spaces.

A brief outline of our strategy is as follows. The proof proceeds in two steps, first

proving (1.2.1) for Euclidean spaces M (in fact, for any manifold of the form R2 ×N), and

then deducing from this the general case. We add a disclaimer that the following sketch has

not yet been written up in detail, and so should be treated with a healthy dose of either

scepticism or optimism.

When M = R2×N we have that
∐
n Σn(M) and Γ(T cM) are each homotopy-equivalent

to homotopy-commutative topological monoids, by a construction similar to that of C ′n on

the first page of [Seg73]. Hence the plus-constructed scanning map

s+ : Z× Σ∞(M)+ → Γ(T cM)

is a homology-equivalence (by [McD75]) with target a simple space (π1 acting trivially on

πn for all n ≥ 1). If we can show that Z×Σ∞(M)+ is also a simple space then s+ must be

a weak equivalence and hence s must be acyclic. Now, a general condition for BG+ to be

an H-space, and therefore simple, is given in [Wag72, Proposition 1.2], and this covers the

special cases of the infinite braid group Σ∞(R2)+ ' Bβ+
∞ and the infinite symmetric group

Σ∞(R∞)+ ' BΣ+
∞. However, the method crucially uses properties of group homology, and

so does not suffice in general.

In the general case we need a twisted version of the group-completion theorem, implicit

in [MS76] and recently written up in detail in [RW], as follows. Let M be a homotopy-

commutative topological monoid, with π0M = N,8 and let M∞ be the homotopy colimit

of the sequence M → M → · · · given by multiplication by a fixed element of the 1-

component; so M acts on M∞ and we have a map π : EM×MM∞ → BM. Then the

canonical map M∞ → hofib(π) ' ΩBM is acyclic. Hence M+
∞ is weakly equivalent to

ΩBM, so in particular it is simple. Applying this toM'
∐
n Σn(M) we therefore conclude

that M+
∞ ' Z× Σ∞(M)+ is simple, as required.

For the second step we have M any connected manifold which is the interior of a manifold

M with non-empty boundary. Choose a disc D in M which intersects ∂M (far away from

8This is not necessary, but makes the hypotheses simpler to state.

10



§1.2. Further directions

where the stabilisation map acts). We then have a square of maps

Σ(M) Γ(T cM)

Σ(M,D) Γ(T cM,D)

s

s

π π′ (1.2.2)

where Σ(M) =
∐
n Σn(M) and the bottom map is the stabilisation map for relative con-

figuration and section spaces, which was shown to be a weak equivalence (as long as

π0(D)→ π0(M) is surjective, which is true in our case) by [Böd87, Proposition 2]. Taking

the homotopy colimit of (1.2.2) under stabilisation maps for the top two spaces and the

identities on the bottom two spaces, we obtain the square

Z× Σ∞(M) Γ(T cM)

Σ(M,D) Γ(T cM,D)

s

s

π∞ π′ (1.2.3)

for which the map of (point-set) fibres is s : Z × Σ∞(D) → Γ(T cD), which is therefore

acyclic by the first half of the proof. Since π′ is a fibration and π∞ is a “strong homology

fibration” (explained in a moment), this implies that the map of homotopy fibres is acyclic.

But the map of base spaces is a weak equivalence, so the map of total spaces is also acyclic.

A strong homology fibration is a map f such that the inclusion of its point-set fibres

f−1(b) into its homotopy fibre hofib(f) are strong homology-equivalences: they induce iso-

morphisms on homology for any abelian local coefficient system pulled back from hofib(f).

To show that π∞ is a strong homology fibration one has to prove a strong homology fibra-

tion criterion (similar to the homology fibration criterion of [McD75, Proposition 5.1] and

the quasifibration criterion of [DT58]), and then verify this criterion for π∞.

If we wanted to avoid strong homology fibrations we could still at least deduce the

corollary that Z×A∞(M)→ ΓA(T cM) is a homology-equivalence by showing that the map

Z×A∞(M)→ Σ(M,D) is an (ordinary) homology fibration.
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Chapter 2. Homological stability for oriented configuration spaces

2.1 Introduction

Recall from §1.1 that for a manifold M and space X, we define the n-point unordered

configuration space to be

Cn(M,X) :=
{

(p1, . . . , pn) ∈Mn | pi 6= pj for i 6= j
}
×Σn X

n.

This is the space of configurations of n distinct points (or ‘particles’) in M , each carrying

a label (or ‘parameter’) in X. When the label-space X is just a point we call Cn(M, pt) =

{(p1, . . . , pn) ∈Mn | pi 6= pj for i 6= j}/Σn an unlabelled configuration space. The oriented

configuration space is defined to be the double cover

C+
n (M,X) :=

{
(p1, . . . , pn) ∈Mn | pi 6= pj for i 6= j

}
×An Xn.

of this space, so oriented configurations have an additional global parameter: an ordering

of the n points up to even permutations. If M “admits a boundary” there is a natural map

s which adds a new point to the configuration near this boundary (see §2.2.2 for precise

definitions).

Main Theorem If M is the interior of a connected manifold-with-boundary of dimension

at least 2, and X is any path-connected space, then

s : C+
n (M,X) −→ C+

n+1(M,X)

is an isomorphism on homology up to degree n−5
3 , and a surjection up to degree n−2

3 .

Remark 2.1.1 If eitherM orX is not path-connected, then the number of path-components

of C+
n (M,X) grows unboundedly as n → ∞, so homological stability fails even in degree

zero. We also exclude the case of 1-dimensional manifolds, where homological stability also

fails in general: the space C+
n (R, X) deformation retracts onto Xn tXn.

When such a statement holds for a range of degrees ∗ ≤ αn+ c, we say that the stability

slope is α; so in this case we have homological stability for oriented configuration spaces

with a stability slope of 1
3 .

The underlying method we use for the proof is that of taking “resolutions of moduli

spaces”, as introduced and studied by Randal-Williams in [RW10]. This method involves

considering a semi-simplicial space augmented by the space of interest, where in the ‘stan-

dard’ strategy for proving homological stability one would consider a simplicial complex

acted on by the group of interest. The method was applied in [RW11] to prove the anal-

ogous theorem for unordered configuration spaces, which has a stability slope of 1
2 . Our

method is a modified version of that of [RW11]; however, some important complications

arise in going from the unordered to the oriented case, which are outlined in §2.3 below.

14



§2.1. Introduction

In particular, §2.3.2 explains why the stability slope goes from 1
2 to 1

3 when we apply the

techniques of [RW11] to the oriented case.

Remark 2.1.2 We note that the stability slope of 1
3 is the best possible for oriented config-

uration spaces (for Z-coefficients), as can be seen by the calculations of [Hau78] or [GKY96]

(see also §2.8.3 and Chapter 3).

2.1.1 Background

A brief history of homology-stability theorems for unordered and oriented configuration

spaces is as follows.

Unordered configuration spaces. Two special cases which were proved early on are

homology-stability for the sequences of symmetric and braid groups, corresponding to M =

R∞,R2 respectively (and X = pt, i.e. unlabelled). The result for the symmetric groups is

due to Nakaoka [Nak60], and the result for the braid groups was proved later by Arnol’d

[Arn70b]. The stability slope obtained in each case was 1
2 . Using more indirect methods,

Segal [Seg73] proved homology-stability for all Euclidean spaces M = Rd and arbitrary

path-connected label-spaces X, but this time without an explicit range of stability (see also

[LS01, §3]). Generalising in a different direction, in [McD75] McDuff proved homology-

stability for arbitrary manifolds M (assuming connectivity and that M admits a boundary)

but without labels (X = pt) and also without an explicit stability range. (She remarked,

however, that her methods would generalise to labelled configuration spaces.) Later, Segal

[Seg79] showed by a different method that in this case we do in fact have a stability slope

of 1
2 , as with the symmetric and braid groups.

The most general result for unordered configuration spaces is due to Randal-Williams

[RW11, Theorem A],1 which allows arbitrary manifolds and label-spaces. Specifically, he

proves homology-stability for Cn(M,X), with a slope of 1
2 , under the same assumptions on

M and X as stated in the Main Theorem above.

A recent result of Church [Chu12] concerning representation stability shows, as a corol-

lary of his main theorem, that rational homology-stability holds (with slope 1) for unordered

configuration spaces on a manifold M which may be closed. In this case M does not ad-

mit a boundary, and there is no natural map s adding a point to the configuration, but

nevertheless stability still holds rationally. The isomorphism in this case is induced by a

transfer map which removes a point from the configuration. This result is also proved di-

rectly in Theorems B and C of [RW11] (although here the increased stability slope of 1 is

only obtained when the manifold has dimension at least 3).

Oriented configuration spaces. Homology-stability for oriented configuration spaces

C+
n (M,X) has been proved in two special cases. For the alternating groups (M = R∞,

1This is also recalled as Theorem 2.3.1 below.

15



Chapter 2. Homological stability for oriented configuration spaces

X = pt) it can be quickly deduced from a result of Hausmann [Hau78, page 130], with

a stability slope of 1
3 , which can be improved to 1

2 by taking Z[1
3 ]-coefficients. For M a

compact connected Riemann surface minus a non-empty finite set of points (and X = pt),

Guest-Kozlowsky-Yamaguchi [GKY96] proved homology-stability with a slope of 1
3 , which

again can be improved to 1
2 by taking Z[1

3 ]-coefficients.2 The proofs of [Hau78] and [GKY96]

involve explicit calculations, using methods which are specific to their respective cases, so do

not generalise naturally to all manifolds. The main result of this chapter answers a question

in [GKY96], which asks whether their result generalises to arbitrary open manifolds.

In general, rational homology-stability for oriented configuration spaces follows from

the result of Church mentioned above. It corresponds to stability for the multiplicities of

the trivial and alternating representations of Σn in the rational cohomology of the ordered

configuration space C̃n(M,X). Representation stability for C̃n(M,X) [Chu12, Theorem 1]

includes multiplicity stability for the trivial representation, and indirectly shows that the

multiplicity of the alternating representation is eventually zero (cf. the discussion after the

statement of Theorem 1 in [Chu12]).

2.1.2 Remarks

Remark 2.1.3 The Serre spectral sequence for the fibration Z2 → C+
n (M,X)→ Cn(M,X)

implies that

H∗(C
+
n (M,X);Z) ∼= H∗(Cn(M,X);Z⊕ Z),

where the Z⊕ Z-coefficients on the right are twisted by the action of π1Cn(M,X) on Z⊕Z
by first projecting to Z2 (corresponding to the index-2 subgroup π1C

+
n (M,X)) and then

letting the generator of Z2 act by swapping the two Z-summands. So the Main Theorem

above is also twisted homological stability for unordered configuration spaces with this

sequence of π1Cn(M,X)-modules. We note that in the M = R∞, X = pt case this sequence

of Σn-modules does not extend to a (functorial) coefficient system in the sense of [Bet02].

See Chapter 4 for more on twisted homological stability for unordered configuration spaces.

Remark 2.1.4 The orientation of a configuration in C+
n (M,X) is an example of a global

parameter on configuration spaces (the labels in X are local parameters); in a sense it is

the simplest possible one. It is interesting that homological stability still holds for these

spaces, since the ‘scanning’ method of Segal and McDuff does not work in this case. In

this method one first uses a ‘transfer-type’ argument to show that, on homology of any

degree, the adding-a-point maps s are inclusions of direct summands. Then one shows that

the colimit of this sequence of maps is finitely generated (cf. the proof of Theorem 4.5 in

[McD75]). However, for oriented configuration spaces the maps s are not always injective

on homology (see §2.8.3 for counterexamples). Arguably, it is the existence of global data

in C+
n (M,X) which causes this injectivity-on-homology to fail.

2Their calculations actually work for any connected, open surface; see Chapter 3.
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Remark 2.1.5 A nice orientability property of oriented configuration spaces is the fol-

lowing: if M and X are both orientable manifolds, then C+
n (M,X) is again an orientable

manifold. This is simpler than in the unordered case, where Cn(M,X) is non-orientable

(exactly) if either

• dim(M) ≥ 2 and dim(M) + dim(X) is odd, or

• M = S1 and dim(X) and n are even

(cf. the remark following Proposition A.1 in [Seg79]).

2.1.3 Corollaries

The Main Theorem has corollaries for homological stability of certain sequences of

groups:

Corollary A If G is any discrete group and S is the interior of a connected surface-with-

boundary S, then the natural maps

G oAβSn −→ G oAβSn+1 and G oAn −→ G oAn+1

are isomorphisms on homology up to degree n−5
3 and surjections up to degree n−2

3 .

Here βSn is the braid group on n strands on the surface S, and AβSn is its alternating

subgroup, consisting of those braids whose induced permutation is even. Of course, these

corollaries exactly parallel those of the unordered version of the Main Theorem, which

concern G o Σn and G o βSn . Homological stability for An and for AβSn with S compact

and orientable were known previously by [Hau78, Proposition A] (via the relative Hurewicz

theorem) and [GKY96] respectively. The above corollaries are new (as far as the author is

aware) for G non-trivial or for S non-orientable or non-compact.

Via the Universal Coefficient Theorem and the Atiyah-Hirzebruch spectral sequence, ho-

mological stability for (trivial) Z-coefficients implies homological stability for any connective

homology theory:

Corollary B Under the hypotheses of the Main Theorem, if h∗ is a connective homology

theory with connectivity c, the map

s : C+
n (M,X) −→ C+

n+1(M,X)

is an isomorphism on h∗ for ∗ ≤ n−5
3 + c and surjective on h∗ for ∗ ≤ n−2

3 + c.

Organisation of the chapter

In §2.2 we define all the spaces, semi-simplicial spaces, and maps which will be used

later. Section 2.3 contains an outline of the proof, and explains the differences between
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Chapter 2. Homological stability for oriented configuration spaces

the methods in the unordered and the oriented cases. The proof itself is contained in

§§2.4, 2.5 and 2.6. Section 2.4 produces some spectral sequences and establishes some facts

about them, §2.5 uses excision to relate the connectivity of two different maps between

configuration spaces, and §2.6 brings this together to prove the Main Theorem. Section

2.7 establishes the corollaries stated above, and §2.8 contains a note on the (failure of)

injectivity of stabilisation maps on homology.

Some technical constructions have been deferred to the appendices, to avoid lengthy

digressions during the proof of the Main Theorem. Appendix 2.A constructs a factorisation

on homology for maps between mapping cones, under fairly general conditions, and Ap-

pendix 2.B recalls the details of the construction of various spectral sequences arising from

semi-simplicial spaces.

2.2 Definitions and set-up

First we mention two general notational conventions: A connected manifold M with

k points removed will be denoted by Mk (since it is connected, its homeomorphism type

is independent of which k points are removed). The symbol will be reserved for the

canonical inclusion of the codomain of a map into its mapping cone:

Y Z Cf.
f

2.2.1 Configuration spaces

Definition 2.2.1 For a manifold M and space X, we define the ordered configuration space

to be

C̃n(M,X) := Emb([n],M)×Xn,

where [n] is the n-point discrete space. This is the space of ordered, distinct points (‘parti-

cles’) in M , each carrying a label (or parameter) in X. The symmetric group acts diagonally

on this space, permuting the points along with their labels, and we define the unordered

configuration space to be the quotient

Cn(M,X) := C̃n(M,X)/Σn.

If instead we just quotient out by the action of the alternating group, we obtain the oriented

configuration space

C+
n (M,X) := C̃n(M,X)/An.

Notation 2.2.2 We will denote elements of ordered, oriented, unordered configuration

spaces respectively by ( p1x1 · · ·
pn
xn ), [ p1x1 · · ·

pn
xn ], { p1x1 · · ·

pn
xn }, where pi ∈ M and xi ∈ X. So

square brackets denote the equivalence class under even permutations of the columns. The
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§2.2. Definitions and set-up

orientation-reversing automorphism

[ p1x1 · · ·
pn
xn ] 7→

[
p1
x1 · · ·

pn−2
xn−2

pn
xn

pn−1
xn−1

]
of C+

n (M,X) will be denoted by ν. We will often abbreviate these spaces to C̃n(M), C+
n (M),

and Cn(M) when the space of labels is clear, to avoid cluttering our notation.

2.2.2 Adding a point to a configuration space

To add a point to a configuration on M , there needs to be somewhere “at infinity” from

which to push in this new configuration point. An appropriate condition is to “admit a

boundary”:

Definition 2.2.3 We say that M admits a boundary if it is the interior of some manifold-

with-boundary M . Note that we do not require M to be compact.

When M admits a boundary, there is a natural adding-a-point map, as follows:

Definition 2.2.4 Suppose that M = int(M), where M is a manifold-with-boundary, and

choose a point b0 ∈ ∂M . Let B0 = ∂0M be the boundary-component containing b0. Also

choose a basepoint x0 ∈ X. We initially define the adding-a-point map at the level of

ordered configuration spaces to be

( p1x1 · · ·
pn
xn ) 7→

(
p1
x1 · · ·

pn
xn

b0
x0

)
.

This is a map C̃n(M,X) → C̃n+1(M ′, X), where M ′ is M with an open collar attached at

B0:

M ′ = M ∪B0

(
B0 × [0, 1)

)
.

Choosing a canonical homeomorphism φ : M ′ ∼= M (with support contained in a small

neighbourhood of B0), which pushes this collar back into M , we obtain a map

s : C̃n(M,X) −→ C̃n+1(M,X).

This process is illustrated in Figure 2.2.1. The map s is equivariant w.r.t. the standard

inclusion Σn ↪→ Σn+1 (and hence also w.r.t. An ↪→ An+1), so it descends to maps

s : Cn(M,X) −→ Cn+1(M,X)

and s : C+
n (M,X) −→ C+

n+1(M,X).

Notation 2.2.5 We will generally refer to the adding-a-point maps s as stabilisation maps,

since these are the maps with respect to which the unordered and oriented configuration

spaces stabilise. When it is necessary to keep track of the number of points in a config-

uration, we write s = sn for the map which adds the (n + 1)st point to a configuration.
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Chapter 2. Homological stability for oriented configuration spaces

· · · b0 · · · · · ·

Figure 2.2.1: The adding-a-point map s. The original configuration is contained in the
interior of the shaded region in each picture.

In the oriented case, we define −s := ν ◦ s (and +s := s). So −s just takes the opposite

orientation convention in its definition, sending [ p1x1 · · ·
pn
xn ] to

[
p1
x1 · · ·

pn−1
xn−1

b0
x0

pn
xn

]
instead of[

p1
x1 · · ·

pn
xn

b0
x0

]
.

Remark 2.2.6 Up to homotopy, the stabilisation map s depends only on the choice of

boundary-component B0, and the choice of path-component of X containing x0. Later we

will only consider the case when X is path-connected, so s will only depend on which ‘end’

of the manifold the new configuration point is pushed in from.

Remark 2.2.7 Since ±s only differ by an automorphism of their common codomain, they

have exactly the same properties w.r.t. injectivity- and surjectivity-on-homology, so they

are interchangeable for the purposes of homology-stability.

2.2.3 Semi-simplicial spaces

A semi-simplicial space (which in this chapter we will call a ∆-space) is a diagram of

the form

· · · Y1 Y0

where the “face maps” di : Yk → Yk−1 (1 ≤ i ≤ k + 1) satisfy the simplicial identities

didj = dj−1di whenever i < j. The ∆-space as a whole is denoted by Y•. An augmented

∆-space is a diagram of the form

· · · Y1 Y0 Y−1

where again the face maps satisfy the simplicial identities. In other words this is a ∆-

space together with an “augmentation map” Y0 → Y−1 which equalises the two face maps

d1, d2 : Y1 ⇒ Y0. A map of (augmented) ∆-spaces is a collection of maps, one for each level

k, which commutes with di for each i.

The (thick) geometric realisation of a ∆-space Y• is ‖Y•‖ =
(∐

k≥0 Yk ×∆k
)
/∼, where

∼ is the equivalence relation generated by the face relations (di(y), z) ∼ (y, δi(z)), where δi

is the inclusion of the ith face of ∆k+1. If Y• is an augmented ∆-space, there is a unique

composition of face maps Yk → Y−1 for each k. These fit together to give an induced map

‖Y•‖ → Y−1, where ‖Y•‖ is the geometric realisation of the non-augmented part of Y•.

Definition 2.2.8 A ∆-space Y• with an augmentation to Y−1 such that the induced map

‖Y•‖ → Y−1 is n-connected is called an n-resolution of Y−1 in the terminology of [RW10]

and [RW11].
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2.2.3.1 A configuration ∆-space.

We now extend the oriented configuration space C+
n (M,X) so that it is the (−1)st level

of an augmented ∆-space.

Definition 2.2.9 The augmented ∆-space C+
n (M,X)• is defined as follows: The elements

of the space of i-simplices C+
n (M,X)i are configurations [ p1x1 · · ·

pn
xn ], together with an order-

ing of i+1 of the pairs ( pixi ). In particular, C+
n (M,X)−1 is just C+

n (M,X), and C+
n (M,X)0

consists of (oriented, labelled) configurations with one of the points marked out as ‘special’.

The face map dj is given by forgetting the jth element of the (i+ 1)-ordering; in particular,

the augmentation map is the map C+
n (M,X)0 → C+

n (M,X) which forgets which point is

‘special’.

Remark 2.2.10 We will show later (see Corollary 2.4.8) that C+
n (M,X)• is an (n − 1)-

resolution of C+
n (M,X).

Note The definition of ±s clearly extends to each level C+
n (M,X)i and commutes with the

face maps, so we have maps of augmented ∆-spaces:

C+
n (M,X)•

±s•−−→ C+
n+1(M,X)•.

As before, we will often abbreviate the augmented ∆-space C+
n (M,X)• as C+

n (M)•.

2.2.4 Maps between configuration spaces

We will make use of the following maps between configuration spaces in the proof of the

Main Theorem.

2.2.4.1 εn and an.

These automatically come from the structure of the augmented ∆-space C+
n (M,X)•:

an denotes the augmentation map

an : C+
n (M,X)0 −→ C+

n (M,X),

which forgets which point is the ‘special’ point, and εn is the induced map

εn : ‖C+
n (M,X)•‖ −→ C+

n (M,X)

from the geometric realisation of the unaugmented part of the ∆-space to the augmentation.

Aside (Puncturing M) Recall from the beginning of the section that M1, Mk denote the

connected manifold M with any point, or more generally any k points, removed. Since M

is connected, the manifolds resulting from removing different choices of a set of k points can

all be (non-canonically) identified. So where necessary we may assume that M1 means M
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with a point near B0 (in the sense of the definition of the stabilisation map) removed. It is

also implicitly assumed that we remember the inclusion Mk ↪→ M , as well as the abstract

manifold Mk.

2.2.4.2 pn and un.

The maps

C+
n (M)

pn−→ C+
n (M1)

un−→ C+
n (M)

‘puncture’ and ‘unpuncture’ the manifold M respectively. The second map is easiest to

describe: it is just induced by the inclusion M1 ↪→ M . The puncturing map pn is defined

similarly to the stabilisation map. Let M (1) be M with an open collar attached at B0, and

then punctured at b0:

M (1) = M ∪B0

(
B0 × [0, 1)

)
r {b0}.

Then the map pn is induced by the inclusion M ↪→M (1) and the canonical homeomorphism

φ|M(1) : M (1) ∼= M1 (from the definition of the stabilisation map) which pushes the collar

back into M .

Remark 2.2.11 The composition un ◦ pn is homotopic to the identity, since it just pushes

the configuration away from B0 slightly.

2.2.4.3 πn,i and jn,i.

The projection

πn,i : C
+
n (M)i −→ C̃i+1(M)

forgets all but the (i+1)-ordered points of the configuration in C+
n (M)i. It clearly commutes

with the stabilisation map: πn+1,i ◦ sn = πn,i.

This is a fibre bundle, with fibre homeomorphic to C+
n−i−1(Mi+1) when i ≤ n− 3. It is

closely analogous to the fibre bundle constructed by Fadell-Neuwirth in [FN62a, Theorem 3],

and the fact that this is a fibre bundle is proved in detail as Lemma 1.26 in [KT08, page 26],

so we refer to this for a detailed exposition. Alternatively, see Lemma 5.5.7 of Chapter 5,

where a much more general version of this is proved (although in the unordered case). To find

a trivialising neighbourhood for
(
p1
x1 · · ·

pi+1
xi+1

)
∈ C̃i+1(M) one just needs to choose pairwise

disjoint open neighbourhoods for the points p1, ..., pi+1 ∈M . The condition i ≤ n− 3 is to

ensure that the fibre is path-connected; in the cases i = n − 2 and i = n − 1, the fibre is

Mn−1 ×X × [2] and [2] respectively (where [2] is the two-point discrete space).

Pick a basepoint (m1
x0 · · ·

mi+1
x0 ) ∈ C̃i+1(M) and define jn,i to be the inclusion of the fibre

jn,i : C
+
n−i−1(Mi+1) = C+

n−i−1(M r {m1, ...,mi+1}) ↪→ C+
n (M)i.

In identifying the fibre abstractly with C+
n−i−1(Mi+1), we have implicitly chosen a con-

vention for combining the orientation of
[
p1
x1 · · ·

pn−i−1
xn−i−1

]
∈ C+

n−i−1(Mi+1) with the ordering
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(m1
x0 · · ·

mi+1
x0 ) to induce an orientation of all n points. We declare this convention to be[

m1
x0 · · ·

mi+1
x0

p1
x1 · · ·

pn−i−1
xn−i−1

]
, which completes the definition of jn,i.

So abstractly jn,i is a map which replaces i+ 1 punctures with i+ 1 new configuration

points, which are additionally given an (i + 1)-ordering. The new points are all labelled

by x0 ∈ X, and the orientation of the new, larger configuration is given by the convention

stated above.

Remark 2.2.12 Due to our choice of orientation convention for jn,i, these maps commute

with stabilisation maps, and we have a map of fibre bundles

C+
n−i(Mi+1) C+

n+1(M)i

C+
n−i−1(Mi+1) C+

n (M)i
C̃i+1(M)

jn+1,i

jn,i

s si

πn+1,i

πn,i

(2.2.1)

Remark 2.2.13 The composition

C+
n (M)

pn−→ C+
n (M1)

jn+1,0−−−−→ C+
n+1(M)0 an+1−−−→ C+

n+1(M)

sends [ p1x1 · · ·
pn
xn ] to

[
b0
x0

p̄1
x1 · · ·

p̄n
xn

]
, where p̄i = φ(pi) is pi pushed slightly away from B0 if it

is near B0. Hence this is a factorisation of (−1)nsn.

This factorisation will be key to the proof of the Main Theorem, and the appearance

of (−1)n here is in a sense where the extra complication (compared to the unordered case)

comes from — and why we only obtain a stability slope of 1
3 .

2.2.5 Relative configuration spaces

Definition 2.2.14 We define the relative configuration space to be the mapping cone of

the (positive) stabilisation map:

R+
n (M,X) := hocofib

(
C+
n (M,X)

sn−→ C+
n+1(M,X)

)
.

Similarly, R+
n (M,X)i is defined to be the mapping cone of the stabilisation map sin between

the ith levels of the corresponding ∆-spaces. Since the face maps commute exactly with

the stabilisation maps, they induce relative face maps which give {R+
n (M,X)i}i≥−1 the

structure of an augmented ∆-space R+
n (M,X)•. Again, we will usually abbreviate the

notation to R+
n (M) and R+

n (M)• when X is understood.

2.2.6 Maps between relative configuration spaces

All our maps f̃ : R+
n (M)i −→ R+

n′(M
′)i
′

between relative configuration spaces will be

induced by maps defined on the non-relative configuration spaces
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C+
n (M)i C+

n+1(M)i R+
n (M)i

C+
n′(M

′)i
′

C+
n′+1(M ′)i

′
R+
n′(M

′)i
′

s

s

f f f̃Hf

Note that f̃ (even up to homotopy) depends on the non-relative maps f , and the homotopy

Hf chosen to fill the square.

2.2.6.1 ̃n,i, ãn, and ũn.

We define relative versions of the inclusion-of-the-fibre, augmentation, and unpuncturing

maps as follows:

Definition 2.2.15 The maps jn,i, an, and un commute exactly with stabilisation maps, so

we may define

̃n,i : R
+
n−i−1(Mi+1) −→ R+

n (M)i,

ãn : R+
n (M)0 −→ R+

n (M),

ũn : R+
n (M1) −→ R+

n (M)

as explained above, taking the homotopy Hf to be the constant homotopy in each case.

2.2.6.2 p̃n and relative stabilisation maps.

We will now define relative versions of the puncturing map pn, the stabilisation map

s : Cn(M)→ Cn+1(M) and the negative iterated stabilisation map−s2 = ν◦s◦s : C+
n (M)→

C+
n+2(M).

Notation 2.2.16 To differentiate clearly between the unordered and oriented cases, we

will temporarily (for Definition 2.2.17 and Remark 2.2.18 below) use the following notation

when we want to emphasise which case we are dealing with: s̆ denotes the stabilisation

map between unordered configuration spaces, and s̊ denotes the stabilisation map between

oriented configuration spaces. So we want to define relative versions of pn, s̆, and −s̊2.

Definition 2.2.17 Embed H = {(x, y) ∈ R2|y ≥ 0} in M , in a neighbourhood of the

boundary-component B0, so that b0 is identified with (0, 0), and such that the homeomor-

phism φ : M ′ ∼= M from the definition of the stabilisation map restricts to (x, y) 7→ (x, y+1)

on H. So on H, the stabilisation map pushes points up by 1 and adds a new point at (0, 1).

Define the self-homotopies (12) : s̆2 ' s̆2 and (123), (132) : − s̊3 ' −s̊3 to fix the original

configuration, and move the new configuration points around on H as illustrated below:

b0

(12) :

b0

(123) :

b0

(132) :
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(The original configuration is contained in the interior of the shaded region in each case.)

Now, the left square below

· ·

· ·

s̆

s̆

s̆ s̆
⇒

· ·

· ·

s̊

s̊

−s̊2 −s̊2
⇒

(2.2.2)

admits the identity homotopy 1 and the homotopy (12). These induce relative stabilisation

maps

s̃1, s̃(12) : Rn(M) −→ Rn+1(M)

on relative unordered configuration spaces. Similarly the right square admits 1, (123) and

(132), which induce relative double stabilisation maps

s̃2
1, s̃

2
(123), s̃

2
(132) : R+

n (M) −→ R+
n+2(M)

on relative oriented configuration spaces.

Remark 2.2.18 The natural self-homotopies s̆2 ' s̆2 come from the different ways of

moving the two new configuration points around in the collar neighbourhood B0 × [0, 1),

so they are parametrised by π1C2(B0 × [0, 1)). We are only considering those which are

supported in a coordinate neighbourhood near b0, which are parametrised by π1C2(Rd).
This is either Σ2 (d ≥ 3) or β2 (d = 2); the homotopy (12) defined above corresponds

respectively to the only non-trivial element or a generator.

The analogous statement holds for self-homotopies −s̊3 ' −s̊3, replacing ‘C2’ by ‘C+
3 ’.

In this case π1C
+
3 (Rd) is either A3 (d ≥ 3) or Aβ3 (d = 2). This time the homotopies

(123), (132) defined above correspond respectively to either the only non-trivial elements

or a generating pair.

Definition 2.2.19 To define the relative puncturing map p̃n : R+
n (M) −→ R+

n (M1), we need

to choose a homotopy spn ' pns. Similarly to the definition of the relative stabilisation

maps, we define this to fix the original configuration, and swap the puncture and the new

configuration point on H as illustrated below:

b0

This homotopy will be called (12)p, to distinguish it from the homotopy (12) fitting in to

the left square of (2.2.2).
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Remark 2.2.20 By Remark 2.2.13, and the definitions above, the composition

ãn+2 ◦ ̃n+2,0 ◦ p̃n+1 ◦ ãn+1 ◦ ̃n+1,0 ◦ p̃n : R+
n (M) −→ R+

n+2(M)

is a factorisation of s̃2
H , where H is the composite homotopy

(12)
(12)

We are reading this in the direction ⇐, so this is (132). We note that the homotopy (123)

also factorises into two copies of (12), but pasted together differently:

(12)
(12)

The diagonal map here is the (positive) stabilisation map s : C+
n+1(M) −→ C+

n+2(M).

Remark 2.2.21 We note that the composition ũn ◦ p̃n is homotopic to the identity (cf.

Remark 2.2.11). Indeed, composing the diagrams defining ũn and p̃n results in

· · ·

· · ·

s

s

un ◦ pn un+1 ◦ pn+1 ũn ◦ p̃n⇐H H =

b0

and a little thought shows that the maps un ◦ pn, un+1 ◦ pn+1 and the homotopy H can

be simultaneously homotoped to identities, which induces a homotopy from ũn ◦ p̃n to the

identity.

2.3 Sketch of the proof

The aim of this section is to explain some of the ideas in the proof of the Main Theorem,

and especially how the proof differs from the proof of the unordered version of this theorem.

The proof itself is contained in §§2.4, 2.5, and 2.6 below, and does not depend on the

contents of the present section, which is purely an overview.

2.3.1 The unordered case

We first outline the proof of the unordered version of the Main Theorem, due to Randal-

Williams:

Theorem 2.3.1 ([RW11]) If M is the interior of a connected manifold-with-boundary of

dimension at least 2, and X is any path-connected space, then the stabilisation map

Cn(M,X)
s−→ Cn+1(M,X)
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§2.3. Sketch of the proof

is an isomorphism on homology up to degree n−2
2 and a surjection up to degree n

2 . Equiva-

lently,

H̃∗Rn(M,X) = 0 for ∗ ≤ n
2 . (2.3.1)

Sketch of proof. Since M and X are path-connected and dim(M) ≥ 2, all the configuration

and relative configuration spaces are also path-connected, so H̃0Rn(M,X) = 0 for all n.

This proves the n = 0, 1 cases of (2.3.1); the general result is proved by induction on n.

The strategy is to construct some map with target Rn(M,X) = Rn(M), and then

prove that it is both zero and surjective on homology up to degree n
2 . Two possible maps

into Rn(M) are the relative stabilisation maps s̃1 and s̃(12) defined in §2.2.6.2, which are

induced by putting the homotopies 1, (12) into the left-hand square of (2.2.2). By the

unordered version of Remark 2.2.13, the vertical maps s in this square factorise into a ◦
j ◦ p (corresponding to puncturing the manifold, then replacing the puncture by a new

configuration point which is marked as special, and then forgetting which point is special).

Now, the unordered versions of the maps p̃, ̃, ã on relative configuration spaces are defined

similarly to the oriented ones: p̃ is induced by a square containing the homotopy (12)p

and ̃, ã are induced by squares containing the identity homotopy. Hence the homotopy

(12) respects the factorisation s = a ◦ j ◦ p (i.e. it factorises into ), whereas the identity

homotopy 1 does not. So s̃(12) has an induced factorisation s̃(12) = ã ◦ ̃ ◦ p̃. On the other

hand 1 trivially factorises into triangles (here the diagonal map and both homotopies are

just identities), but (12) does not.

Now, by some intricate arguments (this is where the bulk of the proof lies, and is

contained in §§2.4, 2.5, 2.6 for the oriented case) the induced factorisation of s̃(12) into

ã ◦ ̃ ◦ p̃ allows us, using the inductive hypothesis, to prove that it is surjective on homology

up to the required degree. On the other hand a factorisation into triangles automatically

gives a nullhomotopy of the induced map on mapping cones; hence s̃1 is zero on homology

(in all degrees). But neither map factorises both ways, so this doesn’t yet finish the inductive

step. Instead, in the unordered case, the following trick suffices to complete it:

We have a map of long exact sequences

H∗Cn(M) H∗Rn−1(M) H∗−1Cn−1(M) H∗−1Cn(M)

H∗Cn+1(M) H∗Rn(M) H∗−1Cn(M) H∗−1Cn+1(M)

s∗

(s̃(12))∗
0

where the indicated composition is zero since it is induced by a cofibration sequence. In the

range of degrees under consideration we know that (s̃(12))∗ is surjective, so it is sufficient to

prove surjectivity of the map H∗Cn(M) −→ H∗Rn−1(M). By exactness, this is equivalent

to injectivity of s∗ : H∗−1Cn−1(M) −→ H∗−1Cn(M). The inductive hypothesis only gives

us this in the range ∗ ≤ n−1
2 , which is not quite enough. However, in the unordered case
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one can show, by a completely different argument, that s∗ is split-injective in every degree

(see §2.8.1), so this completes the proof.

2.3.2 The oriented case

The oriented version of this theorem is the Main Theorem of this chapter:

Main Theorem If M is the interior of a connected manifold-with-boundary of dimension

at least 2, and X is any path-connected space, then the stabilisation map

C+
n (M,X)

s−→ C+
n+1(M,X)

is an isomorphism on homology up to degree n−5
3 and a surjection up to degree n−2

3 . Equiv-

alently,

H̃∗R
+
n (M,X) = 0 for ∗ ≤ n−2

3 . (2.3.2)

Sketch of proof. The basic strategy for the inductive step in the oriented case is the same:

find a map with target R+
n (M,X) = R+

n (M) which is both zero and surjective on homology

up to degree n−2
3 . By analogy with the unordered case, the first thing one might try is the

relative stabilisation maps induced by

· ·

· ·

s

s

±s ±sH with H =

{
1 if the vertical maps have the same sign

(12) if the vertical maps have opposite signs

}
.

Similarly to before, we would like the homotopy H to factorise like , so we need to choose

the case where the vertical maps have opposite signs and H = (12). This gives an induced

factorisation of the relative stabilisation map into ã ◦ ̃ ◦ p̃, which allows us to prove that it

is surjective on homology, by the same kind of arguments as in the unordered case.

However, (12) does not factorise into triangles , so we cannot deduce that it is also

zero on homology. So far this is just as in the unordered case, but this time the “ladder

trick” which completed the inductive step in the unordered case does not work: It depends

on knowing injectivity of s∗ in all degrees, in advance, by a separate argument, but in the

oriented case s∗ is not always injective (see §2.8).

So to solve this we will instead construct a different factorisation of the relative sta-

bilisation map on homology, and then use this factorisation (and naturality of the fac-

torisation w.r.t. stabilisation maps) to show that it factors through the zero map in the

required range of degrees. This new factorisation is actually just a general construction

for homotopy-commutative squares: the map on mapping cones induced by choosing any

particular homotopy to fill the square has a certain factorisation on homology — as long

as the square admits some homotopy which factorises into triangles . However, we do

not currently have such a split homotopy. To remedy this, we can stack two copies of

our square on top of each other; this produces the right-hand square of diagram (2.2.2),
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filled by the homotopy (132). So we have extended our map into R+
n (M) further back, to

s̃2
(132) : R+

n−2(M)→ R+
n (M).

Now we also have the homotopy (123) filling the same square, and as noted in Remark

2.2.20, this factorises into triangles (as does the identity homotopy, in fact). This allows

us to construct the aforementioned factorisation of s̃2
(132) on homology, which is

R+
n−2(M) ΣC+

n−2(M) C+
n+1(M) R+

n (M),

where a dotted arrow indicates a map defined only on homology.

In this case one can also check that the middle part of the factorisation commutes with

stabilisation maps in the following way:

R+
n−2(M) ΣC+

n−2(M) C+
n+1(M) R+

n (M)

ΣC+
n−3(M) C+

n (M)

Σ(−sn−3) sn	

Now we can show that the top row (s̃2
(132) on homology) is zero in the desired range.

The inductive hypothesis implies that Σ(−sn−3) is surjective on homology in this range,

so we can factor the top row along the bottom of the diagram like . In particular, it

factors through C+
n (M)

sn−→ C+
n+1(M) → R+

n (M), which is zero on homology since it is

induced by a cofibration sequence.

This completes the inductive step, since surjectivity-on-homology can be proved as be-

fore, using the factorisation s̃2
(132) = ã ◦ ̃ ◦ p̃ ◦ ã ◦ ̃ ◦ p̃. However, note that we are now

using the inductive hypothesis from further back (to prove surjectivity for the ‘older’ copies

of ã∗, ̃∗, p̃∗), which results in a smaller improvement in the range of stability during each

inductive step — and hence the slower rate of stabilisation in the oriented case.

Remark 2.3.2 This narrative outlines a fairly direct link from the existence of a global

parameter on configuration spaces to the reduced stability slope: Firstly it means that

injectivity of s∗ fails (see §2.8 for more on this), cutting off one line of attack, and secondly

it makes the other line of attack weaker: The global parameter is an obstruction to the

existence of certain self-homotopies of iterated stabilisation maps, which are needed to do

the zero-on-homology half of the proof in this line of attack. Hence we need to extend our

map into R+
n (M) further back to obtain such self-homotopies. This means we need to use

the inductive hypothesis from further back to prove surjectivity-on-homology for the ‘older’

parts of this map, and so this only goes through for a smaller range of degrees. Hence we

get a smaller increase in the stability range with each inductive step, and so the rate of

stabilisation is slower.
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2.4 Two spectral sequences

In this section we first establish the two spectral sequences to be used in the proof of

the Main Theorem, and then show that (as mentioned in Remark 2.2.10) the augmented

∆-space C+
n (M,X)• is an (n − 1)-resolution, implying that one of our spectral sequences

converges to zero in a range of degrees.

2.4.1 General constructions

The first spectral sequence we will make use of is a relative version of the Serre spectral

sequence. We denote the mapping cone of a map g by Cg.

Proposition 2.4.1 Suppose f is a map of fibrations over a path-connected space B

E0 E1

B

f

(2.4.1)

Let F0, F1 be the fibres over a point b ∈ B, and denote the restriction of f to F0 → F1 by

fb. Then there is a first quadrant spectral sequence

E2
s,t
∼= Hs(B; H̃t(Cfb)) ⇒ H̃∗(Cf)

in which the rth differential has bidegree (−r, r − 1). The edge homomorphism

H̃t(Cfb) ∼= E2
0,t � E∞0,t ↪→ H̃t(Cf)

is the map on H̃t induced by the inclusion Cfb ↪→ Cf .

This is mentioned as Remark 2 on p. 351 of [Swi75] and as Exercise 5.6 of [McC01]. (In

these two places it is assumed that f is an inclusion, but this can be ensured by replacing

(2.4.1) by a homotopy-equivalent diagram.) We will show how to derive this from the usual

(absolute) Serre spectral sequence:

Proof. Let CfibE0 be the fibrewise cone on E0, i.e. E0 × [0, 1] with Fb × {1} collapsed to a

point separately for each fibre Fb, and let

Cfibf = E1 ∪f CfibE0

(compare Cf = E1 ∪f CE0). There is an induced fibration p : Cfibf → B, whose fibre is

Cfb, and which has a section s : B → Cfibf taking b′ ∈ B to the tip of the cone in the

fibre over b′. Collapsing this section gives a map c : Cfibf → Cf . These maps fit into the

diagram
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{b} Cfb Cfb

B Cfibf Cf

B B

1

s c

1

1 p

where each vertical sequence is a fibration sequence and each horizontal sequence is a split

cofibration sequence.

The required spectral sequence will be a direct summand of the Serre spectral sequence

associated to the middle fibration. This can be seen as follows: The map of fibrations in the

diagram above induces a map of Serre spectral sequences, and the fact that the horizontal

sequences are split cofibrations means that we can identify this map of spectral sequences,

on each page Er and in the limit, as an inclusion of a direct summand. In particular,

on the E2 page: Hs(B;Ht(pt)) ↪→ Hs(B;Ht(pt))⊕Hs(B; H̃t(Cfb));

in the limit: H∗(B) ↪→ H∗(B)⊕ H̃∗(Cf).

Passing to the other direct summand now gives the required spectral sequence.

The claim about edge homomorphisms follows from the analogous fact about edge ho-

momorphisms for the Serre spectral sequence associated to Cfb ↪→ Cfibf � B, of which

our spectral sequence is a direct summand.

To state the next construction of a spectral sequence, we first define the notion of a

“double mapping cone”:

Definition 2.4.2 Given a square of maps which commutes up to homotopy, and a chosen

homotopy to fill this square, one can apply the mapping cone construction either vertically

then horizontally, or horizontally then vertically. The resulting 2-by-2 grid of spaces and

maps is the same up to homeomorphism whichever way around this is done. In particu-

lar, the mapping cone (taken horizontally) of the induced map-on-mapping cones (taken

vertically) is homeomorphic to the mapping cone (taken vertically) of the induced map-on-

mapping-cones (taken horizontally). We call this the double mapping cone of the original

square-with-homotopy.

The second spectral sequence we will need is constructed from a map of augmented ∆-

spaces. There are versions of this construction for ∆-spaces and for augmented ∆-spaces,

which can be either basepointed or non-basepointed, and maps of any of the above. The

version we will use is:

Proposition 2.4.3 Given a map of augmented ∆-spaces Y• → Z•, there is an induced
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square of maps

‖Y•‖ ‖Z•‖

Y−1 Z−1

(2.4.2)

Denote the double mapping cone of this square by C2(Y• → Z•), and as before denote the

mapping cone of Ys → Zs by C(Ys → Zs). Then there is a spectral sequence contained in

{s ≥ −1, t ≥ 0}:

E1
s,t
∼= H̃t(C(Ys → Zs)) ⇒ H̃∗+1(C2(Y• → Z•)),

where the first differential is the alternating sum of the maps on homology induced by the

relative face maps. In particular, E1
−1,t ←− E1

0,t is H̃t of the relative augmentation map.

Proof. The construction is given in Appendix 2.B.

2.4.2 The spectral sequences to be used in the proof of the Main Theorem

Proposition 2.4.4 We have the following spectral sequences:

E2
s,t
∼= Hs

(
C̃i+1(M); H̃t(R

+
n−i−1(Mi+1))

)
⇒ H̃∗(R

+
n (M)i) (RSSSi)

E1
s,t
∼= H̃t(R

+
n (M)s) ⇒ H̃∗+1Cε̃n (∆SS)

for 0 ≤ i ≤ n− 3, where Cε̃n is as follows:

‖C+
n (M)•‖ ‖C+

n+1(M)•‖ ‖R+
n (M)•‖

C+
n (M) C+

n+1(M) R+
n (M)

Cεn Cεn+1 Cε̃n

εn εn+1 ε̃n

(2.4.3)

The edge homomorphisms on the vertical axis of (RSSSi) are the maps on H̃t induced by

̃n,i, and the leftmost d1-differentials of (∆SS) are the maps on H̃t induced by ãn.

Proof. This follows immediately by applying Proposition 2.4.1 to the map of fibre bundles

(2.2.1), and applying Proposition 2.4.3 to the map of augmented ∆-spaces

s•n : C+
n (M,X)• −→ C+

n+1(M,X)•.
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2.4.3 C+
n (M,X)• is an (n− 1)-resolution

In the remainder of this section, we prove that the spectral sequence (∆SS) converges

to zero up to total degree n − 1, which will follow from the fact that C+
n (M,X)• is an

(n− 1)-resolution. First we define a certain semi-simplicial set:

Definition 2.4.5 Let inj([i + 1], [n]) be the discrete space of all injections [i+ 1] ↪→ [n].

These combine to form a ∆-space inj([• + 1], [n]), with face maps induced by all strictly

increasing functions [i]→ [i+ 1].

This appears as the fibre of the map εn, which we next prove is a fibre bundle.3

Lemma 2.4.6 The map εn : ‖C+
n (M)•‖ → C+

n (M) is a fibre bundle, with fibre homeomor-

phic to ‖inj([•+ 1], [n])‖.

Proof. For each level i ≥ 0, the (unique) composition of face maps fi : C
+
n (M)i → C+

n (M) is

a finite-sheeted covering map, so in particular it is a fibre bundle. Moreover, this collection

can be simultaneously locally trivialised: each point c ∈ C+
n (M) has an open neighbourhood

Uc over which fi is a trivial bundle for all i. Explicitly, we may take Uc to be the following.

Choose pairwise disjoint open balls around the n points of c, and associate to these open

balls the orientation inherited from c. Then let Uc be all configurations in C+
n (M) which

have one point in each open ball, and whose orientation matches that of the open balls.

Over Uc, the trivialisation itself can be described as follows. Choose an arbitrary, fixed

ordering of the n open balls: (B1, ..., Bn). Given a ∈ f−1
i (Uc), the (i + 1)-ordering of a

induces an injection [i + 1] → {B1, ..., Bn}, and hence an element ord(a) ∈ inj([i + 1], [n]).

Define the trivialisation f−1
i (Uc) ∼= Uc × inj([i+ 1], [n]) to be a 7→ (fi(a), ord(a)).

Since we have a simultaneous local trivialisation for {fi}, we get a local trivialisation

for the map
∐
iC

+
n (M)i × ∆i → C+

n (M), which identifies the preimage of Uc with Uc ×(∐
i inj([i+1], [n])×∆i

)
. Under this identification, the face relations for C+

n (M)• correspond

exactly to the face relations for inj([•+ 1], [n]), since the squares

Uc × inj([i+ 1], [n]) f−1
i (Uc)

Uc × inj([i], [n]) f−1
i−1(Uc)

dj1×dj

∼=

∼=

all commute. Hence we have an induced local trivialisation of the quotient map

εn : ‖C+
n (M)•‖ =

(∐
i

C+
n (M)i ×∆i

)
/ ∼ −→ C+

n (M),

which identifies the preimage of Uc with Uc×‖inj([•+ 1], [n])‖. In particular, the fibre over

a point is identified with ‖inj([•+ 1], [n])‖.
3See also Lemma 5.5.5 of Chapter 5.
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The homotopy type of ‖inj([•+ 1], [n])‖ was identified by Randal-Williams in [RW11]:4

Proposition 2.4.7 (Proposition 3.2 of [RW11]) The geometric realisation of the ∆-space

inj([•+ 1], [n]) is a wedge of (n− 1)-spheres:

‖inj([•+ 1], [n])‖ '
∨
Sn−1.

Putting this together, we immediately get:

Corollary 2.4.8 The map εn : ‖C+
n (M)•‖ → C+

n (M) is (n− 1)-connected. In other words

C+
n (M)• is an (n− 1)-resolution of C+

n (M).

By the relative Hurewicz theorem and a diagram chase in (2.4.3), this in turn immedi-

ately implies that H̃∗Cε̃n = 0 for ∗ ≤ n, and hence

Corollary 2.4.9 The spectral sequence (∆SS) converges to zero in total degree ≤ n− 1.

2.5 The connectivity of the unpuncturing map

In this section we relate the homology-connectivity of the relative unpuncturing map

ũn : R+
n (M1) −→ R+

n (M)

(which was defined in §2.2.6.1) to the homology-connectivity of the stabilisation map

sn−1 : C+
n−1(M) −→ C+

n (M).

First, we define precisely what we mean by “homology-connectivity”:

Definition 2.5.1 For a map f : Y → Z, the homology-connectivity of f is

hconn(f) := max

{
∗
∣∣∣ f is surjective on homology up to degree ∗
f is injective on homology up to degree ∗ − 1

}
.

Equivalently, this is the degree up to which the reduced homology of the mapping cone Cf

is zero.

Proposition 2.5.2 For n ≥ 3, hconn(ũn) ≥ hconn(sn−1) + dim(M).

To prove this we will first construct an excisive square. Let d = dim(M), and let D ⊂M
be an open, d-dimensional disc embedded in the interior of M , far away from the boundary-

component B0 of M . We identify D with the standard d-dimensional disc with its metric.

Let U+
n (M) ⊆ C+

n (M) be the subspace of configurations which have a unique closest point

4As noted in [RW11], this fact has been proved before in the literature, where inj([•+ 1], [n]) is known
as the “complex of injective words”.
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in D to 0 ∈ D. (In particular, configurations in U+
n (M) are required to have a point in D.)

The pair {U+
n (M), C+

n (M r 0)} is an open cover of C+
n (M), so the square

C+
n (M r 0) C+

n (M)

U+
n (M r 0) U+

n (M)

un

(2.5.1)

is excisive.

Now, U+
n (M) may be decomposed as follows:

Lemma 2.5.3 For n ≥ 3, U+
n (M) ∼= C+

n−1(M r 0)×D ×X.

Proof. First, choose a family of homeomorphisms ψr : M r Br(0) ∼= M r 0, with support

contained in D, depending continuously on the parameter r ∈ [0, 1). Here, Br(0) means

the closed ball in D, of radius r centred at 0 ∈ D.

Given [ p1x1 · · ·
pn
xn ] ∈ U+

n (M), we may assume by applying an even permutation (since

n ≥ 3) that the unique closest point in D to 0 for this configuration is pn. Sending this to([
ψ|pn|(p1)

x1
· · · ψ|pn|(pn−1)

xn−1

]
, pn, xn

)
∈ C+

n (M r 0)×D ×X

defines the required homeomorphism.

This identification restricts to U+
n (M r 0) ∼= C+

n−1(M r 0) × (D r 0) × X, and under

the identification,

• the inclusion at the bottom of (2.5.1) is the identity on the first and third factors,

and the inclusion D r 0 ↪→ D on the middle factor;

• restricting the stabilisation map sn : C+
n (M) → C+

n+1(M) to U+
n (M) → U+

n+1(M)

yields

sn−1 × 1× 1: C+
n−1(M r 0)×D ×X −→ C+

n (M r 0)×D ×X,

and similarly for sn : C+
n (M r 0) → C+

n+1(M r 0). In other words the identification

commutes with stabilisation maps; this is because we embedded D far away from the

boundary-component B0. (More precisely, it is ensured by embedding D sufficiently

far away from B0 so that the homeomorphism φ : M ′ ∼= M from the definition of the

stabilisation map has support disjoint from D.)

Having done this set-up, we can now prove the main result of this section:

Proof of Proposition 2.5.2. Apply stabilisation maps vertically to the square (2.5.1), to get

a commuting cube of maps, and then take mapping cones horizontally and vertically, to

produce a commutative lattice of maps of the form . The back face of this can be

identified as
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R+
n (M r 0) R+

n (M) Cũn

C+
n+1(M r 0) C+

n+1(M) Cun+1

C+
n (M r 0) C+

n (M) Cun

ũn

un+1

un

sn sn

Using Lemma 2.5.3 and the fact that the mapping cone of A×Y 1×f−−→ A×Z is C(1×f) ∼=
(A+) ∧ Cf , the front face can be identified as

C(sn−1×1×1) C(sn−1×1×1) CΣd(sn−1×1)+

C+
n (M r 0)×(D r 0)×X C+

n (M r 0)×D×X Σd(C+
n (M r 0)×X)+

C+
n−1(M r 0)×(D r 0)×X C+

n−1(M r 0)×D×X Σd(C+
n−1(M r 0)×X)+

sn−1×1×1 sn−1×1×1 Σd(sn−1×1)+

Now, one way of stating the excision theorem is that the map-on-mapping-cones induced

by an excisive square is a homology-equivalence. Hence the homology of the right-hand

columns of the two diagrams above is the same; in particular, H̃∗Cũn ∼= H̃∗CΣd(sn−1×1)+.

So:

hconn(ũn) = hconn
(
Σd(sn−1×1)+

)
= d+ hconn(sn−1×1)+ by the suspension isomorphism

= d+ hconn(sn−1×1)

≥ d+ hconn(sn−1) by the Künneth theorem.

2.6 Proof of the Main Theorem

We now apply the constructions and results of the previous two sections to prove the

Main Theorem. This can be rephrased in terms of relative configuration spaces (as defined

in §2.2.5):

Main Theorem If M is the interior of a connected manifold-with-boundary of dimension

at least 2, and X is a path-connected space, then

H̃∗R
+
n (M,X) = 0 for ∗ ≤ n−2

3 . (2.6.1)
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2.6.1 Strategy of the proof

We defined in §2.2.6.2 the “relative double stabilisation map”

s̃2
(132) : R+

n−2(M,X) −→ R+
n (M,X).

The proof will be by induction on n, and the idea is to show, using the inductive hypothesis,

that this map is both surjective and the zero-map on homology, up to the required degree.

We will use completely different factorisations of s̃2
(132) for each of these. The first will allow

us to prove surjectivity-on-homology piece by piece, using different methods for the different

pieces of the factorisation, and the second (which only exists on homology) will turn out to

factor through the zero map in the required range of degrees.

Proof of the Main Theorem, by induction on n. Since M and X are path-connected and

dim(M) ≥ 2, C+
n (M,X) is path-connected for all n, and hence so is R+

n (M,X). So the

theorem is true for n ≤ 4 — this is the base case.

Now assume n ≥ 5. By Lemmas 2.6.1 and 2.6.5 below, the map

(s̃2
(132))∗ : H̃∗R

+
n−2(M,X) −→ H̃∗R

+
n (M,X)

is surjective and zero for ∗ ≤ n−2
3 . Hence H̃∗R

+
n (M,X) = 0 in this range.

Of course the main content of the proof is contained in the proofs of Lemmas 2.6.1 and

2.6.5 below. We begin with the one asserting surjectivity of (s̃2
(132))∗ for ∗ ≤ n−2

3 .

2.6.2 Surjectivity on homology

As noted in Remark 2.2.20, s̃2
(132) factorises into

R+
n−2(M) R+

n−2(M1) R+
n−1(M)0 R+

n−1(M)

R+
n−1(M) R+

n−1(M1) R+
n (M)0 R+

n (M)

p̃n−2 ̃n−1,0 ãn−1

=

p̃n−1 ̃n,0 ãn

(2.6.2)

which is the mapping cone construction applied to

· · · · · · ·

· · · · · · ·

pn−1 jn,0 an pn jn+1,0 an+1

pn−2 jn−1,0
an−1 pn−1 jn,0 an

(12)p 1 1 (12)p 1 1 (2.6.3)

where vertical maps are stabilisation maps. Recall that p punctures the manifold, j replaces

the puncture by a new configuration point which is marked as special, and a forgets which
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point is special. This is the factorisation we will use to show surjectivity-on-homology.

Lemma 2.6.1 Let n ≥ 5, and assume as an inductive hypothesis that (2.6.1) holds for

smaller values of n. Then s̃2
(132) is surjective on homology up to degree n−2

3 .

Proof. We will show that the six maps in (2.6.2) are each surjective on homology up to this

degree.

The relative puncturing maps p̃n−1 and p̃n−2. Recall from §2.5 that

hconn(f) := max

{
∗
∣∣∣ f is surjective on homology up to degree ∗
f is injective on homology up to degree ∗ − 1

}
.

In this notation the inductive hypothesis is

hconn(sn′) ≥ bn
′−2
3 c, ∀n

′ < n.

As noted in Remark 2.2.21, ũr ◦ p̃r is homotopic to the identity, so (ũr)∗ ◦ (p̃r)∗ = id.

Hence (ũr)∗ is injective up to the same degree to which (p̃r)∗ is surjective, so hconn(p̃r) =

hconn(ũr)− 1. Combining this with Proposition 2.5.2 we have

hconn(p̃r) ≥ hconn(sr−1) + dim(M)− 1,

for r ≥ 3. Using the inductive hypothesis and the fact that dim(M) ≥ 2 we obtain

hconn(p̃n−1) ≥ bn−1
3 c and hconn(p̃n−2) ≥ bn−2

3 c.

The relative inclusion-of-the-fibre maps ̃n,0 and ̃n−1,0. Recall the spectral sequence

E2
s,t
∼= Hs

(
C̃i+1(M); H̃t(R

+
n−i−1(Mi+1))

)
⇒ H̃∗(R

+
n (M)i) (RSSSi)

from Proposition 2.4.4. The edge homomorphism

H̃t(R
+
n−i−1(Mi+1)) ∼= E2

0,t � E∞0,t ↪→ H̃t(R
+
n (M)i)

is the map on H̃t induced by ̃n,i.

Now, the inductive hypothesis implies that E2
s,t = 0 for t ≤ n−i−3

3 , so the E2 page is as

illustrated in Figure 2.6.1(a). Hence in degrees t ≤ n−i−3
3 the map ̃n,i induces 0→ 0 on H̃t,

which is trivially surjective. Moreover in the larger range t ≤ n−i
3 we can see from Figure

2.6.1(a) that the inclusion E∞0,t ↪→ H̃t(R
+
n (M)i) is an isomorphism, so ̃n,i still induces a

surjection on H̃t. Setting i = 0, this proves that ̃n,0 is surjective on homology up to degree
n
3 . The argument goes through identically when n is replaced by n − 1, and proves that

̃n−1,0 is surjective on homology up to degree n−1
3 .
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The relative augmentation maps ãn and ãn−1. Recall the spectral sequence

E1
s,t
∼= H̃t(R

+
n (M)s) ⇒ H̃∗+1Cε̃n (∆SS)

from Proposition 2.4.4. The differential E1
−1,t ←− E1

0,t is the map on H̃t induced by ãn.

Now, as noted above, the spectral sequence (RSSSi) has E2 page as illustrated in Figure

2.6.1(a) — hence it converges to zero in total degree up to n−i−3
3 . The limit of (RSSSi) is the

ith column of the E1 page of (∆SS), so we have a column of zeros on the E1 page of (∆SS)

as shown in Figure 2.6.1(b). There is a spectral sequence (RSSSi) for each 0 ≤ i ≤ n − 3,

so there is a triangle of zeros on the E1 page of (∆SS) as shown in Figure 2.6.1(c).

Now assume that t−1 ≤ n−4
3 . Looking at Figure 2.6.1(c) we see that the first differential

is the only possible non-trivial differential hitting E1
−1,t. Also, by Corollary 2.4.9, the

spectral sequence (∆SS) converges to zero in total degree ≤ n−4
3 ≤ n − 1, so we have

E∞−1,t = 0. Hence the first differential E1
−1,t ←− E1

0,t must be surjective.

So ãn induces surjections on H̃t for t − 1 ≤ n−4
3 , i.e. for t ≤ n−1

3 . The argument goes

through identically when n is replaced by n − 1, and proves that ãn−1 induces surjections

on H̃t for t ≤ n−2
3 .

(a)

t

s

n−i−3
3

0

(b)

−1
s

t

n−i−3
3

i

0
0

0
0

(c)

−1
s

t

n−3
3

n−3

0

Figure 2.6.1: The two spectral sequences from the proof of surjectivity: (a) is the E2 page
of (RSSSi); (b) and (c) are the E1 page of (∆SS).

2.6.3 Zero on homology

The factorisation of s̃2
(132) (on homology) we will use for this part comes from a more

general factorisation lemma, so we begin by stating this.
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2.6.3.1 A general factorisation lemma.

As before, we let Cf denote the mapping cone of a map f . Suppose we have a homotopy-

commutative square of maps

A X

B Y

i

j

f g (S)

Choosing any particular homotopy H : g ◦ i ' j ◦ f to fill this square induces a map

CH : Ci→ Cj, and completes an exact ‘ladder’ on homology

· · · H̃∗X H̃∗Ci H̃∗−1A · · ·

· · · H̃∗Y H̃∗Cj H̃∗−1B · · ·
g∗ CH∗ f∗ (2.6.4)

We say that (S) splits into triangles if there exists a map d : X → B, together with homo-

topies F1 : d ◦ i ' f , F2 : g ' j ◦ d. In other words the square can be filled in as

A X

B Y

i

j

f g
'

' (2.6.5)

Lemma 2.6.2 (“Factorisation lemma”) If the square (S) splits into triangles, and H is

any homotopy filling this square, then CH∗ factors through a map zH : H̃∗−1A → H̃∗Y in

diagram (2.6.4). Hence, in particular, the composition H̃∗X → H̃∗Cj in (2.6.4) is zero.

Moreover, zH itself factorises as follows:

H̃∗−1A ↪→ H̃∗(S
1 ×A)

γ∗−→ H̃∗Y,

where the first map is the inclusion of a direct summand in the Künneth decomposition

H̃∗(S
1 × A) ∼= H̃∗−1(A) ⊕ H∗−1(pt) ⊕ H̃∗(A), and the second map is induced by the self-

homotopy γ : S1 × A → Y built out of H and the two homotopies F1 and F2 occurring in

(2.6.5).

Proof. See Appendix 2.A.

2.6.3.2 Applying the factorisation lemma.

In particular we may take (S) to be the square
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C+
n−2(M) C+

n−1(M)

C+
n (M) C+

n+1(M)

s

s

−s2 −s2

(for n ≥ 3). This is the right-hand square from (2.2.2). It splits into triangles, since we may

for example take the diagonal map to be −s : C+
n−1(M)→ C+

n (M), and the two homotopies

to be constant. (See also Remark 2.2.20.) Taking H to be the homotopy (132), as defined

in §2.2.6.2, Lemma 2.6.2 implies the following factorisation of (s̃2
(132))∗:

Corollary 2.6.3 The map (s̃2
(132))∗ : H̃∗R

+
n−2(M)→ H̃∗R

+
n (M) factorises as follows:

H̃∗R
+
n−2(M)→ H̃∗−1C

+
n−2(M) ↪→ H̃∗(S

1×C+
n−2(M))

γ∗−→ H̃∗C
+
n+1(M)→ H̃∗R

+
n (M).

The first and last maps come from the long exact sequences for C+
n−2(M)→ C+

n−1(M) and

C+
n (M) → C+

n+1(M) respectively, the second map comes from the Künneth decomposition

of H̃∗
(
S1×C+

n−2(M)
)
, and

γ : S1 × C+
n−2(M)→ C+

n+1(M)

is the self-homotopy (132).

Proof. This is immediate from Lemma 2.6.2, once we note that in this case we can take the

split homotopy (2.6.5) to be the constant homotopy, so that γ is just H = (132).

Rephrasing the definition of the homotopy (132) in §2.2.6.2, we may describe γ, as a

map S1×C+
n−2(M)→ C+

n+1(M), concretely as follows:

(t, c) 7→
B0

c

The configuration c is pushed away from the chosen boundary-component B0, and three

new points are added on a small embedded circle near B0, at the positions {t1/3, ωt1/3, ω2t1/3}
where ω = exp(2

3πi). Fix an orientation of the circle: this gives the three new points a cyclic

ordering [p1, p2, p3], and we use the orientation convention [c, p1, p2, p3].

We can use this description to check that γ is natural w.r.t. stabilisation maps:

Lemma 2.6.4 The following square is commutative up to homotopy :

S1 × C+
n−2(M) C+

n+1(M)

S1 × C+
n−3(M) C+

n (M)

γ

γ

1× (−s) s

41



Chapter 2. Homological stability for oriented configuration spaces

Proof. The two ways around this square are both of the form

S1 × C+
n−3(M)

?×1−−→ C+
4 (Rd)× C+

n−3(M) −→ C+
n+1(M),

where the second map is

(c0, c) 7→
B0

c c0

Here, the configuration c is pushed away from B0, and the configuration c0 is inserted into

a coordinate neighbourhood near B0 (and we use the orientation convention [c, c0]).

The map ‘?’ : S1 −→ C+
4 (Rd) is either

1

2

3

4 2

3

4

1–or

(the numberings represent orientations of the configurations; the ‘–’ in the right diagram

indicates that the orientation should in fact be the opposite of that which is illustrated). So

it is enough to find a homotopy h : S1 × I −→ C+
4 (Rd) connecting these two maps. Such a

homotopy clearly does exist: for example define h(t, u) to be

1

2

3

4

where t ∈ S1 determines the positions of the 3 points on the circle, and u ∈ I determines

how far along the arrows to move the dotted regions.

2.6.3.3 Zero on homology.

Finally, we may apply our new factorisation of (s̃2
(132))∗ to deduce that it is zero in the

required range:

Lemma 2.6.5 Let n ≥ 4, and assume as an inductive hypothesis that (2.6.1) holds for

smaller values of n. Then s̃2
(132) is the zero map on (reduced) homology up to degree n−2

3 .

Proof. By Corollary 2.6.3, Lemma 2.6.4 and the naturality of the Künneth decomposition

we have a commutative diagram

H̃∗R
+
n−2(M) H̃∗−1C

+
n−2(M) H̃∗C

+
n+1(M) H̃∗R

+
n (M)

H̃∗−1C
+
n−3(M) H̃∗C

+
n (M)

(−s)∗ s∗
0
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where the composition along the top row is (s̃2
(132))∗. The composition on the right is zero

since it is induced by a cofibration sequence. By definition, the maps ±s differ only by an

automorphism of their common codomain, so (as noted in Remark 2.2.7) they have the same

surjectivity-on-homology properties. Hence by the inductive hypothesis (−s)∗ is surjective

for ∗ − 1 ≤ n−5
3 , i.e. for ∗ ≤ n−2

3 . So in this range (s̃2
(132))∗ factors through the zero map,

and hence is itself zero.

2.7 Corollaries

2.7.1 Stability for generalised homology theories

First we will prove Corollary B (stated in §2.1.3). This follows directly from the Main

Theorem and the following lemma:

Lemma 2.7.1 If h∗ is a connective generalised homology theory with connectivity c (i.e. its

associated spectrum has connectivity c), and if the map f : X → Y is an isomorphism on

H∗(−;Z) up to degree k − 1 and surjective up to degree k, then f is an isomorphism on h∗

up to degree k − 1 + c and surjective on h∗ up to degree k + c.

Proof. By the long exact sequence for cofibration sequences, this is equivalent to the claim

that

H̃∗(Cf ;Z) = 0 ∀∗ ≤ k ⇒ h̃∗(Cf) = 0 ∀∗ ≤ k + c.

If E is the spectrum associated to h∗, then we have the Atiyah-Hirzebruch spectral sequence

(see [McC01, Theorem 11.16])

E2
s,t
∼= Hs(Cf ;πt(E)) ⇒ h∗(Cf).

Removing an Hs(pt;πt(E)) summand from the E2 page, and correspondingly an h∗(pt) =

π∗(E) summand from the limit, gives the reduced version

E2
s,t
∼= H̃s(Cf ;πt(E)) ⇒ h̃∗(Cf).

By the Universal Coefficient Theorem, and since E is c-connected, the E2 page is zero for

s ≤ k or t ≤ c. Therefore the limit is zero for total degrees ∗ ≤ k + c.

Remark 2.7.2 Alternatively, one could consider the map of (non-reduced) Atiyah-Hirzebruch

spectral sequences induced by f , and apply the Zeeman comparison theorem [Zee57].

We now revert to talking only about ordinary homology again, but of course the corol-

laries for sequences of groups below also have similar generalised homology versions.
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2.7.2 Wreath products with alternating braid groups

Let S be the interior of a connected surface-with-boundary S, and let G be any discrete

group.

Definition 2.7.3 The braid group on n strands on S is βSn := π1Cn(S, pt). When S =

R2 this recovers the definition of the Artin braid group βn (by [FN62b]). A based loop

in Cn(S, pt) induces a permutation of the basepoint configuration, so there is a natural

projection βSn � Σn. The alternating braid group on n strands on S, AβSn , is defined to

be the index-2 subgroup of braids whose induced permutation is even. A loop in Cn(S, pt)

induces an even permutation iff it lifts to a loop in C+
n (S, pt), so this is equivalent to defining

AβSn := π1C
+
n (S, pt).

The wreath product G oAβSn is defined to be the semi-direct product

1→ Gn ↪→ Gn oAβSn � AβSn → 1 (2.7.1)

where AβSn acts on Gn by permuting the n factors through its projection to An ≤ Σn.

The first half of Corollary A (see §2.1.3) follows directly from the Main Theorem and

the following lemma:

Lemma 2.7.4 Pick a model for the classifying space BG. Then C+
n (S,BG) is a model for

the classifying space B(G oAβSn ).

Proof. First we show that C+
n (S,BG) is aspherical. In the case where S is compact, using

the classification of compact connected surfaces-with-boundary we can draw an explicit

deformation retraction from S onto a wedge of circles, so it is aspherical. In general, any

map of a sphere into S will have its image contained in a compact connected subsurface-

with-boundary, so S is also aspherical without the compactness assumption. Hence S is

aspherical. Moreover, Sr{finitely many points} is again the interior of a connected surface-

with-boundary, and so is also aspherical by the previous argument.

Via the fibration sequences

Sn−1 ×BG −→ C̃n(S,BG) −→ C̃n−1(S,BG)

and induction on n, this implies that C̃n(S,BG) is aspherical for all n. This is a covering

space of C+
n (S,BG), so C+

n (S,BG) is also aspherical for all n.

Now we check that π1C
+
n (S,BG) ∼= G oAβSn . Forgetting the labels gives a fibration

(BG)n ↪→ C+
n (S,BG)

forget−−−→ C+
n (S, pt),

which admits a section. So on π1 this induces a split short exact sequence

1→ Gn ↪→ Gn oAβSn � AβSn → 1.
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It remains to show that this is the same semi-direct product as G o AβSn , (2.7.1). This can

be seen most easily by just thinking about what concatenation of based loops in C+
n (S,BG)

does under this identification: it concatenates the corresponding braids, and multiplies

the elements of G in pairs, according to which strands have been glued together. So the

multiplication in the Gn component is twisted by the induced permutation coming from the

AβSn component.

Example 2.7.5 A special case of the first half of Corollary A, taking S = R2 and G = ∗,
is homological stability for the alternating Artin braid groups, an index-2 subfamily of the

sequence of Artin braid groups. Another special case, taking S = R2 and G = Z, is

homological stability for the sequence of alternating ribbon braid groups.

Remark 2.7.6 The elements of G o AβSn can be thought of as braids embedded in S × I,

with an element of G ‘attached’ to each strand. In this description the “natural map”

G oAβSn → G oAβSn+1 referred to in the statement of Corollary A is given by adding a new

strand (with the identity of G attached) near a chosen boundary-component of S.

2.7.3 Wreath products with alternating groups

We now want to take configurations in the ‘manifold’ M = R∞:

Corollary 2.7.7 For any path-connected space X, the map

s : C+
n (R∞, X) −→ C+

n+1(R∞, X)

is an isomorphism on homology up to degree n−5
3 and surjective up to degree n−2

3 .

Proof. By the Main Theorem, the analogous statement is true for

C+
n (RN , X) −→ C+

n+1(RN , X)

for all N . These fit into a commutative ladder of maps ··· , where the vertical maps are

induced by the standard inclusions RN ↪→ RN+1, and the map we are interested in is the

vertical colimit of this ladder. Injectivity- and surjectivity-on-H∗ properties of the horizontal

maps are preserved under taking this colimit, so the result follows.

Remark 2.7.8 This corollary depends on having an explicit range for homological stability

which is independent of the manifold M . If we only knew qualitatively that homological

stability held for some (unknown) range, then we would not have been able to take a direct

limit and keep homological stability, as we did in the proof above. (A priori, the stability

slope could → 0 as the dimension of M →∞, for example.)

Remark 2.7.9 We note that inj([n],R∞) is contractible, and the action of An on it is free,

so it is a model for EAn. This means that the oriented configuration space on R∞ with
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X-labels is a model for the homotopy quotient, or Borel construction

C+
n (R∞, X) = inj([n],R∞)×An Xn ' EAn ×An Xn = Xn//An.

So by Corollary 2.7.7 we have homological stability for the sequence

· · · → Xn//An → Xn+1//An+1 → · · · .

In the special case X = BG, we have the following:

Corollary 2.7.10 (Second half of Corollary A) For any discrete group G, the natural map

G oAn → G oAn+1 is an isomorphism on homology up to degree n−5
3 and surjective up to

degree n−2
3 .

Here the wreath product G oAn is the semi-direct product

1→ Gn ↪→ Gn oAn � An → 1 (2.7.2)

where An acts by permuting the n factors of Gn.

Proof. By Corollary 2.7.7 we just need to show that C+
n (R∞, BG) is a model for the classi-

fying space B(G oAn). Now, R∞r {finitely many points} is contractible, so by considering

the fibration sequences

(R∞ r {n− 1 points})×BG ↪→ C̃n(R∞, BG)� C̃n−1(R∞, BG)

we can inductively show that C̃n(R∞, BG), and hence also C+
n (R∞, BG), is aspherical for

all n.

To show that π1C
+
n (R∞, BG) ∼= G o An, we first consider π1C

+
n (R∞, pt). A based loop

(up to ') in C+
n (R∞, pt) is an n-strand braid on R∞. Any braid in R∞ can be ‘untangled’,

so it is just a permutation of the basepoint configuration, which in this case must be even

to preserve the orientation. So π1C
+
n (R∞, pt) ∼= An. As in the proof of Lemma 2.7.4 we

have a fibration

(BG)n ↪→ C+
n (R∞, BG)

forget−−−→ C+
n (R∞, pt),

which admits a section, so on π1 we have a split short exact sequence

1→ Gn ↪→ Gn oAn � An → 1.

By considering what concatenation of based loops in C+
n (R∞, BG) does under this identifi-

cation, we can see that the action of An on Gn in this semi-direct product is just permutation

of the n factors, as in (2.7.2). Hence π1C
+
n (R∞, BG) ∼= G oAn.
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2.7.4 Aside: the limiting spaces for An and Aβn.5

When S = R2 we denote the alternating braid group AβR
2

n by just Aβn.

Corollary A relates the homology of the families of groups (An) and (Aβn), in the stable

range, to the homology of the limiting spaces BA+
∞ and BAβ+

∞, where G∞ = limnGn and

(·)+ is the Quillen plus-construction. In these two cases we can identify the limiting spaces

explicitly: The ‘scanning’ argument of Segal and McDuff implies [McD75, Theorem 4.5]

that

BΣ+
∞ ' Ω∞0 S

∞ = Q0S
0 and Bβ+

∞ ' Ω2
0S

2 ' Ω2S3. (2.7.3)

(The first of these is the Barratt-Priddy-Quillen theorem [BP72].) Plus-constructing pre-

serves double-covering maps (see for example [Ber82, Theorem 6.4]), so

BA+
∞ ' Q̃0S0 and BAβ+

∞ ' Ω̃2S3, (2.7.4)

the universal cover of Q0S
0 and the unique connected double cover of Ω2S3. Let Cobn

denote the category of (n−1)-dimensional manifolds and n-dimensional cobordisms between

them (embedded in R∞), as defined and studied in [GMTW09], and let Cobn(R2) denote

the version with embeddings into R2. In this language (2.7.3) can be reinterpreted (by the

group-completion theorem) as

ΩBCob0 ' QS0 and ΩBCob0(R2) ' Ω2S2. (2.7.5)

Now if Cob+
0 , Cob+

0 (R2) denote the corresponding (embedded) cobordism categories where

0-manifolds have an ordering-up-to-even-permutations (this is a non-tangential, i.e. ‘global’,

structure), then by the group-completion theorem (2.7.4) becomes

ΩBCob+
0 ' Q̃S0 and ΩBCob+

0 (R2) ' Ω̃2S2, (2.7.6)

where we are taking double covers componentwise.

So in a very special case, and up to delooping once, this identifies the homotopy type of

a cobordism category of manifolds with some kind of non-local structure.

2.8 Failure of injectivity

In this section we elaborate on one way in which the oriented case is harder to deal with

than the unordered case: the failure of the stabilisation maps to be injective on homology in

general. In §2.8.1 we recall how injectivity-on-homology can be proved in the unordered case,

and in §2.8.2 explain why the analogous argument breaks down in the oriented case. Then in

5See also §1.2 of the Introduction.
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§2.8.3 we give some explicit examples demonstrating non-injectivity of s∗ : H∗C
+
n (M,X) −→

H∗C
+
n+1(M,X).

2.8.1 Injectivity in the unordered case

The stabilisation maps s are split-injective on homology in all degrees in the case of

unordered configuration spaces. This can be shown with the help of the following lemma

proved by Dold (and used earlier by Nakaoka in [Nak60]):

Lemma 2.8.1 (Lemma 2 of [Dol62]) Given a sequence of abelian groups and homomor-

phisms 0 → A1
s1−→ A2

s2−→ · · · , if there are ‘transfer’ maps τk,n : An → Ak (1 ≤ k ≤ n)

satisfying

τn,n = id and τk,n = τk,n+1 ◦ sn mod im(sk−1),

then every sn is split-injective.

If the abelian groups are in fact Q-vector spaces, then it suffices to find transfer maps

going back just one step:

Corollary 2.8.2 Given a sequence of Q-vector spaces 0 → A1
s1−→ A2

s2−→ · · · , if there are

‘transfer’ maps tn : An → An−1 (n ≥ 1) satisfying

tn+1 ◦ sn = id + sn−1 ◦ tn,

then every sn is split-injective.

Proof. Define τk,n := 1
(n−k)! tk+1◦· · ·◦tn for 1 ≤ k < n, so that τk,n+1◦sn = τk,n+sk−1◦τk−1,n,

and apply Lemma 2.8.1.

Lemma 2.8.1 can be applied to prove injectivity of s∗ in the unordered case by defining

τk,n : SP∞Cn(M,X) −→ SP∞Ck(M,X)

to take an n-point configuration in M to the formal sum of its
(
n
k

)
different k-point subsets

(cf. the proof of Theorem 4.5 in [McD75]). This uses the Dold-Thom theorem: π∗SP
∞ ∼= H∗

for ∗ ≥ 1 [DT58].

2.8.2 Failure of injectivity in the oriented case

This trick doesn’t work for oriented configuration spaces, however, since there is no way

for an oriented n-point configuration to induce an orientation on a k-point subset unless

k = n− 1. If we instead define τk,n to take an oriented n-point configuration to the sum of

all its oriented k-point subsets — with either orientation — then τn,n = id + ν, so the first

hypothesis of Lemma 2.8.1 is not satisfied.
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Alternatively, we could try to just prove injectivity on rational homology using Corollary

2.8.2, since this only requires maps removing a single configuration point, and in this case

there is an induced orientation on the subconfiguration. However, defining

tn : SP∞C+
n (M,X) −→ SP∞C+

n−1(M,X)

to take an oriented n-point configuration to the sum of its n different (n− 1)-point subsets

(with their induced orientations) results in equations tn+1 ◦sn = id+ν ◦sn−1 ◦ tn, which are

not the correct equations for the hypothesis of Corollary 2.8.2 to hold (note the appearance

of the orientation-reversing automorphism ν).

2.8.3 Counterexamples

As mentioned in Remark 2.1.4 in the Introduction, the calculations in [GKY96] provide

counterexamples to injectivity of the maps s∗ in the case of oriented configuration spaces.

The same examples also serve to show that a stability slope of 1
3 is the best possible in the

oriented case.

First, though, we mention a much simpler counterexample:

Counterexample 2.8.3 The simplest counterexample to injectivity of s∗ is the map

H1(C+
4 (R∞, pt)) → H1(C+

5 (R∞, pt)), which is H1A4 → H1A5, which is Z/3 → 0. This

is the colimit of the maps s∗ : H1(C+
4 (Rk, pt)) → H1(C+

5 (Rk, pt)) as k → ∞, and injec-

tivity is preserved by taking such a colimit, so this provides counterexamples: s∗ must be

non-injective for infinitely many values of k.

The [GKY96] calculations.

For an odd prime p, there is a splitting

Hq(C
+
n (M,X);Fp) ∼= Hq(Cn(M,X);Fp)⊕Hq(Cn(M,X);F(−1)

p ),

where on the right summand π1C
+
n (M,X) ≤ π1Cn(M,X) acts on Fp by the identity, and

its complement acts by multiplication by −1. Correspondingly, the stabilisation map s∗

splits into two summands. One is the stabilisation map from the unordered case, which is

split-injective by §2.8.1 above, and the other is the map induced by the stabilisation map

(from the unordered case) on twisted homology:

Hq(Cn(M,X);F(−1)
p ) −→ Hq(Cn+1(M,X);F(−1)

p ). (2.8.1)

The calculations in [GKY96] use a result of Bödigheimer-Cohen-Milgram-Taylor [BCT89,

BCM93, Corollary 8.4] to write this (under some conditions) in terms of the homology of

iterated loopspaces of spheres, and then apply the Snaith splitting theorem [Sna74] and

knowledge of the structure of H∗Ω
2S3 to analyse the result. See Chapter 3 for more details.
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Going through their calculations one can see that the map (2.8.1) is the map Fp → 0 for

M any connected open surface, X = pt, and

(n, q) = (λp+ 1, λ(p− 2)) for any λ ≥ 1

(although they state their result in slightly less generality).

This provides an infinite family of counterexamples to injectivity at each odd prime,

and taking p = 3 also provides counterexamples to demonstrate that 1
3 is the best possi-

ble stability slope for oriented configuration spaces, as mentioned in Remark 2.1.2 in the

Introduction.

2.A Appendix: Proof of the factorisation lemma

In this appendix we prove the general factorisation lemma which is used in the proof of

the Main Theorem in §2.6.

Proof of Lemma 2.6.2 (page 40). We have a square with a given homotopy filling it

A X

B Y

i

j

f gH

and also know that there exists a split homotopy filling the same square

A X

B Y

i

j

f gdF1

F2

We want to find a factorisation of CH∗ : H̃∗Ci→ H̃∗Cj, so we begin by factorising the map

CH : Ci→ Cj itself. Schematically, CH looks like

Ci = X ∪i CA = = Y ∪j CB = Cj

where the top part of CA is mapped to (all of) CB by f , levelwise, the middle section A×I
is mapped to Y by the homotopy H, and X is mapped to Y by g. We will factorise this as
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follows:

Ci CX ∪i CA = Cj

ΣA Y

(S1 ×A) ∪ CA S1 ×A

collapse CX

δ

γ

inc

β̃

α

β

'

∗
(2.A.1)

This requires some explanation: we will define α so that the map across the top is CH

(so α is an extension of CH). Then we will homotope α to a map β which descends to

β̃ : (S1 × A) ∪ CA −→ Cj when you collapse CX and then glue a small cone at the top of

ΣA to a small cone at the bottom.6 Then we will show that β̃ factors through the square

∗ as indicated (a dotted arrow denotes a map which is only defined on homology).

The composition Ci −→ ΣA is the map in the Puppe sequence inducing the boundary

map in (2.6.4), so this will prove the first half of the lemma, with zH induced by the

composition

ΣA� (S1 ×A) ∪ CA 99K S1 ×A γ−→ Y.

First, we define α and β as follows: Each region is mapped to a part of Cj = Y ∪jCB by the

map or homotopy indicated; ∗ means it is sent to the tip of the cone CB; shaded regions

have target Y , whereas unshaded regions are mapped (levelwise) to CB. By temporary

abuse of notation, Cf in this diagram means the map CA → CB which is levelwise f ;

similarly for Cd.

α := =: β' '

Cf

H

F2

Cd

Cf
H
F2 ◦ i
(d ◦ i)×I

∗

Cf
H
F2 ◦ i
j ◦ F1
f×I

∗

Intuitively: the left homotopy “pulls α upwards” to obtain the map pictured in the middle,

then the right homotopy gradually morphs the levelwise-(d◦ i) part of this map into the

homotopy F1, and then “stretches” one end of it into levelwise-f .

It is clear from its definition that β descends to a map β̃ as described above; we define

γ to be the restriction of β̃ to S1 ×A.

β̃ = γ :=

Cf
H
F2 ◦ i
j ◦ F1

H
F2 ◦ i
j ◦ F1

Now we need to construct the map δ: This comes from the split cofibration sequence

6Here ΣA means the unreduced suspension.
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A S1 ×A (S1 ×A) ∪ CA.ε

δ

We have an actual splitting A ← S1 × A, which induces a splitting on homology, which

implies the existence of a splitting S1 ×A L99 (S1 ×A) ∪ CA on homology.

Since we defined γ to be the restriction of β̃, we have (inc)◦γ = β̃◦ε. But δ is a splitting

on homology, so ε∗ ◦ δ = id. Hence

(inc)∗ ◦ γ∗ ◦ δ = β̃∗ ◦ ε∗ ◦ δ

= β̃∗,

so the square ∗ commutes on homology, as required. This completes the proof of the first

half of the lemma.

Now, the map zH was constructed as the composition

H̃∗ΣA = H̃∗−1A −→ H̃∗
(
(S1 ×A) ∪ CA

) δ−→ H̃∗(S
1 ×A)

γ∗−→ H̃∗Y

induced by the three maps along the bottom of diagram (2.A.1). As defined above, γ is the

composition of the homotopy H and the split homotopy (j ◦ F1) ∗ (F2 ◦ i). Hence to prove

the second half of the lemma, it just remains to show that the composition of the first two

maps is the inclusion coming from the Künneth decomposition for H̃∗(S
1 ×A).

This can be seen as follows. Using the homotopy equivalence (S1×A)∪CA ' ΣA∨S1,

the Künneth decomposition and the suspension isomorphism we identify

H̃∗ΣA = H̃∗−1A,

H̃∗
(
(S1 ×A) ∪ CA

)
= H̃∗−1A⊕ H̃∗S1,

H̃∗(S
1 ×A) = H̃∗−1A⊕H∗−1(pt)⊕ H̃∗A.

Carefully analysing the map on homology induced by ε, we see that under this iden-

tification it sends H̃∗−1A to itself by the identity, H∗−1(pt) isomorphically to H̃∗S
1, and

H̃∗A to 0. Hence its right-inverse δ must send H̃∗−1A to itself by the identity, and H̃∗S
1

isomorphically to H∗−1(pt).

Under the identification (S1 × A) ∪ CA ' ΣA ∨ S1, the map ΣA � (S1 × A) ∪ CA
becomes the inclusion ΣA ↪→ ΣA∨S1, so on homology it induces the inclusion of the direct

summand H̃∗−1A ↪→ H̃∗−1A⊕ H̃∗S1.

Hence overall the composition H̃∗−1A −→ H̃∗
(
(S1 × A) ∪ CA

)
−→ H̃∗(S

1 × A) is the

inclusion of the direct summand

H̃∗−1A ↪→ H̃∗−1A⊕H∗−1(pt)⊕ H̃∗A
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into the Künneth decomposition for H̃∗(S
1 ×A).

2.B Appendix: Spectral sequences from semi-simplicial spaces

The aim of this appendix is to prove Proposition 2.4.3 — the construction of a spectral

sequence associated to a map of augmented ∆-spaces. We will work up to this gradu-

ally, starting with the spectral sequence associated to a ∆-space, and will use the general

construction recalled below.

2.B.1 General construction

Recall the following construction (see for example [MT68, chapter 7]): given a filtration

∅ = X−1 ⊆ X0 ⊆ · · · · · · ⊆ Xn ⊆ · · · ⊆ X

of a space X such that⋃
n≥0

Xn = X and H∗(Xn, Xn−1) = 0 for ∗ < n, (2.B.1)

the filtered chain complex C∗(X) induces a first quadrant spectral sequence

E1
s,t
∼= Hs+t(Xs, Xs−1) ⇒ H∗(X).

The first differential in this spectral sequence is the boundary map for the pair (Xs, Xs−1)

composed with the quotient map for the pair (Xs−1, Xs−2).

2.B.2 ∆-spaces

We first describe the construction of the spectral sequence associated to a ∆-space Y•.

Filter X = ‖Y•‖ by its skeleta,

Xn = ‖Y•‖n =
∐

n≥k≥0

Yk ×∆k/ ∼ .

The filtration quotients are Xn/Xn−1
∼= (Yn)+ ∧ Sn, and the inclusions Xn−1 ↪→ Xn are

cofibrations, so

Hs+t(Xs, Xs−1) ∼= H̃s+t((Ys)+ ∧ Ss)
∼= H̃t((Ys)+) = Ht(Ys).

(2.B.2)

This is zero for t < 0, so (2.B.1) is satisfied and we get the spectral sequence

E1
s,t
∼= Ht(Ys) ⇒ H∗(‖Y•‖).
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The formula for the boundary map of the pair (Xs, Xs−1), under the identification (2.B.2),

gives the first differential as the alternating sum of Ht of the face maps Ys → Ys−1.

2.B.3 Augmented ∆-spaces

For an augmented ∆-space Y•, we filter the mapping cone X = C(‖Y•‖ → Y−1) by

Xn = C(‖Y•‖n−1 → Y−1)

for n ≥ 1 and X0 = Y−1 t {tip of cone}. The filtration quotients are now Xn/Xn−1
∼=

(Yn−1)+ ∧ Sn for n ≥ 1, so similarly to before we have

Hs+t(Xs, Xs−1) ∼= Ht(Ys−1),

except with an extra Z-summand when s = t = 0. Again this satisfies (2.B.1), so we have

a spectral sequence converging from this E1 page to H∗(C(‖Y•‖ → Y−1)). Removing the

extra Z-summand from the E1 page turns the limit into the reduced homology, so if we also

regrade s 7→ s+ 1 we obtain the spectral sequence

E1
s,t
∼= Ht(Ys) ⇒ H̃∗+1(C(‖Y•‖ → Y−1)),

which lives in {s ≥ −1, t ≥ 0}. Again, d1 is the alternating sum of the maps on Ht induced

by the face maps; in particular, the differential E1
0,t → E1

−1,t is Ht of the augmentation

map.

2.B.4 Basepoints

Now we will introduce basepoints. Let Y• be an augmented ∆-object in the category

of pointed spaces. The pointed geometric realisation ‖Y•‖? is
∐
n≥0 Yn × ∆n quotiented

out by
∐
n≥0 ∗ × ∆n and then by the face relations, and again there is an induced map

‖Y•‖? → Y−1.

Filter X = C(‖Y•‖? → Y−1) by Xn = C(‖Y•‖n−1
? → Y−1) for n ≥ 1 and X0 = Y−1. The

filtration quotients are Xn/Xn−1
∼= Yn−1 ∧ Sn for n ≥ 1, so

Hs+t(Xs, Xs−1) ∼= H̃t(Ys−1),

except again with an extra Z-summand when s = t = 0. This satisfies (2.B.1), so removing

the extra Z-summand and regrading as before we get a spectral sequence

E1
s,t
∼= H̃t(Ys) ⇒ H̃∗+1(C(‖Y•‖? → Y−1))

in {s ≥ −1, t ≥ 0}.
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2.B.5 Maps of augmented ∆-spaces

We can now deduce Proposition 2.4.3 from the last construction above.

Proof of Proposition 2.4.3. We are given a map of augmented ∆-spaces Y• → Z•. Since

homotopy colimits commute,

hocofib(‖Y•‖ → ‖Z•‖) ' ‖hocofib(Y• → Z•)‖?,

i.e. C(‖Y•‖ → ‖Z•‖) ' ‖C(Y• → Z•)‖?, where the pointed realisation appears on the right

since mapping cones are naturally pointed spaces. The face and augmentation maps of Y•

and Z• give C(Y• → Z•) the structure of an augmented ∆-object in the category of pointed

spaces, so we may apply the construction of 2.B.4 above. This yields a spectral sequence in

{s ≥ −1, t ≥ 0} with

E1
s,t
∼= H̃t(C(Ys → Zs)),

and converging to H̃∗+1 of the mapping cone of

C(‖Y•‖ → ‖Z•‖) ' ‖C(Y• → Z•)‖? −→ C(Y−1 → Z−1),

which is the double mapping cone C2(Y• → Z•) of the square (2.4.2). The first differential

can be identified as in the other constructions above.
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2.ℵ Addendum

In this Addendum we mention in §2.ℵ.1 an alternative, slightly simpler model for the

various maps between configuration spaces constructed in §2.2.4, and in §§2.ℵ.2 and 2.ℵ.3

we discuss the question of homological stability for closed manifolds.

Homological stability for unordered configuration spaces on closed manifolds was proved

in [RW11, §9] in the three cases (i) dim(M) is odd; (ii) taking homology with F2 coefficients;

(iii) taking homology with Q coefficients (this case also follows from the main result of

[Chu12]). We will explain how each of these three cases is deduced from homological stability

for open manifolds, to point out exactly why the methods do not carry over to the oriented

case. As such (and as a disclaimer), we emphasise that §§2.ℵ.2 and 2.ℵ.3 are not original;

they are just intended as an account of [RW11, §9], written in a slightly different style, in

order to explain the difficulty with the oriented case. Also, we remark that although these

methods do not carry over, case (iii) is nevertheless true in the oriented case: it simply

follows from the main result of [Chu12], as in the unordered case.

2.ℵ.1 Maps between configuration spaces

The following alternative explicit models for the maps between configuration spaces

defined in §2.2.4 do not essentially change the proofs of this chapter, but we mention them

here as they may be more convenient to think about as more of the relevant diagrams

commute on the nose. They are also more in line with the constructions in §5.2 of Chapter

5.

Choose a coordinate neighbourhood of part of the boundary of M , and choose two

disjoint subneighbourhoods U and U ′ (again homeomorphic to {(x1, . . . , xd) ∈ Rd | x1 ≥ 0})
and a point in each of them, as below.

x

x′

U

U ′

Choose a self-embedding e : M ↪→ M whose support lies inside U and whose image misses

x, and choose e′ : M ↪→M similarly. Take M1 to be M r {x′}.
We can then define the following maps:

p : C+
n (M)→ C+

n (M1) apply e′ to the configuration

j : C+
n (M1)→ C+

n+1(M)0 add a point to the configuration at x′, and mark it

s : C+
n (M)→ C+

n+1(M) apply e to the configuration, then add a point at x

s′ : C+
n (M)→ C+

n+1(M) apply e′ to the configuration, then add a point at x′

and the augmentation map a : C+
n (M)0 → C+

n (M) forgets the marked configuration point,
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as before. We have implicitly fixed a convention for choosing a new orientation for a

configuration when we add a point to it. Denote the orientation-reversing automorphism

by ν; the two conventions then differ by post-composition by ν.

We can also define versions of the ‘j’ map which fill in more than one point. Choose a

sequence x′k of distinct points in U ′ such the the image of (e′)k : M ↪→M misses {x′1, . . . , x′k},
and letMk = Mr{x′1, . . . , x′k}. Then the map j : C+

n−i−1(Mi+1)→ C+
n (M)i adds i+1 points

to the configuration at x′1, . . . , x
′
i+1, with an appropriate convention for the orientation of

the new configuration, and the obvious (i+ 1)-ordering. This is the inclusion of a fibre for

the fibre bundle π : C+
n (M)i → C̃i+1(M), as before.

With these definitions, the diagram (2.6.3) in the proof of the Main Theorem becomes

the following (or rather two copies of it, for n and n− 1, side-by-side):

C+
n (M) C+

n (M1) C+
n+1(M)0 C+

n+1(M)

C+
n−1(M) C+

n−1(M1) C+
n (M)0 C+

n (M)

p ν ◦ j a

p j a

s s s s	 	 	 (2.ℵ.1)

The squares commute on the nose and the three horizontal maps compose to give ν ◦ s′

and s′ on the top and bottom respectively. The arguments of §2.6.2 can then be run on

this diagram to show that the map of mapping cones (with mapping cones taken w.r.t. the

vertical maps) is surjective on homology in the desired stable range. Gluing two copies of

(2.ℵ.1) together side-by-side, we can factorise the outer rectangle of maps up to homotopy

as follows:

C+
n−1(M) C+

n+1(M)

C+
n−2(M) C+

n (M)

(s′)2

(s′)2

s s
s

'
'

(2.ℵ.2)

and then run the arguments of §2.6.3 to show that the map of mapping cones is also trivial

on homology in the desired stable range. The homotopies ' in the triangles above are

slightly different to the ones used in §2.6.3, due to our different choice of explicit models for

the various maps between configuration spaces, but they still satisfy the property needed

for the proof: Lemma 2.6.4 is still true.

2.ℵ.2 Closed manifolds and F2 coefficients or odd dimension

We will first describe the proof of [RW11, §9] in these cases, and then explain at the end

what goes wrong if one tries to apply the same method to oriented configuration spaces.

For simplicity we will just consider unlabelled configuration spaces, but the same argument
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works for labelled configuration spaces with essentially no more difficulty.

Let M be a closed, connected manifold and let M ′ be M with a point removed. There

is an inclusion map Cn(M ′) ↪→ Cn(M) whose homotopy cofibre, up to homology, can be

identified with ΣdCn−1(M ′)+. (See §2.5 for the corresponding fact for oriented configuration

spaces.) Hence, up to homology, a segment of the Puppe sequences for Cn(M ′) ↪→ Cn(M)

and for Cn+1(M ′) ↪→ Cn+1(M) looks as follows:

ΣdCn−1(M ′)+ ΣCn(M ′)+ ΣCn(M)+ Σd+1Cn−1(M ′)+ Σ2Cn(M ′)+

ΣdCn(M ′)+ ΣCn+1(M ′)+ ΣCn+1(M)+ Σd+1Cn(M ′)+ Σ2Cn+1(M ′)+

∆n Σ∆n

∆n+1 Σ∆n+1

Σdsn−1 Σsn Σd+1sn−1 Σ2sn(∗)

We have indicated the stabilisation maps connecting the two Puppe sequences, but we do

not claim commutativity of this diagram; in fact it does not commute in general, as we

show below. Taking homology with coefficients in a field F, we get a long exact sequence

from the top row and deduce that

dimH∗Cn(M) = dimH∗Cn(M ′) + dimH∗−dCn−1(M ′)

− rank
(
(∆n)∗ : H∗−d+1Cn−1(M ′)→ H∗Cn(M ′)

)
− rank

(
(∆n)∗ : H∗−dCn−1(M ′)→ H∗−1Cn(M ′)

)
.

(2.ℵ.3)

Since M ′ is open we know that the first two terms of (2.ℵ.3) are stable: they are independent

of n for n � ∗. So it is sufficient to prove that rank(∆n)∗ is also stable. Note that if the

square (∗) in the map of Puppe sequences above commutes, then (Σsn,Σ
dsn−1) provides

an isomorphism between the maps (∆n)∗ and (∆n+1)∗ in a stable range. So the aim is to

show that when dim(M) is odd or F = F2, this square does in fact commute.

There is a map g : C2(Sd−1×[0, 1])×Cn−1(M ′)→ Cn+1(M ′) given by gluing Sd−1×[0, 1]

to the puncture of M ′ as a collar neighbourhood. Consider the square

Sd−1 × C0(Sd−1 × [0, 1]) C1(Sd−1 × [0, 1])

Sd−1 × C1(Sd−1 × [0, 1]) C2(Sd−1 × [0, 1])

r

r

id× s s (2.ℵ.4)

where s and r are as follows. Fix a basepoint y0 ∈ Sd−1. Given a configuration c on the

cylinder Sd−1 × [0, 1], the stabilisation map s pushes this configuration inwards from the

0 end of the cylinder and then adds a new point to the configuration at (y0,
1
2). Given a

configuration c and a parameter y ∈ Sd−1, the map r pushes the configuration inwards from

the 0 end of the cylinder and then adds a new point to the configuration at (y, 1
2).
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On homology the route around the square (∗) is induced by g ◦ ((s ◦ r)× id), and the

route around (∗) is induced by g ◦((r◦(id×s))× id), so it is enough to check that (2.ℵ.4)

commutes on F-homology, and of course we just have to check this for the fundamental

class of Sd−1 = Sd−1 × C0(Sd−1 × [0, 1]).

The image of the fundamental class under the composition of (2.ℵ.4) is represented

by the (d− 1)-cycle depicted in Figure 2.ℵ.1(a), and its image under the composition of

(2.ℵ.4) is represented by the (d−1)-cycle in Figure 2.ℵ.1(b). Their difference is homologous

to the (d− 1)-cycle in Figure 2.ℵ.1(c), which is the image under

RPd−1 ' C2(Rd) −→ C2(Sd−1 × [0, 1])

of the (d− 1)-cycle τ in RPd−1 which is the image of the fundamental class of Sd−1 under

the quotient map Sd−1 � Sd−1/(x ∼ −x) = RPd−1.

When d is odd, Hd−1(RPd−1;Z) = 0. When d is even, this (d− 1)-cycle represents twice

a generator of Hd−1(RPd−1;Z) ∼= Z, so it represents the trivial element of Hd−1(RPd−1;F2).

Hence in these cases the square (2.ℵ.4) (and therefore also the square (∗)) commutes on

F-homology.

The oriented case. Replacing Cn(M) with C+
n (M) in the above argument, we instead

end up with a (d− 1)-cycle τ representing the fundamental class of Sd−1, which is of course

never zero. Hence this argument cannot work in the oriented case.

(a) (b) (c)

Figure 2.ℵ.1: Some (d− 1)-cycles in C2(Sd−1 × [0, 1]) (indicated by dots and dashes).

2.ℵ.3 Closed manifolds and Q coefficients

There are two proofs in [RW11, §9] ofQ-homological stability for unordered configuration

spaces on closed manifolds. One is similar to the method above for F2 coefficients or odd

dimension, and the other involves a spectral sequence argument and a different resolution of

the configuration spaces. Both of them use Dold’s Lemma (stated as Lemma 2.8.1 above),

and therefore cannot work in the oriented case, since Dold’s Lemma simply does not apply

to oriented configuration spaces (see §2.8.2 for more details on this). We will explain both

methods in detail below, to show exactly where this lemma is used, but first we will say a

little more about the lemma itself.
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Dold’s Lemma. See §2.8 for the notation. Lemma 2.8.1 is proved by induction with the

inductive hypothesis that

(τk,n)nk=1 : An −→
n⊕
k=1

coker(sk−1) (2.ℵ.5)

is an isomorphism (where by abuse of notation we denote the composite An
τk,n−−→ Ak �

coker(sk−1) also by τk,n). The inductive step is as follows. In the square

An An+1

⊕n
k=1 coker(sk−1)

⊕n
k=1 coker(sk−1)=

sn

(τk,n)nk=1 (τk,n+1)nk=1

the left-hand arrow is an isomorphism by the inductive hypothesis, so sn has a left-inverse,

and hence there is an isomorphism

An+1 coker(sn)⊕An

An+1
⊕n+1

k=1 coker(sk−1)

=

∼=

∼=

(τk,n+1)n+1
k=1

Now, when we are in the category of Q-vector spaces, and assume the hypotheses of

Corollary 2.8.2, the maps τk,n also satisfy the relations τk,n ◦ τn,n+1 = (n + 1 − k).τk,n+1,

making the right-hand square below commute up to an automorphism of the bottom-right

group:

An An+1 An

⊕n
k=1 coker(sk−1)

⊕n+1
k=1 coker(sk−1)

⊕n
k=1 coker(sk−1)

sn τn,n+1

= tn+1

∼= ∼= ∼=

The vertical maps are (τk,n)nk=1 and (τk,n+1)n+1
k=1 , and the left-hand square commutes on the

nose. Hence the hypotheses of Corollary 2.8.2 also imply that:

tn+1 ◦ sn is an automorphism of An. (2.ℵ.6)

The first method. One of the proofs of Q-homological stability for unordered configura-

tion spaces on closed manifolds in [RW11, §9] goes as follows. The square (∗) of §2.ℵ.2 does
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not commute in this case, so we instead consider the square

ΣdCn−1(M ′)+ ΣCn(M ′)+

ΣdCn(M ′)+ ΣCn+1(M ′)+

∆n

∆n+1

Σdtn Σtn+1 (2.ℵ.7)

involving the transfer maps mentioned in §2.8 which take a configuration c in Cn(M ′) to the

formal sum in SP∞Cn−1(M ′) of the n configurations of n− 1 points obtained by removing

one point from c. The dashed arrows indicate that the map is only defined on homology

(or SP∞).

Since M ′ is an open manifold, the map (sn)∗ : H∗(Cn(M ′);Q) → H∗(Cn+1(M ′);Q) is

an isomorphism in the stable range. Since we are taking rational coefficients we can apply

the discussion of Dold’s Lemma above to see that (tn+1)∗ ◦ (sn)∗ is an automorphism of

H∗(Cn(M ′);Q), and hence (tn+1)∗ is also an isomorphism in the stable range. So similarly

to before, it is sufficient to show that (2.ℵ.7) commutes on reduced homology H̃∗+1. Now,

for the square

Sd−1 × Cn−1(M ′) Cn(M ′)

Sd−1 × Cn(M ′) Cn+1(M ′)

r

r

id× tn tn+1 (2.ℵ.8)

the commutator of the two maps and on homology is the map induced by the pro-

jection p : Sd−1 × Cn(M ′) � Cn(M ′). The left-hand side of H∗(2.ℵ.8) has a Künneth

decomposition, and one of these summands gives precisely H̃∗+1(2.ℵ.7). But the projection

p induces the trivial map on this summand, so H̃∗+1(2.ℵ.7) commutes.

The second method. The second proof of Q-homological stability for unordered config-

uration spaces on closed manifolds in [RW11, §9] uses an entirely different method, and

shows that the transfer map tn : Cn(M) → SP∞Cn−1(M), which removes a point from a

configuration in all n possible ways, is an isomorphism on Q-homology in the stable range.

It goes as follows:

We begin by defining a new resolution of the oriented configuration space Cn(M). For

i ≥ −1, let Dn(M)i be the space

{
(p1, . . . , pn+i+1) ∈M

∣∣ pi 6= pj for i 6= j
}
/Σn

where Σn acts on the first n coordinates. These spaces form an augmented semi-simplicial

space Dn(M)• with Dn(M)−1 = Cn(M) and with face maps dj : Dn(M)i → Dn(M)i−1
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given by forgetting the (n+ j)th point.

Similarly to Lemma 2.4.6, the map ‖Dn(M)•‖ → Cn(M) is a fibre bundle with fibre

homeomorphic to ‖inj([• + 1],M r n points)‖. For any space Z the geometric realisation

‖inj([•+ 1], Z)‖ is (card(Z)− 2)-connected (by Proposition 3.2 of [RW11] for example), so

‖Dn(M)•‖ → Cn(M) is a weak equivalence.

Let Cn,1(M) =
{
{p1, . . . , pn} ∈ Cn(M), q ∈ M | q = pi for some i

}
and form a similar

semi-simplicial space Dn,1(M)• with an augmentation to Cn,1(M) such that ‖Dn,1(M)•‖ →
Cn,1(M) is a weak equivalence. The spaces Dn(M)i and Dn,1(M)i have fibrations to

C̃i+1(M), with fibre Cn(M r i+ 1 points) and Cn,1(M r i+ 1 points) respectively.

The forgetful maps

Dn,1(M)i → Dn−1(M)i (2.ℵ.9)

are maps over C̃i+1(M) w.r.t. these fibrations, and also commute with the face maps, so we

have a map of augmented semi-simplicial spaces

Dn,1(M)• → Dn−1(M)•. (2.ℵ.10)

The other forgetful maps

Dn,1(M)i → Dn(M)i (2.ℵ.11)

are maps over C̃i+1(M) w.r.t. these fibrations and are n-sheeted covering maps, so there

are “fibrewise transfer” maps

Dn(M)i
trf−→ SP∞fibDn,1(M)i (2.ℵ.12)

which take a point to its preimage under (2.ℵ.11). (For a fibration E → B with basepoint

e ∈ E, the fibrewise infinite symmetric product SP∞fibE is the space of finite formal sums of

points of E in the same fibre, with the relation that e = 0.) Note that the maps (2.ℵ.12)

commute with the face maps, so we get a map of augmented semi-simplicial spaces, which

we can compose with SP∞fib(2.ℵ.10) to get a map

Dn(M)•
trf−→ SP∞fibDn,1(M)• → SP∞fibDn−1(M)•, (2.ℵ.13)

which on level −1 is precisely the transfer map tn : Cn(M)→ SP∞Cn−1(M).

The map of augmented semi-simplicial spaces (2.ℵ.13) and the composite maps of fibra-

tions SP∞fib(2.ℵ.9) ◦ (2.ℵ.12) give spectral sequences

in
{
s≥−1
t≥0

}
: Ê1

s,t = H̃t

(
cone

(
Dn(M)s → SP∞fibDn−1(M)s

)
;Q
)
⇒ 0

in
{
p≥0
q≥0

}
: (s)E2

p,q = Hp

(
C̃s+1(M); H̃q

(
cone

(
Cn(Ms+1)→ SP∞Cn−1(Ms+1)

)
;Q
))

⇒ H̃∗
(
cone

(
Dn(M)s → SP∞fibDn−1(M)s

)
;Q
)
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whereMs+1 denotesMrs+1 points. The first one converges to zero since both ‖Dn(M)•‖ →
Cn(M) and ‖Dn,1(M)•‖ → Cn,1(M) are weak equivalences. See §2.4.1 for a more detailed

discussion of the properties of these spectral sequences.

By homological stability for unordered configuration spaces for open manifolds, when

s ≥ 0 the stabilisation map

Cn−1(Ms+1)→ Cn(Ms+1)

is an isomorphism on integral homology up to degree n−1
2 , and therefore by the discussion

of Dold’s Lemma earlier in this section, this implies that the transfer map

tn : Cn(Ms+1)→ SP∞Cn−1(Ms+1)

is an isomorphism on rational homology in the same range. Hence (s)E2
p,q = 0 for s ≥ 0,

p ≥ 0 and 0 ≤ q ≤ n−1
2 , so for all s ≥ 0 the spectral sequence (s)E converges to zero in total

degree ∗ ≤ n−1
2 . Hence Ê1

s,t = 0 for s ≥ 0 and 0 ≤ t ≤ n−1
2 . Since Ê converges to zero in

all degrees, we must therefore also have Ê1
−1,t = 0 for 0 ≤ t ≤ n−1

2 . Hence

tn : Cn(M)→ SP∞Cn−1(M)

is an isomorphism on Q-homology up to degree n−3
2 .

Note that it is always surjective on Q-homology by the discussion of Dold’s Lemma

above. Also, this stable range may be improved, since the stable range for open manifolds

is larger (it has slope 1) when taking Q coefficients.
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Chapter 3. Some calculations of the homology of oriented configuration spaces

3.1 Introduction

Definition 3.1.1 Given a background manifold M , recall that the unordered, unlabelled

configuration space Cn(M) of n points in M is defined to be the quotient of

{
(p1, . . . , pn) ∈Mn

∣∣ pi are pairwise distinct
}

by the natural action of the symmetric group Σn permuting the coordinates, and the oriented

configuration space C+
n (M) is the double cover of Cn(M) obtained by instead taking the

quotient by the alternating group An.

An important property enjoyed by both the unordered and oriented configuration spaces

is that they satisfy homological stability, meaning that for any fixed (connected, open)

manifold M and degree q, the sequences of homology groups Hq(Cn(M)) and Hq(C
+
n (M))

are eventually independent of n, once n is sufficiently large. The first of these facts was

proved most recently and in the most generality in [RW11] (see also [Seg73,McD75,Seg79]),

and the second was proved in Chapter 2. “Sufficiently large” for unordered configuration

spaces means that n ≥ 2q, whereas for oriented configuration spaces it means n ≥ 3q + 5.

Imagining this on a plane with n as the horizontal axis and q as the vertical axis, we say that

Cn(M) is homologically stable with a stability slope of 1
2 , whereas C+

n (M) has a stability

slope of 1
3 .

When M is a surface S the stability slope for C+
n (S) can be improved, away from the

prime 3, to:

Proposition A If S is a connected open surface, then

Hq

(
C+
n (S);Z[1

3 ]
) ∼= Hq

(
C+
n+1(S);Z[1

3 ]
)

for n ≥ 2q + 2.

This was essentially stated in [GKY96] (at the beginning of §2), in the case where S is

a compact Riemann surface with finitely many points removed. Their result follows from

some detailed prime-by-prime calculations—the purpose of this short chapter is to point

out that performing their calculations carefully yields the more precise Theorem B below.

Remark 3.1.2 Every element of π1(Cn(M)) induces a permutation of the basepoint con-

figuration, and the subgroup of elements which induce an even permutation is exactly the

subgroup corresponding to the double cover C+
n (M). Given any ring R, let VR be the

R[π1(Cn(M))]-module R2, where the even elements of π1(Cn(M)) act by the identity and

the odd elements act by swapping the two coordinates. When char(R) 6= 2 this is isomor-

phic to the direct sum R ⊕ R(−1), where the action on R is trivial, and on R(−1) the odd
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elements act by multiplication by −1. So we have:

Hq(C
+
n (M);R) ∼= Hq(Cn(M);VR)

∼= Hq(Cn(M);R) ⊕ Hq(Cn(M);R(−1)).

Proposition A follows from this decomposition, the universal coefficient theorem, homo-

logical stability for unordered configuration spaces, and the following two facts:

Theorem B Let S be a connected surface and q > 0. Then for p an odd prime,

Hq

(
Cn(S);F(−1)

p

)
= 0 for n ≥

( p
p−2

)
(q + 1);

Hq

(
Cn(S);Q(−1)

)
= 0 for n > q.

Hence modulo p (for an odd prime p), and with a sign-twisting, the homological stability

slope of Cn(S) is p−2
p , which converges to 1 as p→∞.

Lemma 3.1.3 For S a connected open surface, Hq(C
+
n (S);F2) ∼= Hq(C

+
n+1(S);F2) for

n ≥ 2q + 2.

Proof of Lemma 3.1.3. The rank-0 spherical fibration S0 → C+
n (S)→ Cn(S) gives a Gysin

sequence for H∗(−;F2). There is a map s : Cn(S)→ Cn+1(S) defined by pushing the n-point

configuration away from a chosen end of S and adding a new point to the configuration in

the vacated region. This lifts to a map of spherical fibrations, and hence we get a map of

Gysin sequences. The isomorphism Hq(Cn(S)) ∼= Hq(Cn+1(S)), for n ≥ 2q, in the statement

of homological stability for unordered configuration spaces is induced by the map s, so the

result follows by applying the 5-lemma to the map of Gysin sequences.

The proof of Theorem B is based on calculations due to Bödigheimer, Cohen, Milgram

and Taylor [BCT89, BCM93] which we recall in the next section, along with some other

preliminaries.

3.2 Preliminaries

Definition 3.2.1 For a manifold M and space X, the labelled (unordered) configuration

space Cn(M,X) is defined to be the quotient of

{(p1, . . . , pn) | pi are pairwise disjoint} ×Xn

by the diagonal action of Σn, permuting the coordinates of both Mn and Xn. The unlabelled

configuration space Cn(M) of Definition 3.1.1 is recovered by taking X = pt. If a basepoint

x0 ∈ X is chosen, the space Dn(M,X) is defined to be the quotient

Cn(M,X)/ {subspace of configurations where at least one label is x0} .
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Proposition 3.2.2 ([BCM93, Corollary 8.4]) For a smooth d-dimensional manifold M ,

where d is even, 0 < q < dn, and for any N � 0, the sign-twisted homology of the unordered

configuration space Cn(M) with coefficients in a field F is

Hq

(
Cn(M);F(−1)

) ∼= Hq+(2N+1)n

( d∏
i=0

(Ωd−iSd+2N+1)bi(M);F
)
,

where bi(M) is the ith Betti number of M .

Theorem 3.2.3 (“Snaith splitting”, [Sna74]) For any space X there is a stable splitting

ΩkΣkX 's
∨
i≥0

Di(Rk;X).

Proposition 3.2.4 ([CMM78]) Let Ci(R2,R) → Ci(R2) be the rank-i vector bundle given

by forgetting the R-labelling of a configuration. Then the direct sum of two copies of this

bundle is trivial.

3.3 The calculation

With this set up, we can now prove Theorem B, following the same strategy as that of

[GKY96].

Proof of Theorem B. First assume that S is open or nonorientable closed, so that b2(S) = 0.

Let b = b1(S). Then by Proposition 3.2.2,

Hq

(
Cn(S);F(−1)

p

) ∼= Hq+(2N+1)n

(
Ω2S2N+3 × (ΩS2N+3)b;Fp

)
∼=
⊕
j≥0

Hj

(
(ΩS2N+3)b;Fp

)
⊗H−j+q+(2N+1)n

(
Ω2S2N+3;Fp

)
for any N � 0.

By the Serre spectral sequence for the fibration sequence ΩS2N+3 → PS2N+3 → S2N+3,

the product of loopspaces (ΩS2N+3)b has homology concentrated in degrees a multiple of

2N + 2, and H(2N+2)j

(
(ΩS2N+3)b;Fp

)
has rank equal to

α(j) = number of ordered b-tuples of nonnegative integers which sum to j

=
( j+b−1

j

)
[with the conventions that

(
x−1
x

)
= 0 for x ≥ 1 and

(−1
0

)
= 1].

(This last equality can be seen by induction on b.) By the Snaith splitting (Theorem 3.2.3),

we have

H̃∗
(
Ω2S2N+3;Fp

) ∼= ⊕
i≥0

H̃∗
(
Di(R2, S2N+1);Fp

)
.
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Note that in the range we’re interested in, q < n, so in particular q 6= n. Hence for N � 0,

2N + 2 - q − n,

so 2N + 2 - q + (2N + 1)n,

so q + (2N + 1)n− (2N + 2)j 6= 0,

and so H∗ = H̃∗ for ∗ = q + (2N + 1)n− (2N + 2)j. Putting this all together we have:

Hq

(
Cn(S);F(−1)

p

) ∼= ⊕
j≥0

(
Fα(j)
p ⊗

⊕
i≥0

H̃−(2N+2)j+q+(2N+1)n

(
Di(R2, S2N+1);Fp

))
. (3.3.1)

So we need to understand the spaces Di(R2, S2N+1). By their definition,

Di(R2, S2N+1) ∼= Th(Ci(R2,R2N+1)→ Ci(R2))

∼= Th(⊕2N+1(Ci(R2,R)→ Ci(R2))),

the Thom space of the bundle given by forgetting the labelling of the configuration. By

Proposition 3.2.4, denoting the rank-k trivial bundle by εk, this is

Th(ε2Ni ⊕ (Ci(R2,R)→ Ci(R2))) ∼= Σ2NiTh(Ci(R2,R)→ Ci(R2))

∼= Σ2NiDi(R2, S1).

This simplifies (3.3.1) to

Hq

(
Cn(S);F(−1)

p

) ∼= ⊕
i,j≥0

(
H̃q+(2N+1)n−(2N+2)j−2Ni

(
Di(R2, S1);Fp

))α(j)
. (3.3.2)

Note that the homological degree simplifies to 2N(n− i−j)+q+n−2j and that Di(R2, S1)

can be given the structure of a 3i-dimensional cell complex, so its homology vanishes above

degree 3i.

Recall that N may be chosen arbitrarily large compared to n and q, i.e., N � n, q.

Hence:

• there is no contribution to the sum if (n− i− j) is negative;

• so in particular we may assume that n ≥ i, j;
• so N � n, q, i, j;

• so since the dimension of Di(R2;S1) is much smaller than N , there is also no contri-

bution to the sum if (n− i− j) is positive.

So we may assume that j = n− i, and simplify (3.3.2) to a finite sum:

Hq

(
Cn(S);F(−1)

p

) ∼= n⊕
i=0

H̃q+2i−n
(
Di(R2, S1);Fp

)α(n−i)
(3.3.3)
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Now, H̃∗(Ω
2S3;Fp) ∼= Fp[x1, x2, ...] ⊗ Λ[y0, y1, ...] with dim(xj) = 2pj − 2 and dim(yj) =

2pj − 1. The Snaith splitting for Ω2S3 is

Ω2S3 's
∨
i≥0

Di(R2;S1)

and induces a weight filtration on the mod-p homology of Ω2S3 given by wt(xj) = wt(yj) =

pj . So H̃∗(Di(R2;S1);Fp) is generated as an Fp-vector space by monomials in Fp[x1, x2, ...]⊗
Λ[y0, y1, ...] with dim = ∗ and wt = i.

The set of such monomials is in bijection with the set of double sequences of integers

v =
(
k0 k1 k2 ···

`1 `2 ···

)
with

kj=0 or 1
`j≥0 (3.3.4)

such that the dot products

v ·
(

1 2p−1 2p2−1 ···
2p−2 2p2−2 ···

)
= ∗ and v ·

(
1 p p2 ···
p p2 ···

)
= i,

or equivalently such that

v ·
(

1 1 1 1 ···
2 2 2 ···

)
= 2i− ∗ and v ·

(
1 p p2 ···
p p2 ···

)
= i.

So from (3.3.3) we have the combinatorial formula

dim Hq

(
Cn(S);F(−1)

p

)
=

n∑
i=0

(
n−i+b−1
n−i

)
dim H̃q+2i−n

(
Di(R2, S1);Fp

)
=

n∑
i=0

(
n−i+b−1
n−i

)
Ni(n− q),

where Nx(y) is the number of double sequences of integers (3.3.4) such that

v ·
(

1 1 1 1 ···
2 2 2 ···

)
= y and v ·

(
1 p p2 ···
p p2 ···

)
= x.

Hence in particular dim Hq

(
Cn(S);F(−1)

p

)
is given by a certain weighted sum of the values

marked in Figure 3.3.1(a). Note that

Nx(2λ) =
{

1 (x=pλ)
0 (x<pλ)

}
and Nx(2λ+ 1) =

{
1 (x=pλ+1)
0 (x<pλ+1)

}
.

The grid of values of Nx(y) therefore looks like Figure 3.3.1(b). In particular, we have

Nx(y) = 0 whenever y ≥ 2
px+ 1, equivalently x ≤ p

2(y− 1), and therefore Hq

(
Cn(S);F(−1)

p

)
is zero whenever n ≤ p

2(n− q − 1), equivalently q ≤
(p−2

p

)
n− 1.

This completes the proof for F(−1)
p -coefficients when b2(S) = 0. When S is orientable

and closed so b2(S) = 1, a very similar calculation to the above results in the combinatorial
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§3.3. The calculation

formula

dim Hq

(
Cn(S);F(−1)

p

)
=

n∑
i=0

(
n−i+b−1
n−i

)
Ni(n− q) +

n−1∑
i=0

(
n−i+b−2
n−i−1

)
Ni(n+ 1− q),

and again the fact that we know that Nx(y) vanishes in a certain range implies that this is

zero for q ≤
(p−2

p

)
n− 1.

For Q(−1)-coefficients (and b2(S) = 0) we do the above calculation, for any 0 < q < n,

and obtain equation (3.3.2) with F(−1)
p replaced by Q(−1). Then note that H̃∗(βn;Q) = 0,

where βn is the Artin braid group on n strands (this is proved in [Arn70b] for example).

Since Ω2S3 ' Bβ+
∞, the Quillen plus-construction of the classifying space of β∞ = limnβn,

we also have H̃∗(Ω
2S3;Q) = 0, and hence by the Snaith splitting H̃∗(Di(R2, S1);Q) = 0 for

all i. Therefore by equation (3.3.2) for Q(−1),

Hq

(
Cn(S);Q(−1)

)
= 0

for all 0 < q < n.

The calculation can be modified for b2(S) = 1, in the same way as for F(−1)
p -coefficients,

to show that Hq

(
Cn(S);Q(−1)

)
= 0 for 0 < q < n also holds in this case.

x

y

n

n−q

(a)

x

y

2λ

pλ pλ+p

1

1

1

1

(b)

Figure 3.3.1: Schematic pictures of the values of Nx(y).

Remark 3.3.1 The calculations also show that p−2
p is the best possible slope for stability

of the homology of Cn(S) with coefficients in Fp with a sign-twisting. For example one can

calculate that for all λ ≥ 1, the stabilisation map

Hq

(
Cn(S);F(−1)

p

)
−→ Hq

(
Cn+1(S);F(−1)

p

)
(3.3.5)

is Fp → 0 for (n, q) = (pλ+ 1, (p− 2)λ). So (3.3.5) fails to be an isomorphism on a line of

slope p−2
p .
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Chapter 3. Some calculations of the homology of oriented configuration spaces

3.4 Tables

To illustrate the calculation, the tables on the following pages give the dimension of

Hq

(
Cn(S);F(−1)

p

)
for p = 3, 5, 7 and for the surface S equal to the plane R2, the sphere S2,

the torus T 2 and the once-punctured torus T 2rpt. The number of particles n increases from

left to right, and the homological degree q increases from top to bottom. One can observe

the faster rate of homological stability for larger primes (namely 1
3 , 3

5 and 5
7 respectively

for p = 3, 5 and 7), as well as some other interesting patterns.
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§3.4. Tables

For S = R2 (and p = 3, 5, 7 respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0 0 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 1 1 0 2 2 0 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 1 1 0 2 2
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0 0 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 1 1 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
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For S = S2 (and p = 3, 5, 7 respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 1 1 2 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 1 2 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 1 2 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 2 2 1 2 1 2 2 0 1 1 0 0 1 1 0 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 1 0 2 2 1 2 1 2 2 0 1 1 0 0 1 1 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 0 1 2 1 0 2 2 1 2 1 2 2 0 1 1 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 2 2 0 1 2 1 0 2 2 1 2 1 2 2 0 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 1 2 2 0 1 2 1 0 2 2 1 2 1 2 2
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 1 2 1 2 2 0 1 2 1 0 2 2 1 2
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 1 2 1 2 2 0 1 2 1 0 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
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For S = T 2 r pt (and p = 3, 5, 7 respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 3 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 4 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 5 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 6 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 7 12 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 8 14 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 9 17 18 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 10 20 22 21 19 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 11 23 27 27 24 21 19 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 12 26 32 33 30 27 24 21 19 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 13 29 37 39 36 33 30 27 24 21 19 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 14 32 42 45 42 39 36 33 30 27 24 21 19 16 14 13 11 10 9 8 7 6 5 4 3 2 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 15 35 47 51 49 46 42 39 36 33 30 27 24 21 19 16 14 13 11 10 9 8 7 6 5 4 3
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 38 52 58 57 53 49 46 42 39 36 33 30 27 24 21 19 16 14 13 11 10 9 8 7 6
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 41 57 65 65 62 58 53 49 46 42 39 36 33 30 27 24 21 19 16 14 13 11 10 9
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 44 62 72 74 72 67 62 58 53 49 46 42 39 36 33 30 27 24 21 19 16 14 13
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 47 67 79 83 82 77 72 67 62 58 53 49 46 42 39 36 33 30 27 24 21 19
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 50 72 86 92 92 87 82 77 72 67 62 58 53 49 46 42 39 36 33 30 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 5 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 6 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 7 10 7 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 8 12 9 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 9 14 11 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 10 16 13 10 7 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 11 18 15 12 9 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 12 20 17 14 11 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 13 22 19 16 13 10 7 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 14 24 21 18 15 12 9 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 15 26 23 20 17 14 11 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 28 25 22 19 16 13 10 7 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 30 27 24 21 18 15 12 9 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 32 29 26 23 20 17 14 11 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 34 31 28 25 22 19 16 13 10 7 4 1 1 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 36 33 30 27 24 21 18 15 12 9 6 3 2 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 6 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 7 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 8 10 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 9 12 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 10 14 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 11 16 11 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 12 18 13 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 13 20 15 10 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 14 22 17 12 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 15 24 19 14 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 26 21 16 11 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 28 23 18 13 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 30 25 20 15 10 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 32 27 22 17 12 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 34 29 24 19 14 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Chapter 3. Some calculations of the homology of oriented configuration spaces

For S = T 2 (and p = 3, 5, 7 respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 4 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 6 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 3 9 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 4 12 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 5 15 19 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 6 18 23 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 7 21 28 28 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 8 24 34 35 32 29 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 9 28 41 43 41 37 32 29 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 10 32 48 53 52 46 41 37 32 29 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 11 36 56 64 63 57 52 46 41 37 32 29 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 12 40 64 75 75 69 63 57 52 46 41 37 32 29 25 22 20 17 15 13 11 9 7 6 4 3 2 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 13 44 72 86 87 82 76 69 63 57 52 46 41 37 32 29 25 22 20 17 15 13 11 9 7 6 4 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 6 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 3 8 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 4 10 9 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 5 13 13 9 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 6 16 17 12 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 7 19 21 15 9 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 8 22 25 19 13 9 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 9 25 29 23 17 12 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 10 28 33 27 21 15 9 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 11 31 37 31 25 19 13 9 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 12 34 41 35 29 23 17 12 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 13 37 45 39 33 27 21 15 9 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 3 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 4 10 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 5 12 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 6 14 11 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 7 17 15 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 8 20 19 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 9 23 23 15 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 10 26 27 18 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 11 29 31 21 11 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 12 32 35 25 15 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 13 35 39 29 19 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Chapter 4. Twisted homological stability for configuration spaces

4.1 Introduction

Let M be a connected, open manifold of dimension at least 2, and let X be a path-

connected space. Recall from §1.1 that:

Definition 4.1.1 The configuration space Cn(M,X) of n unordered particles in M with

labels in X is defined by

Cn(M,X) :=
{

(p1, . . . , pn) ∈Mn
∣∣ pi are pairwise distinct

}
×Xn/Σn,

where the symmetric group Σn acts diagonally by permuting the coordinates in Mn and

Xn. We will write Cn(M) if the label-space X is just a point; this is the space of unlabelled

configurations.

The sequence Cn(M,X) is known to be homologically stable as n→∞. In other words,

we have an isomorphism

H∗(Cn(M,X)) ∼= H∗(Cn+1(M,X))

whenever n� ∗ (in this case, the explicit range n ≥ 2∗ is known to be sufficient). The most

recent proof of this is [RW11]; see [Seg73, McD75, Seg79] for earlier results using different

methods.

Twisted coefficients. Several other families of groups or spaces which are homologically

stable are also known to have homological stability for twisted coefficients. For example

general linear groups [Dwy80], mapping class groups of surfaces [Iva93, CM09, Bol12] and

the symmetric groups [Bet02] are known to satisfy this phenomenon.

In order for this not to be an empty statement one must say what one means by “twisted

coefficients” for the sequence of spaces {Yn} one is considering. The minimum data needed

for the question of homological stability to be defined at all is a functor π1({Yn})→ Ab. By

π1({Yn}) we mean the category (groupoid) where the objects are the natural numbers, all

morphisms are automorphisms, and Aut(n) = π1(Yn). In other words this is just a choice

of π1(Yn)-module for each n. But there is no chance of stability with respect to such a

general “twisted coefficient system”, since the π1(Yn)-modules for various n need have no

relation to each other. So to get a notion of twisted coefficient system that has a chance

of stability one needs to add some (non-endo)morphisms to π1({Yn}) and require that the

functor from this new category to Ab satisfy some finiteness conditions defined in terms

of the new morphisms. The correct way to do this depends on the specific context one is

working in.

In §4.2 below we will carefully define what is meant by a twisted coefficient system of

degree d for the configuration spaces {Cn(M,X)}. To state the main result of this chapter it

is enough to note that it includes a π1(Cn(M,X))-module Tn and a canonical map ιn : Tn →
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Tn+1 for each n. Under the assumption that M is the interior of some manifold with non-

empty boundary, there is a natural stabilisation map sn : Cn(M,X)→ Cn+1(M,X) (defined

just below). The map ιn is equivariant w.r.t. π1(sn), so together these induce a map

(sn; ιn)∗ : H∗
(
Cn(M,X);Tn

)
−→ H∗

(
Cn+1(M,X);Tn+1

)
. (4.1.1)

Main Theorem Let M be the interior of a connected manifold with non-empty boundary

of dimension at least 2, let X be a path-connected space, and let T be any twisted coefficient

system for {Cn(M,X)} of degree d. Then the map (4.1.1) is split-injective for all values of

∗ and n, and surjective in the range n ≥ 2∗+ d.

This is a generalisation of the result of [Bet02], where twisted homological stability is

proved for the symmetric groups {Σn}, which is the case M = R∞ and X = pt.

Corollary 4.1.2 In particular we have isomorphisms

H∗
(
Cn(M,X);Z

[
Σn/(Σk × Σn−k)

]) ∼= H∗
(
Cn+1(M,X);Z

[
Σn+1/(Σk × Σn+1−k)

])
,

H∗
(
Cn(M,X);Z

[
Σn/Σn−k

]) ∼= H∗
(
Cn+1(M,X);Z

[
Σn+1/Σn+1−k

])
,

H∗
(
Cn(M,X);Hq(Z

n;F )
) ∼= H∗

(
Cn+1(M,X);Hq(Z

n+1;F )
)

for n ≥ 2∗+ k and n ≥ 2∗+ b q
h+1c respectively, where F is a field and Z is a based space

with H̃i(Z) = 0 for all i ≤ h.

Proof. These follow from the Main Theorem and Examples 4.5.1 and 4.5.4 of twisted co-

efficient systems in §4.5. See that section for more details of these twisted coefficient sys-

tems.

Remark 4.1.3 In the next chapter we prove that homological stability also holds for con-

figuration spaces of submanifolds. The proof of the Main Theorem of this chapter actually

follows from a general “twisted stability from untwisted stability” principle (§4.6), which

applies equally well to the more general setting of configuration spaces of submanifolds; see

§5.8 of Chapter 5.

Remark 4.1.4 There is a sequence of π1(Cn(M,X))-modules which does not fit into the

framework of this chapter (it doesn’t even form a twisted coefficient system, let alone a finite-

degree one), but which nevertheless does exhibit homological stability. Each element of

π1(Cn(M,X)) is either even or odd, depending on whether a loop representing it induces an

even or odd permutation of the basepoint configuration. Let V be the π1(Cn(M,X))-module

Z2, where the even elements act by the identity and the odd elements act by swapping the

two coordinates. The double cover of Cn(M,X) corresponding to the subgroup of even

elements is the space C+
n (M,X) of ‘oriented’ configurations, i.e. configurations equipped

with an ordering of the n points which is only remembered up to even permutations. From
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the definition of twisted homology, or as a trivial application of the Serre spectral sequence

for the fibration Z/2→ C+
n (M,X)→ Cn(M,X), we have

H∗
(
C+
n (M,X);Z

) ∼= H∗
(
Cn(M,X);V

)
. (4.1.2)

In Chapter 2 we proved that the sequence C+
n (M,X) has homological stability as n → ∞

(in the range n ≥ 3∗+ 5), so via (4.1.2) this gives us twisted homological stability for the

unordered configuration spaces Cn(M,X) with coefficients in V .

The stabilisation map. Assume that the manifold M is the interior of M , which has non-

empty boundary. The following is one explicit model for the stabilisation map Cn(M,X)→
Cn+1(M,X); up to homotopy it only depends on a choice of boundary component of M

and path-component of X.

Definition 4.1.5 (Stabilisation map) Choose a boundary-component B of M , a point

b ∈ B, and a coordinate neighbourhood U of b, identified with the half-space Rd+ =

{(x1, . . . , xd) |x1 ≥ 0} with b corresponding to 0. Also choose a basepoint x0 ∈ X. Fi-

nally, choose a self-embedding e : M ↪→ M which is isotopic to the identity on M , is equal

to the identity outside U , and near b = 0 ∈ Rd+ is given by x 7→ x+ (1, 0, . . . , 0). The map

s : Cn(M,X)→ Cn+1(M,X) is then defined to be

{
(p1, x1), . . . , (pn, xn)

}
7→

{
(e(p1), x1), . . . , (e(pn), xn), (e(b), x0)

}
.

A note on terminology. To keep our terminology from becoming ambiguous, we will

always use “local coefficient system” and “twisted coefficient system” as follows. For a

space Y , a local coefficient system for Y will have its usual meaning as a π1(Y )-module,1

whereas a twisted coefficient system for a sequence of spaces {Yn} is a local coefficient system

for each Yn, with some extra compatibility data and conditions (see Definition 4.2.12 for

the precise definition).

Organisation of the chapter. We discuss twisted coefficient systems, for configuration

spaces {Cn(M,X)} and more abstractly, in §§4.2–4.5. We define them precisely in §4.2,

and define the degree and height of a twisted coefficient system in §4.4. The definition of

height depends on a certain decomposition result for twisted coefficient systems, which we

establish in §4.3. Some examples of twisted coefficient systems are given in §4.5.

In §4.6 we state our general “twisted stability from untwisted stability” principle, and

deduce from it the Main Theorem of the chapter (except the split-injectivity claim). The

principle itself is proved in §4.8, after an interlude in §4.7 on a twisted version of the Serre

spectral sequence which is needed in the proof. Finally, in §4.9 we prove the split-injectivity

1Alternatively: a functor π(Y ) → Ab from the fundamental groupoid of Y to the category of abelian
groups (see §4.7), or a bundle of abelian groups over Y .
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part of the Main Theorem and in §4.10 we briefly point out an interesting connection with

representation stability for the cohomology of ordered configuration spaces.

4.2 Twisted coefficient systems

We first (in §4.2.1) define the notion of a twisted coefficient system for configuration

spaces {Cn(M,X)}. In order to formulate a general “twisted stability from untwisted

stability” principle in §4.6, we then (in §4.2.2) describe a more abstract framework in which

one can define an analogous notion of “twisted coefficient system”.

In later sections we will prove a decomposition theorem (§4.3) and define the height and

the degree of a twisted coefficient system (§4.4) in this more abstract framework, and then

give some examples of twisted coefficient systems for configuration spaces (§4.5).

4.2.1 Twisted coefficient systems for configuration spaces

Let M be the interior of a connected manifold M , with non-empty boundary and of

dimension at least 2, and let X be a path-connected space. We keep the choices of Definition

4.1.5 above, and define a sequence of points {qn} in M by

q1 = e(b), qn = e(qn−1) for n ≥ 2.

We also choose an isotopy from the identity to e : M ↪→ M , which gives a choice of path

from qn to qn+1.

Definition 4.2.1 The category B(M,X) has objects tuples of elements of X, in symbols∐
n≥0X

n, and a morphism from (x1, . . . , xm) to (y1, . . . , yn) is a choice of k ≤ min{m,n}
and a path in Ck(M,X) from a k-element subset of {(q1, x1), . . . , (qm, xm)} to a k-element

subset of {(q1, y1), . . . , (qn, yn)}, up to endpoint-preserving homotopy. Composition is given

by concatenating paths and deleting configuration points for which the path is only defined

half-way. For example (omitting the labels in X):

◦ =

We call this the category of partial braids on M with labels in X. When the label-space X

is just a point we will denote this category by B(M).

Definition 4.2.2 A twisted coefficient system for {Cn(M,X)} is a functor T : B(M,X)→
Ab, where Ab denotes the category of abelian groups.

We will define the degree of such a twisted coefficient system in a more abstract setting

in §4.4; here is the definition in the case of configuration spaces:
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For every morphism φ of B(M,X) we have a commutative square of the form

(x1, . . . , xm) (x0, x1, . . . , xm)

(y1, . . . , yn) (x0, y1, . . . , yn)

ιx̄

ιȳ

φ φ[1] (4.2.1)

The morphism φ[1] is obtained from φ by “pushing inwards and adding a vertical strand.”

More precisely, apply the embedding e to each particle in the path of configurations φ,

then add a new particle at q1 (labelled by x0) which remains stationary. The morphism

ιx̄ : (x1, . . . , xm)→ (x0, x1, . . . , xm) is the path from the configuration {(q1, x1), . . . , (qm, xm)}
to the configuration {(q2, x1), . . . , (qm+1, xm)} induced by our choice of isotopy from the

identity to e. Putting this together we have an endofunctor −[1] on B(M,X) and a natural

transformation ι from the identity to −[1].

Given any twisted coefficient system T : B(M,X)→ Ab, we get a natural transformation

from T to T ◦ (−[1]), which is a morphism in the abelian functor category AbB(M,X). It has

an obvious left-inverse, so it is split-injective. Denote its cokernel by ∆T : B(M,X)→ Ab.

Definition 4.2.3 The zero functor has degree −1. Otherwise, T has degree d if ∆T has

degree d− 1.

Remark 4.2.4 Note that B(R∞) is isomorphic to the category with objects {1, 2, 3, . . .}
and morphisms partially-defined injections from {1, . . . ,m} to {1, . . . , n} (this is called Σ

in §4.2.2 below). There is a functor B(M,X) → B(R∞) given by only remembering the

partial injection induced by a partial braid (or equivalently by embedding M into R∞), so

any twisted coefficient system for {Cn(R∞)} = {BΣn} induces a twisted coefficient system

for all {Cn(M,X)} by composing with this functor.

4.2.2 A more abstract framework

We will now give a more general definition of “twisted coefficient system” which extracts

the essential properties of the previous section.

Inputs for the definition.

Definition 4.2.5 Let n denote the set {1, 2, . . . , n}. Let Σ be the category with objects

{n | n ≥ 1} and morphisms partially-defined injective maps. In other words, a morphism

in Σ from m to n is a choice of subset S of m and an injective map S ↪→ n. Let Σ′ be the

subcategory on the same objects, generated by the following two types of morphisms: (a)

in = (k 7→ k+ 1): n→ n+1 for each n, and (b) morphisms which are the identity wherever

they are defined.
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§4.2. Twisted coefficient systems

Now let C be any category, and let B be another category with the same objects as Σ,

equipped with a functor π : B → Σ which is the identity on objects.

Definition 4.2.6 The wreath product category C oB has objects (c1, . . . , cn) with ci ∈ C and

n ≥ 0. Its morphisms from (c1, . . . , cm) to (d1, . . . , dn) consist of a morphism σ ∈ B(m,n)

together with a morphism ci → dπ(σ)(i) of C for each i in the domain of definition of π(σ).

We also need two more technical definitions:

Definition 4.2.7 A partial section of the functor π : B → Σ is a section of its restriction

to B′ = π−1(Σ′)→ Σ′.

There is a “stabilising” endofunctor −[1] : Σ → Σ which sends n to n+1 and a partial

injection j : m 99K n to the partial injection j[1] : m+1 99K n+1 which sends 1 to itself and

k to j(k− 1) + 1 for k ≥ 2. Furthermore, there is a natural transformation id⇒ −[1] given

by the morphisms {in : n→ n+1}.

Definition 4.2.8 The functor π : B → Σ admits a lift of the stabilising endofunctor if

there is an endofunctor −[1] : B → B, equipped with a natural transformation id ⇒ −[1],

such that (−[1]) ◦ π = π ◦ (−[1]). In particular this means that we have homomorphisms

AutB(n)→ AutB(n+1) such that the following square commutes:

AutB(n) AutB(n+1)

Σn Σn+1

π π (4.2.2)

Note that the bottom horizontal map includes Σn as the stabiliser of 1 (not n+ 1) in Σn+1.

The lift of the stabilising endofunctor is compatible with the partial section s : Σ′ → B′ if

the natural transformation id⇒ −[1] for B is the lift {s(in)} of the natural transformation

{in} : id⇒ −[1] for Σn. Hence we have

s(in) ◦ σ = σ[1] ◦ s(im) (4.2.3)

for every morphism σ : m→ n in B.

Finally, fix an object c0 of C and denote the n-tuple (c0, . . . , c0) ∈ ob(C o B) by cn0 .

Example 4.2.9 The canonical example for this is the category B(M) for a manifold M , as

defined in §4.2.1. Forgetting everything apart from the partial injection of endpoints induced

by a partial braid gives a functor π : B → Σ, as discussed in Remark 4.2.4. We chose an

isotopy from id: M → M to the self-embedding e : M ↪→ M , which gives a canonical path

from qn to qn+1 for each n. Using these canonical paths, it is easy to construct a section of

π : B → Σ over the subcategory of all order-preserving morphisms of Σ. In particular this
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Chapter 4. Twisted homological stability for configuration spaces

gives a partial section of π, which for example sends a morphism of type (b) in Definition

4.2.5 to the constant partial braid which covers it. There is also a lift of the stabilising

endofunctor of Σ, which was defined in §4.2.1 and is compatible with this partial section.

If we also have a label-space X then the category B(M,X) decomposes as the wreath

product PX o B(M), where PX denotes the path category of X.

Constructions. Suppose that we have (C, c0) and π : B → Σ as above, where π has a

partial section and a compatible lift of the stabilising endomorphism of Σ. Denote a choice

of partial section by s : Σ′ → B′. We additionally assume that π is a full functor; since we

are already assuming the existence of a partial section this is equivalent to asking for each

homomorphism AutB(n)→ Σn to be surjective.

Definition 4.2.10 LetGn denote the automorphism group AutCoB(cn0 ) = AutC(c0)oAutB(n).

There is a canonical surjection

Gn → AutB(n)
π−→ Σn;

denote the inverse image of Σn−k × Σk by Gk,n−k. From (4.2.2) we get a homomorphism

γn : Gn → Gn+1 which takes Gk,n−k to Gk,n+1−k.

Now let T be any functor C o B → Ab and abbreviate the Gn-module T (cn0 ) by Tn.

Definition 4.2.11 Recall that in is the inclusion (k 7→ k + 1): n → n+1. There is a

canonical split-injective morphism cn0 → cn+1
0 of C o B given by s(in) and n copies of the

identity morphism c0 → c0. Denote its image under T by ιn : Tn → Tn+1.

Note that ιn is γn-equivariant, essentially by (4.2.3).

The definition of a twisted coefficient system. Suppose are given a sequence of spaces

Y1 → Y2 → · · · → Yn
sn−→ Yn+1 → · · ·

Definition 4.2.12 A twisted coefficient system for {Yn} consists of the following data: a

pointed category (C, c0), a full functor π : B → Σ which is the identity on objects, with a

partial section and compatible lift of the stabilising endofunctor on Σ, a functor T : C o B →
Ab and an identification of π1(Yn

sn−→ Yn+1) with Gn
γn−→ Gn+1.

When the choice of the other data is clear, we refer to just the functors T : C o B → Ab

as “twisted coefficient systems”. The other data just sets up the correct context in which

these functors provide a “coherent” sequence of local coefficient systems for {Yn}.

Example 4.2.13 For a sequence of configuration spaces {Cn(M,X)} with a chosen base-

point x0 ∈ X, we take (C, c0) to be the path category (PX, x0) and π : B → Σ as explained
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in Example 4.2.9, so that C o B = B(M,X). Moreover there is a canonical identification

Gn = AutPX(x0) oAutB(n)

= π1(X,x0) o π1(Cn(M), {q1, . . . , qn})

= π1(Cn(M,X), {(q1, x0), . . . , (qn, x0)})

under which γn corresponds to (sn)∗. So a twisted coefficient system for {Cn(M,X)} reduces

to just a choice of functor B(M,X)→ Ab, as in Definition 4.2.2.

4.3 Decomposition of twisted coefficient systems

The following decomposition of Tn as a Gn-module will be central to the proof of twisted

homological stability:

Proposition 4.3.1 For k = 0, . . . , n there is a direct summand (as abelian groups) T
(k)
n of

Tn, such that the action of Gk,n−k ≤ Gn on Tn preserves it—so it is a direct summand as

a Gk,n−k-module. Moreover, there is a decomposition of Tn as a Gn-module:

Tn ∼=
n⊕
k=0

(
ZGn ⊗Gk,n−k T

(k)
n

)
. (4.3.1)

This identification is natural in the sense that ιn : Tn → Tn+1 sends T
(k)
n into T

(k)
n+1, and

the map of the right-hand side induced by ιn and γn corresponds under (4.3.1) to ιn on the

left-hand side.

This can be used to define the height of a twisted coefficient system (which will be

related to its degree in §4.4 below).

Definition 4.3.2 A twisted coefficient system T : C o B → Ab has height −1 if Tn = 0 for

all n. Otherwise, T has height h ≥ 0 if T
(k)
n = 0 for all n and all k > h, but T

(h)
n 6= 0 for

some n. In other words, it is the height at which the decomposition (4.3.1) is truncated.

Remark 4.3.3 There is a general theory of cross-effects of a functor C → A, where C is a

pointed monoidal category and A is an abelian category, which includes a decomposition of

the form (4.3.1). This goes back to [EML54] (see in particular §9); for a modern reference

see for example [HPV12, §2]. Since our category C o B is always pointed monoidal, the

decomposition (4.3.1) is a special case of this theory (see [HPV12, Proposition 2.4]) and

our functors C o B → Ab of height h are “polynomial functors of degree at most h” in the

language of cross-effects of functors.

However, the proof of the decomposition (4.3.1) is fairly elementary (although slightly

involved), and it will be useful to have the details of the proof available to see the relation
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Chapter 4. Twisted homological stability for configuration spaces

between height and degree, so in the rest of this section we will carefully establish this

decomposition.2 First we need to define some endomorphisms and subgroups of Tn.

Definition 4.3.4 For S ⊆ n, consider the morphism σS : n → n of Σ which “forgets S”,

in other words i 7→ i for i ∈ n r S and undefined for i ∈ S. This is a morphism of type

(b) in Definition 4.2.5, so it has a chosen lift to a morphism s(σS) : n → n of B. Define

fS : cn0 → cn0 in C oB to be the morphism s(σS) together with the identity morphism c0 → c0

for each i ∈ nr S = dom(σS).

The induced maps TfS : Tn → Tn are group homomorphisms, but not in general Gn-

module homomorphisms.

For p ≥ 0 and {S1, . . . , Sp} a partition of S ⊆ n, define

Tn[S1|· · ·|Sp] := im(TfnrS) ∩
p⋂
i=1

ker(TfSi).

These are subgroups, but not sub-Gn-modules, of Tn. Often we will write Tn[Sδ], where Sδ

is understood to mean the discrete partition of S. In particular we define

T (k)
n := Tn[{n−k+1, . . . , n}δ].

Aside on a pictorial notation. We briefly describe a pictorial notation for visualising

morphisms of the wreath product category C o B.

Notation 4.3.5 Imagine a morphism of C oB from (c1, . . . , cm) to (d1, . . . , dn) as a diagram

of the form depicted in Fig.4.3.1(a), with sticks indicating the partial injection in Σ (the

actual lift to a morphism of B is left implicit in this notation) and each stick decorated by

a morphism of C between the objects at its endpoints. Composition is concatenation of two

such diagrams, deleting any sticks that only make it half-way across the whole diagram,

and composing the morphisms of C when two sticks are glued together. For morphisms

from cm0 to cn0 we drop the labelling of nodes, and just indicate the m and n unless there

is no ambiguity which objects the morphism is between—see Fig.4.3.1(b). A grey box

(Fig.4.3.1(c)) is shorthand for a collection of parallel sticks, each decorated by the identity

map c0 → c0. (Note that in Figures 4.3.1 (c) and (d) the morphism of B is unambiguous;

it is determined by the partial section s.) By abuse of notation, the image under T of this

morphism, a map Tm → Tn, is denoted by the same diagram. For example ιn : Tn → Tn+1

is the map in Fig.4.3.1(d). We write function composition and application from left to right

for these diagrams, so x = ιn(y) is written as in Fig.4.3.1(e).

Remark 4.3.6 This pictorial notation is convenient to see for example that the map

ιn : Tn → Tn+1 sends T
(k)
n into T

(k)
n+1 (as claimed in Proposition 4.3.1):

2The proof we give here was informed in part by reading [CDG11]; however, we note that the proof of
their Lemme 1.5 (which corresponds to our decomposition (4.3.4) below) contains an error.
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c1

cm

d1

dn

(a)

m

n

(b) (c)

n
n+1

(d)

n
n+1

x = y·

(e)

Figure 4.3.1: Some pictures of morphisms of C o B.

Suppose that x = ιn(y) for y ∈ T (k)
n . Then by definition y = z · for some z ∈ Tn (the

grey box has height k). Note that the composition is the identity, so the second

map is split-surjective, and so z = w · for some w ∈ Tn+1. Hence

x = w · = w ·

so x ∈ im(Tfn−k+1). For any n− k + 2 ≤ i ≤ n+ 1, we have

x · i = y · i = y · i−1 = 0 · = 0

since y ∈ T (k)
n , so x ∈ ker(Tf{i}). Hence we have verified that x ∈ T (k)

n+1.

Lemma 4.3.7 For k ≤ m ≤ n, the map

ιnm = ιn−1 ◦ · · · ◦ ιm : Tm → Tn

is split-injective and sends T
(k)
m to T

(k)
n . Moreover, the restriction to T

(k)
m → T

(k)
n is a

bijection.

Proof. The first sentence follows from the remark above. Given x ∈ T (k)
n , we need to show

that x = ιnm(z) for some z ∈ T (k)
m . First note that x = y · for some y ∈ Tn (the grey box

has height k), and let z := y · ∈ Tm. Then ιnm(z) = z · = y · = y ·
= x, so we just need to check that z ∈ T (k)

m . Firstly,

z = y · = y ·

so z ∈ im(Tfm−k). Secondly, for any m− k + 1 ≤ i ≤ m, we have

z · i = z · i+n−m = x · i+n−m = 0

since x ∈ T (k)
n . But ιnm is split-injective, so z ∈ ker(Tf{i}).

Remark 4.3.8 From now on, for typographical and space reasons, we will revert to using

symbols rather than the pictorial notation. Any equations below which look a little too

dense can be converted into cartoons as above, which are somewhat more enlightening.
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Proof of the decomposition of Tn.

Observation 4.3.9 Some immediate observations from Definition 4.3.4 above are

· {TfS | S ⊆ n} is a set of idempotents on Tn.

· The composition of TfS1 and TfS2 is TfS1tS2 , so in particular {TfS | S ⊆ n} pairwise

commute.

· Tn[ ] = im(Tfn) and Tn[n] = im(Tf∅) ∩ ker(Tfn) = ker(Tfn), since f∅ = id, so:

Tn = im(Tfn)⊕ ker(Tfn) = Tn[ ]⊕ Tn[n]. (4.3.2)

The decomposition (4.3.1) will follow by induction from the next lemma.

Lemma 4.3.10 For all {S1, . . . , Sp} partitioning S ⊆ n, with p ≥ 2, there is a split short

exact sequence

0→ Tn[S1|· · ·|Sp] ↪→ Tn[S1tS2|· · ·|Sp] � Tn[S1|S3|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp]→ 0.

The first map is inclusion, and a section of the second map is given by inclusion of each of

the two factors, so in other words we have a decomposition

Tn[S1tS2|· · ·|Sp] = Tn[S1|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp] ⊕ Tn[S1|S3|· · ·|Sp].

Proof. One can check from the definitions that the following facts are true:3

1. TfS2 restricts to a map Tn[S1tS2|· · ·|Sp]→ Tn[S1|S3|· · ·|Sp],
and similarly TfS1 restricts to a map Tn[S1tS2|· · ·|Sp]→ Tn[S2|· · ·|Sp].

2. Tn[S1|S3|· · ·|Sp] and Tn[S2|· · ·|Sp] are subgroups of Tn[S1tS2|· · ·|Sp].

3. For i, j = 1, 2, if x ∈ Tn[Si|S3|· · ·|Sp], then TfSj (x) is x for i 6= j and 0 for i = j.

These facts imply that the map (TfS2 , TfS1) restricts to the required split surjection (with

a section given by inclusion of each factor). The kernel of this is

Tn[S1tS2|S3|· · ·|Sp] ∩ ker(TfS1) ∩ ker(TfS2)

= im(TfnrS) ∩
p⋂
i=3

ker(TfSi) ∩ ker(TfS1tS2) ∩ ker(TfS1) ∩ ker(TfS2)

= Tn[S1|· · ·|Sp],
3This can be seen using the pictorial notation above, or in symbols as follows:

1. Let x ∈ Tn[S1tS2|· · ·|Sp], so in other words x = TfnrS(y), TfS1tS2(x) = 0 and TfSi(x) = 0 for i ≥ 3.
Then TfS2(x) = TfS2TfnrS(y) = Tfnr(SrS2)(y) ∈ im(Tfnr(SrS2)), and we have TfSiTfS2(x) =
TfS2TfSi(x) = 0 (for i ≥ 3) and TfS1TfS2(x) = TfS1tS2(x) = 0. Hence TfS2 ∈ Tn[S1|S3|· · ·|Sp].

2. Let y ∈ Tn[S1|S3|· · ·|Sp]. Then y = Tfnr(SrS2)(z) = TfnrSTfS2(z) ∈ im(TfnrS) and TfS1tS2(y) =
TfS2TfS1(y) = 0. Hence y ∈ Tn[S1tS2|· · ·|Sp].

3. Let x ∈ Tn[S1|S3|· · ·|Sp]. Then TfS1(x) = 0 by definition. Also, x = Tfnr(SrS2)(y), so TfS2(x) =
TfS2Tfnr(SrS2)(y) = Tfnr(SrS2)(y) = x.
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since ker(TfS1) ⊆ ker(TfS1tS2).

Proposition 4.3.11 For any ∅ 6= S ⊆ n and R ⊆ nr S there is a decomposition

Tn[S|Rδ] =
⊕

∅6=Q⊆S
Tn[(QtR)δ]. (4.3.3)

As before, Qδ denotes the discrete partition of Q, so for example Tn[{1, 2}|{3, 4, 5}δ] means

Tn[{1, 2}|{3}|{4}|{5}]. Note that this decomposition is an equality of subgroups, not just an

abstract isomorphism of groups.

Proof. The |S| = 1 case is obvious, so we assume that |S| ≥ 2 and assume the theorem for

smaller values of |S| by induction. Pick an element s ∈ S. Then by Lemma 4.3.10,

Tn[S|Rδ] = Tn[Sr{s}|(Rt{s})δ] ⊕ Tn[Sr{s}|Rδ] ⊕ Tn[{s}|Rδ].

Apply the inductive hypothesis to the right-hand side. The proposition then follows from

the observation that for ∅ 6= Q ⊆ S, exactly one of the following holds: (i) s ∈ Q but

Q 6= {s}; (ii) s /∈ Q; (iii) Q = {s}.

Finally, we can apply a special case of this proposition to obtain the desired decompo-

sition (4.3.1) of Tn.

Proof of Proposition 4.3.1. Combining (4.3.3) with R = ∅ and S = n with (4.3.2) we

obtain:

Tn =
n⊕
k=0

⊕
Q⊆n
|Q|=k

Tn[Qδ]. (4.3.4)

The action of Gn on Tn permutes the summands via the projection Gn → Σn and the

obvious action of Σn on subsets of n. So:

· T (k)
n = Tn[{n−k+1, . . . , n}δ] is preserved by the action of Gk,n−k ≤ Gn on Tn.

· The Gn-action on Tn preserves the outer direct sum.

· The inner direct sum is the induced module IndGnGk,n−kT
(k)
n = ZGn ⊗Gk,n−k T

(k)
n .

This proves the decomposition of Gn-modules (4.3.1). We proved in Remark 4.3.6 above

that ιn : Tn → Tn+1 sends T
(k)
n into T

(k)
n+1, and the naturality statement is clear.

4.4 Height and degree

Recall (Definition 4.3.2) that the height of a twisted coefficient system is the ‘height’

at which its decomposition (4.3.1) is truncated. We now define the degree of T as a direct

generalisation of that given in §4.2.1.
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Construction 4.4.1 The fact that π : B → Σ admits a lift of the stabilising endofunctor

of Σ means that we can also define a “stabilising endofunctor” on C oB. For each morphism

φ : (c1, . . . , cm)→ (d1, . . . , dn) of C o B we have a commutative square

(c1, . . . , cm) (c0, c1, . . . , cm)

(d1, . . . , dn) (c0, d1, . . . , dn)

ιc

ιd

φ φ[1] (4.4.1)

where ιc is given by s(im) and idc1 , . . . , idcm . If the morphism φ is given by σ ∈ B(m,n)

together with ck → dπ(σ)(k) for each k ∈ dom(π(σ)), then φ[1] is given by σ[1] together with

these morphisms plus idc0 . Commutativity of the square is due to (4.2.3), i.e. compatibility

of the lift of the stabilisation endofunctor with the partial section s.

This gives us an endofunctor −[1] on C o B and a natural transformation ι : id ⇒ −[1].

Given any functor T : C oB → Ab, it induces a natural transformation T ⇒ T ◦ (−[1]), which

is a morphism in the abelian category AbCoB. Let ∆T : C o B → Ab be its cokernel.

In less fancy language: apply T to the diagram (4.4.1), take cokernels in the horizontal

direction, and call this ∆T (φ) : ∆T (c)→ ∆T (d). The above says that this fits together into

a new functor ∆T : C o B → Ab.

Definition 4.4.2 The degree of a twisted coefficient system T : C o B → Ab is defined

inductively as follows. If Tn = T (cn0 ) = 0 for all n then deg(T ) = −1. Otherwise, T has

degree d if ∆T has degree d− 1.

Note that this specialises to the definition of degree given in §4.2.1, since in this case

(4.4.1) = (4.2.1). The degree of T is related to its height as follows:

Lemma 4.4.3 For any twisted coefficient system T : C o B → Ab,

height(T ) ≤ deg(T ).

Proof. We will use induction on d to prove the statement

deg(T ) ≤ d⇒ height(T ) ≤ d (IHd)

for all d ≥ −1, using the decomposition (4.3.4) above:

Tn =
⊕
S⊆n

Tn[Sδ] (4.4.2)

Recall that height(T ) ≤ d if and only if Tn[Sδ] = 0 for all |S| > d and all n.

When d = −1 the definitions of height and degree coincide. This deals with the base

case, so let d ≥ 0 and assume that (IHd−1) holds. For all n we have a split short exact
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sequence 0→ Tn → Tn+1 → ∆Tn → 0. Applying (4.4.2), this is

0→
⊕
S⊆n

Tn[Sδ] −→
⊕
R⊆n+1

Tn+1[Rδ] −→
⊕
Q⊆n

∆Tn[Qδ]→ 0.

Analysing the maps carefully we see that

(a) Tn[Sδ] is sent isomorphically onto Tn+1[(S + 1)δ] by the first map.

(b) Tn+1[(Q t {1})δ] is sent isomorphically onto ∆Tn[(Q− 1)δ] by the second map.

Suppose that deg(T ) ≤ d. Then deg(∆T ) ≤ d− 1 by the definition of degree, and so by the

inductive hypothesis (IHd−1), height(∆T ) ≤ d− 1. By fact (b) above this implies that

Tn+1[Rδ] = 0 whenever |R| > d and 1 ∈ R. (4.4.3)

For any fixed k, the subgroups {Tn+1[Rδ] | |R| = k} are all abstractly isomorphic via the

action of Gn+1 on Tn+1. Also note that d ≥ 0, so that |R| > 0, i.e. R 6= ∅. Hence:

Tn+1[Rδ] = 0 for all |R| > d. (4.4.4)

Therefore by (a), Tn[Sδ] = 0 for all |S| > d; in other words, height(T ) ≤ d.

Remark 4.4.4 To prove that height(T ) = deg(T ), one could try to reverse the argument

above to get the other inequality. This goes wrong in one place though: Above we were

able to deduce (4.4.4) from (4.4.3) because for every |R| > d, there is an R′ of the same

cardinality which contains 1. However, for the converse we would need to deduce (4.4.4)

from:

Tn+1[Rδ] = 0 whenever |R| > d and 1 /∈ R. (4.4.5)

Now there is a subset R ⊆ n+1 for which there does not exist R′ ⊆ n+1 of the same

cardinality and not containing 1; namely n+1 itself.

This is the basic asymmetry which prevented us from proving an equality between height

and degree. However, we do not know of any example for which the inequality height(T ) ≤
deg(T ) is strict.

Remark 4.4.5 The height of a twisted coefficient system is useful for the proof of the

Main Theorem, but the degree is often easier to check in examples. We will prove the Main

Theorem under the assumption that the height of T is at most d; in light of Lemma 4.4.3

this implies that it holds whenever the degree is at most d.

Remark 4.4.6 The notion of ‘height’ in this chapter is the same as the notion of degree

in [Bet02] (for twisted coefficient systems for symmetric groups) and [Dwy80] (for general

linear groups), whereas the notion of ‘degree’ in this chapter is in the same spirit as the

notion of degree in [Iva93], [CM09] and [Bol12] (for mapping class groups of surfaces). Hence

Lemma 4.4.3 provides a link between these two notions of degree.
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Finally, we mention a couple of immediate facts about the degree of a twisted coefficient

system.

Lemma 4.4.7 For twisted coefficient systems T, T ′ : C o B → Ab and a fixed abelian group

A,

(a) deg(T ⊕ T ′) = max{deg(T ),deg(T ′)},
(b) deg(T ⊗A) ≤ deg(T ),

and more generally, for deg(T ) and deg(T ′) non-negative,

(c) deg(T ⊗ T ′) ≤ deg(T ) + deg(T ′),

where ⊕ and ⊗ are defined objectwise.

Proof. Fact (a) follows by induction from the fact that ∆(T ⊕ T ′) = ∆T ⊕∆T ′. Fact (b)

follows from the fact that ∆(T ⊗A) = ∆T ⊗A, which is true because tensoring a split short

exact sequence with A preserves split-exactness. Fact (c) is proved by induction with base

case (b), and inductive step using the fact that

∆(T ⊗ T ′) = (T ⊗∆T ′)⊕ (∆T ⊗ T ′)⊕ (∆T ⊗∆T ′).

4.5 Examples of twisted coefficient systems

Our two main examples will be in the case where C is the trivial category (one object,

one morphism) and π is the identity B → B. So C o B = Σ = B(R∞) and functors Σ→ Ab

are twisted coefficient systems for {BΣn} = {Cn(R∞)}. Recall that there is a canonical

functor C o B → Σ for any other choice of C and π : B → Σ, so functors Σ → Ab also give

twisted coefficient systems for {Cn(M,X)} in general.

Example 4.5.1 Fix a path-connected based space (Z, ∗), an integer q ≥ 0 and a field F .

The functor T̂Z : Σ → Top is defined on objects by n 7→ Zn, and on morphisms as follows:

given a partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n} in Σ, define T̂Z(j) : Zm → Zn

to be the map

(z1, . . . , zm) 7→ (zj−1(1), . . . , zj−1(n)),

where z∅ is taken to mean the basepoint ∗, for example

: (z1, z2, z3) 7→ (∗, z1, ∗, z2).

The functor TZ,q,F : Σ→ Ab is then the composite functor Hq(−;F ) ◦ T̂Z .

Lemma 4.5.2 The twisted coefficient system TZ,q,F has degree at most b q
h+1c, where for a

path-connected space Z,

h = hconnF (Z) := max{k ≥ 0 | H̃i(Z;F ) = 0 for all i ≤ k} ≥ 0.
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Proof. First note that the Künneth theorem gives us natural split short exact sequences

0→ Hq(Z
n;F ) −→ Hq(Z

n+1;F ) −→
q⊕
i=1

Hq−i(Z
n;F )⊗Hi(Z;F )→ 0,

which together with the fact that Hi(Z;F ) = 0 for 1 ≤ i ≤ h implies that

∆TZ,q,F =

q⊕
i=h+1

TZ,q−i,F ⊗Hi(Z;F ).

So by Lemma 4.4.7 above, deg(TZ,q,F ) ≤ 1 + max{deg(TZ,q−i,F ) | h+ 1 ≤ i ≤ q}. Abbrevi-

ating deg(TZ,q,F ) to tq, we have the recurrence inequality

tq ≤ 1 + max{t0, . . . , tq−h−1}. (4.5.1)

Note that H0(Zn;F )→ H0(Zn+1;F ) is the identity map F → F for all n, so ∆TZ,0,F = 0,

and hence deg(TZ,0,F ) = 0. Also note that for 1 ≤ q ≤ h, hconnF (Z) ≥ q implies that

hconnF (Zn) ≥ q for all n (by the Künneth theorem), so TZ,q,F (n) = Hq(Z
n;F ) = 0, and

hence deg(TZ,q,F ) = −1 ≤ 0. So we also have the initial conditions

t0, t1, . . . , th ≤ 0. (4.5.2)

It now remains to prove that the recurrence inequality (4.5.1) and the initial conditions

(4.5.2) imply that tq ≤ b q
h+1c for all q ≥ 0. This will be done by induction on q. The base

case is 0 ≤ q ≤ h which is covered by the initial conditions (4.5.2). Assume that q ≥ h+ 1.

Then:

tq ≤ 1 + max{t0, . . . , tq−h−1}

≤ 1 + b q−h−1
h+1 c

= b q
h+1c

Remark 4.5.3 See also [Han09a, Proposition 12], where it is proved (in the terminology

of this chapter) that the height of TZ,q,F is at most q.

Example 4.5.4 Let Γop be the category of finite sets and partially-defined functions. There

is a free functor Z− : Γop → Ab taking S to ZS and taking j : S 99K R to the homomorphism∑
s∈S nss 7→

∑
s∈S nsj(s), where j(s) means 0 ∈ ZR if j is undefined on s. So any functor

Σ→ Γop gives a twisted coefficient system for Σ by composing with Z−.

For example one can just take Σ ↪→ Γop to be the inclusion as a subcategory. More

generally, for 0 ≤ a ≤ b one can take the functor Pa,b : Σ→ Γop which on objects is

n 7→ Pa,b(n) = {S ⊆ n | a ≤ |S| ≤ b}
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and which takes j : {1, . . . ,m} 99K {1, . . . , n} to

S 7→
{
j(S) if a ≤ |j(S)| ≤ b
undefined otherwise.

(4.5.3)

Denote the composite functor Σ→ Ab by ZPa,b. Note that ZPb,b(n) ∼= Z
[
Σn/(Σb × Σn−b)

]
as Σn-modules.

From the definitions one can check that ∆ZP0,0 = 0, ∆ZP0,b = ZP0,b−1 for b ≥ 1, and

∆ZPa,b = ZPa−1,b−1 for a ≥ 1. Hence by induction,

deg(ZPa,b) = b.

(With a bit more work, one can check directly that the height of ZPa,b is also exactly b.)

There is also an ordered version of this. The functor P̃a,b : Σ→ Γop takes n to the ordered

subsets of n with cardinality between a and b, and it is defined on morphisms as above,

where j(S) inherits its ordering from S. Again, denote the composite functor Σ → Ab by

ZP̃a,b. Note that ZP̃b,b(n) ∼= Z
[
Σn/Σn−b

]
as Σn-modules.

To find the degree of ZP̃a,b we need to consider something slightly more general. For

0 ≤ a ≤ b and a finite set R disjoint from {1, 2, 3, . . .}, let P̃Ra,b be the functor Σ→ Γop which

takes n to the set of subsets S ⊆ n of cardinality between a and b, equipped with an ordering

of S t R. Then one can check from the definitions that ∆ZP̃R0,0 = 0, ∆ZP̃R0,b = ZP̃R+

0,b−1 for

b ≥ 1, and ∆ZP̃Ra,b = ZP̃R+

a−1,b−1 for a ≥ 1, where R+ = R t {∗}. Hence by induction on b,

deg(ZP̃Ra,b) = b.

Remark 4.5.5 For any C and π : B → Σ, denote the canonical map C o B → Σ by p. Then

given any functor T : Σ→ Ab there is a composite functor T ◦p : C oB → Ab. The degree and

height of T are the same as the degree and height of T ◦ p,4 so the preceding two examples

also give twisted coefficient systems, of the stated degree, for any C and π : B → Σ.

An aside on Burau representations. So far we have just constructed examples of

twisted coefficient systems which factor through the canonical projection to Σ. It would be

interesting to have some examples of twisted coefficient systems B(R2)→ Ab, for example,

which are not pulled back from a twisted coefficient system Σ→ Ab in this way.

Any collection of representations of the braid groups βn = π1Cn(R2), one for each n,

gives a functor B(R2)aut → Ab, where B(R2)aut is the subcategory of all automorphisms

of B(R2). The question is then whether the representations extend to a functor on all of

B(R2), and if so whether it has finite degree.

4One can check that (∆T ) ◦ p = ∆(T ◦ p), using the fact that we assumed that (−[1]) ◦ π = π ◦ (−[1]) in

Definition 4.2.8, and hence by induction deg(T ◦ p) = deg(T ). Also, from the definitions, (T ◦ p)(k)n = T
(k)
n ,

so height(T ◦ p) = height(T ).
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One candidate for this question is the Burau representations. These can be most quickly

defined using the presentation

βn =
〈
σ1, . . . , σn−1

∣∣ σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| ≥ 2
〉
.

The Burau representation βn → Aut(Z[t±1]n) = GLn(Z[t±1]) is defined on generators by

σi 7→ Ii−1 ⊕
(

1−t t
1 0

)
⊕ In−i−1,

where Ik is a k × k identity matrix. The category B(R2)aut is generated by the σi ∈
βn = AutB(R2)(n) for varying i and n. The full category B(R2) has two extra types of

generators, which we can take to be “inclusion braids” ιn : n→ n+1 and “forgetful braids”

πn+1 : n+1→ n as follows:

...
...

n
n+1

ιn : ...
...

n
n+1

πn+1 :

(We are temporarily breaking with our convention of being the canonical map from n

to n+1.) To extend the Burau representations to all of B(R2), we would need to define it

on these generators, and check the new relations which arise:{
σ±1
i ◦ ιn = ιn ◦ σ±1

i

σ±1
i ◦ πn+1 = πn+1 ◦ σ±1

i

}
(for i ≤ n− 1); πn+1 ◦ σkn ◦ ιn =

{
idn k even
ιn−1 ◦ πn k odd

}
However, it is unclear from this combinatorial description whether or not this is possible.5

As mentioned in §1.2 of Chapter 1, some further work one could do is to investigate this

more geometrically. Any representation of the infinite braid group β∞ is equivalent to an

abelian-group-valued functor defined on the subcategory of B(R2) generated by the σi and

the ιn. It may be possible to find a geometric condition on such a representation such that

the corresponding functor can be extended to the “forgetful braids” πn+1 too, i.e. to the

whole category B(R2).

4.6 A “twisted stability from untwisted stability” principle

The notation continues as in the previous sections. Suppose we have a sequence of

spaces {· · · → Yn
sn−→ Yn+1 → · · · } and a twisted coefficient system T : C o B → Ab for this

sequence.

Note that we automatically have
(
n
k

)
-sheeted covering spaces Ỹ

(k)
n → Yn corresponding

to the subgroups Gk,n−k ≤ Gn = π1Yn. Since γn(Gk,n−k) ≤ Gk,n+1−k the map sn lifts to a

5For example, one could attempt to extend the Burau representations to B(R2) by sending πn+1 to
In−1 ⊕

(
c d
)

and sending ιn to In−1 ⊕
(
a
b

)
, for some Laurent polynomials a, b, c, d ∈ Z[t±1]. But then

applying the right-hand relation above with k = 1 yields the contradiction 0 = 1− t ∈ Z[t±1].
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map

s̃(k)
n : Ỹ (k)

n → Ỹ
(k)
n+1

of covering spaces, which on π1 is just the restriction of γn to Gk,n−k → Gk,n+1−k. Now,

the map ιn : T
(k)
n → T

(k)
n+1 is equivariant with respect to this, and is also a bijection (Lemma

4.3.7), so the local coefficient system T
(k)
n on Ỹ

(k)
n is the pullback along the map s̃

(k)
n of the

local coefficient system T
(k)
n+1 on Ỹ

(k)
n+1.

The following “twisted stability from untwisted stability principle” is the main technical

result of this chapter, and is proved in §4.8.

Theorem 4.6.1 (Twisted stability from untwisted stability) Let T have (finite) degree d.

Suppose that for all n ≥ 0 there is a map of fibrations

F kn F kn+1

Ỹ
(k)
n Ỹ

(k)
n+1

Bk

tkn

s̃
(k)
n (4.6.1)

together with a local coefficient system on the base Bk from which both T
(k)
n and T

(k)
n+1 are

pulled back. Then if integral (untwisted) homological stability holds for {F kn} w.r.t. n for

all k, then T -twisted homological stability holds for {Yn} w.r.t. n. Quantitatively : if

(tkn)∗ : H∗(F
k
n ;Z)→ H∗(F

k
n+1;Z)

is an isomorphism in the range ∗ ≤ φ(n, k) for some function φ, then

(sn; ιn)∗ : H∗(Yn;Tn)→ H∗(Yn+1;Tn+1)

is an isomorphism in the range ∗ ≤ min{φ(n, k) | 0 ≤ k ≤ d}.

4.6.1 Deduction of twisted homological stability for configuration spaces

We now use this to prove the Main Theorem (except the split-injectivity statement,

which is proved separately in §4.9).

Proof of the Main Theorem, Part I. Let {Yn} be the sequence of labelled configuration spaces

Cn(M,X), with Yn
sn−→ Yn+1 the stabilisation map defined in §4.1. Let x0 be a basepoint

for the label-space X, and let T : B(M,X) → Ab be a twisted coefficient system of degree

d.

First we will describe the covering spaces Ỹ
(k)
n in this setup. The group Gn is the

group of braids in M × [0, 1], with strands labelled by π1X, going from the configuration
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{(q1, 0), . . . , (qn, 0)} in M × {0} to the configuration {(q1, 1), . . . , (qn, 1)} in M × {1}. Each

such braid induces a permutation of the set {q1, . . . , qn}, and the subgroup Gk,n−k con-

sists of those braids whose induced permutation preserves the partition {q1, . . . , qn−k} t
{qn−k+1, . . . , qn}. Hence the covering space Ỹ

(k)
n corresponding to this subgroup can be

thought of as the space C(k,n−k)(M,X) of configurations of n unordered, distinct points in

M , with labels in X, and with k of the points coloured red and n−k of them coloured green.

Take its basepoint to be the labelled configuration {(q1, x0), . . . , (qn, x0)} with q1, . . . , qn−k

coloured green and qn−k+1, . . . , qn coloured red. Analogously to the stabilisation map

sn : Cn(M,X) → Cn+1(M,X), the map s̃
(k)
n : C(k,n−k)(M,X) → C(k,n+1−k)(M,X) adds

a new green point labelled by x0 near the boundary-component B.

Now we build a map of fibrations as in (4.6.1) together with appropriate coefficients

on the base space. Take Bk = Yk = Ck(M,X), and define Ỹ
(k)
n = C(k,n−k)(M,X) →

Ck(M,X) = Bk to be the map that forgets the green points. This is a fibration (in fact

a fibre bundle) with fibre F kn = Cn−k(Mr{k points}, X), and the map tkn : F kn → F kn+1 is

exactly the stabilisation map s for the punctured manifold Mr{k points}.
Give Bk = Yk the local coefficient system T

(k)
k . Now, the map : Tn → Tk sends

T
(k)
n into T

(k)
k and moreover restricts to a bijection T

(k)
n → T

(k)
k . (See Notation 4.3.5 for an

explanation of this notation; the claims follow from the duals of Remark 4.3.6 and Lemma

4.3.7.) It is also equivariant w.r.t. π1 of the map C(k,n−k)(M,X)→ Ck(M,X) which forgets

the green points. Hence the coefficients T
(k)
n on C(k,n−k)(M,X) are pulled back along this

map from the coefficients T
(k)
k on Bk = Ck(M,X).

Now we can apply Theorem 4.6.1, using homological stability for configuration spaces

with untwisted coefficients as input. The map

(tkn)∗ : H∗(Cn−k(Mr{k points}, X);Z)→ H∗(Cn+1−k(Mr{k points}, X);Z)

is an isomorphism in the range ∗ ≤ n−k
2 by [RW11] (see also [Seg73,McD75,Seg79]). Hence

Theorem 4.6.1 implies that

(sn; ιn)∗ : H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1)

is an isomorphism for ∗ ≤ n−d
2 .

Remark 4.6.2 One can easily see from the proof of Theorem 4.6.1 in §4.8 below that if

the twisted coefficient system T : C o B → Ab takes values in the subcategory VectQ of Ab,

then the hypothesis of Theorem 4.6.1 may be weakened to rational (untwisted) homological

stability for {F kn} for each k. Now, the homological stability slope for Cn(M,X) is 1 (rather

than just 1
2) when taking rational coefficients (as long as M is either at least 3-dimensional

[RW11, Theorem B] or orientable [Chu12, Corollary 3]). Hence, modifying the last step of

the above proof, we see that for rational twisted coefficient systems T : B(M,X) → VectQ

we have twisted homological stability for Cn(M,X) in the range ∗ ≤ n− d.
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4.7 A twisted Serre spectral sequence

To prove the “twisted stability from untwisted stability” principle we will need a gen-

eralisation of the usual Serre spectral sequence, allowing the base space to be equipped

with a local coefficient system. It is a special case of (the homology version of) an equiv-

ariant generalisation of the Serre spectral sequence constructed by Moerdijk and Svensson

[MS93].6 We will start by describing an alternative basepoint-independent viewpoint on

(co)homology with local coefficients (in the non-equivariant setting).

Definition 4.7.1 For a space Y let ∆(Y ) be the category whose objects are all singular

simplices in Y , and whose morphisms are simplicial operations (generated by face and

degeneracy maps). Denote the fundamental groupoid of Y by π(Y ), and the standard n-

simplex by ∆n. There is a canonical functor vY : ∆(Y ) → π(Y ) which takes a singular

simplex ∆n → Y to the image of its barycentre bn. A morphism ∆k α−→ ∆n → Y is taken

to the image of the straight-line path in ∆n from α(bk) to bn.

A covariant (resp. contravariant) functor ∆(Y )→ Ab is a coefficient system for homology

(resp. cohomology); it is a local coefficient system if it factors up to natural isomorphism

through vY .

The functor vY : ∆(Y )→ π(Y ) encapsulates most of the combinatorics needed to define

(co)homology with local coefficients. The definition makes sense for any (not necessarily

local) coefficient system, but it is only homotopy-invariant for local coefficient systems.

Definition 4.7.2 (Homology) Given a space Y and coefficient system M : ∆(Y )→ Ab, the

homology H∗(Y ;M) is the homology of the chain complex C∗(∆(Y );M):

∂n+1−−−−−−→
⊕

σ∈Nn∆(Y )

M(σ0)
∂n−−−−−→

⊕
τ∈Nn−1∆(Y )

M(τ0)
∂n−1−−−−−−−→

where N•∆(Y ) denotes the nerve of the category ∆(Y ), and for a chain of singular simplices

σ = (∆k0 → ∆k1 → · · · → ∆kn → Y ) of Nn∆(Y ), the 0th one ∆k0 → Y is denoted by σ0.

The map ∂n is the alternating sum of maps ∂in which are defined using the ith face map of

N•∆(Y ).7

Definition 4.7.3 (Cohomology) Given a space Y and coefficient system M : ∆(Y )op → Ab,

the cohomology H∗(Y ;M) is the homology of the cochain complex C∗(∆(Y );M):

δn−1−−−−−−→
∏

σ∈Nn∆(Y )

M(σ0)
δn−−−−−→

∏
τ∈Nn+1∆(Y )

M(τ0)
δn+1−−−−−−→

6See [Kro10] for an extension of this, and [Hon98] for a more geometric construction under some general
topological conditions on the spaces involved.

7For σ ∈ Nn∆(Y ), let τ be its ith face. There is a canonical map σ0 → τ0 (which is the identity except
when i = 0) inducing a map M(σ0)→M(τ0). The direct sum of these maps is ∂in.
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where the map δn is the alternating sum of maps δin which are defined using the ith face

map of N•∆(Y ).8

This reduces to ordinary (untwisted) homology and cohomology when M is constant.

(Although it does not reduce to the usual singular (co)chain complex, one can show that it

does compute the same homology as it; cf. [MS93, Theorem 2.2].)

In [MS93] the above is generalised to the equivariant setting: they define vY : ∆G(Y )→
πG(Y ) for a G-space Y , and equivariant twisted cohomology H∗G(Y ;M) for any coefficient

system ∆G(Y )op → Ab. Again a coefficient system is local if it factors up to natural iso-

morphism through vY . Cohomology with respect to local coefficient systems is G-homotopy

invariant [MS93, Theorem 2.3]. Their main theorem is the existence of a twisted equivariant

Serre spectral sequence:

Theorem 4.7.4 ([MS93, Theorem 3.2]) For any G-fibration f : Y → X (i.e. Y H → XH

is a fibration for all H ≤ G) and any local coefficient system M on Y , there is a local

coefficient system Hq
G(f ;M) on X for each q ≥ 0 and a spectral sequence

Ep,q2 = Hp
G

(
X;Hq

G(f ;M)
)
⇒ H∗G(Y ;M) (4.7.1)

with the usual cohomological grading.

Remark 4.7.5 We will describe the local coefficient systemHq(f ;M) in the non-equivariant

case. As a functor ∆(X)op → Ab it does the following. A singular simplex ∆k σ−→ X is

taken to the cohomology Hq(σ∗(Y );M), where σ∗(Y ) is the pullback of σ and f , and we

denote any pullback of the coefficients M also by M . A morphism ∆l α−→ ∆k σ−→ X induces

a map of pullbacks (σ ◦ α)∗(Y )→ σ∗(Y ) and hence a map on cohomology.

It is a local coefficient system since it factors up to natural isomorphism through vX by

the following functor π(X)op → Ab. A point x ∈ X is taken to Hq(f−1(x);M). Given a

homotopy class [I
p−→ X] of paths from x to y, there are induced maps of pullbacks f−1(x) ↪→

p∗(Y )←↩ f−1(y). These induce maps on cohomology, and since they are isomorphisms9 the

first one can be inverted to get a composite map Hq(f−1(x);M) → Hq(f−1(y);M). One

can check that this map is independent of the choice of representing path p.

In [MS93] the authors point out that there is an analogous version of the spectral

sequence (4.7.1) for homology. We will only need the non-equivariant (but twisted) version,

which is:10

8Given an element {gσ ∈ M(σ0) | σ ∈ Nn∆(Y )}, we need to choose an element of M(τ0) for each
τ ∈ Nn+1∆(Y ). Let σ be the ith face of τ , which has a canonical map τ0 → σ0 (which is the identity except
when i = 0). Apply M to get a map M(σ0)→M(τ0) and take the image of gσ under this map.

9The inclusion {0} ↪→ [0, 1] is an acyclic cofibration, so its pullback along the fibration f is again an
acyclic cofibration, in particular a weak equivalence.

10This was also stated (referencing [MS93]) as Theorem 4.1 of [Han09b].
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Theorem 4.7.6 For any fibration f : Y → X and any local coefficient system M on Y ,

there is a local coefficient system Hq(f ;M) on X for each q ≥ 0 and a spectral sequence

E2
p,q = Hp

(
X;Hq(f ;M)

)
⇒ H∗(Y ;M) (4.7.2)

with the usual homological grading.

The description of the local coefficient systems Hq(f ;M) is the same as above, replacing

cohomology with homology. When the local coefficient system M on Y is pulled back from

the base X, they are built out of the untwisted homology of each fibre.

We now return to the viewpoint of local coefficient systems as an action of the funda-

mental group on an abelian group.

Corollary 4.7.7 For any fibration f : Y → X with fibre F over the basepoint x0 ∈ X, and

any π1(X)-module M , there is a spectral sequence

E2
p,q = Hp

(
X;Hq(F ;M)

)
⇒ H∗(Y ;M) (4.7.3)

with the usual homological grading. Here the action of π1(Y ) on M is pulled back from that

of π1(X) via f∗ and the action of π1(F ) on M is trivial.

This is natural for maps of fibrations over a fixed base in the obvious way:

Proposition 4.7.8 Suppose we have a map of fibrations over a fixed base

Y Y ′

X

and a π1(X)-module M ; denote the fibres over the basepoint x0 ∈ X by F and F ′ respectively.

Then there is a map of spectral sequences (4.7.3) where:

• The map F → F ′ induces a map of π1(X)-modules Hq(F ;M) → Hq(F
′;M), which

therefore induces a map Hp(X;Hq(F ;M))→ Hp(X;Hq(F
′;M)). This is the map on

the E2 pages.

• The action of π1(Y ) on M is the pullback of the action of π1(Y ′) on M , so the map

Y → Y ′ induces a map H∗(Y ;M)→ H∗(Y
′;M). This is the map in the limit.

4.8 Proof the principle

We will now prove Theorem 4.6.1, using the twisted Serre spectral sequence of the

previous section and the following elementary fact, which is a covering space version of

what is usually known as Shapiro’s Lemma.
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Lemma 4.8.1 (Shapiro for covering spaces) Suppose we have a based space11 X, a subgroup

H of π1(X) and an H-module A. Let X̂ be the (based) covering space corresponding to H.

Then

H∗(X̂;A) ∼= H∗(X;Zπ1(X)⊗H A). (4.8.1)

Given a map of the above data—namely a (based) map f : X → X ′ such that f∗(H) ⊆ H ′

(so that there is a unique based lift f̂ : X̂ → X̂ ′) and a map φ : A→ A′ which is equivariant

w.r.t. f∗—the identification (4.8.1) is natural in the sense that

H∗(X;Zπ1(X)⊗H A) H∗(X
′;Zπ1(X ′)⊗H′ A′)

H∗(X̂;A) H∗(X̂
′;A′)∼= ∼=

(4.8.2)

commutes.

Proof. Denote the singular chain complex functor by S∗( ) and the universal cover of X

by X̃. Then we have an isomorphism of chain complexes

S∗(X̃)⊗H A −→ S∗(X̃)⊗π1(X) Zπ1(X)⊗H A

given by σ ⊗ a 7→ σ ⊗ [cx] ⊗ a, where cx is the constant loop at the basepoint x of X.

Taking homology gives the identification (4.8.1). Let f̃ denote the unique (based) lift of f

to X̃ → X̃ ′. The diagram (4.8.2) is induced by

S∗(X̃)⊗π1(X) Zπ1(X)⊗H A S∗(X̃
′)⊗π1(X′) Zπ1(X ′)⊗H′ A′

S∗(X̃)⊗H A S∗(X̃
′)⊗H′ A′

∼= ∼=

and one can check that both routes around the square send σ⊗a to f̃](σ)⊗ [cx′ ]⊗φ(a).

Proof of Theorem 4.6.1. We need to show that the map

H∗(Yn;Tn) −→ H∗(Yn+1;Tn+1) (4.8.3)

induced by sn and ιn is an isomorphism in the stated range. By the decomposition (4.3.1)

of Proposition 4.3.1, and the fact that T has degree d, this is the same as the map

d⊕
k=0

H∗(Yn;ZGn ⊗Gk,n−k T
(k)
n ) −→

d⊕
k=0

H∗(Yn+1;ZGn+1 ⊗Gk,n+1−k T
(k)
n+1) (4.8.4)

induced by sn, γn and ιn. By Shapiro’s Lemma for covering spaces (Lemma 4.8.1) this is

11Path-connected, locally path-connected and semilocally simply-connected.
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isomorphic to the map

d⊕
k=0

H∗(Ỹ
(k)
n ;T (k)

n ) −→
d⊕

k=0

H∗(Ỹ
(k)
n+1;T

(k)
n+1) (4.8.5)

induced by s̃
(k)
n and ιn. The map of fibrations (4.6.1) gives a map of twisted Serre spectral

sequences (Corollary 4.7.7 and Proposition 4.7.8):

E2
p,q = Hp(Bk;Hq(F

k
n ;A)) H∗(Ỹ

(k)
n ;T

(k)
n )

E2
p,q = Hp(Bk;Hq(F

k
n+1;A)) H∗(Ỹ

(k)
n+1;T

(k)
n+1)

⇒

⇒
(4.8.6)

where A is the local coefficient system on the base Bk which pulls back to T
(k)
n and T

(k)
n+1.

Note that it is a constant coefficient system once it has been pulled back to F kn and F kn+1.

The map on E2 pages is induced by the map tkn, and hence is an isomorphism for q ≤ φ(n, k)

(and all p ≥ 0) by the hypothesis of the theorem (and the universal coefficient theorem).

Hence by the Zeeman comparison theorem12 it is an isomorphism in the limit for ∗ ≤ φ(n, k).

Hence in the range ∗ ≤ min{φ(n, k) | 0 ≤ k ≤ d} each summand in (4.8.5) is an isomorphism,

so (4.8.3) is an isomorphism, as desired.

4.9 Split-injectivity

To prove the split-injectivity claim of the Main Theorem we will use the following lemma

which was used implicitly by Nakaoka in [Nak60] and later written down explicitly by Dold

in [Dol62]:

Lemma 4.9.1 ([Dol62, Lemma 2]) Given a sequence 0 → A1
φ1−→ A2

φ2−→ · · · of abelian

groups and homomorphisms, the following is sufficient to imply that each of the maps φi is

split-injective: There exist maps τk,n : An → Ak for 1 ≤ k ≤ n with τn,n = id such that

im(τk,n − τk,n+1 ◦ φn) ≤ im(φk−1). (4.9.1)

Let Cn(M,X) be the universal cover of the configuration space Cn(M,X). There is

a natural lift of the stabilisation map to a map sn : Cn(M,X) → Cn+1(M,X), which can

be described as follows. The elements of Cn(M,X) can be thought of as n-strand ‘braids’

in M × [0, 1], with strands labelled by the path-space PX, starting at the configuration

{(q1, 0), . . . , (qn, 0)} in M × {0} labelled by {x0, . . . , x0}, and ending at any labelled con-

figuration in M × {1}. The map sn pushes the braid in M × [0, 1] inwards, by the self-

12The required implication is contained in the proof of Theorem 1 of [Zee57], although stronger hypotheses
are stated there. An explicit statement of the comparison theorem which applies to our case is Theorem 1.2
of [Iva93]. It is also written in Remarque 1.8 of [CDG11].
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embedding e × id[0,1], and adds a trivial strand labelled by the constant path cx0 near the

boundary-component B of M .

Denote π1Cn(M,X) by Gn, and denote the singular chain complex of a space by S∗(−).

Then the map

(sn; ιn)∗ : H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1). (4.9.2)

is induced by the map of chain complexes

(sn)] ⊗ ιn : S∗(Cn(M,X))⊗Gn Tn −→ S∗(Cn+1(M,X))⊗Gn+1 Tn+1.

Proof of the Main Theorem, Part II. We want to prove that (4.9.2) is split-injective for all

∗ and n. By Dold’s Lemma 4.9.1, it is sufficient to construct chain maps

tk,n : S∗(Cn(M,X))⊗Gn Tn −→ S∗(Ck(M,X))⊗Gk Tk

for 1 ≤ k ≤ n such that tn,n = id and

tk,n ' tk,n+1 ◦ ((sn)] ⊗ ιn)− ((sk−1)] ⊗ ιk−1) ◦ tk−1,n. (4.9.3)

Let S ⊆ n. There is a unique partially-defined injection {1, . . . , n} 99K {1, . . . , |S|} which

is order-preserving and is defined precisely on S. The chosen isotopy id ' e : M ↪→M gives

canonical paths between qj and qj+1 for each j; using these one can lift this partial injection

to a partial braid from {(q1, x0), . . . , (qn, x0)} to {(q1, x0), . . . , (q|S|, x0)}. This is a morphism

bS,n in B(M,X) from xn0 to x
|S|
0 , so applying T gives a map πS,n : Tn → T|S|.

We can also define a map pS,n : Cn(M,X)→ C |S|(M,X) as follows. Given an n-strand

braid in Cn(M,X), forget the strands which start at (qi, 0) for i ∈ nr S, and concatenate

the resulting partial braid with the reverse of bS,n to get an |S|-strand braid in C |S|(M,X).

Directly from these definitions one can check that:

(a) If 1 /∈ S then πS,n+1 ◦ ιn = π(S−1),n and pS,n+1 ◦ sn ' p(S−1),n.

(b) If 1 ∈ S then πS,n+1 ◦ ιn = ι|S|−1 ◦ π(Sr{1}−1),n and pS,n+1 ◦ sn = s|S|−1 ◦ p(Sr{1}−1),n.

(The notation (S − 1) means {s− 1 | s ∈ S}.) We now define tk,n to be the following chain

map:

σ ⊗ x 7→
∑

S⊆n, |S|=k

(pS,n)](σ)⊗ πS,n(x).

Clearly tn,n = id, so we just need to check the identity (4.9.3). The right-hand side of this
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is:

σ ⊗ x 7→
∑

S⊆n+1, |S|=k

(
(pS,n+1)] ◦ (sn)](σ)

)
⊗
(
πS,n+1 ◦ ιn(x)

)
−

∑
R⊆n, |R|=k−1

(
(sk−1)] ◦ (pR,n)](σ)

)
⊗
(
ιk−1 ◦ πR,n(x)

)
.

(4.9.4)

Using (a) and (b) above, we see that the top line of this decomposition is chain-homotopic

to the following:

σ ⊗ x 7→
∑

S⊆n+1, |S|=k, 1∈S

(
(sk−1)] ◦ (p(Sr{1}−1),n)](σ)

)
⊗
(
ιk−1 ◦ π(Sr{1}−1),n(x)

)
+

∑
S⊆n+1, |S|=k, 1/∈S

(p(S−1),n)](σ)⊗ π(S−1),n(x).
(4.9.5)

The first line of (4.9.5) cancels with the second line of (4.9.4), leaving just the second line

of (4.9.5), which is precisely tk,n, as required.

Remark 4.9.2 We did not at any point use the fact that our twisted coefficient system T is

finite-degree, so the split-injectivity claim in the Main Theorem also holds for infinite-degree

twisted coefficient systems.

4.10 A connection with representation stability13

In this last section we briefly describe a link between twisted homological stability for

unordered configuration spaces (for a particular twisted coefficient system) and represen-

tation stability for the cohomology of ordered configuration spaces. For simplicity we will

take X = pt in this section.

We have stability for the sequence H∗
(
Cn(M);Z[Σn/Σn−k]

)
in the range n ≥ 2∗+ k by

the Main Theorem and Example 4.5.4. We can equally well replace Z by Q in this example,

so we also have stability for the sequence

H∗
(
Cn(M);Q[Σn/Σn−k]

)
. (4.10.1)

Aside This special case of twisted homological stability can in fact be deduced from un-

twisted homological stability fairly quickly, as follows. Let C
(k)
n (M) be the space of n disjoint

points in M , equipped with an ordering of k of them. Then there is a covering space map

C
(k)
n (M) → Cn(M) with fibre Σn/Σn−k, so H∗

(
Cn(M);Q[Σn/Σn−k]

) ∼= H∗
(
C

(k)
n (M);Q

)
.

There is also a fibration sequence Cn−k(M r {k points}) → C
(k)
n (M) → C̃k(M), and a

map of such fibration sequences over C̃k(M) given by stabilisation maps. Homological sta-

bility holds for the map of fibres, so, applying the Zeeman Comparison Theorem to the

13The observations in this section grew out of several conversations with Oscar Randal-Williams.
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corresponding map of Serre spectral sequences, it also holds for the map of total spaces.

The Künneth spectral sequence (for chain complexes of QΣn-modules) for the rational

singular chain complex of C̃n(M) and the module Q[Σn/Σn−k] concentrated in degree 0 is

E2
p,q = TorqQΣn

(
Hp(C̃n(M);Q),Q[Σn/Σn−k]

)
⇒ H∗

(
Cn(M);Q[Σn/Σn−k]

)
.

Moreover TorqQπ = 0 for q ≥ 1 for finite groups π, so this spectral sequence degenerates to

an isomorphism H∗
(
C̃n(M);Q

)
⊗Σn Q[Σn/Σn−k] ∼= H∗

(
Cn(M);Q[Σn/Σn−k]

)
, so we have

stability for the sequence

H∗
(
C̃n(M);Q

)
⊗Σn Q[Σn/Σn−k]. (4.10.2)

By Schur’s Lemma this has dimension∑
λ

an,k(λ).bn(λ)

where λ runs over all Young diagrams with n boxes, an,k(λ) is the number of copies of the

corresponding irreducible Σn-representation V (λ) in Q[Σn/Σn−k] and bn(λ) is the number

of copies of the dual irreducible Σn-representation V (λ)∗ in H∗
(
C̃n(M);Q

)
. Note that the

latter is the same as the number of copies of V (λ) in the cohomology H∗
(
C̃n(M);Q

)
.

Definition 4.10.1 For a Young diagram λ, denote by λ+ the Young diagram with one

extra box added to the top row. A stable Young diagram is a Young diagram with any

number of boxes, up to the equivalence relation generated by identifying λ with λ+.

From now on λ (and µ) will always denote a stable Young diagram, and it will be clear

from the context which representative (i.e. number of boxes) is meant.

Remark 4.10.2 Note that Q[Σn/Σn−k] = IndΣn
Σn−k

(Q), so by the branching rule for induced

modules we have that an,k(λ) is the number of ordered ways of adding k boxes to the Young

diagram with n−k boxes to obtain λ. From this description we can see that the

sequence an,k(λ) is monotone non-decreasing (in n) and is constant once n ≥ 2k.

Definition 4.10.3 Multiplicity stability for H∗
(
C̃n(M);Q

)
, in the language of representa-

tion stability (see [CF10]), is the property that each sequence bn(λ) is eventually constant

as n→∞.

Now assume that each sequence bn(λ) is monotone non-decreasing. Using stability for

(4.10.2), and this assumption, we can show that multiplicity stability holds forH∗
(
C̃n(M);Q

)
,

as follows. For any stable Young diagram µ, the irreducible V (µ) appears in Q[Σn/Σn−k]

for sufficiently large k, by the branching rule mentioned above. Fix such a k and let n ≥ k.
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By stability of the sequence (4.10.2) we have that for some N ,∑
λ

an,k(λ).bn(λ) is constant for n ≥ N.

Since each summand an,k(λ).bn(λ) is monotone non-decreasing and an,k(µ) is positive, the

sequence bn(µ) must be constant for n ≥ N .

Remark 4.10.4 The same argument as for split-injectivity in the last section shows that

there is a split-injection

H∗
(
C̃n(M);Q

)
⊕Σn V (λ) ↪→ H∗

(
C̃n+1(M);Q

)
⊕Σn V (λ). (4.10.3)

The dimension of the left-hand side is bn(λ); call the dimension of the right-hand side

cn+1(λ). So bn(λ) is the number of copies of V (λ)∗ in H∗
(
C̃n(M);Q

)
, whereas cn(λ) is the

number of copies of V (λ)∗ in the restricted module ResΣn
Σn−1

H∗
(
C̃n(M);Q

)
.

However, this does not help in showing that bn(λ) is non-decreasing, since in general

the inequality cn+1(λ) ≤ bn+1(λ) does not hold. For example, taking M = R2, n = 3 and

∗ = 2 we have

H2

(
C̃4(R2);Q

)
= V ( )2 ⊕ V ( ) ⊕ V ( )

as a QΣ4-module (this is taken from the example on p.5 of [CF10]). Hence by the branching

rule for restricted modules,

H2

(
C̃4(R2);Q

)
= V ( )4 ⊕ V ( )2 ⊕ V ( )

as a QΣ3-module. So for λ = we have a counterexample c4(λ) = 4 � 2 = b4(λ).
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Chapter 5. Homological stability for configuration spaces of submanifolds

5.1 Introduction

5.1.1 Recollections

Fix a smooth1 manifold M which is the interior of a connected manifold with non-

empty boundary M of dimension at least 2. Fix a path-connected space X. Then the

n-point unordered configuration space on M with labels in X was defined in §1.1 to be

Cn(M,X) :=
{

(p1, . . . , pn) ∈Mn
∣∣ pi 6= pj for i 6= j

}
×Σn X

n.

This can be thought of as the space of n particles floating in M , with internal parameters

taking values in X, topologised so that they cannot collide. The configuration spaces

{Cn(M,X)}∞n=1 enjoy the property of homological stability :

Theorem 5.1.1 ([RW11], see also [Seg73,McD75,Seg79]) In the stable range n ≥ 2∗,

H∗(Cn(M,X);Z) ∼= H∗(Cn+1(M,X);Z). (5.1.1)

There is an explicit map Cn(M,X)→ Cn+1(M,X) given by pushing a new particle into

M from a chosen boundary-component of M , and the isomorphism (5.1.1) is induced by

this map. Hence in the stable range the homology of the configuration space Cn(M,X)

is the same as the homology of the limiting space C∞(M,X) = colimn→∞(Cn(M,X)).

Moreover the limiting space can be identified, up to homology, with a certain section space

(see [Seg73,McD75]).

Change of notation. As mentioned in the Introduction, for the remainder of this chapter

there is a change of notation: we will denote unordered configuration spaces by Σ (instead

of C), ordered configuration spaces by F (instead of C̃) and oriented configuration spaces

by A (instead of C+).

5.1.2 Results

The aim of this chapter is to generalise Theorem 5.1.1 to “spaces of configurations of

submanifolds” under suitable conditions. First we need to define precisely what we mean

by a space of configurations of submanifolds.

Definition 5.1.2 Let M be the interior of a connected manifold with non-empty boundary

M of dimension d ≥ 2, and let P be a closed, connected submanifold of the boundary ∂M ,

contained in some coordinate neighbourhood U ∼= Rd−1 of ∂M . Denote the inclusion by

ι : P ↪→ ∂M .

We say that two embeddings P ⇒M are unlinked if there exist two disjoint coordinate

neighbourhoods of M , one containing the image of each embedding. So in particular both

1Manifolds will always be assumed to be smooth, i.e. C∞, without further comment.
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embeddings must have image contained in some coordinate neighbourhood of M . Let

EPn (M) :=

{
(ψ1, . . . , ψn) ∈ Emb(

∐
nP,M)

∣∣∣∣ each ψi is isotopic to ι : P ↪→M
the embeddings ψi are pairwise unlinked

}
.

Definition 5.1.3 Fixing M and P as above, we say that an element g ∈ Diff(P ) is realisable

by isotopy if the embedding ι ◦ g is isotopic to ι through embeddings P ↪→M . A subgroup

G ≤ Diff(P ) is realisable by isotopies if every g ∈ G is realisable by isotopy.

Under certain codimension conditions this condition on G is automatic:

Proposition 5.1.4 (see [Sko08, Theorem 2.8]) Let dim(M) = d and dim(P ) = k. Each of

the following conditions implies that any two embeddings P ↪→ Rd are isotopic, so the whole

diffeomorphism group Diff(P ) is realisable by isotopies for any embedding ι : P ↪→ ∂M .

• k ≥ 2 and d ≥ 2k + 1,

• P is a homology sphere and d ≥ 3
2k + 2,

• hconn(P ) ≥ c for some c ≤ 1
2k − 1 and d ≥ 2k − c+ 1,

where “hconn(P ) ≥ c” means that H̃i(P ;Z) = 0 for all i ≤ c. The last condition subsumes

the first two.

Definition 5.1.5 Let G ≤ Diff(P ) be a subgroup which is realisable by isotopies, and let

X be a path-connected space. Then the subgroup G oΣn of Diff(P ) oΣn = Diff(
∐
n P ) acts

on EPn (M) by precomposition, and on Xn by projecting G o Σn � Σn and permuting the

copies of X, so we can define

ΣP
n (M,X|G) := EPn (M)×GoΣn Xn.

An element of ΣP
n (M,X|G) is therefore a collection of n (pairwise unlinked) submanifolds

of M , each homeomorphic to P , labelled by elements of X. Each submanifold is equipped

with a parametrisation up to the action of G, and is required to be isotopic to ι : P ↪→
M . (Note that this last condition is well-defined: the submanifold is equipped with a G-

orbit of parametrisations, and since G is realisable by isotopies, either all or none of the

parametrisations in the orbit is isotopic to ι.) A typical element will be denoted by

{[ψ1], . . . , [ψn];x1, . . . , xn}, (5.1.2)

where [ψj ] is the orbit of ψj ∈ EPn (M) under the action of G and xj ∈ X. More precisely an

element ought to be written {([ψ1], x1), . . . , ([ψj ], xj)}, but (5.1.2) is slightly more readable.

We can of course define configuration spaces in which, as well as being parametrised up

to G, the n copies of P are also ordered up to the action of some fixed subgroup Γn ≤ Σn.

In particular for the trivial subgroup, we define

FPn (M,X|G) := EPn (M)×Gn Xn.
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Notation 5.1.6 We will omit the X if it is just a point, and the G if it is the full

group Diff(P ). So the spaces ΣP
n (M |G) consist of unlabelled configurations and the spaces

ΣP
n (M,X) consist of configurations of unparametrised submanifolds. We denote the con-

figuration spaces ΣP
n (M,X|∗) of parametrised submanifolds by Σ̂P

n (M,X), and when P is

orientable we denote the configuration spaces of oriented submanifolds ΣP
n (M,X|Diff+(P ))

by Σ̊P
n (M,X).

In particular, F pt
n (M) is the classical ordered configuration space of points in M and

Σpt
n (M) is the corresponding unordered configuration space.

Remark 5.1.7 Note that EPn (M) is clearly path-connected, and hence so is ΣP
n (M,X|G).

We would not have this if we had required the weaker condition “each ψi is isotopic to

ι ◦ g : P ↪→ M for some g ∈ Diff(P )” in the definition of EPn (M) in Definition 5.1.2. This

would have avoided having to worry about realisability by isotopies for G ≤ Diff(P ), but

path-connectivity is crucial to get the inductive proof of homological stability going, so this

really is a necessary consideration.

There is a ‘stabilisation’ map ΣP
n (M,X|G) → ΣP

n+1(M,X|G), which we will define

precisely in §5.2. Intuitively one adds a new copy of P to the configuration by pushing the

existing configuration away from the boundary of M to vacate some space for the new copy

of P .

Main Theorem Let M and P ⊆ ∂M be as in Definition 5.1.2, let X be a path-connected

space and G ≤ Diff(P ) be a finite or open subgroup. If dim(M) ≥ 2 dim(P ) + 3, then the

stabilisation map

ΣP
n (M,X|G) −→ ΣP

n+1(M,X|G) (5.1.3)

is an isomorphism on homology up to degree n−2
2 and a surjection up to degree n

2 .

The large codimension condition is used exactly once in the proof, and for particular

manifolds P can be avoided, for example for points and spheres:

Extension 5.1.8 Let M be as above and suppose that P is either a point or a ‘standardly ’

embedded sphere (ι : P = Sk ↪→ Rk+1 ⊆ Rd−1 ⊆ ∂M). Again let X be a path-connected

space and G ≤ Diff(P ) be a finite or open subgroup. If dim(M) − dim(P ) ≥ 3 and G is

realisable by isotopies,2 then the stabilisation map (5.1.3) is an isomorphism on homology

up to degree n−2
2 and a surjection up to degree n

2 .

Applying the results of the previous chapter we obtain a twisted version of homological

stability:

2This was automatic in the Main Theorem by the dimension assumption and Proposition 5.1.4, but not
under the weaker dimension assumption in the Extension.
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Corollary 5.1.9 Under the same conditions as the Main Theorem or Extension 5.1.8, if T

is a coefficient system for {ΣP
n (M,X|G)} of degree d, the stabilisation map (5.1.3) induces

isomorphisms

H∗(Σ
P
n (M,X|G);Tn) −→ H∗(Σ

P
n+1(M,X|G);Tn+1) (5.1.4)

in the range ∗ ≤ n−d−2
2 .

See §5.8 for precisely what such coefficient systems are, and a deduction of this corollary

from the Main Theorem of this chapter and Theorem 4.6.1 of Chapter 4.

Remark 5.1.10 If M and P ⊆ ∂M are as in Definition 5.1.2, X is a path-connected space,

and G ≤ Diff(P ) is realisable by isotopies (so that the definition of ΣP
n (M,X|G) makes

sense), then the stabilisation map (5.1.3) always induces a split-injection on homology in

every degree. This can be proved as for configurations of points (see the proof of Theorem

4.5 in [McD75]) by considering the maps ΣP
n (M,X|G) 99K ΣP

k (M,X|G), for 1 ≤ k ≤ n,

defined only after taking infinite symmetric products, which forget some of the copies of

P in the configuration. In §4.9 of Chapter 4 there is an extension of this argument to

twisted coefficient systems; this can equally well be extended to configuration spaces of

submanifolds, so the map (5.1.4) is also always split-injective.

Remark 5.1.11 Although we have not worked this out in detail, it seems very likely that

the methods of this chapter, modified by the ideas of Chapter 2, would prove homolog-

ical stability for ‘oriented’ (or, perhaps better terminology in this context, ‘alternating’)

configuration spaces of submanifolds. More precisely there is a stabilisation map

APn (M,X|G) −→ APn+1(M,X|G)

which induces isomorphisms on homology up to approximately3 degree n
3 . HereAPn (M,X|G)

means EPn (M)×GoAn Xn, analogously to Definition 5.1.5.

Remark 5.1.12 A natural next step is to look for a scanning result in this setting, trying

to identify the limiting space, as the number of submanifolds goes to infinity, with a more

accessible space, and from this explicitly compute the homology in the stable range. This

is something the author intends to investigate in the near future.

5.1.3 Discussion of the hypotheses of the Main Theorem and Extension

5.1.3.1 Open subgroups of Diff(P )

An obvious family of open subgroups of Diff(P ) for the Main Theorem is the following.

First note that Diff(P ) is locally path-connected (in fact it is locally contractible as it

is a Fréchet manifold), so its path-components are all clopen, and so the quotient space

3Give or take a small additive constant.
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π0Diff(P ) is discrete.4 Hence any subgroup H of the mapping class group π0Diff(P ) pulls

back along the quotient map q to an open subgroup G = q−1(H) ≤ Diff(P ). In particular

Diff0(P ) = q−1({e}) is open, and when P is orientable Diff+(P ) is open.

5.1.3.2 Realisability by isotopies

For Extension 5.1.8 we are interested in which subgroups of Diff(Sk) are realisable by

isotopies w.r.t. the embedding ι : Sk ↪→ Rk+1 ⊆ Rd−1 ⊆ ∂M . By Proposition 5.1.4 this

holds for the whole diffeomorphism group Diff(Sk) when dim(M) ≥ 3
2k + 2. Outside this

range checking realisability by isotopies is less easy.

Remark 5.1.13 Note that being realisable by isotopy is a locally constant property on

Diff(P ). In other words, if g, g′ ∈ Diff(P ) are in the same path-component, then g is

realisable by isotopy if and only if g′ is. Hence it is enough to check realisability by isotopy

for one representative of each element of the mapping class group π0Diff(P ).

Aside on mapping class groups of spheres. There is a decomposition of the diffeo-

morphism group Diff(Sk) ' O(k + 1)×Diff(Dk; ∂Dk), so on π0 we have

π0Diff(Sk) ∼= Z/2× π0Diff(Dk; ∂Dk), (5.1.5)

where the generator of the Z/2 summand corresponds to a reflection. In dimensions k =

1, 2, 3, the group π0Diff(Dk; ∂Dk) is trivial (for k = 2 see [Sma58] and [EE67]; for k = 3 see

[Cer68] and [Hat83]). In dimension k = 4 nothing is known. In dimensions k ≥ 5 there is a

homomorphism to the group of exotic (k + 1)-spheres

π0Diff(Dk; ∂Dk) −→ Θk+1

given by extending a diffeomorphism Dk → Dk fixing ∂Dk to a diffeomorphism Sk → Sk

and using it to glue together the boundaries of two copies of Dk+1 to obtain a (possibly

exotic) (k + 1)-sphere. This map is surjective by the h-cobordism theorem [Sma61] and

injective by the pseudoisotopy theorem [Cer70]. The groups Θk+1 are finite abelian by

[KM63], and are known for small k (see [Lev85]). For k = 5, 11 and 60, the group Θk+1 is

trivial, but it is not known to be trivial for any other k ≥ 5; for example Θ15 = Z/2⊕Z/8128.

It is therefore not in general easy to check realisability by isotopy for an element of each

mapping class when Proposition 5.1.4 does not hold. One simple case is the following:

Remark 5.1.14 When P = Sk embedded in Rk+1 ⊆ Rd−1 ⊆ ∂M , it is easy to see that

a reflection of Sk can be realised by an isotopy. Hence the preimage under Diff(Sk) →
4This is not a vacuous statement as we are thinking of π0Diff(P ) as the quotient space by the equivalence

relation of being in the same path-component, and as such it may a priori have a non-discrete topology. For
example π0Q = Q is not discrete.
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π0Diff(Sk) of the Z/2 summand in (5.1.5) is realisable by isotopies, and moreover if k =

1, 2, 3, 5, 11 or 60 then this is in fact the full diffeomorphism group Diff(Sk).

5.1.4 A conjecture

Conjecture 5.1.15 The codimension assumption dim(M)−dim(P ) ≥ 3 of Extension 5.1.8

can be reduced to dim(M)−dim(P ) ≥ 2. In particular we conjecture that homological stabil-

ity (with stable range ∗ ≤ n
2 ) holds for the sequences of spaces {ΣS1

n (R3)}n and {Σ̊S1

n (R3)}n
consisting of n unlinked, unknotted circles in R3 which are unoriented and oriented respec-

tively.

Some “supporting evidence” for this is as follows. Firstly, when P is a point, homological

stability does hold in codimension 2, in other words for configurations of points on a surface.5

Secondly, there are stability results for the sequences of fundamental groups {π1ΣS1

n (R3)}
and {π1Σ̊S1

n (R3)}, as follows.

The group π1ΣS1

n (R3) is sometimes called the circle braid group, or the string motion

group, and is isomorphic to the group ΣAut(Fn) of symmetric automorphisms of the free

group Fn on n letters. Homological stability for this sequence of groups was proved by

Hatcher-Wahl [HW10, Corollary 1.2] in the range ∗ ≤ n−2
2 .6 We note that this is not

a special case of the conjecture, since ΣS1

n (R3) is not aspherical, which can be seen as

follows. In [BH10] it is proved that the inclusion of the subspace Rn of Euclidean circles7

into ΣS1

n (R3) is a homotopy equivalence. Now Rn is a 6n-dimensional manifold but its

fundamental group contains torsion (for example it contains a copy of the symmetric group

Σn), so it cannot be aspherical.

The group π1F̊
S1

n (R3) is the pure string motion group, consisting of ‘motions’ of n dis-

joint, unlinked, unknotted circles which return each circle to its original position and orien-

tation. It is isomorphic to the group PΣAut(Fn) of pure symmetric automorphisms of Fn. It

was recently proved by Wilson [Wil11] that for fixed ∗ the sequence of QΣn-representations

{H∗(PΣAut(Fn);Q)} is uniformly representation stable in the range ∗ ≤ n
4 . The notion

of uniform representation stability was introduced in [CF10] and in particular implies that

the sequence of invariant subgroups {H∗(PΣAut(Fn);Q)Σn} is stable (independent of n) in

this range. So by a transfer argument we have stability for

H∗(π1F̊
S1

n (R3);Q)Σn ∼= H∗(π1Σ̊S1

n (R3);Q)

5The methods of [RW11], while similar in many repects to the methods of this chapter, involve a more
ad hoc argument (special to the case of points) instead of the ‘second resolution’ of §5.6, which is exactly
where the codimension-3 assumption is needed.

6Rational homological stability in the larger range ∗ ≤ 2n
3

was proved independently by Zaremsky [Zar12],

and in fact something much stronger is true rationally: the reduced homology H̃∗(ΣAut(Fn);Q) is trivial
for all ∗ and n by [Wil11, Theorem 7.1]. (Zaremsky states that this latter fact also follows from [Gri11].)

7Those which are of the form {(x, y) | (x− x0)2 + (y− y0)2 = r2} ⊆ R2 ↪→ R3 for some embedding of R2

as an affine subspace of R3.
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(see for example [Bro82, Proposition III.10.4]), so rational homological stability holds for

the sequence of fundamental groups {π1Σ̊S1

n (R3)} in the range ∗ ≤ n
4 . (This was pointed out

as Corollary 8.1 of [Wil11].) Again, this is not a special case of the conjecture since Σ̊S1

n (R3)

is not aspherical (being a 2n-sheeted covering space of ΣS1

n (R3), which is not aspherical).

5.1.5 A related result

There is a recent result of Federico Cantero and Oscar Randal-Williams [CRW] which

is related to the result of this chapter. For a manifold N , with a choice δ of a collection

of b circles in its boundary (if it has one), they consider the space Eg,b(N, δ) of oriented

submanifolds Q of N homeomorphic to the compact, connected, orientable surface Σg,b of

genus g and with b boundary-components, and with ∂Q = δ. When b ≥ 1 stabilisation

maps can be defined by gluing a collar neighbourhood, containing an embedded surface,

onto ∂N . They prove that if N is simply-connected and at least 6-dimensional these spaces

satisfy homological stability: the homology H∗(Eg,b(N, δ)) is independent of g and b, once

g is sufficiently large (approximately g ≥ 3
2∗). Moreover they identify the homology of the

limiting space with that of a certain section space over N .

So in a nutshell (and condensing): by [CRW] we have homological stability for spaces

of submanifolds w.r.t. the number of handles, and by the results of this chapter we have

homological stability for spaces of submanifolds w.r.t. the number of components.

Conventions

For clarity, we will always use the following notation for manifolds, depending on whether

they are assumed to be compact and/or have boundary: M denotes manifolds without

boundary, N denotes manifolds possibly with boundary, P denotes compact manifolds with-

out boundary (closed manifolds) and Q denotes compact manifolds possibly with boundary.

We will always take mapping spaces C∞(M1,M2), Emb(P,M) etc. to be equipped with

the strong (Whitney) topology unless otherwise indicated.

Organisation of the chapter

We begin in §5.2 by collecting together some constructions, and giving a precise def-

inition of the stabilisation map. In §5.3 we recall and prove some auxiliary facts about

semi-simplicial spaces, transversality and fibre bundles: in particular we prove that certain

maps are fibre bundles. Since the spectral sequence arguments and the geometric argu-

ments are both somewhat intricate, we separate them out by proving in §5.4 a general,

axiomatic homological stability criterion, whose hypotheses we spend the next three sec-

tions checking for our specific case of configuration spaces of submanifolds. Checking the

hypotheses involves constructing two successive “resolutions” of the stabilisation map, and

then constructing factorisations up to homotopy of certain diagrams. This is done in §§5.5,

5.6 and 5.7 respectively. In the final section §5.8 we deduce twisted homological stability for
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configuration spaces of submanifolds from untwisted homological stability and the “twisted

stability from untwisted stability” principle §4.6 of Chapter 4.

5.2 Constructions

Recall that we have a connected manifold M which is the interior of a manifold M

with non-empty boundary, and we have a closed, connected submanifold P ⊆ ∂M . De-

note the inclusion P ↪→ ∂M by ι, and choose a coordinate neighbourhood B ∼= Rd+ =

{(x1, . . . , xd) | x1 ≥ 0} containing ι(P ).

We will need to make several constructions within B during the proof, and to precisely

define the stabilisation map; we collect them all here for convenience.

First, choose a smooth self-embedding f of [0, 2]× [0, 3]× Rd−2 such that

• im(f) is disjoint from [0, 1)× [1, 2]× Rd−2,

• f is the identity on a neighbourhood of (([0, 2]× {0, 3}) ∪ ({2} × [0, 3]))× Rd−2,

• f restricts to (x1, x2 . . .) 7→ (1
2x1 + 1, x2 . . .) on [0, 1]× [1, 2]× Rd−2.

0
0 1 2

1

2

3

×Rd−2 −→

0
0 1 2

1

2

3

×Rd−2

(5.2.1)

For s ∈ [0, 1] and t ∈ R define a smooth map fs,t : Rd+ → Rd+ by identifying [0, 2s]×[t, t+3]×
Rd−2 with [0, 2]× [0, 3]×Rd−2 in the obvious linear way, and then applying f on this subset

and the identity everywhere else. This gives a smooth map fs,t : M → M by identifying

B ∼= Rd+ and extending by the identity again. By an abuse of notation we let f = f1,0.

t

0 2s

t+ 3

(5.2.2)

See Figure 5.2.1 for a picture of the following constructions. Let V and W be the subneigh-

bourhoods [0, 2)×(0, 3)×Rd−2 and [0, 2)×(−3, 0)×Rd−2 of B respectively, and assume that

P is contained in {0} × (1, 2)×Rd−2 ⊆ ∂B ⊆ ∂M . We fix notation for certain embeddings

of P and P × [0, 1] by

ιs : p 7→ p+ (0, s, 0, . . .) : P ↪→ B (for s ∈ R)
φ0 : p 7→ p+ (0,−3, 0, . . .) : P ↪→ B
ψ0 : p 7→ p+ (1,−3, 0, . . .) : P ↪→ B
e0 : (p, t) 7→ p+ (t,−3, 0, . . .) : P × [0, 1] ↪→ B

Note that φ0 = ι−3 and ψ0 = f1,−3 ◦ φ0.

For a subset S ⊆ [0, 2) let WS be the preimage of the projection onto the first coordinate,
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so for example W0 is ∂W . Finally, choose a relatively compact8 tubular neighbourhood T

of ψ0(P ) as a submanifold of W1.

B

W

V
0

3

−3
1 2

ι(P ) f(ι(P ))

φ0(P ) ψ0(P )

e0(P × I) W

W0 W1

W[0,1]

(
)

T

Figure 5.2.1: Left: the coordinate neighbourhood B. Right: the subneighbourhood W in
close-up.

Definition 5.2.1 Given a path-connected space X with chosen basepoint x0, and a sub-

group G ≤ Diff(P ) which is realisable by isotopies (Definition 5.1.3), the stabilisation map

s : ΣP
n (M,X|G) −→ ΣP

n+1(M,X|G) is defined to be

{[ψ1], . . . , [ψn];x1, . . . , xn} 7→ {[f ◦ ψ1], . . . , [f ◦ ψn], [f ◦ ι];x1, . . . , xn, x0},

where [ψi] denotes the orbit of the embedding ψi under the action of G.

5.3 Preliminaries

5.3.1 Semi-simplicial spaces

Definition 5.3.1 A semi-simplicial space X• is a diagram of the form

· · · Y1 Y0

where the ‘face maps’ di : Yk → Yk−1 (1 ≤ i ≤ k + 1) satisfy the simplicial identities

didj = dj−1di whenever i < j. An augmented semi-simplicial space is a diagram of the form

· · · Y1 Y0 Y−1

where again the face maps satisfy the simplicial identities. This is a semi-simplicial space to-

gether with an ‘augmentation map’ Y0 → Y−1 which equalises the two face maps d1, d2 : Y1 ⇒

Y0. A map of (augmented) semi-simplicial spaces is a collection of maps, one for each level

k, which commutes with di for each i.

The (thick) geometric realisation of a ∆-space Y• is ‖Y•‖ =
(∐

k≥0 Yk ×∆k
)
/∼, where

∼ is the equivalence relation generated by the face relations (di(y), z) ∼ (y, δi(z)), where

8The closure T of T in W1 must be compact.
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δi is the inclusion of the ith face of ∆k+1. If Y• is an augmented ∆-space, there is a

unique composition of face maps Yk → Y−1 for each k. These induce a well-defined map

‖Y•‖ → Y−1, where ‖Y•‖ is the geometric realisation of Y• as a non-augmented semi-

simplicial space (i.e. forgetting Y−1).

Definition 5.3.2 For any space X we can define two semi-simplicial spaces Map([•+1], X)

and Inj([•+ 1], X). The space of i-simplices is all maps from [i+ 1] := {1, . . . , i+ 1} to X

in the first case, and is all injective maps in the second case. The face maps in both cases

are induced by the injective order-preserving maps [i]→ [i+ 1].

We will make use of the fact that these semi-simplicial spaces are highly-connected:

Lemma 5.3.3 The geometric realisation ‖Map([•+1], X)‖ is contractible, and the geomet-

ric realisation ‖Inj([•+ 1], X)‖ is (|X| − 2)-connected.

Proof. This is well-known, and can be proved using standard techniques. First, one can

construct a semi-simplicial nullhomotopy of the identity Map([•+1], X)→ Map([•+1], X).

Then one can show that the inclusion ‖Inj([• + 1], X)‖ ↪→ ‖Map([• + 1], X)‖ is highly-

connected by mapping spheres into the smaller space, extending the map to a disc mapping

into the larger space (since it’s contractible) and then inductively deforming this extension

to land in the smaller space. See [RW11, Proposition 3.2] for an alternative method of

proof.

We also recall here the relative Hurewicz Theorem, which we will use to deduce that

maps induce isomorphisms on homology in a range when they are highly-connected.

Fact 5.3.4 (Relative Hurewicz Theorem) If the homotopy fibre of a map f : X → Y is

k-connected, i.e. πi(hofib(f)) = 0 for all i ≤ k, then its homotopy cofibre is (k + 1)-

homology-connected, i.e. H̃i(hocofib(f)) = 0 for all i ≤ k + 1.

5.3.2 A fibre bundle criterion

There is a useful elementary criterion for checking that a map is a fibre bundle which

we will use several times. To give an example of its utility, it was used in [Pal60] to prove

that the restriction maps Emb(M ′,M) → Emb(P,M) and Diff(M) → Emb(P,M) are

fibre bundles, for manifolds P ⊆ M ′ ⊆ M with P compact. Since fibre bundles are Serre

fibrations, this implies the (parametrised) Isotopy Extension Theorem. It was also used by

[Lim64] to give a shorter proof of these facts, and by [Cer61] to generalise them to manifolds

with boundary (and even with corners of arbitrary codimension).

Definition 5.3.5 If G is a topological group and Y is a G-space, then we say that (the

action of G on) Y admits local sections if, for each y ∈ Y , there is a continuous map
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γy : Uy → G from an open neighbourhood Uy of y such that γy(u) · y = u holds for each

point u ∈ Uy. In other words, the map

G
−·y−−→ Y

has a section on some neighbourhood of y. This may be described as saying that the action

is “continuously locally transitive”.

Lemma 5.3.6 (Fibre bundle criterion; Theorem A of [Pal60]) Suppose that Y is a G-space

which admits local sections, and X is any G-space. Then any G-equivariant map f : X → Y

is a fibre bundle.

Proof. For any y ∈ Y take γy : Uy → G as above. Then the map

(x, u) 7→ γy(u) · x : f−1(y)× Uy −→ f−1(Uy)

is a local trivialisation of f over Uy, with inverse given by

x 7→
(
γy(f(x))−1 · x, f(x)

)
: f−1(Uy) −→ f−1(y)× Uy.

We will actually need a slight extension of this.

Lemma 5.3.7 (Second fibre bundle criterion) As before, let f : X → Y be any G-equivariant

map of G-spaces, and assume that the action of G on Y admits local sections. Suppose that

X also has an action of another group H, which commutes with the action of G and pre-

serves the fibres of f . Then for any H-space Z, there is a well-defined map

f̄ : [x, z] 7→ f(x) : X ×H Z → Y.

This map is also a fibre bundle.

Proof. For any y ∈ Y we have γy : Uy → G as in the definition of local sections. Since the

action of H preserves the fibres of f , we have f̄−1(S) = f−1(S)×H Z for any subset S ⊆ Y .

So to construct a local trivialisation we need to define a homeomorphism

(
f−1(y)×H Z

)
× Uy −→ f−1(Uy)×H Z

over Uy. We can define this to be

([x, z], u) 7→ [γy(u) · x, z],

which is well-defined since the actions of G and H on X commute, and which has inverse

given by

([γy(f(x))−1 · x, z], f(x)) ←[ [x, z].
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The main result of [Pal60] (and of [Lim64]), which implies the facts mentioned above, is

concerned with the action of Diffc,0(M) on embedding spaces. Here the ‘c’ means that the

diffeomorphisms are compactly-supported, and the ‘0’ means that they are homotopic to the

identity through compactly-supported diffeomorphisms, i.e. in the same path-component of

Diffc(M) as the identity.

Proposition 5.3.8 ([Pal60, Theorem B] and [Lim64]) If P ⊆ M are smooth manifolds

without boundary, with P compact, then the action of Diffc,0(M) on Emb(P,M) admits

local sections.

Remark 5.3.9 In [Cer61, §2.2.1], a similar result is proved for the action of a slightly

different group. One chooses an open neighbourhood U of P in M , and instead of the

action of Diffc,0(M) one considers the action of PDiff(M ;M rU) of diffeomorphisms of M

supported in U equipped with a chosen path (through diffeomorphisms supported in U) to

the identity. The result of [Cer61, §2.2.1] is also more general in that M and P may have

corners of arbitrary codimension.

We will want a result similar to 5.3.8 for manifolds with boundary. We could use the

result of Cerf mentioned above, but it is simpler to just note that the proof of [Lim64] goes

through in the specific case that we need.

Definition 5.3.10 Recall that a neat submanifold of a manifold with boundary N is a

submanifold N ′ ⊆ N such that ∂N ′ = N ′ ∩ ∂N and N ′ is covered by coordinate charts U

of N of the form

(U,U ∩N ′)
∼=−→ (Rn,Rd), (U,U ∩N ′)

∼=−→ (Rn+,Rd+)

in the interior and boundary respectively (where dim(N) = n, dim(N ′) = d and Rn+ is

the half-space {x1 ≥ 0} ⊆ Rn). A neat embedding N ′ ↪→ N is one whose image is a neat

submanifold.

Fact 5.3.11 The set of neat embeddings NEmb(N ′, N) is open in the space (with the strong

topology) of smooth maps C∞∂ (N ′, N) which take ∂N ′ into ∂N .

Proposition 5.3.12 Let N be an open subset of [0, 1]×Rn−1, and let Q be a compact man-

ifold with boundary with dim(Q) = q < n. Then the action of Diffc,0(N) on NEmb(Q,N)

admits local sections.

Proof, following [Lim64]. Given e ∈ NEmb(Q,N), choose a tubular neighbourhood T of

e(Q) in N , with projection p : T → e(Q) onto the zero-section, of finite radius r > 0 (i.e. each

fibre p−1(y) is isometric to an open (n− q)-ball of radius r). Such a tubular neighbourhood

exists since e(Q) ⊆ N is neat, by [Hir76, Theorem 6.3] for example. By compactness of Q

we may choose r sufficiently small that T ⊆ N . For ε ∈ (0, 1] we denote by εT the closed
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tubular subneighbourhood of T of radius εr, in other words εT = {y ∈ T | |y− p(y)| ≤ εr}.
Define an open neighbourhood of e in NEmb(Q,N) by

U ′e := {f ∈ NEmb(Q,N) | |f(x)− e(x)| < r
2},

and choose a smooth function λ : R → [0, 1] which is 1 on [0, r4 ] and 0 on [ r2 ,∞). We can

then define γe : U ′e → C∞c (N,N) by

γe(f) : N → N

y 7→
{
y + λ(|y − p(y)|).

(
fe−1p(y)− p(y)

)
for y ∈ 3

4T ,
y for y ∈ N r 3

4T .

Note that γe(f) does map y into N , since outside of 1
2T it is the identity and for y ∈ 1

2T ,

|γe(f)(y)− p(y)| ≤ |γe(f)(y)− y|+ |y − p(y)|

≤ |fe−1p(y)− p(y)|+ r
2

< r
2 + r

2

by definition of U ′e, so γe(f)(y) ∈ T ⊆ N . Hence γe(f) is a compactly-supported (supported

in 1
2T ) smooth map M → M . We also want γe to be continuous for the strong topol-

ogy on C∞c (N,N). Its definition involves (i) precomposition by a fixed map, (ii) pointwise

addition and multiplication, and (iii) extending a map from a compact codimension-zero

submanifold by the identity. These are all (strongly) continuous operations between map-

ping spaces—see [GG73, 3.6,3.8,3.9] for example. A slight subtlety is that precomposition

(unlike postcomposition) by a fixed map g is only continuous in the strong topology if g is

proper. But in our case we are precomposing with e−1 ◦ p : 3
4T → Q which is a proper map.

The subset Diffc,0(N) ⊆ C∞c (N,N) is open and contains γe(e) = id, so we can define

Ue := U ′e ∩ γ−1
e (Diffc,0(N)) to obtain a smaller open neighbourhood of e in NEmb(Q,N).

Restricted to Ue, the map γe is the required local section since for f ∈ Ue,

γe(f) ◦ e(x) = e(x) + λ(0).(f(x)− e(x)) = f(x).

5.3.3 Parametrising submanifolds

Given an unparametrised submanifold P of a manifold M , we will need to be able to

continuously extend a choice of parametrisation of P to a choice of parametrisation for all

submanifolds of type P in a neighbourhood of P . In other words we need the quotient map

Emb(P,M) → Emb(P,M)/Diff(P ) which forgets the parametrisation of an embedding to

admit local sections. In fact it does more than this: it is a principal Diff(P )-bundle. This

was proved for compact P by [BF81], and the compactness assumption was removed by

[Mic80a] (see also [Mic80b, §13] and [KM97, §44] for presentations of this result).
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We will also need to find local sections in the following more general situation. We have

a mod-G-parametrised submanifold P of M (in other words it is given a parametrisation

up to the action of a specified subgroup G ≤ Diff(P )), and we need to continuously extend

a choice of a compatible full parametrisation of P (an element of the orbit of its mod-G-

parametrisation) to a choice of a compatible full parametrisation for all mod-G-parametrised

submanifolds of type P in a neighbourhood of P . More concisely: we need the quotient

map Emb(P,M)→ Emb(P,M)/G to admit local sections. We prove this directly for closed

P , following the method of [BF81], assuming that G is either an open or finite subgroup of

Diff(P ).

Proposition 5.3.13 Suppose P and M are smooth manifolds without boundary, with P

closed and dim(P ) < dim(M). Then for any open subgroup G ≤ Diff(P ) the quotient map

Emb(P,M)
π−→ Emb(P,M)/G

has local sections (in the sense that for every point e in the domain there is a section se of

π defined on an open neighbourhood of π(e) which sends π(e) to e).

Proof, following [BF81]. Fix an element [e] ∈ Emb(P,M)/G with chosen representative

e : P ↪→M . Let T be a tubular neighbourhood of e(P ) ⊆M , with projection p : T → e(P )

onto the zero-section. Note that Emb(P, T ) is open in Emb(P,M). There is a continuous

map

e−1 ◦ p ◦ − : Emb(P, T ) −→ C∞(P, P )

(since post-composition by a fixed map is continuous by [GG73, Proposition 3.9]); define

EmbG(P, T ) to be the preimage of G ⊆ Diff(P ) ⊆ C∞(P, P ). Since Diff(P ) is open in

C∞(P, P ) and G was assumed to be open in Diff(P ), EmbG(P, T ) is open in Emb(P,M).

Another description of it is

EmbG(P, T ) = {s ◦ e ◦ φ | φ ∈ G, s section of T}. (5.3.1)

Define Ve := {s ◦ e | s section of T} ⊆ EmbG(P, T ) and note that

(i) π|Ve is injective, and

(ii) π−1(π(Ve)) = EmbG(P, T ), by the description (5.3.1).

So π(Ve) is an open neighbourhood of [e] in the quotient topology on Emb(P,M)/G and

there is a function

se := (π|Ve)−1 : π(Ve) −→ Emb(P,M)

such that π ◦ se = idπ(Ve). Hence it is sufficient to check that se is continuous; equivalently

that the restriction π|Ve : Ve → π(Ve) is an open map. Let U ⊆ Emb(P,M) be open. We

need to show that π(U ∩ Ve) is open in Emb(P,M)/G, i.e. that π−1(π(U ∩ Ve)) is open in
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Emb(P,M). To see this consider the continuous maps

(id, e−1 ◦ p ◦ −) : EmbG(P, T ) −→ EmbG(P, T )×G,

(f, g) 7→ f ◦ g−1 : EmbG(P, T )×G −→ EmbG(P, T ).

(The latter is continuous by [GG73, Proposition 3.9] since P is compact.) The image of the

composition lies in Ve ⊆ EmbG(P, T ), and the preimage of U ∩Ve is precisely π−1(π(U ∩Ve))
which is therefore open in EmbG(P, T ). But this is open in Emb(P,M), therefore so is

π−1(π(U ∩ Ve)).

Remark 5.3.14 In the above proof, for π(Ve) to be an open neighbourhood of [e], it is

sufficient for G to contain a neighbourhood of the identity in Diff(P ), but to check openness

of π|Ve we actually need G to be open in Diff(P ).

We also note that the above proposition is also true if G is a finite subgroup of Diff(P ):

Proposition 5.3.15 In the situation of Proposition 5.3.13 above, if G ≤ Diff(P ) is a finite,

rather than open, subgroup, then again the quotient map

Emb(P,M)
π−→ Emb(P,M)/G

has local sections.

Proof. Note that Emb(P,M) is Hausdorff and the action of Diff(P ) is free. For any free

action of a finite group on a Hausdorff space, the associated quotient map is a covering

map, and hence has local sections.

5.3.4 Transversality

Another input we will need is a certain transversality result. First we need to recall

some definitions.

Definition 5.3.16 Two smooth maps f1 : N1 → N and f2 : N2 → N are said to be trans-

verse if for all y ∈ f1(N1)∩ f2(N2) and for all preimages x1 ∈ (f1)−1(y) and x2 ∈ (f2)−1(y),

the images of the tangent spaces df1(Tx1N1) and df2(Tx2N2) span the tangent space TyN . In

particular we have a notion of transversality for submanifolds by considering their inclusion

maps.

A residual subset of a space X is one which can be written as a countable intersection

of dense open subsets of X. A space X is a Baire space if every residual subset is dense.

For example C∞(M1,M2) is a Baire space for any smooth manifolds without boundary

M1 and M2. Thom’s Transversality Theorem [Tho54] says that for any fixed submanifold

M3 ⊆M2, the subset

{f | f is transverse to the inclusion M3 ↪→M2} ⊆ C∞(M1,M2)
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is residual, and therefore dense. We will need a similar statement, but allowing the manifolds

to have boundary. For manifolds N1 and N2, possibly with boundary, let C∞∂ (N1, N2) be

the subspace of C∞(N1, N2) (with the strong topology) consisting of maps which take ∂N1

to ∂N2, and let C∞∂,pr(N1, N2) be the subspace of such maps which are also proper.9 A

transversality theorem for manifolds with boundary was proved in [Ish98] in quite a general

setting, using the language of jet bundles; the following is the special case which we will use

(mentioning only 0-jets, which are just graphs of maps):

Proposition 5.3.17 (Theorem 1.4 of [Ish98] with s = 1, r = 0) Suppose N1 and N2 are

smooth manifolds with boundary. Choose a countable set Aint of submanifolds of N1 × N2

and a countable set Abdy of submanifolds of (N1 × N2) r (∂N1 × N̊2). Then there is a

residual subset R ⊆ C∞∂,pr(N1, N2) such that for all maps f ∈ R,

graph of f |N̊1
: N̊1 −→ N1 ×N2

is transverse to every manifold in Aint, and

graph of f |∂N1 : ∂N1 −→ (N1 ×N2)r (∂N1 × N̊2)

is transverse to every manifold in Abdy.

Moreover, just as in the case without boundary:

Proposition 5.3.18 (Lemma 2.1 of [Ish98]) For any smooth manifolds with boundary N1

and N2, C∞∂,pr(N1, N2) is a Baire space.

The particular lemma that we will need can be quickly deduced from the above.

Lemma 5.3.19 Suppose N1 and N2 are smooth manifolds with boundary and W1, . . . ,Wj

are submanifolds of N2 with ∂Wi ⊆ ∂N2, and dim(N2) ≥ 1 + dim(N1) + maxi dim(Wi).

Then

{f | f(N1) is disjoint from each Wi} ⊆ C∞∂,pr(N1, N2)

is a dense subset.

Proof. Take Aint = {p−1(W1), . . . , p−1(Wj)} and Abdy = {q−1(W1), . . . , q−1(Wj)}, where

p, q are the projections N1 × N2 � N2 and (N1 × N2) r (∂N1 × N̊2) ↪→ N1 × N2 � N2

respectively. Let R ⊆ C∞∂,pr(N1, N2) be the residual subset from Proposition 5.3.17. By the

dimension assumption, “is transverse to” is equivalent to “has disjoint image from” in the

conclusion of Proposition 5.3.17, which therefore says precisely that each f ∈ R has image

disjoint from
⋃j
i=1Wi. So R is a dense (by Proposition 5.3.18) subset of C∞∂,pr(N1, N2),

contained in {f | f(N1) is disjoint from each Wi}.
9Note that C∞∂,pr(N1, N2) is open in C∞∂ (N1, N2), but C∞∂ (N1, N2) is not (in general) open in C∞(N1, N2).
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5.4 A criterion for homological stability

Convention All spaces mentioned in this section will be assumed to be path-connected.

In order to separate the geometric part of the proof from the somewhat technical ma-

nipulation of spectral sequences, we will axiomatise the latter in this section. The idea for

this method of proving homological stability, namely of finding ‘resolutions’ of the maps

one wishes to prove stability for, is from [RW10].

First we need to fix some terminology.

Definition 5.4.1 For a map f : X → Y , the number hconn(f) is the largest integer n

such that f∗ : H∗(X) → H∗(Y ) is an isomorphism for ∗ ≤ n − 1 and surjective for ∗ = n.

Equivalently it is the largest integer n such that the reduced homology of the mapping cone

of f is trivial up to degree n.

Definition 5.4.2 Any augmented semi-simplicial space X• = (· · ·X1 ⇒ X0 → X) has

an associated map ‖X•‖ → X, where ‖X•‖ is the thick geometric realisation of the unaug-

mented part ofX• (see Definition 5.3.1). The semi-simplicial spaceX• is called a c-resolution

(of X) if

hconn(‖X•‖ → X) ≥ bcc.

Definition 5.4.3 If we have a map of augmented semi-simplicial spaces g• : X• → Y•,

X Y

X0 Y0

X1 Y1

...
...

g

g0

g1

(5.4.1)

with X• a (c − 1)-resolution and Y• a c-resolution, then we say that the map g : X → Y

has c-resolution g• : X• → Y•. If additionally there exists for each i ≥ 0 a map of fibration

sequences of the form

X ′i Y ′i

Xi Yi

Bi

g′i

gi (5.4.2)

then we say that g : X → Y has c-resolution g• : X• → Y• approximated by {g′i : X ′i → Y ′i }.
Note that we do not require that either {X ′i} or {Y ′i } admits the structure of a semi-simplicial

space.
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The strategy for proving that a map g : X → Y is an isomorphism on homology in

a range will be to construct a map whose target is the mapping cone Cg, which is both

surjective and the zero-map on homology in the required range. The first few lemmas deal

with constructing a surjective map of mapping cones.

Lemma 5.4.4 If we have a map of fibration sequences over a common base space of the

form (5.4.2), then hconn(gi) ≥ hconn(g′i) and the induced map Cg′i → Cgi of mapping cones

is surjective on homology up to degree hconn(g′i) + 1.

Proof. There is a first quadrant spectral sequence with second page E2
s,t
∼= Hs(Bi; H̃t(Cg

′
i)),

rth differential of bidegree (−r, r − 1), and converging to H̃∗(Cgi). The map on homology

induced by the map of mapping cones Cg′i → Cgi can be identified with the edge homo-

morphism on the vertical axis, H̃t(Cg
′
i)
∼= E2

0,t � E∞0,t ↪→ H̃t(Cgi). The existence of this

spectral sequence is mentioned in Remark 2 on page 351 of [Swi75] and also as Exercise 5.6

of [McC01]; a construction of it, starting from the usual Serre spectral sequence, is given in

Proposition 2.4.1 of Chapter 2.

For t ≤ hconn(g′i) the entries E2
s,t on the second page are trivial, and so the spectral

sequence converges to zero in total degree ∗ ≤ hconn(g′i), proving the first claim. For

t ≤ hconn(g′i) + 1 there are no extension problems in total degree t, so E∞0,t ↪→ H̃t(Cgi) is

an isomorphism. Hence the edge homomorphism is surjective in this range.

Lemma 5.4.5 If we have a map g : X → Y with c-resolution g• : X• → Y•, then the induced

map Cg0 → Cg of mapping cones is surjective on homology up to degree

min
(
{c} ∪ {hconn(gs) + s | s ≥ 1}

)
.

Proof. There is a spectral sequence in the range {s ≥ −1, t ≥ 0} with first page E1
s,t
∼=

H̃t(Cgs), rth differential of bidegree (−r, r − 1), and converging to H̃∗+1 of the iterated

mapping cone (total homotopy cofibre) of the square

‖X•‖ ‖Y•‖

X Y

‖g•‖

g

Since g• is a c-resolution this is zero for ∗ + 1 ≤ c. The map on homology induced by

the map of mapping cones Cg0 → Cg can be identified with the first differential in the

leftmost column, H̃t(Cg) ∼= E1
−1,t ← E1

0,t
∼= H̃t(Cg0). See Proposition 2.4.3 of Chapter 2.

The construction is fairly standard, and is given in detail in Appendix 2.B of Chapter 2 for

example.

For t in the claimed range E∞−1,t = 0 since t ≤ c. Also, for r ≥ 2, E1
r−1,t+1−r =

H̃t+1−r(Cgr−1) = 0 since t + 1 − r ≤ hconn(gr−1). So the term E1
−1,t must be killed,
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but cannot be killed by the differentials on page two or later, since they have domain

Err−1,t+1−r = 0. Hence the first differential E1
−1,t ← E1

0,t must be surjective.

Putting together Lemmas 5.4.4 and 5.4.5 we immediately obtain:

Corollary 5.4.6 If g : X → Y has a c-resolution g• : X• → Y• approximated by {g′i : X ′i →
Y ′i }, then the induced map Cg′0 → Cg0 → Cg of mapping cones is surjective on homology

up to degree

min
(
{c, hconn(g′0) + 1} ∪ {hconn(g′s) + s | s ≥ 1}

)
.

One can iterate this by finding a further resolution and approximation of g′0:

Corollary 5.4.7 Suppose g : X → Y has c-resolution g• : X• → Y• approximated by

{g′i : X ′i → Y ′i }. Let h : Z → W be the map g′0 : X ′0 → Y ′0, and suppose it in turn

has b-resolution h : Z• → W• approximated by {h′i : Z ′i → W ′i}. Then the induced map

Ch′0 → Ch0 → Ch = Cg′0 → Cg0 → Cg of mapping cones is surjective on homology up to

degree

min
(
{c, b, hconn(g′0) + 1, hconn(h′0) + 1} ∪ {hconn(g′s) + s, hconn(h′s) + s | s ≥ 1}

)
.

Now that we have a method for constructing maps ? → Cg which are surjective on

homology, in a range that we can determine, we need a criterion for such a map to be the

zero-map on homology in a range.

Suppose we have a square of maps, commuting up to a chosen homotopy:

A B Ck

X Y Cg

k

g

H (5.4.3)

Note that the map Ck → Cg depends on the choice of homotopy H; we will call it CH

to reflect this. If there is a diagonal map B → X and homotopies filling both triangles

which compose to give H then this determines a nullhomotopy of CH, which is therefore

the zero-map on (reduced) homology in all degrees. However, it is often the case that the

above is true, except that the homotopies filling the two triangles do not compose to give

the desired homotopy H. It is therefore useful to have a criterion which in this situation

ensures that CH is at least the zero-map on homology in a range of degrees. First we show

that there is a natural decomposition of this map on homology.

Lemma 5.4.8 Suppose the diagram (5.4.3) admits a diagonal map B → X and homotopies

filling the two triangles which compose to give another homotopy H ′ filling the same square

as H. Then the map H̃∗(Ck)→ H̃∗(Cg) induced by H factorises as

H̃∗(Ck)→ H̃∗−1(A)→ H̃∗(S
1 ×A)→ H̃∗(Y )→ H̃∗(Cg).
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The first and last maps are from the long exact sequences for k and g respectively, the second

map is from the Künneth decomposition for H̃∗(S
1×A) and the third map is induced by the

map H∪H ′ : S1×A→ Y given by gluing together the two homotopies H,H ′ : [0, 1]×A→ Y .

Proof. See Lemma 2.6.2 (the “factorisation lemma”) of Chapter 2.

This decomposition can be used to prove the following sufficient condition for CH to be

zero on homology.

Lemma 5.4.9 Suppose additionally that the space A admits a map ` : Z → A such that the

diagram

S1 × Z S1 ×A

X Y

id×`

g

H∪H ′ (5.4.4)

can be completed by some map 99K to a homotopy-commutative square. Then CH is the

zero-map on reduced homology up to degree hconn(`) + 1.

Proof. Consider the commutative diagram

H̃∗−1(Z) H̃∗−1(A) H̃∗(Ck)

H̃∗(S
1 × Z) H̃∗(S

1 ×A)

H̃∗(X) H̃∗(Y ) H̃∗(Cg)

`∗

g∗

The right-hand side is the decomposition of Lemma 5.4.8, the bottom left square is induced

by (5.4.4), and the top-left square commutes by the naturality of the Künneth decompo-

sition. The composition along the bottom row is the zero map, since the two maps are

consecutive maps in the long exact sequence for g. For ∗ ≤ hconn(`) + 1, the map `∗ in

the diagram is surjective. Hence by a diagram chase the right-hand vertical map, which is

CH∗, is zero.

Putting together Corollary 5.4.7 with Lemmas 5.4.8 and 5.4.9, one can prove the fol-

lowing general criterion for homological stability:

Proposition 5.4.10 (Homological stability criterion)

Suppose we are given a set X of maps between path-connected topological spaces, graded

by a ‘weight’ function w : X → N. Denote by X(n) the subset w−1({n}) of maps of weight

n, and by Xnk the subset w−1({k, . . . , n}) of maps with weight between k and n.
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Assume that for n ≥ 2 each element g : X → Y of X(n) can be given the structure

assumed in Corollary 5.4.7 above (a twice iterated resolution and approximation), so that

the resulting square

Z ′0 W ′0

X Y

h′0

g

I

(I denotes the identity homotopy) admits the structure assumed in Lemmas 5.4.8 and 5.4.9

above (a diagonal factorisation and a map `). If this structure can be chosen so that

� g′0, h′0, ` ∈ Xn−1
n−2,

� g′s, h′s ∈ Xn−1
n−2s for all s ≥ 1, and

� b, c ≥ n
2 ,

then hconn(g) ≥ bn2 c for all g ∈ X(n).

Proof. By induction on n. For n = 0, 1 the claim is just that g induces a surjection on H0

for all g ∈ X(n). This follows from path-connectivity of the spaces under discussion, so the

base case is done. For n ≥ 2 we have the structure assumed above. Apply Corollary 5.4.7

and the inductive hypothesis to see that the map Ch′0 → Cg is surjective on homology up

to degree n
2 , and apply Lemmas 5.4.8 and 5.4.9 and the inductive hypothesis to see that it

is the zero-map on reduced homology up to degree n
2 .

Remark 5.4.11 There are obviously exactly analogous criteria for homological stability

which involve taking resolutions more (and less) than twice, but this is the version of the

criterion most convenient for our application to configuration spaces of submanifolds. It is

closely related to the notion of ‘2-triviality’ in [RW10].

Remark 5.4.12 The middle � criterion above needs some explanation: it requires that g′s

and h′s have weight at least n−2s (and at most n−1), but we have not yet said what maps of

weight n are for negative n. In the proof, the only way in which the property “f ∈ X(k)” is

ever used is to deduce, when the inductive hypothesis allows it, that hconn(f) ≥ bk2c. So we

may define X(n), for negative n, to be the class of all maps f between path-connected spaces

such that hconn(f) ≥ bn2 c, in other words H̃∗(Cf) = 0 for ∗ ≤ n
2 . So X(−1) = X(−2) is the

class of all maps f between path-connected spaces with H̃−1(Cf) = 0, which is equivalent

to domain(f) 6= ∅. The condition becomes vacuous for smaller n, so for n ≤ −3, X(n) is

just the class of all maps between path-connected spaces.

In our application of this criterion it will turn out that all h′s are in X(n−1), and g′s is in

X(n−s−1) for 0 ≤ s ≤ n−1. For the remaining g′s the above convention comes into effect:

g′n is the empty map ∅→ pt (which is in X(−2) ⊆ Xn−1
−n since n ≥ 2) and for s ≥ n+ 1, g′s

is the empty map ∅→ ∅ (which is in X(−4) ⊆ Xn−1
n−2s since n− 2s ≤ −n− 2 ≤ −4).
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Strategy The general strategy for proving homological stability by this technique for

some particular N-graded set of maps X is as follows. For each map g : X → Y in X try

to construct a highly-connected resolution and approximation (in the sense of Definition

5.4.3), such that the approximating maps belong to X and have smaller weight. This gives

us a square of maps

X ′ Y ′

X Y

g′

g

Then repeat this step for g′, and iterate until the resulting square of maps admits a factori-

sation (up to homotopy) into triangles.

X ′···′ Y ′···′

...
...

X ′ Y ′

X Yg

Then one also has to check the coherence condition assumed in Lemma 5.4.9 for this factori-

sation into triangles, which is a certain compatibility requirement between the homotopies

filling the above triangles and the set of maps X.

Outline of the proof of the Main Theorem. The precise setup for the proof of the

Main Theorem is as follows. Fix a closed, connected manifold P , an open or finite subgroup

G ≤ Diff(P ) and a path-connected space X. Also fix an integer d ≥ 2 dim(P ) + 3. Then

define

X(n) :=
{

ΣP
n (M,X|G)

s−→ ΣP
n+1(M,X|G)

}
M

(5.4.5)

where M runs over all d-dimensional connected manifolds which are the interior of a

manifold-with-boundary M , equipped with an embedding ι of P into a coordinate neigh-

bourhood of the boundary ∂M .

For Extension 5.1.8 of the Main Theorem, the precise setup is slightly different. Let P

be a point or Sk for k ≥ 1. Fix an open or finite subgroup G ≤ Diff(P ), a path-connected

space X and an integer d ≥ dim(P ) + 3. Then X(n) is defined to be (5.4.5), where M

runs over all d-dimensional connected manifolds which are the interior of a manifold-with-

boundary M , equipped with an embedding ι of P into a coordinate neighbourhood of the

boundary ∂M . The embedding ι is required to be ‘standard’10 when P = Sk, and G must

be realisable by isotopies with respect to it.

10Of the form Sk ↪→ Rk+1 ⊆ Rd−1 ⊆ ∂M .
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It is immediate from Definitions 5.1.2 and 5.1.5 that the spaces ΣP
n (M,X|G) are always

path-connected. We wish to apply the ‘homological stability criterion’ (Proposition 5.4.10)

to this X. To do the inductive step, we will need to construct, for each such map s,

two resolutions and approximations, and then find a factorisation-up-to-homotopy of the

resulting square of maps. The first resolution and approximation is constructed in §5.5

(where we also explain why the resulting square does not yet factorise into triangles) and

the second resolution and approximation is constructed in §5.6. Then in §5.7 we show

that the square obtained after the second resolution factorises (coherently) into triangles to

complete the proof.

5.5 First resolution

The aim of this section is to prove that for X = (5.4.5) the first part of the hypothesis

of Proposition 5.4.10 holds:

Proposition 5.5.1 (Step I of the proof of the Main Theorem) For n ≥ 2 each g =

s : ΣP
n (M,X|G) → ΣP

n+1(M,X|G) in X(n) admits an n-resolution g• and approximation

{g′i}, in the sense of Definition 5.4.3, with g′i ∈ X(n− i− 1) for i ≤ n− 1, g′n ∈ X(−2) and

g′i ∈ X(−4) for i ≥ n+ 1.

Remark 5.5.2 More concretely, we will have shown (assuming the Main Theorem for

smaller values of n by induction) that the square

ΣP
n−1(M ′, X|G) ΣP

n (M ′, X|G) mapping cone

ΣP
n (M,X|G) ΣP

n+1(M,X|G) mapping cone

s

s

(5.5.1)

induces a homology-surjection up to degree n
2 on mapping cones. Here M ′ = M r ψ0(P )

and the vertical maps add the copy ψ0(P ) of P (labelled by the basepoint x0 ∈ X) to the

configuration; precisely:

{[ψ1], . . . , [ψn−1];x1, . . . , xn−1} 7→ {[ψ1], . . . , [ψn−1], [ψ0];x1, . . . , xn−1, x0}.

5.5.1 Why this is not yet enough

Before proving 5.5.1 we briefly explain why the square (5.5.1) does not factorise into

triangles, and so a further resolution and approximation (§5.6) is required in order to find

such a factorisation (§5.7).

There is of course an obvious diagonal map ΣP
n (M ′, X|G) → ΣP

n (M,X|G) in (5.5.1),

given by the inclusion M ′ ↪→M . Call this map d and the vertical maps vn−1 and vn. Then

the problem is that d ◦ s 6' vn−1 (and s ◦d 6' vn). Schematically (imagine the case M = R2,
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§5.5. First resolution

P = pt for concreteness) the first two maps are:

vn−1

d ◦ s

Key

starting configuration

configuration point

puncture in M

(5.5.2)

A homotopy d ◦ s  vn−1 would have to move the new configuration point through the

existing configuration (grey) to where the puncture used to be—but there is no continuous

choice for how to do this.

The idea of the second resolution and approximation (§5.6) is to end up with a square

as in (5.5.1), but with M ′′ = M r e0(P × I) instead of M ′ = M rψ0(P ). Now one can find

a homotopy d ◦ s vn−1, essentially by sliding the new copy of P along e0(P × I) to reach

ψ0(P ). See §5.7 for a precise description of this homotopy.

5.5.2 Construction of the first resolution and approximation

For the following definition it is clearer to use the notation {([ψ1], x1), . . . , ([ψn], xn)}
(rather than {[ψ1], . . . , [ψn];x1, . . . , xn}) for an element of ΣP

n (M,X|G).

Definition 5.5.3 Let ΣP
n (M,X|G)j be the space of configurations {([ψ1], x1), . . . , ([ψn], xn)}

in ΣP
n (M,X|G) each equipped with an injection µ : {1, . . . , j} ↪→ {([ψ1], x1), . . . , ([ψn], xn)}.

In other words there is a given (ordered) choice of j of the copies of P in c. Note that this

is the empty space if j > n.

Varying j these form an augmented semi-simplicial space ΣP
n (M,X|G)•+1 with face

maps, induced by the injective order-preserving maps {1, . . . , j} → {1, . . . , j + 1}, which

correspond to forgetting one of the marked copies of P . The stabilisation map clearly

extends to a map of augmented semi-simplicial spaces:

ΣP
n (M,X|G)•+1 ΣP

n+1(M,X|G)•+1

ΣP
n (M,X|G) ΣP

n+1(M,X|G)

s•+1

s

(5.5.3)

Lemma 5.5.4 The map of augmented semi-simplicial spaces (5.5.3) is an n-resolution of

s in the sense of Definition 5.4.3.

Proof. We claim that the homotopy fibre of the map ε : ‖ΣP
n (M,X|G)•+1‖ → ΣP

n (M,X|G)

is ‖Inj([• + 1], [n])‖ (see Definition 5.3.2). By Lemma 5.3.3 this is (n − 2)-connected, and

so by the relative Hurewicz Theorem (Fact 5.3.4) we deduce that hconn(ε) ≥ n− 1.

131



Chapter 5. Homological stability for configuration spaces of submanifolds

So it is enough to prove that ε has the homotopy fibre claimed. Now, each of the

(unique) compositions of face maps ΣP
n (M,X|G)i+1 → ΣP

n (M,X|G) is a covering space, so

its homotopy fibre is its point-set fibre, which is Inj([i+1], [n]). However, we cannot deduce

directly from this that the homotopy fibre of ε is ‖Inj([• + 1], [n])‖, since the operations

hofib(−) and ‖−‖ are a homotopy limit and homotopy colimit respectively, which certainly

do not commute in general. What we can say is that the point-set fibre of ε is ‖Inj([• +

1], [n])‖, since taking point-set fibres does commute with ‖−‖. Hence by Lemma 5.5.5 below

we are done.

Lemma 5.5.5 The map ε : ‖ΣP
n (M,X|G)•+1‖ → ΣP

n (M,X|G) is a fibre bundle.

Proof. Given a point c = {([ψ1], x1), . . . , ([ψn], xn)} in the base ΣP
n (M,X|G), choose pair-

wise disjoint open sets Vj containing ψj(P ). Then

Uc :=
{
{([ψ′1], x′1), . . . , ([ψ′n], x′n)}

∣∣ ψ′j(P ) ⊆ Vj
}

is an open neighbourhood of c. We will construct a local trivialisation for ε over Uc. Fix a

bijection {V1, . . . , Vn} → [n], and denote by fi the unique composition of face maps

ΣP
n (M,X|G)i+1 → ΣP

n (M,X|G).

Note that any element of f−1
i (Uc) determines an injection [i+ 1] ↪→ [n] in a canonical way,

using the chosen bijection {V1, . . . , Vn} → [n] and the fact that each ψ′j(P ) is contained in

a unique Vj . This defines a map

inj : f−1
i (Uc)→ Inj([i+ 1], [n]).

We can then easily define a local trivialisation for fi by

ti : f
−1
i (Uc) −→ Uc × Inj([i+ 1], [n])

a 7→ (fi(a), inj(a)).

This is clearly a homeomorphism and commutes with the projections (i.e. pr1 ◦ ti = fi). Of

course this is not yet particularly interesting as the fi are covering space maps and therefore

obviously locally trivial. We have a commutative triangle

∐
i

(
∆i × ΣP

n (M,X|G)i+1
)

ΣP
n (M,X|G)

‖ΣP
n (M,X|G)•+1‖

f =
∐

i(fi ◦ pr2)

q

‖f•‖ = ε

(5.5.4)

where q is the map which quotients out by the face relations. The ti fit together to give a
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local trivialisation for f :

f−1(Uc) Uc ×
∐
i

(
∆i × Inj([i+ 1], [n])

)
∐
i

(
∆i × f−1

i (Uc)
) ∐

i

(
∆i × Uc × Inj([i+ 1], [n])

)t∐
i(id∆i × ti)= = (5.5.5)

The equivalence relation on the left of (5.5.5) given by the face relations for ΣP
n (M,X|G)•+1

is taken by t to precisely the equivalence relation on the right of (5.5.5) given by the face

relations for Inj([•+ 1], [n]). Hence t descends to a local trivialisation

ε−1(Uc) −→ Uc × ‖Inj([•+ 1], [n])‖

for ε over Uc.

Next we need to construct a map of fibrations for each level of the map of augmented

semi-simplicial spaces (5.5.3).

Definition 5.5.6 For 0 ≤ i ≤ n− 1, let π : ΣP
n (M,X|G)i+1 → FPi+1(M,X|G) be the map

(
{([ψ1], x1), . . . , ([ψn], xn)}, µ

)
7→ (µ(1), . . . , µ(i+ 1))

which forgets the unmarked copies of P in a configuration.

Lemma 5.5.7 The map π : ΣP
n (M,X|G)i+1 → FPi+1(M,X|G) is a fibre bundle.

Proof. This is the same as the map

f̄ × id :
(
FPn (M |G)×Σn−i−1 X

n−i−1
)
×Xi+1 −→ FPi+1(M |G)×Xi+1

where f̄ is induced by the forgetful map

f : FPn (M |G) −→ FPi+1(M |G).

We will apply the second fibre bundle criterion (Lemma 5.3.7) to show that f̄ is a fibre

bundle. We take the group called G in Lemma 5.3.7 to be the group Diffc,0(M).11 Note

that this has a well-defined action on FPn (M |G) and FPi+1(M |G) since G ≤ Diff(P ) acts on

embeddings of P into M by pre-composition and Diffc,0(M) acts by post-composition, so

the actions commute. The forgetful map f is clearly Diffc,0(M)-equivariant. We take the

group H of Lemma 5.3.7 to be Σn−i−1 (whose action on FPn (M |G) commutes with that

of Diffc,0(M)) and the Σn−i−1-space Z to be Xn−i−1. The action of Σn−i−1 preserves the

fibres of the forgetful map f : FPn (M |G) → FPi+1(M |G) since it permutes the copies of P

11Henceforth we only ever call it Diffc,0(M), to avoid confusion.
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which are forgotten by f . So by Lemma 5.3.7 it suffices to show that the action

Diffc,0(M) y FPi+1(M |G)

admits local sections. Let c = ([ψ1], . . . , [ψi+1]) ∈ FPi+1(M |G) and choose representatives ψj

of [ψj ]. Choose pairwise disjoint open neighbourhoods Vj of ψj(P ) in M . By Proposition

5.3.8 ([Pal60, Theorem B]), the action

Diffc,0(Vj) y Emb(ψj(P ), Vj)

admits local sections, so there is an open subset Uj ⊆ Emb(P, Vj) containing ψj and a map

γj : Uj → Diffc,0(Vj) satisfying

γj(ψ
′) ◦ ψj = ψ′ for all ψ′ ∈ Uj . (5.5.6)

Note that Emb(P, Vj) is an open subset of Emb(P,M), so we can regard the Uj as open

subsets of Emb(P,M). Recall that by definition we have

Emb(P,M)i+1 ⊇ EPi+1(M)
q−→ FPi+1(M |G),

where EPi+1(M) is a certain Gi+1-invariant subspace (G ≤ Diff(P )) of Emb(P,M)i+1, and

q is the quotient map onto the orbit space of the action of Gi+1 on EPi+1(M). On the left

we have the open subset U1×· · ·×Ui+1, so Uc := q((U1×· · ·×Ui+1)∩EPi+1(M)) is an open

subset of FPi+1(M |G) since the quotient map for a continuous group action is always open.

Another description of Uc is

Uc =
{

([ψ′1], . . . , [ψ′i+1]) ∈ FPi+1(M |G)
∣∣ ψ′j ∈ Uj for some representative ψ′j of [ψ′j ]

}
.

So we have an open neighbourhood Uc of c and must now construct a section of Diffc,0(M)
−·c−−→

FPi+1(M |G) over Uc or a smaller neighbourhood. By Proposition 5.3.13 or 5.3.15 (since G

is either open in Diff(P ) or finite), the quotient map p : Emb(P,M) → Emb(P,M)/G has

local sections, so for some open neighbourhood Wj of [ψj ] in Emb(P,M)/G there is a section

sj : Wj → Emb(P,M)

taking [ψj ] to ψj . There is an inclusion

FPi+1(M |G) ↪→
(
Emb(P,M)/G

)i+1

and
∏
j s
−1
j (Uj) is an open subset of the right-hand side, so we may define U ′c to be Uc ∩∏

j s
−1
j (Uj) to obtain a smaller open neighbourhood of c in FPi+1(M |G). We can now define
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a section sc of Diffc,0(M)
−·c−−→ FPi+1(M |G) over U ′c by

U ′c

∏
sj−−−→
∏
j

Uj

∏
γj−−−→

∏
j

Diffc,0(Vj) = Diffc,0(
∐
j

Vj) −→ Diffc,0(M),

where the last map is extension over M r
∐
j Vj by the identity. This description makes it

clear that the map is continuous; more concretely it can be written as

sc([ψ
′
1], . . . , [ψ′i+1]) :=

{
γj(sj([ψ

′
j ])) on Vj ,

id on M r
∐
j Vj .

Finally, one can easily see that this is indeed a section of Diffc,0(M)
−·c−−→ FPi+1(M |G) by

noting that

[γj(sj([ψ
′
j ])) ◦ ψj ] = [sj([ψ

′
j ])] = [ψ′j ],

using (5.5.6) and the fact that sj is a section of p.

Let Mi+1 denote M with i+ 1 (unlinked, isotopic to ι(P )) copies of P removed. Then

the fibre over any point in the base FPi+1(M,X|G) is ΣP
n−i−1(Mi+1, X|G). Hence for any

0 ≤ i ≤ n− 1 we have a map of fibrations over a fixed base space:

ΣP
n−i−1(Mi+1, X|G) ΣP

n−i(Mi+1, X|G)

ΣP
n (M,X|G)i+1 ΣP

n+1(M,X|G)i+1

FPi+1(M,X|G)

si+1

si+1

π π

(5.5.7)

5.5.3 Proof of Step I

We now have all the ingredients to complete Step I of the proof of the Main Theorem.

Proof of Proposition 5.5.1. For each g = s : ΣP
n (M,X|G → ΣP

n+1(M,X|G)) in X(n) we

have constructed an n-resolution g• = s•+1. For 0 ≤ i ≤ n − 1 we have constructed

an approximation g′i = si+1 of the ith level si+1 of the resolution. Note that Mi+1 is a

connected manifold since dim(M) − dim(P ) ≥ 2, so g′i = si+1 ∈ X(n − i − 1). For i = n,

the map gn = sn+1 is the empty map ∅ → ΣP
n+1(M,X|G)n+1. The fibre bundle π from

ΣP
n+1(M,X|G)n+1 to FPn+1(M,X|G) is a homeomorphism, with fibre a point, and the empty

map ∅→ FPn+1(M,X|G) is a fibration (in common with all empty maps) with empty fibre.

So the analogue of (5.5.7) in this case has ∅ → pt as its map of fibres sn+1 = g′n. This

has nonempty codomain, so g′n ∈ X(−2) (see Remark 5.4.12). Finally, for i ≥ n + 1, the

map gi = si+1 is the empty map ∅ → ∅, so we may take g′i to be ∅ → ∅ also, which is
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vacuously in X(−4).

Verification of Remark 5.5.2. The square of maps resulting from our resolution and approx-

imation has vertical maps equal to the composition of the inclusion of the fibre in (5.5.7)

when i = 0 followed by the augmentation map of (5.5.3). If we choose the basepoint of

FP1 (M,X|G) to be ([ψ0];x0) then this is exactly the description of the vertical maps in the

square (5.5.1) of Remark 5.5.2. This square therefore induces a homology-surjection up to

degree n
2 on mapping cones by applying Corollary 5.4.6 and assuming the Main Theorem

for smaller values of n by induction.

5.6 Second resolution

In this section the aim is to complete Step II of the proof of the Main Theorem, that

for X = (5.4.5) the second resolution and approximation required by Proposition 5.4.10 can

be constructed. Recall that M ′ denotes M r ψ0(P ).

Proposition 5.6.1 (Step II of the proof of the Main Theorem) For n ≥ 2, and any

M,P,X,G as in (5.4.5), the map

ΣP
n−1(M ′, X|G)

s−→ ΣP
n (M ′, X|G) (5.6.1)

admits an ∞-resolution h• and approximation {h′i}, in the sense of Definition 5.4.3, with

h′i ∈ X(n− 1) for all i ≥ 0.

Remark 5.6.2 More concretely, we will have shown (assuming the Main Theorem for

smaller values of n by induction) that the square

ΣP
n−1(M ′′, X|G) ΣP

n (M ′′, X|G) mapping cone

ΣP
n−1(M ′, X|G) ΣP

n (M ′, X|G) mapping cone

s

s

(5.6.2)

induces a homology-surjection up to degree n
2 on mapping cones, where M ′′ = Mre0(P×I)

and the vertical maps are induced by the inclusion M ′′ ↪→M ′.

5.6.1 Construction of the second resolution and approximation

See §5.2 for the notation used in the following construction (and Figure 5.2.1 for a

picture).

Construction 5.6.3 Let Emb∂(P × I,W[0,1]) denote the space of embeddings which take

boundary to boundary, and let NEmbW0,T (P × I,W[0,1]) be the open subset of neat em-

beddings (see Definition 5.3.10 and Fact 5.3.11) which take P × {0} to W0 and P × {1} to
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T . See Figure 5.6.1 for a schematic picture. Let EP×I(M) denote the path-component of

NEmbW0,T (P×I,W[0,1]) containing e0, which is again an open subset,12 and let EP×Ij (M) be

the open subset of (EP×I(M))j of tuples of embeddings whose images are pairwise disjoint.

Finally, we define

ΣP
n (M,X|G)(j) ⊆ ΣP

n (MrT ,X|G)× EP×Ij (M)

to be the subspace of elements

(([ψ1], . . . , [ψn];x1, . . . , xn), (e1, . . . , ej))

such that every ek(P × I) is disjoint from every ψi(P ) (here T denotes the closure of the

tubular neighbourhood T in M). The collection {ΣP
n (M,X|G)(i+1)}i≥−1 forms an aug-

mented semi-simplicial space with face maps given by forgetting one of the embeddings

ek. The (−1)st space is ΣP
n (M,X|G)(0) = ΣP

n (MrT ,X|G) ∼= ΣP
n (M ′, X|G). Clearly the

stabilisation map extends to a map of augmented semi-simplicial spaces

ΣP
n−1(M,X|G)(•+1) ΣP

n (M,X|G)(•+1)

ΣP
n−1(MrT ,X|G) ΣP

n (MrT ,X|G)

s(•+1)

s

(5.6.3)

e(P×I)

W0 W1

W

(
)

T

W[0,1]

1st coordinate

other d− 1
coordinates

Figure 5.6.1: An element e of EP×I(M).

We will use the following criteria for an augmented semi-simplicial space to be an ∞-

resolution.

Proposition 5.6.4 (Theorem 6.2 of [GRW12], rewritten slightly) For any augmented semi-

simplicial space Z•, the following conditions imply that it is an ∞-resolution, i.e. that the

map ‖Z•‖ → Z−1 is a weak equivalence:

12Since NEmbW0,T (P × I,W[0,1]) is locally path-connected. This is because it is an open subset of
C∞∂ (P × I,W[0,1]), which is in fact locally contractible as it can be given the structure of an infinite-
dimensional manifold in a suitable sense (q.v. [KM97]).
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(a) The canonical map Zn → Z0 ×Z−1 · · · ×Z−1 Z0 taking a simplex to its vertices is a

homeomorphism onto an open subspace.

(b) Under this identification, a set of vertices (v0, . . . , vn) ∈ Z0 ×Z−1 · · · ×Z−1 Z0 is in Zn

whenever each pair (vi, vj) ∈ Z0 ×Z−1 X0 is in Z1.

(c) The map ε : Z0 → Z−1 is surjective, and for every v ∈ Z0 there is a section U → Z0

on a neighbourhood U of ε(v) taking ε(v) to v.

(d) For any non-empty finite set {v1, . . . , vj} in a fibre of ε there is another v in the same

fibre such that (v, vi) ∈ Z1 for all i.

Lemma 5.6.5 The augmented semi-simplicial space ΣP
n (M,X|G)(•+1) is an ∞-resolution.

We first prove this in the setup of the Main Theorem, where we assume that dim(M) ≥
2 dim(P ) + 3. In §5.6.3 we explain how to modify the proof for Extension 5.1.8 of the Main

Theorem, where P is a point or a sphere and we only assume that dim(M) ≥ dim(P ) + 3.

Proof of Lemma 5.6.5 in the setup of the Main Theorem. We prove this using the above

criteria, with Z• = ΣP
n (M,X|G)(•+1). In this case, by definition, Zn is the subset of

Z0 ×Z−1 · · · ×Z−1 Z0 consisting of elements which satisfy the condition that the images

of the embeddings ek are pairwise disjoint. This condition is open and pairwise, so (a)

and (b) are satisfied. To see that ε is surjective, note that since the ψi(P ) are embed-

ded in such a way that they can be enclosed in a coordinate neighbourhood in M , they

cannot link with T and obstruct the existence of an embedding of P × I between T and

W0 which is disjoint from them. For the second half of (c), suppose we have an element

v = ({[ψ1], . . . , [ψn];x1, . . . , xn}, e1) ∈ Z0. Choose pairwise disjoint open balls Bi around

ψi(P ) which are all disjoint from e1(P × I). Then we can take the open neighbourhood

U of ε(v) to be all {[ψ′1], . . . , [ψ′n];x′1, . . . , x
′
n} such that ψ′i(P ) ⊆ Bi, over which ε has an

obvious section:

{[ψ′1], . . . , [ψ′n];x′1, . . . , x
′
n} 7→ ({[ψ′1], . . . , [ψ′n];x′1, . . . , x

′
n}, e1).

For criterion (d) we have a configuration {[ψ1], . . . , [ψn];x1, . . . , xn} in ΣP
n (M rT ,X|G)

together with embeddings e1, . . . , ej in EP×I(M) which are disjoint from each ψi(P ) but

not necessarily from each other, and we need to find a new embedding e ∈ EP×I(M) which

is disjoint from each ψi(P ) and from each ek(P × I). This requires slightly more work:

Recall that EP×I(M) is an open subset of Emb∂(P × I,W[0,1]), which is itself open in

C∞∂ (P × I,W[0,1]) since being an embedding is an open property. Hence we have an open

subset

EP×I(M) ∩ C∞∂
(
P × I,W[0,1] r

⋃n
i=1ψi(P )

)
⊆ C∞∂

(
P × I,W[0,1] r

⋃n
i=1ψi(P )

)
. (5.6.4)

The subset in (5.6.4) is also non-empty, because the ‘standard’ embedding e0 of P × I is

in EP×I(M) and, since the ψi(P ) are contained in coordinate neighbourhoods of M , this
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embedding can easily be modified to avoid them.

We now apply Lemma 5.3.19 with N1 = P × I, N2 = W[0,1] r
⋃n
i=1 ψi(P ) and Wk =

ek(P × I) for 1 ≤ k ≤ j. The dimension assumption of the lemma is satisfied since we are

assuming that dim(M) ≥ 2 dim(P ) + 3. It tells us that we have a dense subset

{f | f(P × I) is disjoint from each ek(P × I)} ⊆ C∞∂

(
P × I,W[0,1] r

⋃n
i=1ψi(P )

)
. (5.6.5)

The intersection of the subsets in (5.6.4) and (5.6.5) is non-empty, and we may take any

element of the intersection to be the required e ∈ EP×I(M).

Now we will construct a map of fibrations for each level of the map of augmented semi-

simplicial spaces (5.6.3).

Definition 5.6.6 Let π : ΣP
n (M,X|G)(i+1) → EP×Ii+1 (M) be the map which forgets the

configuration of P s and just remembers the embedded P × Is. Formally, it is

(([ψ1], . . . , [ψn];x1, . . . , xn), (e1, . . . , ei+1)) 7→ (e1, . . . , ei+1).

Remark 5.6.7 The point-set fibre of this map is ΣP
n (M(i+1), X|G), where M(i+1) denotes

M with T and i + 1 (pairwise disjoint, embedded by an element of EP×I(M)) copies of

P × I removed.

Lemma 5.6.8 The map π : ΣP
n (M,X|G)(i+1) → EP×Ii+1 (M) is a fibre bundle.

Proof. First we define a continuous map Υ: Diffc,0(W[0,1]) → Diffc,0(M) which extends a

diffeomorphism on W[0,1] to all of M . Denote the projection W[1,2) → W1 which sets the

first coordinate to 1 by p and the projection W[1,2) → [1, 2) onto the first coordinate by q.

Also choose a smooth function λ : [1, 2)→ [0, 1] which is 1 on [1, 5
4 ] and 0 on [7

4 , 2). We can

then define, for φ ∈ Diffc,0(W[0,1]),

Υ(φ) : M →M

y 7→


φ(y) if y ∈W[0,1]

y + λ(q(y)).
(
φ(p(y))− p(y)

)
if y ∈W[1,2)

y if y ∈M rW.

Let Diffc,0(W[0,1];W0, T ) be the open (in the strong topology) subgroup of Diffc,0(W[0,1]) of

diffeomorphisms which preserve each of W0, W1 r T and T setwise.13 There is an action

13The condition of sending W0 to itself is open in the weak topology, since it is equivalent to requiring
that a particular point of W0 is sent into W0. The condition of sending T to itself is not open in the weak
topology, but it is open in the strong topology. In the weak topology, the condition K  U is an open
condition whenever U is open and K is compact, whereas in the strong topology for this to be an open
condition it is sufficient that K admits a locally finite open covering V together with a compact subset
KV ⊆ V for each V ∈ V such that {KV }V ∈V also covers K. This condition on K clearly holds for any
tubular neighbourhood of a compact submanifold. Similarly, it is not hard to construct a locally finite
covering of W1 r T by compact sets, so the condition of sending this to itself is also open in the strong
topology.
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Chapter 5. Homological stability for configuration spaces of submanifolds

of Diffc,0(W[0,1];W0, T ) on ΣP
n (M,X|G)(i+1) (via Υ) and on EP×Ii+1 (M), and the map π is

equivariant with respect to these actions. Hence by Lemma 5.3.6 we just need to show that

the action

Diffc,0(W[0,1];W0, T ) y EP×Ii+1 (M)

admits local sections. Let c = (e1, . . . , ei+1) ∈ EP×Ii+1 (M) and choose pairwise disjoint open

Vj ⊆W[0,1] containing ej(P × I). By Proposition 5.3.12 the action

Diffc,0(Vj) y NEmb(P × I, Vj)

admits local sections, so there is an open neighbourhood Uj of ej ∈ NEmb(P × I, Vj) and

continuous map γj : Uj → Diffc,0(Vj) such that

γj(e
′) ◦ ej = e′ for all e′ ∈ Uj . (5.6.6)

Moreover from the construction of the local section γj in the proof of Proposition 5.3.12 we

see that γj(ej) = id. Now NEmb(P×I, Vj) is open in NEmb(P×I,W[0,1]), so we can consider

Uj to be an open subset of NEmb(P × I,W[0,1]). There is a continuous map Diffc,0(Vj)→
Diffc,0(W[0,1]) extending a diffeomorphism by the identity; let Diffc,0(Vj ;W0, T ) be the

preimage of Diffc,0(W[0,1];W0, T ). There is an inclusion EP×Ii+1 (M) ↪→ NEmb(P×I,W[0,1])
i+1,

and we define

Uc := EP×Ii+1 (M) ∩
∏
j

γ−1
j

(
Diffc,0(Vj ;W0, T )

)
,

which is an open neighbourhood of c in EP×Ii+1 (M). We define a local section over Uc by

Uc

∏
γj−−−→
∏
j

Diffc,0(Vj ;W0, T ) −→ Diffc,0(W[0,1];W0, T ),

where the second map extends by the identity. Note that by (5.6.6) this is indeed a local

section of the map Diffc,0(W[0,1];W0, T )
−·c−−→ EP×Ii+1 (M), as required.

5.6.2 Proof of Step II

We can now put this all together to complete Step II of the proof of the Main Theorem.

Proof of Proposition 5.6.1. First note that the map (5.6.1) can be identified with the map

ΣP
n−1(M r T ,X|G) −→ ΣP

n (M r T ,X|G)

since M r T ∼= M ′ = M r ψ0(P ). By Lemma 5.6.5 we have an ∞-resolution h• = s(•+1) of

this map. By Remark 5.6.7 and Lemma 5.6.8 we have a fibration sequence

ΣP
n (M(i+1), X|G) ↪→ ΣP

n (M,X|G)(i+1) π−→ EP×Ii+1 (M)
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§5.6. Second resolution

for all i ≥ 0. Note that the map s(i+1) satisfies π ◦ s(i+1) = π, since adding a copy of P and

then forgetting them all is the same as just forgetting them, so we have a map of fibration

sequences

ΣP
n−1(M(i+1), X|G) ΣP

n (M(i+1), X|G)

ΣP
n−1(M,X|G)(i+1) ΣP

n (M,X|G)(i+1)

EP×Ii+1 (M)

s(i+1)

s(i+1)

π π

(5.6.7)

This gives an approximation {h′i} = {s(i+1)} of the ∞-resolution h• = s(•+1) in the sense of

Definition 5.4.3. Finally, note that M(i+1) is still a path-connected manifold, since we have

cut out submanifolds of codimension dim(M)−dim(P )−1 ≥ 2. Hence h′i = s(i+1) ∈ X(n−1)

for all i ≥ 0, as required.

Verification of Remark 5.6.2. The square of maps resulting from the second resolution and

approximation has vertical maps equal to the composition of the inclusion of the fibre in

(5.6.7) when i = 0 followed by the augmentation map of (5.6.3). If we choose the basepoint

of EP×I1 (M) to be (e0) and take a suitable identification M r T ∼= M ′ = M r ψ0(P ),

then this is precisely the square of maps (5.6.2). Therefore (5.6.2) induces a homology-

surjection up to degree n
2 on mapping cones by applying Corollary 5.4.6 and assuming the

Main Theorem for n− 1 by induction.

5.6.3 Modification for points and spheres

When we are in the setup of Extension 5.1.8 of the Main Theorem, we only assume that

dim(M) ≥ dim(P ) + 3, so we cannot use a transversality argument (via Lemma 5.3.19) to

verify criterion (d) of Proposition 5.6.4 to show that ΣP
n (M,X|G)(•+1) is an ∞-resolution.

Instead we can check criterion (d) concretely.

Proof of Lemma 5.6.5 in the setup of Extension 5.1.8 of the Main Theorem. The first three

criteria can be checked as before, so we need only consider criterion (d). For this we have

a configuration {[ψ1], . . . , [ψn];x1, . . . , xn} in ΣP
n (M r T ,X|G) together with embeddings

e1, . . . , ej in EP×I(M) which are disjoint from each ψi(P ) but not necessarily from each

other, and we need to find a new embedding e ∈ EP×I(M) which is disjoint from each

ψi(P ) and from each el(P × I).

We will assume that P = Sk with k ≥ 1 since the case when P is a point is the same

idea but easier. We are working entirely in W[0,1]
∼= Rd−1 × [0, 1], and since ι was assumed
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Chapter 5. Homological stability for configuration spaces of submanifolds

to be a ‘standard’ embedding of Sk, we may assume that ψ0 : Sk ↪→W1 is simply

Sk ↪→ Rk+1 ⊆ Rd−1 × {1},

where the first map is the inclusion of the standard unit sphere in Rk+1. Hence we can

take the tubular neighbourhood T of ψ0(Sk) in W1 to be a standard ‘cylindrical’ tubular

neighbourhood:

T :=
{

(x1, . . . , xd−1, 1)
∣∣ (x2

1 + · · ·+ x2
k+1)

1
2 ∈ (1

2 , 2) and xk+2, . . . , xd−1 ∈ (−1, 1)
}
⊆W1.

See Figure 5.6.2 for a picture of T when P = S1 and d = dim(M) = 4. By compactness of

Sk × [0, 1], there exists a function r : [0, 1]→ [1,∞), which we may take to be smooth, such

that r(1) < 2 and for all t ∈ [0, 1] and each 1 ≤ l ≤ j,

el(S
k × [0, 1]) ∩Wt ⊆ Br(t)(t),

where for r > 1 and t ∈ [0, 1],

Br(t) :=
{

(x1, . . . xd−1, t)
∣∣ (x2

1 + · · ·+ x2
k+1)

1
2 < r

}
⊆Wt.

Hence we may define e : Sk × [0, 1] −→W[0,1] = Rd−1 × [0, 1] by:

(x1, . . . , xk+1, t) 7→ (r(t)x1, . . . , r(t)xk+1, 0, . . . , 0, t).

Note that e ∈ EP×I(M) and its image is disjoint from each el(S
k × I) by construction. It

can now easily be modified by an isotopy to also be disjoint from each ψi(S
k), since these

are pairwise unlinked (and so in particular each contained in a coordinate neighbourhood

of M).

−1 0 1

r = 0

r = 1
2

r = 2

Figure 5.6.2: A cylindrical tubular neighbourhood T for ψ0(S1) when dim(M) = 4. The
thick circle is ψ0(S1).

142



§5.6. Second resolution

5.6.4 Why a more naive resolution doesn’t work

A simpler and more naive resolution of ΣP
n (M r T ,X|G) could be obtained by defining

it as in Construction 5.6.3, but removing either of the following two conditions:

(i) The embeddings of P × I must have pairwise disjoint images;

(ii) The embeddings of P × I must take P × {1} into the tubular neighbourhood T .

Removing either of these conditions still gives a perfectly good ∞-resolution of ΣP
n (M r

T ,X|G); one can verify the criteria (a)–(d) of 5.6.4 in much the same way, and in fact

criterion (d) becomes much easier if condition (i) is removed, since there is no need for a

transversality argument and therefore no need for any dimension assumption on M and

P . The same is also true for removing condition (ii): in this case finding an embedding

e ∈ EP×I(M) which is disjoint from a given collection e1, . . . , ej ∈ EP×I(M) is easily

achieved by embedding it “far away” from them. So again there would be no need for any

dimension assumption on M and P if condition (ii) were removed.

The problem is that the map π : ΣP
n (M,X|G)(i+1) → EP×Ii+1 (M) is no longer a fibre

bundle (or a fibration or even a homology-fibration) if either of these conditions is removed.

Counterexamples. This can be easily seen in the case M = R2, P = pt. Suppose we

remove condition (i). Then the following are two points of the base space, which is now

just (EP×I(M))j , which are in the same path-component but nevertheless have completely

different fibres:

(
)

T

(
)

T

In each case the fibre is the space of unordered configurations of n points in M with T and

the two indicated arcs removed. But on the left this is the disjoint union of 2 copies of R2

and on the right it is the disjoint union of 3 copies of R2.

If instead condition (ii) is removed we can construct a similar simple counterexample:

(
)

T

(
)

T

This time the fibre on the left is Σpt
n (R2) and the fibre on the right is Σpt

n (S1 × R2).

Where conditions (i) and (ii) are used in showing that π is a fibre bundle. It

may be illuminating to point out exactly what goes wrong in the proof of Lemma 5.6.8

when either (i) or (ii) is removed. The method of proof involves showing that the action

of a certain group of diffeomorphisms Diffc,0(W[0,1];W0, T ) on the base space EP×Ii+1 (M)

has local sections, or is ‘continuously locally transitive’. In particular it must be locally
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transitive, meaning that each point has a neighbourhood which is contained in a single

orbit of the action.

If condition (i) is removed, consider a configuration (e1, . . . , ei+1) in EP×Ii+1 (M) in which

two of the ek(P ×I) intersect, but ‘only just’, so that any open neighbourhood of it contains

a configuration (e′1, . . . , e
′
i+1) in which the ek(P×I) are pairwise disjoint. No diffeomorphism

of W[0,1] can change whether two of the copies of P × I intersect or not, so the action fails

to be locally transitive at the point (e1, . . . , ei+1).

If condition (ii) is removed, consider a configuration (e1, . . . , ei+1) such that every

ek(P × {1}) is contained in T , and at least one intersects the boundary ∂T . Then any

neighbourhood of it contains a configuration (e′1, . . . , e
′
i+1) in which every ek(P × {1}) is

contained in T . But the diffeomorphisms in Diffc,0(W[0,1];W0, T ) are required to send W1rT
to itself, and so by continuity cannot take any point of ∂T into T . Hence the action fails

to be locally transitive at the point (e1, . . . , ei+1).

One could try to instead consider the action of the larger group Diffc,0(W[0,1]), whose

diffeomorphisms are not required to take W1 r T to itself. But this group does not act

on the domain ΣP
n (M,X|G)(i+1) of π, which it would have to for the method of proof to

work (using Lemma 5.3.6). This is because an element of ΣP
n (M,X|G)(i+1) in particular

consists of a configuration of copies of P contained in M rT , and a general diffeomorphism

in Diffc,0(W[0,1]) (extended to M by Υ) might not send M r T to itself.

5.6.5 A red herring

This section is not relevant to the proof of the Main Theorem; it is just a brief aside

on a tempting weakening of the hypotheses of the Main Theorem which unfortunately does

not work. Rather than assume that dim(M) ≥ 2 dim(P ) + 3 in order to be able to use a

transversality argument to ensure that certain disjoint embeddings can be found, one could

instead try assuming that P admits a non-vanishing normal vector field (i.e. the normal

bundle ν(ι)→ P of the embedding ι : P ↪→ Rd−1 ⊆ ∂M admits a non-vanishing section).14

5.6.5.1 Conditions ensuring existence of non-vanishing normal vector fields

This would somewhat improve the Main Theorem (and Extension 5.1.8), since there are

several general conditions which imply the existence of a non-vanishing normal vector field.

One obvious one is if ι (is isotopic to an embedding which) factors through the inclusion

Rd−2 ↪→ Rd−1. Some more subtle ones are as follows.

Proposition 5.6.9 Let P be closed, connected and k-dimensional. Then each of the follow-

ing conditions is sufficient for any embedding P ↪→ Rd−1 to have a non-vanishing section

of its normal bundle:

14One now also has to assume that the subgroup G ≤ Diff(P ) is realisable by isotopies, since this is no
longer guaranteed by a dimension assumption. The weaker dimension assumption dim(M) ≥ dim(P ) + 3 is
still necessary to ensure that M(i+1) (see Remark 5.6.7) is connected.
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• P is a homology sphere,

• d− 1 ≥ 2k + 1,

• d− 1 = 2k and P is orientable,

• d− 1 = 2k − 1, P is orientable, k ≥ 5 and w̄2(P ) ∪ w̄k−2(P ) = 0,

where w̄i ∈ H i(P ;Z/2) is the ith dual Stiefel-Whitney class of P (which is the same as the

ith Stiefel-Whitney class of ν(ι) by the Whitney Duality Theorem). In particular this last

condition is satisfied when

• k is not of the form 2s(2t + 1) for s, t ≥ 0, or

• k is of the form 2(2t + 1) for t ≥ 1 or 2s.3 for s ≥ 0.

Proof. The first condition is Theorem IV of [Mas61] (see also [Mas59] and [Ker59]). For the

second condition we may assume that k ≥ 2 since the case P = S1 has been taken care of

by the first. There exists an embedding ι0 : P ↪→ Rd−2 ⊆ Rd−1 by the Whitney Embedding

Theorem [Whi36], and any two embeddings P ↪→ Rd−1 are isotopic (see for example [Sko08,

Theorem 2.5]), so ι is isotopic to ι0. There is an obvious non-vanishing section of the normal

bundle of ι0. But ι and ι0 are isotopic (in particular regularly homotopic) so their normal

bundles are the same. The third condition is due to [Whi41] (see also [Hir76, Theorem

5.2.11]), and the fourth is Theorem II of [Mas61]. The last fact is observed by Massey in

the same paper, and follows from Corollary 2 of [Mas60].

Remark 5.6.10 In fact by Theorem II of [Mas61], when d = 2k, P is orientable and k ≥ 5,

the characteristic class condition in Proposition 5.6.9 is also necessary for the embedding

to admit a non-vanishing normal vector field. This is part of a more general necessary

condition for the existence of non-vanishing normal vector fields, which is Theorem I of

[Mas61].

Example 5.6.11 As an illustration that orientability of P is necessary for the third condi-

tion of Proposition 5.6.9, the embedding RP2 ↪→ R4 does not admit a non-vanishing normal

vector field. Some further explicit examples and non-examples of embeddings which admit

non-vanishing normal vector fields are as follows (all taken from [Mas61]). The existence of

these embeddings is due to [Jam59].

With non-vanishing normal vector field: Without non-vanishing normal vector field:

RPn ↪→ R2n−1 (n ≥ 3 odd) CPn ↪→ R4n−1 (n = 2s, n ≥ 4)

CPn ↪→ R4n−1 (n 6= 2s) HP2 ↪→ R13, HP4 ↪→ R29, OP2 ↪→ R25

5.6.5.2 Why this isn’t enough

Assuming the non-vanishing normal vector field hypothesis, one could try to argue as

follows to prove that criterion (d) of Proposition 5.6.4 holds for ΣP
n (M,X|G)(•+1).

Recall from the proof of Lemma 5.6.5 that essentially what is needed to check this

criterion is: given a collection of embeddings e1, . . . , ej in EP×I(M), we need to find another
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e ∈ EP×I(M) which is disjoint from all of them. Since e1 is assumed isotopic to e, and e was

constructed in a very simple way from ι, we know that e1 admits a non-vanishing normal

vector field. We can use this to ‘push it off itself’ (choosing a tubular neighbourhood T1 of

e1) to obtain a new embedding e which is therefore disjoint from e1. The problem with this

approach is very simple: the original collection of embeddings e1, . . . , ej was not assumed

to already be pairwise disjoint, so we cannot assume that T1, and therefore e, is disjoint

from any of the e2, . . . , ej .

5.6.6 Difficulties with codimension 2

This is another ‘red herring’ section, pointing out why a naive ‘fix’ of the proof—to

extend the result for points and spheres to the codimension-2 case—doesn’t work.

The problem with codimension 2 is that the manifold M(i+1) is in general disconnected,

since it is obtained from M by cutting out some codimension-1 submanifolds, so the map

s(i+1) of §5.6.7 is not necessarily in X(n − 1). An idea to possibly solve this problem is to

pass to a sub-semi-simplicial space of ΣP
n (M,X|G)(•+1) in order to end up with a connected

manifold.

Definition 5.6.12 Given (([ψ1], . . . , [ψn];x1, . . . , xn), (e1, . . . , ej)) ∈ ΣP
n (M,X|G)(j), let

Mlarge be the (“large”) path-component of M(j) = M r
(
T ∪

⋃j
i=1 ei(P × I)

)
which con-

tains M rW . Define ΣP
n (M,X|G)[j] to be the subspace of configurations satisfying the

additional condition that ψi(P ) ⊆ Mlarge for all i. (Note that this condition is vacuous if

dim(M)− dim(P ) ≥ 3, since then M(j) is connected.) The face maps of ΣP
n (M,X|G)(•+1)

restrict to the subspaces ΣP
n (M,X|G)[i+1], so they form a augmented semi-simplicial space

ΣP
n (M,X|G)[•+1]. As before, the stabilisation map extends to a map of augmented semi-

simplicial spaces as in (5.6.3).

The advantage of this semi-simplicial space is that the top horizontal map of (5.6.7)

becomes the stabilisation map ΣP
n−1(Mlarge, X|G) → ΣP

n (Mlarge, X|G), and Mlarge is of

course connected by definition.

Most of the arguments of §§5.6.1 and 5.6.2 go through as before. For example the

action of Diffc,0(W[0,1];W0, T ) on ΣP
n (M,X|G)(i+1) preserves the subspace ΣP

n (M,X|G)[i+1]

setwise, since the diffeomorphisms are all diffeotopic to the identity, so the proof that π is

a fibre bundle works as before.

The place where the proof breaks down is again in checking criterion (d) of Proposition

5.6.4 for ΣP
n (M,X|G)[•+1]. For example take P to be a point and dim(M) = 2. Then given

any collection of arcs and points as in Figure 5.6.3 (arcs disjoint from the points but not

necessarily from each other), we need to find a new arc which is disjoint from all of them,

and such that no point is “cut off” by the new arc together with any one of the old arcs.

In other words, if we cut out the new arc, any old arc and T , then every point should be

in the “large” component of M . This final condition is clearly not possible, however: If the
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collection of arcs is e1, e2 in Figure 5.6.3 and ψ1 is one of the points, then wherever the new

arc (dashed) is put, together with either e1 or e2 it will cut off ψ1.

(
)

Tψ1

e2

e1

Figure 5.6.3: The point ψ1 is doomed to be cut off by the new (dashed) arc and one of the
old (solid) arcs.

5.7 Final step of the proof

In this section we complete Step III of the proof of the Main Theorem by completing

the verification of the hypotheses of the homological stability criterion (Proposition 5.4.10)

for X = (5.4.5). In §§5.5,5.6 above we constructed a twice-iterated resolution and approxi-

mation for each map ΣP
n (M,X|G)→ ΣP

n+1(M,X|G) in X(n). The resulting square of maps

is the vertical composition of the squares (5.5.1) and (5.6.2), which is

ΣP
n−1(M ′′, X|G) ΣP

n (M ′′, X|G) mapping cone

ΣP
n (M,X|G) ΣP

n+1(M,X|G) mapping cone

s

s

v v (5.7.1)

where the vertical maps v are given by adding [ψ0] (labelled by x0) to the configuration.

To finish verifying the hypotheses of Proposition 5.4.10 for X = (5.4.5), and therefore the

proof of the Main Theorem, we will prove that:

Proposition 5.7.1 (Step III of the proof of the Main Theorem) The square (5.7.1) satisfies

the assumptions of Lemmas 5.4.8 and 5.4.9, with the map ` in X(n− 2).

Discussion 5.7.2 More concretely, what we will prove is the following. Firstly, there is a

factorisation of the square (5.7.1) into two triangles

ΣP
n−1(M ′′, X|G) ΣP

n (M ′′, X|G)

ΣP
n (M,X|G) ΣP

n+1(M,X|G)

s

s

v vHn
Jn (5.7.2)

which commute up to certain homotopies Hn and Jn (the diagonal map is induced by the

inclusion M ′′ ↪→ M). This verifies the assumptions of Lemma 5.4.8. The outer square

147



Chapter 5. Homological stability for configuration spaces of submanifolds

actually commutes on the nose, but the composition of Hn and Jn will not be (homotopic

to) the identity homotopy. It is a self-homotopy of the map s ◦ v = v ◦ s, so it is a map

Kn : S1 × ΣP
n−1(M ′′, X|G) −→ ΣP

n+1(M,X|G).

The second thing that we prove is that the following square commutes up to homotopy:

S1 × ΣP
n−2(M ′′, X|G) S1 × ΣP

n−1(M ′′, X|G)

ΣP
n (M,X|G) ΣP

n+1(M,X|G)

id× s

s

Kn−1 Kn (5.7.3)

This verifies the assumptions of Lemma 5.4.9, with the map ` equal to the stabilisation map

ΣP
n−2(M ′′, X|G)→ ΣP

n−1(M ′′, X|G), which is in X(n− 2).

Hence by Lemmas 5.4.8 and 5.4.9, and assuming the Main Theorem for n− 2 by induc-

tion, this shows that the map on mapping cones induced by the square (5.7.1) is trivial on

homology up to degree n
2 .

Proof of Proposition 5.7.1, first half. We prove the first assertion of Discussion 5.7.2, that

there is a factorisation up to homotopy of (5.7.2) into triangles. Denote the diagonal map

(which is induced by the inclusion M ′′ ↪→ M) by d. We need to construct a homotopy Hn

between the two maps

ΣP
n−1(M ′′, X|G) −→ ΣP

n (M,X|G)

d ◦ s : {. . . [ψj ] . . .} 7→ {. . . [f1,0 ◦ ψj ] . . . , [f1,0 ◦ ι]}

v : {. . . [ψj ] . . .} 7→ {. . . [ψj ] . . . , [ψ0]}

See §5.2 and Figure 5.2.1 for notation and a schematic picture. We omit the labels in X

from the notation as they play no role. We construct the homotopy Hn : d ◦ s  v in two

steps:

step 1: {. . . [ψj ] . . .} 7→ {. . . [f1,−6t ◦ ψj ] . . . , [f1,−6t ◦ ι−6t]} t ∈ [0, 1
2 ]

step 2: {. . . [ψj ] . . .} 7→ {. . . [f2−2t,−3 ◦ ψj ] . . . , [f1,−3 ◦ ι−3]} t ∈ [1
2 , 1]

(recall that ψ0 = f1,−3 ◦ ι−3 and ι = ι0).

In words: Step 1 moves the region which the new copy of P is pushed into downwards

from V to W . Step 2 keeps the new copy of P fixed while pulling the original configuration

of P s back to where they were before being pushed inwards. This can be done without

any of them hitting the new copy of P since the original configuration was contained in

M ′′ = M r e0(P × I).
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In pictures:

step 1 step 2 part-way through step 2 end of step 2

(5.7.4)

The construction of the other homotopy Jn is exactly the same.

Composing the homotopies Hn and Jn constructed as in (5.7.4) above we get the fol-

lowing self-homotopy of s ◦ v = v ◦ s (called Kn in Discussion 5.7.2):

s ◦ v s ◦ d ◦ s v ◦ s
s ·Hn Jn · s

(5.7.5)

Proof of Proposition 5.7.1, second half. We now prove that the square (5.7.3) commutes up

to homotopy. First note that (5.7.5), as a map S1 × ΣP
n−1(M ′′, X|G) −→ ΣP

n (M,X|G), is

homotopic to the map depicted in Figure 5.7.1(a). Hence the two ways around the square

in (5.7.5) are as depicted in Figure 5.7.1(b) and (c). We just need to construct a homotopy

between these two maps; this is given by the following picture:

c ◦Kn−1 Kn ◦ (id× s)

(5.7.6)

What this means: the desired homotopy is a map

[0, 1]× S1 × ΣP
n−2(M ′′, X|G) −→ ΣP

n+1(M,X|G),

and the diagram above depicts the image of the element (s, t, c) under this map. The original
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configuration c lives in the shaded region, which is deformed as indicated, and three new

copies of P are added where the rectangular blobs in the diagram are. The parameter

t ∈ S1 determines how far along the lighter arrows the unshaded regions have moved, and

the parameter s ∈ [0, 1] determines how far along the thick arrows they have moved.

For completeness, here is the formal definition of the homotopy pictured in (5.7.6):

[0, 1]× S1 × ΣP
n−2(M ′′, X|G) −→ ΣP

n+1(M,X|G)

(s, t, {. . . [ψj ] . . .}) 7→

{. . . [f6s ◦ f0 ◦ f−6t ◦ ψj ] . . . , [f6s ◦ f0 ◦ ι−6t], [f6s ◦ ι0], [ι6s]} s ∈ [0, 1
2 ], t ∈ [0, 1

2 ]

{. . . [f6s ◦ f6t−6 ◦ f0 ◦ ψj ] . . . , [f6s ◦ f6t−6 ◦ ι0], [f6s ◦ ι6t−6], [ι6s]} s ∈ [0, 1
2 ], t ∈ [ 1

2 , 1]

{. . . [f0 ◦ f−6t ◦ f6−6s ◦ ψj ] . . . , [f0 ◦ f−6t ◦ ι6−6s], [f0 ◦ ι−6t], [ι0]} s ∈ [ 1
2 , 1], t ∈ [0, 1

2 ]

{. . . [f6t−6 ◦ f0 ◦ f6−6s ◦ ψj ] . . . , [f1,6t−6 ◦ f0 ◦ ι6−6s], [f6t−6 ◦ ι0], [ι6t−6]} s ∈ [ 1
2 , 1], t ∈ [ 1

2 , 1]

We again omit the labels in X from the notation, use the shorthand fu = f1,u, and identify

S1 = [0, 1]/(0 ∼ 1).

(a) (b) (c)

Figure 5.7.1: (a) The map Kn. (b) The composite in (5.7.3). (c) The composite in
(5.7.3).

5.8 Twisted homological stability

In this final section we briefly explain how to deduce twisted homological stability for

configuration spaces of submanifolds, in other words homological stability w.r.t. a sequence

Tn of π1ΣP
n (M,X|G)-modules which forms a “finite-degree twisted coefficient system”. We

begin by describing exactly what a “twisted coefficient system” for configuration spaces of

submanifolds is.

Definition 5.8.1 Let M and P ⊆ ∂M be as in Definition 5.1.2, let X be path-connected

and let G ≤ Diff(P ) be a group of diffeomorphisms of P which is realisable by isotopies

(see Definition 5.1.3). There is a “standard” sequence of embeddings of P in M given by

fn ◦ ι (see §5.2), which we denote by qn.

A twisted coefficient system for {ΣP
n (M,X|G)} is a functor BP (M,X|G) → Ab, where

BP (M,X|G) is the following category. It has objects
∐
n≥0X

n and a morphism from
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(x1, . . . , xm) to (y1, . . . , yn) is a choice of k ≤ min{m,n} and a path in ΣP
k (M,X|G) from

a k-element subconfiguration of {[q1], . . . , [qm];x1, . . . , xm} to a k-element subconfiguration

of {[q1], . . . , [qn]; y1, . . . , yn}, up to endpoint-preserving homotopy. This may be called the

category of partial braids on M with cross-section P and labels in X.

This is a special case of the general definition of a twisted coefficient system in Chapter 4

(see Definition 4.2.12), so we get a notion of the degree §4.4 of a twisted coefficient system

for configuration spaces of submanifolds which is a natural generalisation of the notion for

configuration spaces of points §4.2.1.

Now let M , P ⊆ ∂M , X and G ≤ Diff(P ) be as in the Main Theorem or Extension 5.1.8,

and let T : BP (M,X|G)→ Ab be a twisted coefficient system of degree d. Then we stated

in Corollary 5.1.9 that H∗(Σ
P
n (M,X|G);Tn) is independent of n in the range ∗ ≤ n−d−2

2 ,

with isomorphisms given by the stabilisation maps. This can be proved, using the “twisted

stability from untwisted stability principle” (Theorem 4.6.1), exactly as for configuration

spaces of points in §4.6.1. The inputs needed to apply this principle, and prove twisted

homological stability for configuration spaces of submanifolds, are that the map

ΣP
(k,n−k)(M,X|G) −→ ΣP

k (M,X|G) (5.8.1)

is a fibre bundle and that the homology of its fibre, H∗(Σ
P
n−k(Mr

∐k
i=1 qi(P ), X|G)), is

independent of n in the range ∗ ≤ n−k−2
2 . Here ΣP

(k,n−k)(M,X|G) means a configuration

space of k red and n− k green copies of P , and the map (5.8.1) forgets the green ones. The

first fact can be proved in the same way as Lemma 5.5.7, and the second fact is true by the

Main Theorem or Extension 5.1.8, since Mr
∐k
i=1 qi(P ) is still connected.

We note that, by Remark 5.1.10, the stabilisation maps ΣP
n (M,X|G)→ ΣP

n+1(M,X|G)

are always split-injective on homology, so the range in which H∗(Σ
P
n (M,X|G)) is inde-

pendent of n is in fact ∗ ≤ n
2 . This improvement goes through the deduction of twisted

homological stability, so the range in which H∗(Σ
P
n (M,X|G);Tn) is independent of n is in

fact ∗ ≤ n−d
2 .
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[Sma61] , Generalized Poincaré’s conjecture in dimensions greater than four,
Ann. of Math. (2) 74 (1961), 391–406. [cited on p. 112]

[Sna74] V. P. Snaith, A stable decomposition of ΩnSnX, J. London Math. Soc. (2) 7
(1974), 577–583. [cited on pp. 49, 68]

[Swi75] Robert M. Switzer, Algebraic topology—homotopy and homology, Springer-
Verlag, New York, 1975, Die Grundlehren der mathematischen Wissenschaften,
Band 212. [cited on pp. 30, 125]
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